kinetic Tile Assembly Model

kinetic Tile Assembly Model (kTAM)

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

$r_{f} \sim e^{-G_{m c}}$	forward rate	optimal growth w $r_{r} \sim e^{-b \cdot G_{s e}}$
reverse rate	larward rate jus larger than reve	
$e^{-G_{m c}}$	tile concentration	i.e., when
b	\# sticky ends bound	$G_{m c} \approx 2 G_{s e}$
$G_{s e}$	strength of 1 sticky end	

kTAM

Proofreading: Error-correction in the kTAM

Definition: error $=$ attachment by single strength 1 glue

2x2 block X (4 tiles)
glues internal to block are all unique errors must occur in multiples of 2
$k \times k$ proofreading roughly turns error rate of ε into ε^{k}

Concentration programming

Nondeterministic binding

$\operatorname{Pr}[-\overline{\mathrm{i}} \mathrm{\sigma}$] $=11 / 12$

$$
\operatorname{Pr}[-\mathrm{R}]=1 / 12
$$

Concentration programming of universal self-assembling molecules

A singly-seeded TAS can assemble any finite (scaled) shape (with high probability) by mixing them in the right concentrations.

Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006]

Programming polymer length (improved)

expected length 12

3 "stages", each of expected length 4
\square
seed ${ }_{11} G{ }_{11} G{ }_{11} S_{22} G{ }_{22} S_{33} G{ }_{33} G{ }_{3} G_{33} G{ }_{33} G{ }_{33} G{ }_{33} S$
${ }_{\text {seed } 11} G{ }_{11} G_{11} G{ }_{11} G{ }_{11} S_{22} S_{33} G_{33} G_{33} G_{33} G_{33} S$
${ }_{\operatorname{seed} 11} G_{11} G_{11} G_{11} G_{11} S_{22} G_{22} G_{22} G_{22} G_{22} S_{33} G_{33} G_{33} S$

Programming polymer length (improved)

 90 stages, expected length midway in $\left[2^{a-1}, 2^{a}\right)$ with probability $>99 \%$ actual length in $\left[2^{a-1}, 2^{a}\right)$$$
[\mathrm{G}] \approx 7 \quad[\mathrm{~s}]=[\mathrm{s}] \approx 2
$$

GGSGGGGSGS
GGGGSGGGGSGGGS
GGGSGGGSS

GGGGGGGGSGGGGGGSGGGGGGGGGGS GGGGGGSGGGGGGGGGGSGGGGGGS GGGGGSGGGGGGGGGSGGGGS

$$
[\mathrm{G}] \approx 7 \quad[\mathrm{~s}]=[\mathrm{s}] \approx 1
$$

Programming polymer length 2^{a} precisely

Programming a binary string

Programming a shape

Temperature programming

Temperature programming

(Kao, Schweller, SODA 2006): Vary temperature (binding strength threshold) throughout assembly to control what assembles.

Complexity of Temperature Programming

Scott Summers: A fixed set of (singly-seeded) tile types can assemble any finite scaled shape through temperature programming.
Number of tile types (a self-assembly "resource") is constant (maybe big), no matter the shape.

Scott wondered about two other self-assembly resources that might change for each shape:

- What resolution loss is required?
- What number of temperature changes are required?

Complexity of Temperature Programming

For shape S with n points, trade-off between resolution loss and number of temperature changes:

- With optimal resolution loss = constant (22 in Scott's paper although shown smaller in the example), need $\approx n$ temperature changes.
- With optimal number of temperature changes $=$ size of smallest program p that prints S, \quad temps $=\overbrace{3,2,4}^{2}$ need resolution loss $\approx t=$ running time of p.
large \# temp. changes

large
resolution loss

Hierarchical assembly

Parallelism in the Model

potential attachment location

attached tile
time step 0

Parallelism in the Model

potential attachment location

attached tile
time step 1

Parallelism in the Model

\square potential attachment location attached tile time step 2

Parallelism in the Model

 potential attachment location attached tile time step 3

Parallelism in the Model

\square potential attachment location attached tile time step 4

time t : perimeter $\leq O(t) \quad$ (with high probability)
\rightarrow max attachments per time step $\leq O(t)$
\rightarrow max total attachments after t steps $\leq O\left(t^{2}\right)$
$\rightarrow \min$ time to assemble any shape of size $N \geq \Omega(\sqrt{ } N)$

Parallelism and Time

Can we speed up assembly by allowing large assemblies to form in parallel and then attach to each other in one step?

Hierarchical Tile Assembly Model

- seeded model
- growth nucleates from a single seed tile
- tiles attach one at a time
- hierarchical model: assembly is producible if
- base case: it is a single tile, or
- recursive case: it results from translating two producible assemblies so they stably attach without overlap

Hierarchical Tile Assembly Model

Hierarchical Tile Assembly Model

Overlap disallowed in attachment events ("steric protection")

Potentially Unrealistic Aspects of the Hierarchical Assembly Model

- Overlap restriction:
- DNA is floppy; won't stay in the plane
- Engineering problem; not fundamental

More fundamental problems:

- Large assemblies assumed to diffuse as fast as individual tiles
- Uniform binding strength threshold; should be higher for larger assemblies

Our Results

- Previous result: Assembling an $n \times n$ square requires $\Omega(n)$ steps in the seeded model; achievable with optimal $O(\log n /$ $\log \log n$) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)
- They asked: Can the extra parallelism in the hierarchical model break the $\Omega(n)$ lower bound?
- We show:
- $O(\log n / \log \log n)$ tile types can assemble an $n \times n$ square using "nearly maximal" parallelism.

Definition of Hierarchical Parallelism

assembly tree = possible order of attachments leading to final assembly
assembly depth of tile system = maximum depth of any assembly tree of the tile system

Highly Parallel Square Assembly

- Best possible assembly depth for any shape with N points is $\log N$.
- Theorem: For every positive integer n, there is a tile system with $O(\log n / \log \log n)$ tile types and assembly depth $O\left(\log ^{2} n\right)$ that assembles an $n \times n$ square.

Idea: Buocks ofsize $O(\log n) \times O\left(\log ^{4} n\right)$, assembled "nónparallelly", rảndómly"guess their (x, y) "Fosition it square and bind only to carefuliy selected neigifiboting blot k.

Handling Non-Powers-of-2

$$
u=c \log n
$$

Assembly of Each Block

I

Our Results

- Previous result: Assembling an $n \times n$ square requires $\Omega(n)$ steps in the seeded model; achievable with optimal $O(\log n /$ $\log \log n$) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)
- They asked: Can the extra parallelism in the hierarchical model break the $\Omega(n)$ lower bound?
- We show:
- O(log $n / \log \log n)$ tile types can assemble an $n \times n$ square using "nearly maximal" parallelism.
- This construction takes superlinear time.
- Every "partial order system" requires time $\Omega(N)$ to assemble any shape of diameter N.
The extra parallelism of the hierarchical model is useless for speeding up partial order systems.

Assembly Time Complexity Model

- Assign each tile type s an initial concentration $C(s)$ so that $\sum_{s} C(s)=1$ (finite density constraint).
- At time $t=0$, each assembly α with only a single tile s has initial concentration $[\alpha](t)=C(s)$. All larger assemblies α have $[\alpha](t)=0$ at time $t=0$.
- Each attachment $\alpha+\beta \rightarrow \gamma$ is a chemical reaction with rate $[\alpha](t) \cdot[\beta](t)$ at time t.

- Concentrations evolve by mass-action kinetics:

$$
d[\alpha] / d t=\sum_{\gamma+\beta \rightarrow \alpha}[\gamma](t) \cdot[\beta](t)-\sum_{\alpha+\beta \rightarrow \gamma}[\alpha](t) \cdot[\beta](t)
$$

Assembly Time Complexity Model

- Fix a position p in the unique final assembly ω, with initial assembly σ_{p} with just the tile at position p
- σ_{p} changes into ω by a continuous-time Markov chain
- States = assemblies σ_{p}, ω, and all possible intermediates
- Transition from α to γ if there is a producible assembly β such that $\alpha+\beta \rightarrow \gamma$, with time-dependent rate $[\beta](t)$
- Unique sink state of the Markov chain is ω
- time relative to $p=$ expected time to reach ω from σ_{p}
- time $=\max _{p}$ time relative to p

Assembly Time Lower Bound

- partial order system: in the terminal assembly, each pair of adjacent binding tiles have an assembly order precedence relationship (one always binds first, or at the same time)
- Theorem: Any partial order system whose terminal assembly has diameter N requires time $\Omega(N)$.

Main Proof Idea

conservation of mass: assemblies of size n and k attach to create assembly of size $n+k$
$\rightarrow(\forall t \geq 0) \quad \sum_{\alpha}[\alpha](t) \cdot|\alpha|=1$
\rightarrow assembly of size k has concentration $\leq 1 / k$
\rightarrow growing by size k in a single step takes expected time $\geq k$
seeded

hierarchical

Why Partial Order Systems?

Argument breaks if a single assembly of size k could attach to many positions, any one of which suffices to proceed to terminal assembly.

concentration $\leq 1 / 3$
$\mathrm{E}[$ time to attach to a$] \geq 3$

Any path in partial order DAG must assemble in order

longest path has length \geq diameter of shape
by concentration argument, path takes time k to grow by k tiles
$\mathrm{E}[$ time to attach to any of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}] \geq 3 / 4$

Removing tiles (RNase model)

Removing Tiles

- aTAM is monotone: stably attached tiles do not detach
- "Computation of a shape" with tiles may take a lot of space
- Need large resolution loss to compute within the shape
- kinetic model allows detachment but not controllable
- RNase model (Abel, Benbernou, Damian, Demaine, Demaine, Flatland, Kominers, Schweller)
- make some tile types from RNA and some from DNA
- after some time, add RNase enzyme to dissolve RNA tiles
- only subassemblies made of DNA tiles remain

Shape-Building with Small Resolution Loss and Optimal Tile Complexity

Demaine, Patitz, Schweller, Summers (STACS 2011): given: finite shape $S,|S|=n$ there is a TAS $T,|T| \approx$ $\mathrm{K}(\mathrm{S})$, that assembles S at scale factor $\approx \log n$, with one step of dissolving RNA tiles

RNA tiles:

$$
S=(1,2),(2,2),(3,2),(1,1),(3,1)
$$

DNA tiles:

process each point of S into a block of DNA tiles designed to bind to its neighbors in S

