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Introduction

TODO: add section and homework on surface CRNs (see DNA25 about swap reactions on
a surface for fun HW ideas)

What this course is about

roughly: theory of computing meets nanotechnology
For the latter, we largely consider DNA nanotechnology, due to

1. the limitations of my own expertise,

2. DNA has more natural information-bearing/processing abilities than other molecules
occurring in nature, and

3. more experimentalists in DNA nanotechnology are excited/motivated by the idea of
“molecular computation” than in other molecular engineering fields (e.g., graphene).

What does the theory of computing teach us? Some basic principles:

• If we accept just a single hypothesis about the physical world (physicists call these
“laws of nature”) called the Church-Turing thesis,1 then we can confine our theoretical
study to the formal mathematical model of the Turing machine, knowing that what
we prove about that model also applies to real physical computing devices that we
can build; in particular, proving a limitation on a TM implies (roughly) that any real
physical device suffers the same limitation.

• Certain problems are inherently difficult or impossible for computers to solve. This
is not a statement about how difficult it is for us humans to go about creating an
algorithm. It is a statement about the problem itself, and the lack of any algorithm,
or any efficient algorithm, for the problem.

• There are many different models of computation: TM, finite-state machine, polynomial-
time/space TM, Boolean circuit, distributed network with limited communication but
unlimited computational ability at each node. None of them is inherently more or less

1One way to state the thesis is: For any device that can be built in our universe that can “reasonably” said to
compute a function f : {0, 1}∗ → {0, 1}∗, f is also computable by a Turing machine.
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vi INTRODUCTION

correct as a model of all computing devices ; they are all useful in some sense, even
though none of them is an exact description of, e.g., your laptop. When we prove
something about one of these models, it does tell us something about your laptop, just
not as directly as “the theorem applies directly to your laptop in all circumstances.”
For example, the theorem “the balanced parentheses language is not regular” could
technically be interpreted as “since your laptop does not have infinite memory, it can-
not decide if parentheses are balanced”. But a more useful interpretation is, “if you
want to write a program (on your laptop) to decide balanced parentheses, somewhere in
the program there had better be a stack/array/list/recursion/some kind of unbounded
memory.”

In this course, we will apply these principles to molecular computing systems. As a gen-
eral theme, our goal is to learn what are the limitations on our ability to engineer molecular
systems that autonomously control their own behavior.

Two specific mathematical models will dominate our discussion in the course, because
they are well-studied, and they are appropriate models of certain molecular systems, and
(most especially) because I understand them very well:

• algorithmic tile self-assembly

• chemical reaction networks

My hope is that 10-20 years from now, this course would have different models, based on
new theoretical and experimental results that haven’t happened yet. So I don’t want to
give the impression that molecular computing is defined, now and forever, as the study of
algorithmic tile self-assembly and chemical reaction networks. But I think a great way to
learn how to model the world mathematically, in general, is to see how others have already
succeeded in modeling these very specific corners of the world using these two models.

Other topics we will cover more sporadically:

• DNA strand displacement

• genetic regulatory networks

• thermodynamics of computing

• cellular automata

More generally, we are interested in any sense in which “computation” appears to be
occurring or relevant in some physical system, and in which we want to understand the
unique physical constraints of the system (and how those constraints might present different
challenges than the constraints imposed by traditional electronic semiconductors).



Chapter 1

Algorithmic Tile Self-Assembly

• abstract Tile Assembly Model introduction: https://vimeo.com/54214122

• ISU TAS simulator: http://self-assembly.net/wiki/index.php?title=ISU_TAS

• STOC 2000 paper on self-assembling an n×n square: http://www.dna.caltech.edu/
Papers/squares_STOC.pdf

1.1 Definitions

There’s several ways to mathematically formalize the idea of tile assembly. The following is
one particular one I used in a paper.

Fix an alphabet Σ. Σ∗ is the set of finite strings over Σ. Given a “discrete object”
O, 〈O〉 denotes a standard encoding of O as an element of Σ∗. Z, Z+, and N denote the
set of integers, positive integers, and nonnegative integers, respectively. For a set A, P(A)
denotes the power set of A. Given A ⊆ Z2, the full grid graph of A is the undirected graph
Gf
A = (V,E), where V = A, and for all u, v ∈ V , {u, v} ∈ E ⇐⇒ ‖u − v‖2 = 1; i.e., iff u

and v are adjacent on the integer Cartesian plane. A shape is a set S ⊆ Z2 such that Gf
S is

connected. A shape Υ is a tree if Gf
Υ is acyclic.

A tile type is a tuple t ∈ (Σ∗ × N)4; i.e., a unit square with four sides listed in some
standardized order (e.g., south, west, north, east), each side having a glue g ∈ Σ∗ × N
consisting of a finite string label and nonnegative integer strength. We assume a finite set T of
tile types, but an infinite number of copies of each tile type, each copy referred to as a tile. An
assembly is a nonempty connected arrangement of tiles on the integer lattice Z2, i.e., a partial
function α : Z2 99K T such that Gf

dom α is connected and dom α 6= ∅. The shape Sα ⊆ Z2 of
α is dom α. Two adjacent tiles in an assembly interact if the glues on their abutting sides
are equal (in both label and strength) and have positive strength. Each assembly α induces
a binding graph Gb

α = (V,E), where V = Sα and {u, v} ∈ E ⇐⇒ α(u) and α(v) interact.1

Given τ ∈ Z+, α is τ -stable if every cut of Gb
α has weight at least τ , where the weight of

1For Gf
Sα = (VSα , ESα) and Gb

α = (Vα, Eα), Gb
α is a spanning subgraph of Gf

Sα : Vα = VSα and Eα ⊆ ESα .

1



2 CHAPTER 1. ALGORITHMIC TILE SELF-ASSEMBLY

an edge is the strength of the glue it represents. That is, α is τ -stable if at least energy τ
is required to separate α into two parts. When τ is clear from context, we say α is stable.
Given two assemblies α, β : Z2 99K T , we say α is a subassembly of β, and we write α v β,
if Sα ⊆ Sβ and, for all points p ∈ Sα, α(p) = β(p).

A tile assembly system (TAS) is a triple T = (T, σ, τ), where T is a finite set of tile
types, σ : Z2 99K T is the finite, τ -stable seed assembly, and τ ∈ Z+ is the temperature.
Given two assemblies α, β : Z2 99K T , we write α →T1 β if α v β, |Sβ \ Sα| = 1, and,
letting Sβ \ Sα = {p} the cut ({p}, Sα) has strength ≥ τ . In this case we say α T -produces
β in one step.2 If t = β(p), we write β = α + (p 7→ t). The T -frontier of α is the set
∂T α =

⋃
α→T1 β

Sβ \ Sα, the set of empty locations at which a tile could stably attach to α.

A sequence of k ∈ Z+ ∪ {∞} assemblies α0, α1, . . . is a T -assembly sequence if, for all
1 ≤ i < k, αi−1 →T1 αi. We write α→T β, and we say α T -produces β (in 0 or more steps)
if there is a T -assembly sequence α0, α1, . . . of length k = |Sβ \ Sα|+ 1 such that 1) α = α0,
2) for all 0 ≤ i < k, αi v β, and 3) Sβ =

⋃
0≤i<k Sαi . We say that β is the result of the

assembly sequence, and we say the assembly sequence is terminal if β is terminal. If k is
finite then it is routine to verify that β = αk−1.3 We say α is T -producible if σ →T α, and
we write A[T ] to denote the set of T -producible assemblies.

An assembly α is T -terminal if α is τ -stable and ∂T α = ∅. We write A2[T ] ⊆ A[T ]
to denote the set of T -producible, T -terminal assemblies. A TAS T is directed (a.k.a.,
deterministic, confluent) if the poset (A[T ],→T ) is directed; i.e., if for each α, β ∈ A[T ],
there exists γ ∈ A[T ] such that α→T γ and β →T γ.4

Let S ⊆ Z2 be a shape. We say that a TAS T strictly self-assembles S if, for all
α ∈ A2[T ], Sα = S; i.e., if every terminal assembly produced by T has shape S. If T
strictly self-assembles some shape S, we say that T is strict. Note that the implication “T
is directed =⇒ T is strict” holds, but the converse does not hold.

Let P ⊆ Z2 be a set (not necessarily a connected shape). We say that T weakly self-
assembles P if there is a subset B ⊆ T (the “black tiles”) such that, for all α ∈ A2[T ],
P = α−1(B), i.e., the set of points with a black tile is P .5

When T is clear from context, we may omit T from the notation above and instead write
→1, →, ∂α, frontier, assembly sequence, produces, producible, and terminal.

2Intuitively α →T1 β means that α can grow into β by the addition of a single tile. It is easy to see that if α is
τ -stable, then so is β: the cut ({p}, Sα) is stable by definition, and any other cut of β is simply a cut of α (with
strength ≥ τ by hypothesis), possibly with extra edges due to the presence of the tile at p.

3If we had defined the relation→T based on only finite assembly sequences, then→T would be simply the reflexive,
transitive closure (→T1 )∗ of →T1 . But this would mean that no infinite assembly could be produced from a finite
assembly, even though there is a well-defined, unique “limit assembly” of every infinite assembly sequence.

4The following convenient characterizations of “directed” are routine to verify. T is directed if and only if |A2[T ]| =
1. T is not directed if and only if there exist α, β ∈ A[T ] and p ∈ Sα ∩ Sβ such that α(p) 6= β(p).

5In the first tile system shown the first day, the shape strictly self-assembled was the entire second quadrant, and,
considering the orange tile types to be the set B, the set weakly self-assembled was the discrete Sierpinkski triangle.
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1.2 Basic results on producibility

The following observation states that if a tile attachment is stable, then it is also stable in
the presence of additional tiles.

Observation 1.2.1. Let α v β be stable assemblies and p ∈ Z2 \ Sβ such that α + (p 7→ t)
is stable. Then β + (p 7→ t) is stable.

Proof. Since β is stable, and glue strengths are nonnegative, in β + (p 7→ t), the only cut
that could possibly be unstable is the one between t and the rest of β. But since α v β and
α+ (p 7→ t) is stable, this cut is also stable since glue strengths are nonnegative and β only
has extra tiles on the other side of the cut, compared to α.

The following is a useful tool, first proven in Paul Rothemund’s Ph.D. thesis. Note that
it is not saying α → β; indeed, this may not be the case. It is saying that if we can add
some tiles to α to get γ, then if some of them are already there (those in Sβ \ Sα), then the
remaining tile additions form a valid assembly sequence.

Lemma 1.2.2 (Rothemund’s Lemma). Let α v β v γ be assemblies such that α→ γ. Then
β → γ.

Proof. Let (α = α0, α1, . . .) be an assembly sequence showing that α → γ. Let p0,p1, . . . ∈
Z2 be the sequence defined by {pi} = Sαi+1

\ Sαi , i.e., pi is the position of the i’th added
tile, and let ti = γ(pi) be the tile type added. Let i0 < i1 < . . . be the subsequence such
that Sγ \Sβ = {pi0 ,pi1 , . . .}, i.e., the subsequence representing tile attachments to γ outside
of β. Define the assembly sequence (β = β0, β1, . . .) by βj+1 = βj + (pij 7→ tij), i.e., adding
tiles to Sγ \ Sβ in the order they were added to α (but skipping tiles already in Sβ). Then
for each j, αij v βj, so Observation 1.2.1 implies that βj + (pij 7→ tij) is stable. Thus the
assembly sequence is valid and shows that β → γ.

We say an assembly sequence (α0, α1, . . .) is fair if either it is finite and its result is
terminal, or if it is infinite and, for all i ∈ N and all p ∈ ∂αi, there exists j ∈ N such that
p ∈ Sαj , i.e., if every point that is on the frontier at any point in the assembly sequence,
at some later point gets a tile. (The former condition about finite assembly sequences is a
technical condition to make the following result hold.)

One way to algorithmically create a fair assembly sequence is with a first-in, first-out
queue; put the frontier of the seed in the queue, choose a frontier location p from the front
of the queue, pick a tile to add to p, and check the ≤ 3 locations adjacent to p to see if they
are now on the frontier. If so, add them to the back of the queue. At any time, the queue
is finite, so eventually all frontier locations get a tile.

Lemma 1.2.3. Let (α0, α1, . . .) be a fair assembly sequence. Then its result is terminal.

Proof. This holds trivially if the sequence is finite, so assume it is infinite. Let γ be the result
of (α0, α1, . . .). Suppose for the sake of contradiction that γ is not terminal, and let p ∈ ∂γ.
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Then there are tiles in adjacent locations to p whose glue strengths sum to the temperature
τ and a tile t with matching glues. Call this set of positions P . Since Sγ =

⋃∞
i=0 Sαi ,

there exists i such that P ⊆ Sαi , i.e., these tiles are present after some finite number of tile
attachments. Thus p ∈ ∂αi. Since the assembly sequence is fair, there exists j ∈ N such
that p ∈ Sαj ⊆ Sγ, which contradicts the assumption that p ∈ ∂γ since ∂γ ∩ Sγ = ∅.

Since a fair assembly sequence can be applied to any assembly, we have the following.

Corollary 1.2.4. For all α ∈ A[T ], there is γ ∈ A2[T ] such that α→ γ.

1.3 Information theoretic lower bounds on tile complexity

This section has two proofs of what is often called a “standard information-theoretic lower
bound” on tile complexity.

1.3.1 Simple counting argument

Theorem 1.3.1. There are infinitely many n ∈ N such that Ctc(Sn) ≥ 1
4

logn
log logn

.

Proof. Let m ∈ N. We will show such an n exists in the set {m+ 1,m+ 2, . . . , 2m}.

Let k = 1
4

logm
log logm

. How many TAS’s are there with exactly k tile types? There are at

most 4k distinct glues. For each tile type, there are thus (4k)4 ways to choose the glues for
that tile type.

Thus there are (4k)4k ways to choose all k tile types. Since there are k ways to choose
the seed tile, there are k(4k)4k total TAS’s with exactly k tile types. Thus there are at most∑k

i=1 i(4i)
4i <

∑k
i=1 k(4k)4k = k2(4k)4k total TAS’s with at most k tile types.



1.3. INFORMATION THEORETIC LOWER BOUNDS ON TILE COMPLEXITY 5

To see that k2(4k)4k < m, it suffices to show that log
(
k2(4k)4k

)
< logm:

log
(
k2 · (4k)4k

)
= log

(
k2 ·

(
logm

log logm

) logm
log logm

)

= 2 log k +
logm

log logm
log

(
logm

log logm

)
= 2 log k +

logm

log logm
(log logm− log log logm)

< 2 log k +
logm

log logm
(log logm− 2)

= 2 log k + logm− 2
logm

log logm

= 2 log

(
1

4

logm

log logm

)
+ logm− 2

logm

log logm

= 2 log
1

4
+ 2 log

logm

log logm
+ logm− 2

logm

log logm

< logm− logm

log logm
< logm.

Since k2(4k)4k < m, there are strictly less than m different TAS’s with ≤ k tile types. By the
pigeonhole principle, there must be some value of n ∈ {m+1, . . . , 2m} such that no TAS with
≤ k tile types strictly self-assembles Sn. Since m < n, we have k = 1

4
logm

log logm
< 1

4
logn

log logn
.

In fact, we can even get the conclusion that for “most” n, Ctc(Sn) ≥ 1
4

logn
log logn

. From the

second-to-last lines above we have that the number K of TAS’s with at most k tile types
obeys

logK < logm− logm

log logm
< log(m)

(
1− 1

log logm

)
.

Exponentiating both sides,

K < 2log(m)(1− 1
log logm) = m1− 1

log logm < m1/2 < 0.01m,

In other words, there are m squares Sn defined by n in the range {m+ 1, . . . , 2m}, but there
are less than 0.01m TAS’s with at most 1

4
logm

log logm
< 1

4
logn

log logn
tile types. Therefore for large

enough m, more than 99% of all squares Sn with n ∈ {m + 1, . . . , 2m} require a TAS with
more than 1

4
logn

log logn
tile types.
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1.3.2 Kolmogorov complexity proof

The theory of Kolmogorov complexity is not required to prove tile complexity lower bounds;
it is merely a convenient way to structure the argument if you are familiar with algorithmic
information theory. Section 1.3.1 has a simple proof based directly on direct counting.
However, it is common to see Kolmogorov complexity proofs, which outsource some of the
counting and tedious algebra to the more general theory, and allow for shorter proofs that
are easier to understand, provided you already understand Kolmogorov complexity.

Let U be a universal Turing machine, and for all x ∈ {0, 1}∗, define the Kolmogorov
complexity of x to be

C(x) = min
p∈{0,1}∗

{ |p| | U(p) = x } ,

the length of the shortest program that prints x and halts.
If x is “easy to describe” (e.g., x = 0n for large n), then C(x) � |x|. All strings x obey

C(x) ≤ |x| + O(1), but “most” strings x have the property that C(x) ≥ |x|.6 We call such
strings algorithmically random.

The proof that most strings are algorithmically random is similar to the counting proof
in Section 1.3.1: simply put, there aren’t enough short programs to go around. One very
easy observation is that for each n, at least one string x ∈ {0, 1}n obeys C(x) ≥ |x|. There
are 2n elements of {0, 1}n (strings x we want to output) but only 2n− 1 elements of {0, 1}<n
(programs p that are shorter than length n), so by the pigeonhole principle, at least one
string x ∈ {0, 1}n is not output by any program of shorter length. By being a bit more
careful, we can actually show most strings have this property, but leave this as an exercise
to the reader.

If n ∈ N, let C(n) = C(bin(n)), where bin(n) ∈ {0, 1}∗ is the binary expansion of n. Note
that |bin(n)| = blog nc+ 1, so C(n) ≤ log n+O(1) for all n and C(n) ≥ log n for “most” n.

What does any of this matter? The aTAM can be simulated on a computer. (ISU TAS
is one such simulator.) Thus, if a tile assembly system T produces terminal assemblies that
all have some property, and that property can be expressed as a binary string x,7 then T ,
together with the aTAM simulator to produce a terminal assembly α, together with some
code to read x from α, is a program to print x. This idea is the basis of the proof of the
following theorem, due to Rothemund and Winfree.

For a tile assembly system T = (T, σ, τ), we define the size of T to be |T | = |T |. Given
a shape S ⊆ Z2 and τ ∈ N, define the temperature-τ tile complexity

Ctc
τ (S) = min { |T | | T = (T, σ, τ) is singly-seeded and strictly self-assembles S } .

We write Ctc(S) to denote Ctc
2 (S). For all n ∈ N, define Sn = {0, 1, . . . , n − 1}2 to be the

n × n square. We proved earlier that for all n ∈ N, Ctc(Sn) = O(log n). We now show it’s
not possible to do “much” better for most values of n.

6One way to formalize “most” is that, for all but finitely many n ∈ N, at least 99% of all strings x ∈ {0, 1}n obey
C(x) ≥ |x|.

7For example, if T produces an n× n assembly α, then bin(n) can be “read off” from α.
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Theorem 1.3.2. For most n ∈ N, Ctc(Sn) = Ω
(

logn
log logn

)
.

Proof. Most n satisfy C(n) ≥ log n, so we focus on such algorithmically random n. Let
pn ∈ {0, 1}∗ be the description of the Turing machine that does the following. It simulates
the aTAM on Tn until a terminal assembly α is produced, then prints bin(width(Sα)). By
assumption, Sα is an n× n square, so pn is a program to print the string bin(n).
|pn| is dominated by the description of Tn; the rest has length O(1) with respect to n.

Thus, log n ≤ C(n) ≤ |pn| = O(1)+ #(bits needed to describe Tn).
How many bits are needed to describe Tn? We must describe T and σ. There are at

most 4|T | total glues, so each glue can be described by 2 + log 4|T | = 4 + log |T | bits: 2 to
describe the strength in {0, 1, 2} and log 4|T | to describe the glue label. Thus each t ∈ T
can be described by 16 + 4 log |T | bits, so T can be described with 16|T |+ 4|T | log |T | bits.

Since |dom σ| = 1, it requires log |T | bits to say which tile type is the seed.
Thus log n ≤ |p| ≤ O(1) + 16|T | + 4|T | log |T | + log |T | = O(|T | log |T |), so |T | ≥

Ω
(

logn
log logn

)
.

Note that nothing special about squares was used in the proof of Theorem 1.3.2. The
theorem applies to any shape such that a string x can be easily computed from the terminal
assembly(ies) of the tile assembly system T : whenever x is algorithmically random, then

|T | ≥ |x|
log |x| .

To summarize the big picture: The general strategy for using Kolmogorov complexity to
show that “most” elements of some set have a certain tile complexity is this. Show that any
tile system with k tile types can be described in f(k) bits (in this case, f(k) = Θ(k log k),
but for other models it might be something else; for example allowing a “non-diagonal”
glue function in which unequal glues can bind with positive strength requires more bits to
encode than the standard model). The tile system, with only O(1) additional bits (such as
a simulator) can be turned into a program of f(k) + O(1) bits that outputs some string x
(in our case, x was the binary expansion of the width of the terminal assembly). Since most
strings x require a program of size at least |x|, we conclude that f(k) ≥ |x|, so k ≥ f−1(|x|).

1.4 Meeting the log n
log log n lower bound for assembling an n×n square

We have seen that Ctc(Sn) = O(log n) for all n, and Ctc(Sn) = Ω( logn
log logn

) for most n. Can

we revisit the upper bound and show how to use only O( logn
log logn

) tile types to strictly self-

assemble an n× n square?
Recall how the construction using O(log n) tile types worked. log n unique tile types

encode n in binary in a 1 × log n row of tiles, and O(1) additional tile types “read” the
value n, written in binary in log n glues on this row, and assemble in an n × n square
surrounding the row. Obviously to write n in binary requires log n total tiles, but we have
already seen how algorithmic tile assembly can reuse the same tile types in clever ways. Can
we somehow encode n using fewer tile types, that algorithmically “reads” n from logn

log logn
tiles
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that (somehow) encode n, and assembles around them into a structure that encodes n in
binary in log n glues?

To solve this problem, it helps to think about why the O(log n) construction is not
optimal; where is the waste? Each tile type in the first row is unique; they are all elements
of a set of cardinality m = log n. In principle, in an information theoretic sense, if I have m
unique elements in a set, each time I communicate one of them, I am sending logm bits of
information. However, we used them wastefully, encoding only a single bit of n for each tile
type. But with m different tile types, we could theoretically encode logm bits per tile type,
not just one bit.

So, this is the key to the idea: encode more than one bit of n per tile type. Another way
to think of this is that the glues of each of these tiles will represent a digit of n in a larger
base than 2. For example, encoding n in base 8 means each octal digit represents 3 bits of
n. But, to be useful to the tiles that actually grow the n × n square, this encoding of n
must first be translated from this higher base to base 2. This will itself require some new
tile types.

Here is how we then choose which base in which to encode n. By increasing the base b
in which we encode n, we require 1) fewer tile types to write down n in base b, but 2) more
tile types to convert it from base b to base 2. It turns out, if we analyze the construction we
are about to describe, that the best base to choose, which balances these considerations (1)
and (2) against each other, is base b ≈ logn

log logn
. It is convenient to choose b to be a power of

two, so we let b = 2k such that 2k ≤ logn
log logn

< 2k+1. Each symbol in base b then encodes k

bits of n, and thus requires logn
k

= O( logn

log logn
log logn

) = O( logn
log logn−log log logn

) = O( logn
log logn

) total tile

types to hard-code a row representing n in base b.
Figure 1.1 shows how this conversion process works, and the caption explains it. As we

saw, the blue “seed row” requires O( logn
log logn

) tile types.

Each group of tile types has specialized versions for most and least significant digits, so
we’ll just count the tile types for the internal version, keeping in mind that we really need
up to 3 times that number. There are at most 2b = O( logn

log logn
) “copy to north” tiles and 4

“copy to east” tiles.
For the “base convert” tiles, we consider each position in the orange column of tiles that

converts from base b to base 2. The total number of digits is b, so the lowest tile has b
different types. Each subsequent tile type has half the total number of possibilities (since
one bit is discarded each time), so the total number of tile types, summing over all vertical

positions (assuming k total positions), is
∑k

i=1 2i < 2k+1 = O(b) = O( logn
log logn

).

1.5 Theory of tile complexity for more general shapes

show TM simulation

Intuitively, most of the complexity of an n×n square is captured by its width; geometry
does not play much of a role. What about shapes with more complicated geometry? One
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Figure 1.1: Tiles to convert from base b = 2k to base 2. In this example, k = 3, so b = 8, and n =
1100000110102 in binary. (If n = 1100000110102, then logn

log logn ≈ 3.3, which means we should have k = 2

and b = 4, but for instructional purposes we choose k = 3 and b = 8 instead.) a) The seed row hardcodes n
in base b (using k-bit strings to represent each base-b digit), with least and most significant digits specially
marked. b) The base conversion tiles translate the least significant base b digit to base 2. The individual
bits are advertised on east-facing glues. c) The next base-b digit needs to have its bits represented above the
bits from first base-b digit. Thus, before doing the conversion, the digit must first be copied to the north. d)
The same set of base conversion tiles (other than least significant bit) are used to convert the second digit
to binary. e) Since the bits from the second are shifted west from the bits from the first digit, they must be
copied to the east to line up properly. f) Remaining digits are copied and converted in a similar manner.

would expect that even if such a shape has a compact algorithmic description, self-assembly
that simulates this algorithm may not be possible to execute within the shape. We have
already seen that one particular shape, a 1 × n line, requires far more tile types than the
information theoretic lower bound of logn

log logn
. Intuitively, the reason is that although nothing

stops a program of length log n from outputting a description of a 1× n line, and although
the aTAM can simulate any program, it cannot simulate a program within the confines of the
line. In other words, the geometric constraints of the shape prevent its efficient self-assembly.

But, Soloveichik and Winfree showed that the algorithmic complexity of a shape is in-
timately related to its tile complexity, so long as we are willing to accept all the various
scalings of a shape as equivalent.

Given a shape S ⊆ Z2 and c ∈ Z+, define the c-scaling of S as Sc = { (x, y) | (
⌊
x
c

⌋
,
⌊
y
c

⌋
) ∈

S}. Given a finite shape S ⊂ Z2, define C(S) to be the Kolmogorov complexity of S, the
length in bits of the shortest program printing the points in the shape. We say two shapes
S1, S2 are scale-equivalent, and we write S1 ' S2, if there exist c1, c2 ∈ N and a shape S ⊆ Z2

such that S1 = Sc1 and S2 = Sc2 , i.e., if they are both scalings (perhaps trivially by scale
factor 1) of some shape.
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Define the scale-free Kolmogorov complexity of S to be Csf(S) = min
S′'S

C(S). Define the

scale-free (temperature 2) tile complexity of S to be Ctc
sf (S) = min

S′'S
Ctc(S).

Theorem 1.5.1. For every finite shape S, Ctc
sf (S) = Θ

(
Csf(S)

log Csf(S)

)
.

Proof. We prove the upper and lower bounds separately.

Ctc
sf (S) = Ω

(
Csf(S)

log Csf(S)

)
: Intuitively, this is true for the same reason as the Ω( logn

log logn
) tile

complexity lower bound for strictly self-assembling an n× n square: a smaller tile set
would lead to a program of length less than log n for printing n, which is a contradiction
for algorithmically random n.

Let T be a singly-seeded temperature 2 TAS that strictly self-assembles Sc for some
c ∈ Z+. Then by simulating T until it produces a terminal assembly α, then printing
the points in Sα, we obtain a program p for Sα. We showed in the proof of Theorem 1.3.2

that |p| = O(|T | log |T |), i.e., |T | = Ω
(
|p|

log |p|

)
. Since T was an arbitrary TAS strictly

self-assembling Sα, this shows that Ctc
sf (S) = Ω

(
|p|

log |p|

)
= Ω

(
Csf(S)

log Csf(S)

)
.

Ctc
sf (S) = O

(
Csf(S)

log Csf(S)

)
: In Section 1.4, we showed the following (on the way to making a

statement about squares): For each p ∈ {0, 1}∗, there is a TAS T with |T | = Ω
(
|p|

log |p|

)
that self-assembles a |p| × |p|

log |p| rectangle that encodes p in the glues of the tiles on its

north side (rotated). This will be our starting point; what should we choose for p? It
will be such that |p| = Ctc

sf (S), i.e., a smallest program printing some scaling Sc of S.

(See paper: http://www.dna.caltech.edu/Papers/SAshapes_SICOMP2007.pdf)

There are three key ingredients to making the second part of the proof (Ctc
sf (S) =

O
(

Csf(S)
log Csf(S)

)
).

1. O
(

k
log k

)
tile types can “encode” any string p ∈ {0, 1}k, in the sense that they grow

from a single seed tile into a k
log k
× k rectangle with each of the k glues on the north

side being p.

This was the key step in showing how to assemble any n × n square from O
(

logn
log logn

)
tile types.

2. Given any Turing machine M , there is a single set of tile types T such that, starting
from any row (such as the north row of the assembly in the previous step) that encodes
an input p to M , simulates M(p) in the sense that the t’th row of the assembly that
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grows represents the configuration of M(p) after t steps. In this proof, we take M to
be a universal Turing machine U and therefore interpret p as a program (in particular,
a shortest program printing the shape S). Thus, O(1) tile types are needed for this
step, since we will always just be simulated U in this step.

In the proof there is some additional computation that must be done: finding a spanning
tree of S, computing the children of the “current point” in S,8 but the ability to do these
is just another consequence of the ability to simulate U , which can do any computation
that’s possible to do.

3. There are O(1) tile types that, given a row of glues encoding the following information:

• the points in S

• the “current point” in S

computes the 0-3 children points of the “current” point in S, grows in the direction
of the children points, carrying the description of S in each direction, and writes in
the adjacent square block (representing the child point) the description of S and the
child point, with appropriate glues to let the same computation repeat in that block
(i.e., computing its children and growing in those directions), which will repeat in every
block in S.

The latter two ingredients represent a constant set of tile types T that produces Sc from

a 1 × Csf(S)
log Csf(S)

row encoding the program for S. In this case, we started from a single seed

and used O
(

Csf(S)
log Csf(S)

)
tile types to grow a row encoding a shortest program for S, but we

could also imagine simply declaring that the seed assembly is this row.
Thus, calling the tile set for the last two ingredients T , we have that T is a single tile set

that is “universally programmable” (by seeding with an appropriate program) for building
any finite shape S, if scaling factors are ignored.

8The “current” point is the one represented by the c× c block of tiles currently being assembled, which starts as
the point (0, 0), but these same tiles will repeat this action for other points.
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Thursday, Jan. 25:

• strict vs. weak vs. computable

show there is a shape that

– can’t be strictly self-assembled

– is computable and can’t be strictly self-assembled

– is computable and can’t be weakly self-assembled

• directed strict self-assembly versus strict self-assembly
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Tues., Jan. 30:

• temperature 1: “proof” that it has to grow periodic patterns

• intrinsic universality

• other models of self-assembly

– kTAM, proofreading

– concentration programming

– temperature programming

– hierarchical self-assembly

– staged self-assembly
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Chapter 2

Chemical Reaction Networks

Informally, a CRN is a set of reactions like A→ B + C or X + Y → X + 2Z.
Traditionally this model is used as a descriptive language to model natural systems of

chemical reactions. However, we want to use it as a programming language to describe
artificial chemical systems that we want to engineer. The idea is that although in a well-
mixed system we cannot control the order in which molecules collide with each other, we
can control how they react when they do collide.1

With this in mind, we ask, “If it is possible to program chemical species by specifying
reactions of our choosing, but once mixed we cannot control the order in which they will
react, what can we compute with such a programming language?” In the discrete model,
a configuration is a multiset of nonnegative integer counts of each chemical species, e.g.,
{3A,B, 5Z}. We say a CRN computes a function f : N → N if for all n ∈ N, starting from
configuration {nX}, it is “guaranteed” to eventually reach a configuration {f(n)Y, . . .}.

Let’s devise CRNs to compute the following functions:

• 2n

X → 2Y

• 3n

X → 3Y

• n/2

2X → Y

• n/3

3X → Y

1We will see later in the course when we get to DNA strand displacement, one particular example of how one
might go about creating artificial chemicals that experience reactions of our choosing.

15
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• 3n using only ≤ 2-product reactions:

X → Y1 + Y2

Y1 → Y

Y2 → 2Y

• n/3 using only bimolecular reactions, start in configuration {1L0, nX}:

L0 +X → L1

L1 +X → L2

L2 +X → L0 + Y

• n/3 using only bimolecular reactions and starting in configuration {nX}? You try it!

• n1 + n2

X1 → Y

X2 → Y

• n1 − n2 (assume n1 ≥ n2)

X1 → Y

X2 + Y → ∅

• 3n1 − n2/2

X1 → 3Y

2X2 + Y → ∅

• min(n1, n2)

X1 +X2 → Y

• max(n1, n2)

X1 → Y + Z1

X2 → Y + Z2

Z1 + Z2 → K

K + Y → ∅
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2.1 Definitions

If Λ is a finite set, write NΛ to denote {f : Λ → N}.2 Given X ∈ Λ and c ∈ NΛ, c(X) is
the count of X in c; if c is clear from context, write #X to denote c(X).3 Write c ≤ c′ to
denote that c(X) ≤ c′(X) for all X ∈ Λ, and c < c′ if c ≤ c′ and c 6= c′. If ∆ ⊂ Λ, we view
a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by assuming c(X) = 0 for all X ∈ Λ \∆.

Given a finite set of chemical species Λ, a reaction over Λ is a triple α = 〈r,p, k〉 ∈
NΛ×NΛ×R+, specifying the stoichiometry of the reactants and products, respectively, and
the rate constant k. If not specified, assume that k = 1, so that the reaction α = 〈r,p, 1〉
is also represented by the pair 〈r,p〉 . For instance, given Λ = {A,B,C}, the reaction
A+2B → A+3C is the pair 〈(1, 2, 0), (1, 0, 3)〉 . A (finite) chemical reaction network (CRN)
is a pair C = (Λ, R), where Λ is a finite set of chemical species, and R is a finite set of
reactions over Λ. A configuration of a CRN C = (Λ, R) is a vector c ∈ NΛ.4

Given a configuration c and reaction α = 〈r,p〉, we say that α is applicable to c if r ≤ c
(i.e., c contains enough of each of the reactants for the reaction to occur). If α is applicable
to c, then write α(c) to denote the configuration c+p−r (i.e., the configuration that results
from applying reaction α to c). If c′ = α(c) for some reaction α ∈ R, we write c =⇒1

C c′, or
merely c =⇒1 c′ when C is clear from context. An execution (a.k.a., execution sequence) E is
a finite or infinite sequence of one or more configurations E = (c0, c1, c2, . . .) such that, for
all i ∈ {1, . . . , |E| − 1}, ci−1 =⇒1

C ci.

Question: For each execution sequence, is there a unique sequence of reactions that
could produce it?

Given a finite execution sequence E = (c, c1, . . . , c
′), write c =⇒C c′, or merely c =⇒ c′

when the CRN C is clear from context. In this case, we say that c′ is reachable from c. In
other words, =⇒C is the reflexive, transitive closure (=⇒1

C)
∗

of =⇒1
C.

2Equivalently, we view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with each coordinate “labeled”
by an element of Λ.

3There is a natural correspondence between vectors c ∈ NΛ and multisets of elements of Λ, where c(X) is the
multiplicity of element X ∈ Λ.

4This describes the discrete model in which the “amount” of each chemical species X is a nonnegative integer
#X called its count. The model more commonly used in chemistry is the real-valued model in which the “amount”
of a species X is a nonnegative real number [X] called its concentration. The real-valued model receives much more
attention from chemists and mathematicians, but the discrete model is much closer to the sort of models computer
scientists are accustomed to, so more work on the computational ability of discrete CRNs has been done. In fact,
there is a model of computation called Petri nets that is identical to CRNs (although funnily enough, Carl Petri
first devised them as a way to think about chemical reactions, but later applied them to computation in his Ph.D.
thesis.). Here’s a couple examples of work on computation in the real-valued model: http://web.cs.ucdavis.edu/

~doty/papers/ricccrn.pdf, http://dl.acm.org/citation.cfm?id=1480445.1480447. The typical names for each
of these models is “stochastic” for the discrete model and “determinstic” or “mass-action” for the real-valued model,
but these terms are misleading for the way we will use the models, so we simply call them “integer”- or “real”-valued,
or sometimes “discrete” or “continuous”.
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2.2 Stable computation of functions

We now formalize our notion of computation of functions by CRNs that “work no matter
the order in which reactions happen”. The inputs to the function are the initial counts of
input species X1, . . . , Xk, and the outputs are the counts of a single output species Y . The
system stabilizes to an output when the counts of the output species can no longer change.

A chemical reaction computer (CRC) is a tuple C = (Λ, R,Σ, Y, s), where (Λ, R) is a
CRN, Σ ⊂ Λ is the set of input species, Y ∈ Λ \Σ is the output species, and s ∈ NΛ\Σ is the
initial context. If s = 0, we say C is leaderless.5 A valid initial configuration i ∈ NΛ obeys,
for all S ∈ Λ \Σ, i(S) = s(S), and i 6= 0. Write i � Σ to denote the restriction of i to Σ.6 A
configuration o ∈ NΛ is output stable if, for every c such that o =⇒ c, o(Y ) = c(Y ). We say
that C stably computes a function f : Nk → N if for any valid initial configuration i ∈ NΣ

and any c ∈ NΛ, i =⇒ c implies c =⇒o such that o is output stable with f(i � Σ) = o(Y ).7

Question: Why did I say this means the CRC is “guaranteed” to give the correct
answer?8

Normally we won’t go into this much detail, but to see how the definition of stable
computation works with one of our examples from earlier, the following is a full proof of
correctness of the CRC computing maximum that we saw earlier.

Theorem 2.2.1. The leaderless CRC defined by

X1 → Y + Z1 (1)

X2 → Y + Z2 (2)

Z1 + Z2 → K (3)

Y +K → ∅ (4)

stably computes the function f(n1, n2) = max(n1, n2).

Proof. Let i = {n1X1, n2X2} be the initial configuration. We must show that for every
c ∈ NΛ such that i =⇒ c, there is an output stable o ∈ NΛ such that c =⇒o and o(Y ) =
max(n1, n2). Given such a c, let f1, f2, f3, f4 denote the number of times each reaction above,

5This terminology comes from distributed computing. One can assume without loss of generality that if s 6= 0,
then s(L) = 1 for some L ∈ Λ \ Σ and s(X) = 0 for all X ∈ Λ \ (Σ ∪ {L}), i.e., s contains on a single copy of
some non-input species. This is because, if some other initial context s is desired, then this can be easily imitated by
starting with only the input and 1L, and adding a reaction L→ s. Thus, whether or not s = 0 corresponds to asking
whether we want to allow a single L or not, and this single L is referred to as a “leader”. Typically the advantage
of starting with a single L is that L “coordinates” the computation and thus acts like a leader that the rest of the
species follow.

6By convention Σ = {X1, X2, . . . , Xk}, thus we consider i � Σ equivalently as a vector i ∈ Nk.
7Note that this condition implies that no incorrect output stable configuration is reachable from i.
8The definition merely states that it is always possible to give the correct answer. The short answer is that, once

we define the kinetic model that tells us what will happen (or rather, what is likely to happen), then we will see that,
under certain conditions (the set of reachable configurations is finite), then the above definition of always being able
to each a correct stable configuration is actually the same as saying that such a configuration is actually reached with
probability 1 in the kinetic model.
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respectively, occurs to get from i to c.9 Then for i ∈ {1, 2}, c(Xi) = ni− fi, c(Zi) = fi− f3,
c(K) = f3 − f4, and c(Y ) = f1 + f2 − f4. So from c we can execute each reaction i ∈ {1, 2}
an additional ni− fi times, followed by reaction 3 an additional mini∈{1,2}(c(Zi) +ni− fi) =
mini∈{1,2}(fi − f3 + ni − fi) = min(n1, n2)− f3 times, followed by reaction 4 an additional

min(c(Y ) + n1 − f1 + n2 − f2, c(K) + min(n1, n2)− f3)

= min(f1 + f2 − f4 + n1 − f1 + n2 − f2, f3 − f4 + min(n1, n2)− f3)

= min(n1 + n2,min(n1, n2))− f4

= min(n1, n2)− f4

times, calling the reached configuration o. Thus from i to o reaction 4 executes a total of
f4 + min(n1, n2) − f4 = min(n1, n2) times, decreasing #Y each time, while each reaction
i ∈ {1, 2} executes fi +ni− fi = ni times, increasing #Y each time. Thus o(Y ) = n1 +n2−
min(n1, n2) = max(n1, n2). By similar algebra to determine how the counts of each species
change between i and o, we see that o(X1) = o(X2) = o(K) = min(o(Z1),o(Z2)) = 0, so no
reactions are applicable, so o is output stable.

The above proof directly uses the definition of stable computation, which allows for CRCs
that have possibly unbounded executions. The max CRC does not, however, and this leads
to a somewhat simpler proof.

Alternate proof of Theorem 2.2.1. Since for each i ∈ {1, 2}, Xi is consumed in reaction i
and not produced or consumed elsewhere, reaction i can happen at most ni times. Zi is
only produced in reaction i, so reaction 3 can happen at most min(n1, n2) times. K is only
produced in reaction 3, so reaction 4 can happen at most min(n1, n2) times.

Thus, every reaction sequence is of length at most n1 +n2 +2 min(n1, n2), so any reaction
sequence of that length must end in a terminal configuration o, which is necessarily output
stable (since o =⇒o′ implies that o = o′).

If each reaction i ∈ {1, 2} happens fewer than ni times, the configuration is not terminal
because there would be excess Xi. Assuming each reaction i ∈ {1, 2} happens exactly ni
times, if reaction 3 happens fewer than min(n1, n2) times, the configuration is not terminal
because there would be excess Z1 and Z2. Assuming further than reaction 3 happens exactly
min(n1, n2) times, if reaction 4 happens fewer than min(n1, n2) times, the configuration is
not terminal because there would be excess Y and K.

This implies that every reaction sequence of length less than ` = n1 +n2 +2 min(n1, n2) is
not terminal. Since every configuration c reachable from i by `′ < ` reactions is not terminal,
this implies that there is a configuration o reachable from c by ` − `′ additional reactions,
which by the above argument must be output stable and correct.

9If there is more than one reaction sequence leading from i to c, pick one arbitrarily. Challenge: Prove that
in this case, although there could be several reaction sequences that show that i=⇒ c, all of them have the same
number of reactions in each. Hint: note that the reaction vectors (the products minus the reactants: p − r for a
reaction α = (r,p)) are all linearly independent.
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Not every CRC that stably computes a function has reactions that necessarily move
“closer” to the correct configuration. Consider

X 
 A

X + A → Y

This stably computes bn/2c, but unlike the previous examples, it can have arbitrarily long
executions.

2.3 Stable decidability of predicates

Let’s consider a related computational task: computing predicates ψ : Nk → {0, 1}. Of
course a predicate is a type of function since we can consider the bits 0 and 1 equivalently
as elements of N, but they have a lot of special mathematical structure lacking in arbitrary
functions because of the fact that there are only two possible outputs.

Informally, we say a CRN decides a predicate if we have two species that vote “yes” and
“no” respectively, and it is “guaranteed” to reach a configuration in which the votes are
unanimous and correct.

For example, if we have voting species Y and N , we want to decide the predicates

• n is odd

Initial configuration: {nX, 1N}

N +X → Y

Y +X → N

• n1 ≥ n2

Initial configuration: {n1X1, n2X2, 1Y }

Y +X2 → N

N +X1 → Y

• n1 = n2

Initial configuration: {n1X1, n2X2, 1Y }

Y +X1 → N>

Y +X2 → N<

N> +X2 → Y

N< +X1 → Y

Intuitively there are now two NO-voting species, one that says “No, because #X1 >
#X2”, and the other that says “No, because #X1 < #X2”
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• “n is odd” leaderless

Input species named X1:

X1 +X1 → X0

X0 +X1 → X1

X1 +X0 → X1

X0 +X0 → X0

Yes voters: X1, No voters: X0

• n1 = n2 leaderless

X1 +X2 → Y

Y +N → Y

X1 + Y → X1 +N

X2 + Y → X2 +N

Yes voters: Y , No voters: N,X1, X2

• n1 ≥ n2 leaderless

The following works if we can assume n1 6= n2:

X1 +X2 → ∅

Yes voters: X1, No voters: X2

What if we have to handle any input? Intuitively, below we consider a molecule of Li
to represent a “leader”, and a molecule of Fi to represent a “follower”, who has seen
exactly i more X1’s than X2’s, i.e., it thinks #X1 −#X2 = i.

X1 +X2 → L0

L0 +X2 → L−1

L−1 +X1 → L0

L0 + L0 → L0

L−1 + L0 → L−1

Yes voters: X1, L0, No voters: X2, L−1

We formalize the notion of stable predicate computation below.
A chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υ, s), where (Λ, R) is a CRN,

Σ ⊆ Λ is the set of input species, and Υ ⊆ Λ is the set of yes voters, with species in Λ \ Υ
referred to as no voters.

We define a global output partial function Φ : NΛ 99K {0, 1} as follows. Φ(c) is undefined
if either c = 0, or if there exist S0 ∈ Λ \ Υ and S1 ∈ Υ such that c(S0) > 0 and c(S1) > 0.
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Otherwise, either (∀S ∈ Λ)(c(S) > 0 =⇒ S ∈ Υ) or (∀S ∈ Λ)(c(S) > 0 =⇒ S ∈ Λ \ Υ);
in the former case, the output Φ(c) of configuration c is 1, and in the latter case, Φ(c) = 0.

A configuration o is output stable if Φ(o) is defined and, for all c such that o =⇒ c,
Φ(c) = Φ(o). We say a CRD D stably decides the predicate ψ : NΣ → {0, 1} if, for any valid
initial configuration i ∈ NΛ, for all configurations c ∈ NΛ, i =⇒ c implies c =⇒o where o
is output stable and Φ(o) = ψ(i). We say that D stably decides a set A ∈ Nk if it stably
decides its indicator predicate ψA : Nk{0, 1} defined by ψA(i) = 1 ⇐⇒ i ∈ A.

Note that we use a slightly different formal convention in which every species votes.
Question: Do these two formalizations define the same class of predicates?

2.4 Semilinear sets

A set A ⊆ Nk is linear if there are vectors b,u1, . . . ,up ∈ Nk such that

A =

{
b +

p∑
i=1

niui

∣∣∣∣∣ n1, . . . , np ∈ N

}
.

A is semilinear if it is a finite union of linear sets.
The following theorem is due to Angluin, Aspnes, and Eisenstat:

Theorem 2.4.1. A set A ⊆ Nk is stably decidable by a CRD if and only if it is semilinear.

We can extend the result to functions. The graph of a function f : Nk → N is the set
graph(f) =

{
(x, y) ∈ Nk+1 | f(x) = y

}
. A function is semilinear if its graph is semilinear.

Examples of semilinear functions include

• f(n) = bn/2c

• f(n1, n2) = x2 if x1 > x2 and 0 otherwise

• f(n1, n2) = max(n1, n2)

• f(n) = n if n is odd, and n/2 otherwise

Examples of non-semilinear functions include

• f(n) = n2

• f(n1, n2) = n1 · n2

• f(n1, n2) = b
√
nc

• f(n) = 2n

Theorem 2.4.2. A function f : Nk → N is stably computable by a CRC if and only if it is
semilinear.
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Semilinear predicates show up repeatedly in simple models of computation. For example,

• They are the predicates decidable by reversal-bounded counter machines.

• They are precisely the predicates definable in the first-order theory of arithmetic with
only the addition operation (but no multiplication). This is called Presburger arith-
metic.

• Perhaps the most computationally “nice” way to characterize them is that they are the
predicates definable as a finite Boolean combination of threshold and mod predicates.
φ : Nk → {0, 1} is a threshold predicate if there are integers a1, . . . , ak, b ∈ Z such that

φ(n1, . . . , nk) = 1 ⇐⇒
∑k

i=1 aini ≥ b (e.g., “is n1 ≥ 2n2?”). φ is a mod predicate if

there are integers a1, . . . , ak, b, c ∈ Z such that φ(n1, . . . , nk) = 1 ⇐⇒
∑k

i=1 aini ≡ b
mod c (e.g., “is n1 + n2 odd?”).

2.5 Kinetic model

The following model of stochastic chemical kinetics is widely used in quantitative biology
and other fields dealing with chemical reactions between species present in small counts. It
ascribes probabilities to execution sequences, and also defines the time of reactions, allowing
us to study the computational complexity of CRN computation.

Intuition. With a reaction A + B
k→C, the reaction happens with a certain probability

(based on k) if A and B collide. The time until the next reaction is a function only of the
current configuration. This means the correct distribution governing the time is memoryless ;
if a certain amount of time has passed without a reaction (hence the configuration has not
changed), the distribution governing the time until the next reaction is the same as before
the time passed. This can be expressed with conditional probability. Let T be the random
variable representing the time until the next reaction, starting at time 0. Let s, t ∈ [0,∞).
Then

Pr[ T > s+ t︸ ︷︷ ︸
no rxn after
t more secs

| T > s︸ ︷︷ ︸
no rxn in
first s secs

] = Pr[ T > t︸ ︷︷ ︸
no rxn in
first t secs

].

Once you fix the expected value of such a distribution, it turns out that there is only one such
continuous distribution. It’s called the exponential distribution Tλ with rate λ ∈ (0,∞).10

Expected value: 1/λ
PDF: λe−λt

CDF: 1− e−λt = Pr[T < t]

What determines the rate (a.k.a. propensity) λ for a reaction A+B
k→C?

10The closest discrete analogy is a geometric distribution, T given by the number of times a coin must be flipped
before seeing heads (H). For all t, s ∈ N, Pr[T > s+ t|T > s] = Pr[T > t], i.e., the additional number of flips necessary
to see H, conditioned on having not seen H in the first s flips, is the same as the number of flips needed to see an H
from the start.
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• molecular counts of reactants: λ ∝ #A ·#B
#A ·#B counts the number of distinct ways the reaction can happen

• volume v: λ ∝ 1
v

In a larger volume, collisions are less frequent.

• rate constant: λ ∝ k

Captures lots of stuff (diffusion rates, probability of reacting upon collision)

So in this case λ = k·#A·#B
v

.
Other reaction types:

A
k→ . . . λ = k ·#A

A+ A
k→ . . . λ =

k ·#A · (#A− 1)

v
(factor

1

2
captured in k)

In the general case of a reaction α = (r,p, k) with species S1, . . . , Sd, we have

λα = k · 1

v‖r‖−1
·

d∏
i=1

#Si!

(#Si − r(Si))!

We write λα(c) to mean the rate of α in configuration c when c is not clear from context.
The kinetics of a CRN is described by a continuous-time Markov process as follows. The

time until the next reaction occurs in configuration c is an exponential random variable with
rate λ(c) =

∑
α∈R λα(c) (note that λ(c) = 0 if no reactions are applicable to c). Therefore,

the expected time for the next reaction to occur is 1
λ(c)

. The probability that a particular

reaction α ∈ R will be the next to occur in configuration c is λα(c)
λ(c)

.

The kinetic model is based on the physical assumption that the solution is well-mixed,
which is valid if the solution is sufficiently dilute. Thus, we assume the finite density con-
straint, which stipulates that a volume required to execute a CRN must be at least pro-
portional to the maximum molecular count obtained during execution. In other words, the
total concentration (molecular count per volume) is bounded. This realistically constrains
the speed of the computation achievable by CRNs.

Since

1. we are concerned with making computation as fast as possible (hence should occur in
the smallest volume obeying the finite density constraint),

2. we often ignore constants by using O() notation (hence it is acceptable if the volume
is within a constant of the number of molecules present), and

3. many CRNs we study with initial configuration i have the property that for all c
reachable from i, ‖c‖ = O(‖i‖),

we will usually assume the volume is equal to ‖i‖.
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2.6 Stable computation and probability 1 correctness

The following theorem shows us that we really can equate the idea of stable computation
with “probability 1” correctness, assuming a finite reachable state space.

For any CRN N = (Λ, R) and configuration c ∈ NΛ, define postN (c) = { c′ | c =⇒ c′ }
be the set of configurations reachable from c.

Given two configurations c, c′, write c ↪→N c′ to denote the event that the kinetic model
stated above causes the CRN to eventually reach configuration c′ from c.

Theorem 2.6.1. Let N = (Λ, R) be a CRN, i ∈ NΛ such that |postN (i)| <∞, and o ∈ NΛ

such that for all c ∈ postN (i), o ∈ postN (c). Then Pr[i ↪→N o] = 1.

Proof. For each c ∈ postN (i), let Ec = (c, . . . ,o) be any execution leading from c to o (for ex-
ample, the shortest one); it is well-defined since o ∈ postN (c). Let pc = Pr[Ec occurs from c].
Let ε = minc∈postN (i) pc. Since postN (i) is finite, ε is well-defined and positive. Then for any
c ∈ postN (i), Pr[Ec does not occur from c] ≤ 1 − ε. Since postN (i) is finite, in any infinite
execution, some configuration c must be visited infinitely often, so the probability that Ec is
never followed after any of these visits to c is at most

∏∞
i=1(1− ε) = 0.

2.7 Time complexity basics

We’ve seen how to determine the expected time for particular individual reactions to occur.
Let’s examine how to compute the expected time for various common reaction sequences to
complete.

2.7.1 “No communication”

#A = n initially in volume n:
α : A→ B

Let Ti be the time until the next reaction, when #A = i. Then, it has rate λα = i, so
E[Ti] = 1

i
.

We need to compute the time until the first reaction, plus the time until the second
reaction, etc. In other words, the total time T =

∑n
i=1 Ti. We use a handy tool called

linearity of expectation, which lets us conclude that

E[T ] = E

[
n∑
i=1

Ti

]
=

n∑
i=1

E[Ti] =
n∑
i=1

1

i
≈ lnn.

Another way to see intuitively that E[T ] = Θ(log n) is to see that, if each X decays at a
constant rate, then after 1 second, we expect some constant fraction (say, 1

2
) of X to decay.

After another second, we expect the same fraction of the remaining X to decay, etc. So #X
gets to zero when we have cut #X in half enough times to get to less than 1; i.e., after log n
seconds.
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2.7.2 “Direct communication”

#A = #B = 1 in volume n:
α : A+B → C

We only need one reaction to occur, with rate λα = 1·1
n

, so expected time n. Note this is
much slower than the previous time of Θ(log n).

2.7.3 “Pairing off”

#A = #B = n in volume n:
α : A+B → C

Like the first case, n reactions must occur before the CRN terminates. Unlike the first
case, this takes at least expected time Ω(n), since the last reaction to occur, when #A =
#B = 1, is the same as the previous “direct communication” reaction. It turns out that in
fact, asymptotically, the last reaction dominates:

When #A = #B = i, we have λα = i2

n
, so the expected time for the next reaction is n

i2
.

Thus the expected time for all n reactions to complete is

n∑
i=1

n

i2
= n

n∑
i=1

1

i2︸ ︷︷ ︸
<π2

6

= Θ(n).

A similar time analysis shows A + A → C takes time Θ(n), since it would be defined by a
similar sum with a denominator scaling as i2, but with half as many terms since #A goes
down by 2 each time the reaction occurs.

2.7.4 “Rumor spreading”/“Communication by epidemic”

#A = 1,#F = n in volume n:
α : A+ F → A+ A

When #A = i, we have #F = n− i+ 1, so λα = i·(n−i+1)
n

, so expected time is n
i·(n−i+1)

. Thus

the total expected time is

n∑
i=1

n

i · (n− i+ 1)
= n

 n/2∑
i=1

1

i · (n− i+ 1)
+

n∑
i=n/2+1

1

i · (n− i+ 1)


= 2n

n/2∑
i=1

1

i · (n− i+ 1)

≤ 2n

n/2∑
i=1

1

i · n/2
= 4

n/2∑
i=1

1

i
= O(log n).
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2.7.5 Longest time for every molecule to react

Suppose we want to do a computation in which the exact count of some species A matters,
not merely its presence or absence. In other words, if we had one fewer molecule of A,
something different should happen. Then the only way a molecule of A can be “counted”
is to react. Thus the time for the last molecule of A to react is a lower bound on the time
necessary to do anything nontrivial. The fastest reaction is either a unimolecular reaction
A → . . ., or a bimolecular reaction A + B → . . . with #B = n = volume to obey finite
density. Both have rate equal to #A, so we’ll just assume we have the unimolecular case,
i.e., the same as the “No communication” case above. In other words, we expect to wait
Θ(log n) time for the last molecule of A to react.

Thus, we require Ω(log n) time to do any nontrivial computation.

2.8 Time complexity of CRCs

We now examine the time complexity of some of the CRCs given earlier. In each case, we
assume n ∈ Z+ is the sum of the initial counts, and also that it is the volume.

1. Multiplication by 2. X → 2Y ; As observed above in “no communication”, this takes
expected time Θ(log n) no matter the volume.

2. Division by 2. 2X → Y ; This is the pairing off reaction, which takes expected time
Θ(n) as well.

3. Addition. X1 → Y ;X2 → Y ; Although the inputs have different names, there are still
n of them, so this takes Θ(log n) expected time by the exact same analysis as X → 2Y .

4. Minimum. X1 +X2 → Y ; In the case where #X1 = n1 = n2 = #X2, this is the same
as pairing off (A + B → C above), so it requires Θ(n) expected time. (In this case, n
is a factor of 2 different since it is the sum n1 + n2, rather than just one of them, but
ignoring constant factors we get the same time.)

What if #X1 6= #X2? We assume without loss of generality that n1 > n2. Then the
expected time is

n2−1∑
i=0

n

(n1 − i)(n2 − i)
= n

n2−1∑
i=0

1

(n1 − i)(n2 − i)

< n

n2−1∑
i=0

1

(n2 − i)2

= n

n2∑
i=1

1

i2

= O(n),
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so it is no slower than in the case where n1 = n2. It is possible for it to be much faster,
if the difference between the two counts is large. For example, if n1 ≥ 2n2 (hence
n1 ≥ 2

3
n), then we have expected time

n

n2−1∑
i=0

1

(n1 − i)(n2 − i)
< n

n2−1∑
i=0

1

(n1 − n2)(n2 − i)

< n

n2−1∑
i=0

1

(n1/2)(n2 − i)

< 2
n

n1

n2−1∑
i=0

1

n2 − i

≤ 2
n
2
3
n

n2−1∑
i=0

1

n2 − i

= 3

n2−1∑
i=0

1

n2 − i

= 3

n2∑
i=1

1

i

= O(log n).

5. Subtraction. X1 → Y ;X2 + Y → ∅; Now we have our first nontrivial combination
of two reactions, nontrivial because the reactions are not independent: the second
has a reactant produced by the first. To simplify the analysis, we upper bound the
process assuming in the worst case that the second reaction does not start until the
first completes. Obviously this can only appear slower than the actual process that
allows the second reaction to start earlier.

The first reaction completes in expected time O(log n). The analysis of X1 +X2 → Y
above shows that the second reaction completes in expected time O(n), and this is
tight if n1 = n2 (i.e., if the number of Y ’s produced by the first reaction is equal to the
initial number of X2’s).

Since that is a worst-case analysis, which assumes the second reaction does not start
until the first is complete, one might suspect that it is not tight. However, to see
that the analysis is in fact tight, consider the case where n1 = n2, and recall that
the expected time for just the last bimolecular reaction between two count-1 species is
Ω(n). Even if the reaction X2 + Y → ∅ were instantaneously fast on all but the very
last time the reaction occurs, observe that the final occurrence of the reaction cannot
happen until the last X1 → Y reaction occurs. Once it does, we have #Y = #X1 = 1,
and the expected time for them to react is Ω(n).

Thus, when n1 = n2, this CRC takes expected time Θ(n).
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Similarly to the case of the minimum-computing CRC above, this can be faster (as fast
as O(log n) time) when |n1 − n2| is sufficiently large.

6. Maximum.

X1 → Y + Z1

X2 → Y + Z2

Z1 + Z2 → K

K + Y → ∅

Observe that when n1 = n2, the third reaction requires Ω(n) time, similarly to the
analysis of the minimum-computing CRC above. To see that it takes O(n) time no
matter the input, we again simplify the analysis by assuming that each reaction does
not start until the previous is complete. In this case, the expected time is

O(log n) +O(log n) +O(n) +O(n) = O(n).

The lesson appears to be that some CRCs are as fast as O(log n), whereas others are
slower, but none of those we analyzed was slower than O(n). In fact, the following are true,
although we will not prove them.

Theorem 2.8.1. Let ψ : Nk → {0, 1} be any semilinear predicate. Then there is a CRD
that stably decides ψ in expected time O(n).

Theorem 2.8.2. Let f : Nk → N be any semilinear function. Then there is a CRC that
stably computes f in expected time O(n).

2.9 Allowing a small probability of error

We have seen how CRNs can compute functions and predicates with a “guarantee” of getting
the right answer, and saw that various ways of formalizing the idea of “guaranteed” success
led to the same definition of stable computation: 1) a correct, stable configuration is reach-
able from every configuration reachable from the initial one, 2) with a finite reachable space
of configurations, a correct stable configuration is reached with probability 1 in the standard
discrete kinetic model, and 3) every fair execution reaches a correct stable configuration.

We now relax the idea of guaranteed success and ask, what computations can be done by
a CRN that has a small, positive probability of error? We will see that this slight relaxation
immensely expands the computational power of CRNs, allowing them to simulate a Turing-
universal model of computation, and hence to compute any predicate/function computable
by any algorithm.
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2.9.1 Register machines

There is an extremely simple model of computation that surprisingly is Turing universal,
called a register machine. Informally, a register machine is a finite-state machine whose
unbounded memory consists of a fixed number of registers, which are nonnegative integers
that the finite-state control can increment, decrement, or test for 0.

Although it is common to describe finite-state controls, such as those for Turing machines,
has having named states, a state is in some sense or another equivalent to a line of code in a
program. This will be slightly more convenient for notation, as each line will always go to the
next line after it, unless a conditional branch occurs. The conditional branch occurs when
the machine attempts to decrement a register that is already 0. Every decrement instruction
must also specify what line of code to jump to if the register is already 0.

Formally, an instruction is one of the following types of objects:

1. an accept, denoted accept

2. a reject, denoted reject

3. an increment, denoted inc rj, where j ∈ Z+

4. a decrement, denoted dec rj, k, where j, k ∈ Z+

A register machine M is a finite sequence c1, c2, . . . , cl of instructions. The semantic inter-
pretation is that M has a current line i (initially 1) and register values that indicate what
it will do next. Formally, a configuration of M with m registers is a tuple c ∈ Nm+1, where
c(0) indicates the current line and c(1), . . . , c(m) indicate the values of registers r1 through
rm, respectively.

Let i = c(0) be the current line. If ci = accept or ci = reject, then M halts, and we
say c is accepting or rejecting, respectively. If ci = inc rj, then M increments register rj and
goes to line i + 1. If ci = dec rj, k, then if register rj is positive, M decrements register rj
and goes to line i+1, otherwise it goes to line k. If either an inc rj or a dec rj, k instruction
is the last line, then after executing the instruction (assuming rj > 0), M halts and accepts.

M decides the language L ⊆ N if, given an initial configuration in which the current line
is 1, register 1 has value n ∈ N, and all other registers have value 0, then M eventually
reaches an accepting configuration if n ∈ L, and a rejecting configuration if n 6∈ L. M
computes a function f : N → N if it eventually reaches a halting configuration with value
f(n) in register r1.

M computes a predicate/function with domain Nk if, to represent input x ∈ Nk, these
are the initial values of registers r1 . . . rk are x(1), . . . ,x(k), respectively.

We assume there is a special register rm′ that is never incremented, so that dec rm′ , k
will unconditionally jump to line k; we use goto k as a shorthand for this instruction.

2.9.2 Examples of register machine computation

Let us see some examples of predicates/functions that can be computed by register machines.
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r1 + r2:

1. dec r2, 4

2. inc r1

3. goto 1

4. accept

We frequently want to push the entire value of register ri into rj. The following code,
denoted by flush ri → rj, does this:

1. dec ri, 4

2. inc rj

3. goto 1

4. . . .

where line 4 represents the line of code after the flush macro.

max(r1 − r2, 0):

1. dec r2, 4

2. dec r1, 4

3. goto 1

4. accept

2r1:

1. dec r1, 5

2. inc r2

3. inc r2

4. goto 1

5. flush r2 → r1

br1/2c:

1. dec r1, 5

2. dec r1, 5

3. inc r2

4. goto 2

5. flush r2 → r1

r1 is odd?
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1. dec r1, 5

2. dec r1, 4

3. goto 1

4. accept

5. reject

r1 > r2?

1. dec r1, 5

2. dec r2, 4

3. goto 1

4. accept

5. reject

r1 · r2:

1. dec r1, 5

2. flush r2 → r3, r4

3. flush r3 → r2

4. goto 1

5. flush r4 → r1

Although this looks a whole lot like the sort of computation we were able to do with
stably-computing CRNs, the last example is a hint that something a bit more sophisticated
is going on, since provably no CRN can stably compute f(r1, r2) = r1 · r2.

In fact, the next section shows that register machines are powerful enough to do any
computation that a Turing machine can do.

2.9.3 Register machines are (inefficiently) Turing universal

We want to show that a register machine MR can simulate a Turing machine MT . Suppose
MT has tape alphabet {0, 1, xy}, and that it never writes xy, and that whenever it encounters
a xy, it writes a 0 over it immediately. It’s not difficult to see that such a Turing machine is
as powerful as one without that restriction. Furthermore, it means that the tape contents of
MT can be represented as a binary string x ∈ {0, 1}∗, giving the symbols from the leftmost
tape cell until the first xy.

A first attempt might be to observe that the tape contents x can be interpreted as the
binary expansion of a natural number n, represented in a register of MR. Operations on x,
such as changing a bit, or adding a new bit to one end, are expressible as arithmetic operations
on n, but awkwardly so. Also, although the current state of MT can be represented in the
finite state control of MR, the final ingredient in MT ’s configuration, the tape head position,
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is unbounded and requires its own register. Although it may be possible to do a simulation
directly on such a representation, it could be length and awkward to describe.

There is a more elegant way. The key idea is to represent x with two natural numbers r1

and r2, represented in binary as the strings to the left and right of the tape cell, respectively,
with the least significant bit closest to the tape head. To avoid the ambiguity introduced by
leading 0’s, we will say that the number r1 is actually represented by the bit string to the
left of the tape cell, with a 1 appended to its left end, and similarly for r2. For example to
represent the tape contents 0011010001101, with the tape head on the underlined bit (which
we call the current bit, we break the string into two parts x1 and x2 (assigning the underlined
bit to x1), and reverse x2 so that its most significant bit is on the left:

x1 = 001101

rev(x2) = 1011000

We then let y1 and y2 be strings obtained by prepending a 1 to each of x1 and rev(x2):

y1 = 1001101

y2 = 11011000

Finally, we let r1 and r2 be the positive integers represented respectively by y1 and y2, and
store these integers in registers r1 and r2 of MR. Now, the standard Turing machine oper-
ations can be expressed as the computation of predicates and functions as in Section 2.9.2.
Let b represent the current bit.

MT operation MR implementation

test if b = 0 test if r1 is even
flip b if b = 0, then r1 := r1 + 1, else r1 := r1 − 1
move tape head left r1 := br1/2c, r2 := 2r2 + b
move tape head right r2 := br2/2c, r1 := 2r1 + b

We omit the details of dealing with moving the tape head off the right end.

2.9.4 CRN computation with a large probability of error

We now describe how to simulate a register machine with a CRN. The CRN C will be non-
deterministic in the sense that for some configurations of C, two reactions will be applicable,
but the correctness of the simulation depends on one of them happening instead of the other.
We then describe how to reduce the probability of the incorrect reaction.

For simplicity we describe only the case that the input is a single integer n ∈ N.
For a register machine M with l lines of instructions and m registers, to define the

simulating CRN N , create molecular species L1, . . . , Ll and R1, . . . , Rm, and to represent
input n, the initial configuration of N is {nR1, 1L1}. The presence of molecule Li is used to
indicate that the current line is i. Since the register machine can only be on one line at a
time, there will be exactly one molecule of the form Li present in the solution at any time.
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The count of species Rj represents the current value of register rj. If M halts and accepts
(respectively, rejects), we want N to produce a Y (resp. N) molecule and enter a terminal
configuration.11

The following table shows the reactions to simulate an instruction of the register machine,
assuming the instruction occurs on line i:

accept Li → Y
reject Li → N
goto k Li → Lk
inc rj Li → Li+1 +Rj

dec rj, k Li +Rj → Li+1

Li → Lk

The first four reactions are error-free simulations of the corresponding instructions. The
final two reactions are an error-prone way to decrement register rj. If rj = 0, then only the
latter reaction is possible, and when it occurs it is a correct simulation of the instruction.
However, if rj > 0 (hence there are a positive number Rj molecules in solution), then either
reaction is possible. While only the former reaction is correct, the latter reaction could still
occur. The semantic effect this has on the register machine being simulated is that, when a
decrement dec rj, k is possible because rj > 0, the machine may nondeterministically jump
to line k anyway.

We could imagine trying to make the last reaction slower by assigning it a lower rate
constant ks � 1. In this case, the last two reactions have rates λc = 1

v
· #Li · #Rj ≥ 1

v
(correct reaction) and λi = ks ·#Li = ks (incorrect reaction). The probability of error is

λi
λi + λc

≤ ks
ks + 1/v

.

Problems with this scheme:

1. Probability of error increases with longer computations. If d decrements occur
in total, then the best we could conclude from the above analysis is that the probability

that any of them experience an error is at most dks
ks+1/v

. Once d ≥ ks+1/v
ks

, this gives

the trivial bound 1. In fact, a more careful analysis shows that the probability of
error in any one of d decrements grows exponentially with d (although making ks small
decreases the constants involved).

In particular, to ensure small chance of error over the whole computation, we need to

know in advance how many decrements will occur and set ks such that d � ks+1/v
k2

.
This really means that we need to know in advance how many steps the computation
will take. Thus this cannot be called “universal” computation; a universal machine

11Note that we are referring to a CRN, not a CRD or CRC. As long as the CRN enters a terminal configuration,
it can be thought to compute either a predicate ψ : Nk → {0, 1} or a function f : Nk → N, depending on whether we
take the presence of Y /N or the count of Y in the terminal configuration as representing the output.
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should be able to simulate any algorithm, without knowing in advance anything about
the algorithm (including how long it will run).

2. Adjusting rate constants means designing new chemicals. The idea of reduc-
ing the error probability by adjusting the rate constants requires that we design new
chemicals that have different properties. It would be better if, in order to reduce the
error probability, we need only adjust initial counts of existing chemicals, rather than
design new chemicals.

3. Reducing error slows down the computation. Decreasing ks decreases the error
linearly (e.g., cutting it in half cuts the error probability in half), but it also increases
the expected time linearly (doubling the time if ks is cut in half).

4. Register machines are exponentially slower than Turing machines.

5. To store b bits we need Ω(2b) molecules.

Problem 5 is fundamental to the idea that the configuration of a CRN is a constant-length
vector of counts. However, problems 1-4 are artifacts of this particular implementation. In
fact, all of the problems can be eliminated, giving the following theorem:

Theorem 2.9.1. For every Turing machine M , there is a CRN N = (Λ, R) such that, for
every input x ∈ {0, 1}∗ to M and every ε > 0, there is an initial configuration x ∈ NΛ for
N such that N simulates M(x) with probability at least 1− ε, and the expected time for N
to halt is O(t · s5), where t and s are respectively the running time and space usage of M on
input x.

Of these, problem 4 is the most difficult to deal with. It requires that we more directly
simulate a Turing machine (or at least simulate something that is itself faster than a register
machine at simulating a Turing machine). Such a simulation is possible, but known CRNs
that do it are complex.

In the next section we describe how to do a relatively simple modification to the register
machine construction to alleviate problems 1-3.

2.9.5 Turing-universal CRN computation with a small probability of error

We now construct a CRD D to simulate M , while reducing the probability of an error each
time an error could potentially occur. Besides the species described in Section 2.9.4, we
introduce the following new species: “clock” species C1, C2, and C3, and “forward” and
“backward” species F and B that control the other clock species.

The clock species will be used to reduce the probability of error each time a decrement
is simulated.

The initial state of D on input n ∈ N is {nR1, 1L1, 1C1, 1F, n0B} — i.e., start with
register r1 = n, initialize the register machine M at line 1, and start the “clock module” in
the first of its three stages. Also start with count n0 of B and count 1 of F ; we will see later



36 CHAPTER 2. CHEMICAL REACTION NETWORKS

that by choosing n0 sufficiently large, we can make the probability of error arbitrarily close
to 0.

Recall that the only source of error in the CRN simulation is from the decrement in-
struction dec rj, k when Rj is present, but the jump reaction Li → Lk occurs instead of the
decrement reaction Li + Rj → Li+1. This would cause the CRN to erroneously perform a
jump when it should instead decrement register rj. To decrease the probability of this oc-
curring, we can slow down the jump reaction, thus decreasing the probability of it occurring
before the decrement reaction when Rj is present.

The following reactions, which we call the “clock module,” implement a random walk that
is biased in the reverse direction, so that C3 is present infrequently, the expected frequency
controlled by the relative counts of F and B:

F + C1 → F + C2, B + C2 → B + C1,
F + C2 → F + C3, B + C3 → B + C2.

We modify the conditional jump reaction to require a molecule of C3 as a reactant, which
also “resets the clock” (converts C3 to C1).:

dec rj, k Li +Rj → L′i
L′i + C3 → Li+1 + C1 +B
Li + C3 → Lk + C1 +B

Increasing the count of species B decreases the expected time until the reaction B+Cs+1 →
B+Cs occurs, while leaving the expected time until reaction F +Cs → F +Cs+1 unchanged.
This has the effect that C3 is present less frequently, delaying the conditional jump reaction.12

We refer to the first reaction implementing dec rj, k as the decrement reaction and the
third as the jump reaction; note that if #Rj > 0 then both reactions are possible so they
probabilistically compete (the “correct” reaction in that case is the decrement, and the jump
reaction executing instead would constitute a simulation error). An additional B molecule is
produced to lower the probability of simulation error on the next decrement instruction. Each
simulation of dec rj, k converts a C3 molecule to C1, which restarts the clock. The second
reaction is present to ensure that this occurs after every successful decrement. An additional
B molecule is produced to lower the probability of simulation error on the next decrement
instruction. If the decrement reaction occurs, then the second reaction above is the only one
possible so it is guaranteed that, on each simulation of a dec rj, k instruction, exactly one of
the jump reaction or the second reaction occurs. As we continue to perform decrements, the
random walk from C1 to C3 acquires a stronger reverse bias due to the increase in #B, so
the conditional jump becomes less likely to occur erroneously. The reason we convert C3 to
C1 is to ensure that the increase in #B has an immediate effect of lowering the probability
of C3 being present.

The accept, reject, goto , and inc commands cannot result in errors for the CRD
simulation, so we keep their reactions unchanged from Section 2.9.4.

12Intuitively, with an `-stage clock, if there are b molecules of B, the frequency of time that C` is present is less
than 1

b`−1 .



2.10. STABLY DECIDING SEMILINEAR SETS 37

For an error to occur, the two reactions Li+R→ L′i and Li+C3 → Lk+A+C1 compete.
After d decrement instructions, #B = n0 + d. The frequency of time in which C3 is present
is ≤ 1

#B2 .13 Thus if an error is possible (i.e., if at least one R is present), then the probability

of error on that step — i.e., that Li encounters C3 before R — is ≤ 1
#B2 . Thus, by the union

bound, the probability of an error ever occurring is at most

∞∑
b=n0

1

b2
.

By choosing n0 sufficiently large, we can make this error probability arbitrarily close to 0.

2.10 Stably deciding semilinear sets

This section that any semilinear set can be stably decided by a CRD.
First, we observe that the sets decidable by CRDs are closed under union, intersection,

and complement.

Theorem 2.10.1. Let C1 = (Λ1, R1,Σ,Υ1, σ1) and C2 = (Λ2, R2,Σ,Υ2, σ2) be CRDs stably
deciding sets A1, A2 ⊆ NΣ, respectively. Then there are CRDs stably deciding the sets A1∪A2,
A1 ∩ A2, and A1, respectively.

Proof. Let Υ′ = Λ1 \ Υ1 to decide A1. For the other two operations, add reaction X →
X1 + X2 for each X ∈ Σ, where Xi serves as the “true” input species for Ci. Add 4 species
V00, V01, V10, V11. To “record” the vote of C1, for each species Sb in C1 voting b ∈ {0, 1} and
each b′ ∈ {0, 1}, add the reaction Sb + V(1−b)b′ → Sb + Vbb′ . Similarly, to record the vote
of C2, for each species Sb in C2 voting b ∈ {0, 1} and each b′ ∈ {0, 1}, add the reaction
Sb + Vb′(1−b) → Sb + Vb′b. For ∪, let Υ = {V01, V10, V11}, and for ∩, let Υ = {V11}.

The following characterization of semilinear sets (due to Ginsberg and Spanier) is helpful.

Theorem 2.10.2. A set A ⊆ Nd is semilinear if and only if it is a finite union, intersection,
and complement of sets X ⊆ Nd that are either

1. threshold sets: for some constants b, a1, . . . , ad ∈ Z,

X =

{
x ∈ Nd

∣∣∣∣∣
d∑
i=1

aix(i) < b

}
,

or

2. mod sets: for some constants a1, . . . , ad ∈ Z, b, c ∈ N,

X =

{
x ∈ Nd

∣∣∣∣∣
d∑
i=1

aix(i) ≡ b mod c

}
.

13This is not too hard to prove but requires more probability theory than we will cover in this course.
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By Theorems 2.10.2 and 2.10.1, to show that all semilinear sets can be stably decided by
a CRD, it suffices to show that CRDs can stably decide any threshold set and any mod set.

Theorem 2.10.3. Any threshold set can be stably computed by a CRD.

Proof. Let the set be A =
{

x ∈ Nd
∣∣∣ ∑d

i=1 aix(i) < b
}
. If ai > 0, add the reaction Xi →

aiP , and if ai < 0, add the reaction Xi → (−ai)N . Start with initial context {1L0, bN} if
b > 0 and {1L0, (−b)P} otherwise. The CRD must decide if #P < #N , which is done by
the reactions L0 +N → L1 and L1 + P → L0.

Theorem 2.10.4. Any mod set can be stably computed by a CRD.

Proof. Let the set be A =
{

x ∈ Nd
∣∣∣ ∑d

i=1 aix(i) ≡ b mod c
}
. In addition to input

species, we start with a single copy of L0 and have species L1, . . . , Lc−1. For each input
species Xi and j ∈ {0, 1, . . . , c − 1}, add the reaction Xi + Lj → Lj+ai mod c. Let Lb vote
YES and all other Lj species vote NO, and no other species votes.

2.11 Impossibility of stably deciding “y = x2?”

The full proof that only semilinear sets can be stably decided by CRDs is quite involved. In
this section we will show some of the basic ideas by showing that no CRD can stably decide
the “squaring” set S = { (x, y) ∈ N2 | y = x2 }.

We will crucially use the fact that reachability is “additive”: If c =⇒d, then for all
e ∈ NΛ, c + e =⇒d + e.

Recall the partial order ≤ defined on Nd is c ≤ d if c(i) ≤ d(i) for all i ∈ {1, . . . , d}. We
say a sequence c0, c1, . . . ∈ Nd is nondecreasing if ci ≤ ci+1 for all i. Given A ⊆ Nd, we say
y ∈ A is minimal if, for all x ∈ A, x ≤ y =⇒ x = y. Let min(A) denote the minimal
elements of A.

Observation 2.11.1. For all u ∈ A, then there is m ∈ min(A) such that m ≤ u.

Proof. If u ∈ min(A) then we are done, so assume not. Since u is not minimal, there is some
u′ ∈ A such that u′ < u. If u′ ∈ min(A) then we are done, otherwise we can repeat this
process to find u′′ < u′. But there are only a finite number of elements strictly less than u,
so this repeated process must terminate with some minimal element m < u.

If (X,≤) is any partially ordered set and x ∈ X, let ∇(x) = { y | y ≥ x } be the upper
cone of x.

The following is known as Dickson’s Lemma, and we will use it repeatedly:

Lemma 2.11.2. Every infinite sequence x0,x1, . . . ∈ Nd has an infinite nondecreasing sub-
sequence, and every set A ⊆ Nd has a finite number of minimal elements.
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Proof. We prove the first condition by induction on d.
For the base case d = 1, let n0, n1, . . . ∈ N be an infinite sequence. If the set A =

{ ni | i ∈ N } is finite, then by the pigeonhole principle, there is c ∈ A such that ni = c for
infinitely many i, defining a nondecreasing subsequence.

Otherwise, for all n ∈ N, there exists a smallest i(n) ∈ N such that ni(n) > n. Define the
sequence of indices i0 < i1 < i2 < . . . recursively as i0 = 0 and, for j > 0, ij = i(nij−1

), i.e.,
nij is chosen to be the next element of sequence that exceeds nij−1

. This establishes the base
case for the first condition.

For the inductive case, assume the inductive hypothesis holds for d dimensions and let
A ⊆ Nd+1 be infinite. For each x ∈ A, (x(1),x(2), . . . ,x(d)) is a vector in Nd, so by the
inductive hypothesis for d dimensions, there is an infinite subsequence x0,x1, . . . from A such
that, for all i ∈ N and all j ∈ {1, . . . , d}, xi(j) ≤ xi+1(j). Applying the base case on one
dimension, there is an infinite subsequence y0,y1, . . . of x0,x1, . . . such that, for all i ∈ N,
yi(d+ 1) ≤ yi+1(d+ 1). Then yi ≤ yi+1.

To see the second condition, let A ⊆ Nd. Suppose for the sake of contradiction that
min(A) is infinite. By the first condition, there is an infinite nondecreasing sequence m0 ≤
m1 ≤ . . . ∈ min(A), and since every element of it is distinct, we have m0 < m1, which
contradicts the minimality of m1. Thus min(A) is finite.

For convenience, assume that every species votes. This means that a stable configuration
o with output Φ(o) is one in which, for every o′ such that o =⇒o′, no species voting ¬Φ(o)
is present in o′. Conversely a configuration c is unstable if either Φ(c) is undefined, or there
exists c′ such that c =⇒ c′ and c′ contains a ¬Φ(c) voter. Because adding more molecules to
c cannot make the preceding false (because reachability is additive), we have the following
observation, which we state as “instability is closed upwards”.

Observation 2.11.3. If c is unstable, then all d ≥ c are unstable.

The upward closure of instability gives some very regular structure to the set of unstable
configurations (and hence to its complement, the set of stable configurations).

Lemma 2.11.4. For any CRD D, let U be its set of unstable configurations. Then U =⋃
m∈min(U)

∇(m).

(Draw picture of U as a finite union of cones in 2D.)

Proof. By Lemma 2.11.2, min(U) is finite. To see that
⋃

m∈min(U)

∇(m) ⊆ U , let u ∈ ∇(m)

for some m ∈ min(U). Since u ≥m ∈ U , Observation 2.11.3 implies that u ∈ U . To see the
reverse containment, let u ∈ U . Observation 2.11.1 implies that there is some m ∈ min(U)
such that m ≤ u, so u ∈ ∇(m), implying U ⊆

⋃
m∈min(U)

∇(m).

For any CRD D, let τD = max
m∈M,S∈Λ

m(S), where M is the finite set of minimal elements

of the unstable configurations of D as above.
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Lemma 2.11.5. For any CRD D = (Λ,R,Σ,Υ, s), if c ≤ d and (∀S ∈ Λ) d(S) − c(S) >
0 =⇒ c(S) ≥ τD,14 and c is stable, then d is stable and Φ(d) = Φ(c).

Proof. Suppose without loss of generality that Φ(c) = 1, then c(Y ) > 0 for some Y ∈ Υ.
Thus d(Y ) ≥ c(Y ) > 0 since d ≥ c, so if d is stable, then Φ(d) = 1. To see that d is stable,
let S ∈ Λ such that d(S) > c(S) By hypothesis we have that c(S) ≥ τD. By Lemma 2.11.4,
for any S such that c(S) ≥ τD, if c 6∈ U , then c′ 6∈ U for any c′ equal to c and strictly greater
on S. Applying this iteratively to every S such that d(S) > c(S) implies that d 6∈ U , i.e., d
is stable.

(Draw picture of τ -bounding box to see that increasing #S beyond τ cannot move us
into the set of unstable configurations.)

The following “pumping lemma” is the main technical tool to prove that the squaring set
S cannot be stably decided.

Lemma 2.11.6. Let D = (Λ, R,Σ,Υ, s) be a CRD stably deciding the infinite set A ⊆ Nk.
Then there are c,d ∈ A with c < d such that { c +m · (d− c) | m ∈ N } ⊆ A.

That is, if we write d = c + δ for δ = (d− c), then C must accept any input obtained by
pumping additional δ into c, i.e., it also accepts c +m · δ for all m ∈ N.

Proof. Since A is infinite, by Dickson’s Lemma there is an infinite nondecreasing sequence
c0, c1, . . . ∈ A. (For simplicity we are assuming here that the initial context is 0, so that
an initial configuration ci where the correct output is 1 is also considered an element of
A ⊆ Nk.) Let δi = ci+1 − ci.

Let (oi)
∞
i=0 to be an infinite sequence of stable configurations with Φ(oi) = 1, defined

inductively as follows. For the base case, since D stably decides A, there exists stable o0

such that c0 =⇒o0 and Φ(o0) = 1. For the inductive case, the fact that reachability is
additive implies that for all i, ci+1 = ci + δi =⇒oi + δi. The fact that D stably decides A
implies that oi + δi =⇒oi+1 for some stable oi+1 with Φ(oi+1) = 1, which defines oi+1.

By Dickson’s Lemma there is an infinite nondecreasing subsequence of (oi)
∞
i=0; call it

(oi)
∞
i=0. Let Γ = { S ∈ Λ | limi→∞ oi(S) =∞ } be the set of species with unbounded counts

in (oi). Thus, if S ∈ Γ, then for large enough i, oi(S) > τD. If S 6∈ Γ, then there exists
cS ∈ N such that limi→∞ oi(S) = cS.

Let i be large enough that oi(S) = cS if S 6∈ Γ (thus oi+1(S) = oi(S)) and oi(S) > τD if
S ∈ Γ. Define δi = δj + δj+1 + . . . + δk (a sum of δj’s from the original sequence, before we

took an infinite nondecreasing subsequence) such that oi + δi =⇒oi+1.
Since (oi) is nondecreasing, we can write oi+1 = oi + γ for γ ≥ 0, where γ(S) > 0 =⇒

oi(S) > τD (since we chose i large enough that every unbounded species has count > τD)
and γ(S) > 0 =⇒ S ∈ Γ (since we chose i large enough that every bounded species has a
converged count).

14In other words, d is at least c and d is strictly larger than c only on species on which c is already “large” (≥ τ).
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Thus oi + δi =⇒oi + γ, and applying this same reaction sequence m times gives

oi +m · δi =⇒oi +m · γ.

By Lemma 2.11.5, no N molecule can be produced from oi +m · γ, since oi +m · γ is larger
than oi only on species with count > τD in oi.

We may not have that oi + m · γ is a stable configuration, but since it cannot produce
an N molecule, if D stably decides the set A, the only other possibility is that a stable
configuration o with Φ(o) = 1 is reachable, which means D accepts any input that can reach
to oi +m · δi.

Recall that δi = δj + δj+1 + . . .+ δk for some j, k ∈ N. Thus δi = ck − cj. Let c = cj and
d = ck. Then { c +m · (d− c) | m ∈ N } ⊆ A.

Finally, we can prove that the squaring set cannot be stably decided.

Theorem 2.11.7. The squaring set S = { (x, y) ∈ N2 | y = x2 } cannot be stably decided
by any CRD.15

Proof. Lemma 2.11.6 says that there exist points (x, y), (x′, y′) ∈ S with x < x′ or y < y′

(but since they are in S, if one is strictly smaller then both are) such that, defining δ =
(x′ − x, y′ − y), the point (x, y) + nδ ∈ S for every n ∈ N. But the point (x, y) + 2δ 6∈ S.
To see why, suppose for the sake of contradiction that (x, y) + 2δ = (2x′ − x, 2y′ − y) ∈ S.
Then (2x′ − x)2 = (2y′ − y), so

0 = (2(x′)− x)2 − (2y′ − y)

= (4(x′)2 − 4xx′ + x2)− (2(x′)2 − x2)

= 2(x′)2 − 4xx′ + 2x2

= 2(x′ − x)2,

a contradiction since x′ > x.

2.12 Reachability

We define =-reachability as the decision problem, given a CRN N = (Λ, R) and two config-
urations x,y ∈ NΛ, is it the case that x =⇒N y? We define ≥-reachability as the decision
problem, given a CRN N = (Λ, R) and two configurations x,y ∈ NΛ, is it the case that
there exists y′ ≥ y such that x =⇒N y′?

15A fast way to see this is true is to observe the graph of y = x2; the point (x, y) + δ corresponds to drawing a
line between two points on the graph and then finding a third point on that line; since the graph is convex, the third
point cannot also intersect the graph.
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2.12.1 =-reachability and ≥-reachability are hard for EXPSPACE

The following proof is due to David Soloveichik, based on Lipton’s original proof, but mod-
ified to use CRN notation and simplified somewhat.

Notion of “simulation”: Here when we say that a particular CRN simulates a (halting)
register machine we mean the following: The register machine has some halting states and
we are guaranteed that if we reach the halting state then the computation is correct. Fur-
ther, we are guaranteed that there is some sequence of reactions that takes us to a halting
state. However, it’s possible that we get trapped in some CRN configuration from which it’s
impossible to get to the halting state.

Suppose we are trying to simulate a register machine whose maximum register value is
4. We know how to do everything except for test for 0. But we can have two registers x and
x′ such that x + x′ = 4 (this invariant is maintained by the computation) and test for 0 as
follows:

L1 +X → L2 +X [goto line 2 if x > 0]

L1 + 4X ′ → L3 + 4X ′ [goto line 3 if x = 0]

(In fact this satisfies a stronger notion of simulation: there is only one terminal sequence
of reactions and it gets the correct answer.)

What if we need a larger value than 4? Suppose each register is bounded by 2k; then we
can use a number of reactions that grows with k.

X ′
X ′k
2X ′i
X ′i−1 [for each i ∈ {2, . . . , k}]

L1 +X ′1 → L3 +X ′1 [goto L3 if x = 0]

Note that the last reaction can happen if and only if #X ′ = 2k (since we assume it
cannot get larger), so if x + x′ = 2k is maintained as an invariant by the register machine,
L1 becomes L3 only if #X = 0

But since the space usage of the Turing machine simulated by the register machine is
order log 2k = k, we get only PSPACE-hardness.

For EXPSPACE-hardness we need to be more clever. For any k, we’ll built a CRN such
that to get from L1 to L3, some reaction must fire 32k−2 − 1 times, and the number of
species/reactions of the CRN is only O(k). Then by coupling the consumption of X ′ to this
reaction, we can implement [goto L3 if x = 0] above using only O(k) reactions.

For c : N → N, we say that a register machine M is c(n)-count-bounded if, for every
n ∈ N, M halts on input n, and M ’s registers never exceed the value c(n).

Lemma 2.12.1. Let k ∈ N. Define o = {1Y } and in by

• in(Vi) = 1 for each i ∈ {2, . . . , k},
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• in(X2) = 2,

• in(Xi) = 32i−3 − 1 for each i ∈ {3, . . . , k},

• in(Sk) = 1

For each 32k−3
-count-bounded register machine M , there is a CRN C = (Λ, R) such that, for

each input n ∈ N to M , in =⇒C o if and only if M accepts n.

Proof. We will use the notation A
C→B to denote the reaction A + C→B + C, i.e., C is a

catalyst.

The idea is that to get from 1 Sk (plus carefully chosen other stuff) to 1 Hk (plus other

stuff) necessarily requires calling the base case (subroutine S1) Wk = 32k−2 − 1 times. There
is no shorter path that successfully produces Hk.

Let qi−1 = 32i−3 − 1 for each i ∈ {3, . . . , k}.
The i’th subroutine is “called” by producing an Si, and it signals that it should “return”

by producing an Hi. We maintain the invariant #Vi + #Wi = 1, so we think of the ith
subroutine as being in one of two “modes” Vi or Wi, and they all have mode Vi at the start
of the whole computation.

(We’ll relax the requirement of starting with qi−1 of Xi later.)

Base case: (subroutine S1)

S1 → T1

Tk → H1

For i ∈ {1, . . . , k − 1}:

Ti
Vi+1→ Ti+1

Ti +X ′i+1

Wi+1→ Ti+1 +Xi+1

Pseudocode:

for i ∈ {2, . . . , k} do
if Si is in Wi mode then

decrement X ′i;
increment Xi;

end
end

Algorithm 1: Subroutine S1
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Recursive case: For i ∈ {2, . . . , k} (subroutine Si)

Si→Si−1

Wi +Hi−1→Vi +Hi

Vi +Hi−1→Si−1 +Wi

Xi +Hi−1
Vi→Si−1 +X ′i

Pseudocode:

call si−1 // (the return from this subroutine is signaled by presence of hi−1);
if in Wi mode then

switch to Vi mode;
return;

else // in Vi mode

Non-deterministically decide between two options;
1. Switch to Wi mode;
2. Decrement Xi, increment X ′i;
Call Si−1 and goto if statement above;

end
Algorithm 2: Subroutine Si

The intended path has Si make the non-deterministic choice (2) unless all Xi have been
converted to X ′i, and only then make non-deterministic choice (1) switching to Wi mode.

Claim 1. To reach Hk from the start state of Sk, S1 must be called qk = 32k−2 − 1 times
(i.e., there is a path with this many calls of s1, but no path with fewer). Further, if Hk is
reached, then at that point the configuration is the same as the start configuration (except
for Sk = 0 and Hk = 1).

Proof. By induction on i. Clearly true for S2: S1 must be called 2 times.
Suppose it is true for Sk−1. Observe that every time Sk−1 is called from Sk in the larger

system, Sk−1 acts as in the base case, except for every time S1 is called, it converts a
molecule of X ′k to Xk if Wk mode is on. Thus, in Wk mode, Sk−1 can only return to Sk when
#X ′k ≥ qk−1. This can only happen if previously all of Xk is moved to X ′k. This requires
Sk−1 getting called qk−1 +1 times. Thus, the total number of times Sk−1 must be called from
Sk is qk−1 + 2. Since each call causes qk−1 calls to S1 by the induction hypothesis, the total
number of S1 calls that Sk causes before Hk is produced is qk−1 · (qk−1 + 2)

email from David S:
Ok, finally, do we really need to start with #Xi = qi−1? First, of all I claim that there is

a recursive way to build up this initial condition using a construction similar to above, but
this email is already kind of long. But I think you will believe me that there is a way to
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generate some amount of Xi such that qi−1 is the maximum that can be produced. This can
be done similar to the exponentiation example that we know and love [in Cook, Soloveichik,
Winfree, Bruck]. Then Sk will only reach Hk if the maximum amount was generated in this
initiation phase.

2.12.2 ≥-reachability is contained in EXPSPACE

TODO: deal with catalysts

The following is due to Rackoff (1978).

Lemma 2.12.2. Let N = (Λ, R) be a CRN and let d = |Λ|. There is a constant c such that,
for all x,y ∈ NΛ, if x =⇒N y, then there is y′ ≥ y such that x =⇒N y′ via an execution
sequence of length at most 22cd.

Proof. Recall a reaction is a pair α = (r,p) ∈ R; for convenience we consider the associated
reaction vector v = p−r, which represents the vector that must be added to a configuration
c to denote the configuration c + v resulting from applying α. Let VR denote the set of
reaction vectors of R.

For any c ∈ Zd, let c � k denote the prefix vector (c(1), c(2), . . . , c(k)) ∈ Zk.
Let d = |Λ|; we will consider Nd equivalent to NΛ by considering some arbitrary order

to the species S1, S2, . . . , Sd ∈ Λ. Let k ∈ {0, 1, . . . , d}. We say a vector c ∈ Zd is k-valid if
c(j) ≥ 0 for all 1 ≤ j ≤ k. Note that a configuration c ∈ Nd is a d-valid vector. Let r ∈ N.
A vector c is k-r-bounded if 0 ≤ c(j) ≤ r for all 1 ≤ j ≤ k; in other words, the first k species
have nonnegative count at most r. If c is k-valid, then it is k′-valid for all k′ ≤ k, and if
c if k-r-bounded, then it is also k-valid, and it is k′-r′-bounded for k′ < k and r′ ≥ r. A
sequence c0, c1, . . . , cm is k-valid (resp. k-r-bounded) if, for 1 ≤ j ≤ m, cj is k-valid (resp.
k-r-bounded).

We write c=̂⇒r
ku if there is a k-r-bounded sequence of configurations C = (c1, . . . , cm),

where c1 = c, such that cm � k ≥ u � k and, for all 1 ≤ j ≤ m, there is a reaction vector
v ∈ VR such that cj−1 + v = cj.

16

In other words, c=̂⇒r
ku means that we can reach from c to a cm that is at least u on the

first k components, by reactions that possibly take elements greater than index k negative,
as long as all elements in the first k indices remain nonnegative and upper-bounded by r
along the whole sequence. We write c=̂⇒ku replacing “k-r-bounded” above with “k-valid.”
In either case we say that cm k-covers u.

Note in particular that the lemma concerns configurations x,y such that x=̂⇒dy.; we
write x=̂⇒y to denote that x=̂⇒dy. Also, note that if k = 0, since any vector vacuously
0-covers any other vector, then for all c, c′, c=̂⇒0c

′ by the trivial sequence (c).

16Note that if v is the reaction vector of reaction α, α may not be applicable at cj−1, and indeed c may not even
be a nonnegative configuration since for k′ > k we could have cj−1(k′) < 0. So c0, c1, . . . , cm is not necessarily an
execution sequence.
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For c,u ∈ NΛ and k ∈ {1, . . . , d}, if c=̂⇒ku let `k(c,u) denote the shortest k-valid
sequence from c to some cm that k-covers u. To prove the lemma, it suffices to show that
for some constant c, for all c,u such that c=̂⇒u, `d(c,u) ≤ 22cn .

This follows from the following claim.

Claim 2. Let s ∈ Z+ be the maximum stoichiometric coefficient of any reactant. For
1 ≤ k ≤ d, `k(c,u) ≤ (s · `k−1(c,u))k + `k−1(c,u).

We now prove this claim by induction on k. Let c,u such that c=̂⇒u.
For the base case k = 0, `k(c,u) = 1 since c 0-covers u.
For the inductive case for k > 0, since c=̂⇒u, there is a k-valid sequence C = (c1, . . . , cm),

where c1 = c, that k-covers u. Let r = s · `k−1(c,u). We consider two cases:

1. C is k-r-bounded. This case will actually not require the inductive hypothesis. We
consider two subcases:

(a) For all 1 ≤ i < i′ ≤ m, ci � k 6= ci′ � k. In other words, the subvector consisting
of first k integers never repeat in the sequence. Then since 0 ≤ ci(j) ≤ r for all
1 ≤ i ≤ m and 1 ≤ j ≤ k, we have `k(c,u) ≤ m ≤ rk = (s · `k−1(c,u))k.

(b) Otherwise, for some 1 ≤ i < i′ ≤ m, ci � k = ci′ � k. Recall that c1 = c,
and ci+1 = ci + vi for some vi ∈ VR. Then cut out configurations between ci
and ci′ , as well as the reaction vectors. In other words, redefine ci+1 = ci + vi′ ,
ci+2 = ci+1 + vi′+1, . . .. Then this possibly changes coordinates k + 1 . . . , d in
ci+1, . . . , cm, but since ci � k = ci′ � k, coordinates 1, . . . , k remain unaffected in
all ci+1, . . . , cm. By repeating this for any pair of vectors that agree on the first k
coordinates, we eventually arrive at a sequence satisfying subcase (1a).

2. C is not k-r-bounded. Since it is k-valid, for some i ∈ {1, . . . ,m} and 1 ≤ j ≤ k,
ci(j) > r. Consider the smallest p such that cp+1(j) > r, so that c1, . . . , cp is a k-r-
bounded prefix sequence. Then by subcase (1a), p ≤ rk. Let C1 = (c1, . . . , cp) and
C2 = (cp+1, . . . , cm).

Assume without loss of generality that j = k. Then C2 is a k-valid sequence from cp+1

that k-covers u. By the induction hypothesis, there is a (k − 1)-r-bounded sequence
C ′2 = (c′1, c

′
2, c
′
3, . . . , c

′
t) where c′1 = cp+1, that (k − 1)-covers u, and t ≤ `k−1(cp+1,u).

Since cp+1(k) > r = s · `k−1(c,u) ≥ s · t, each reaction consumes at most s copies
of species k. Thus cp+1(k) is sufficiently large that it stays positive in all subsequent
vectors, i.e., cp′(k) > 0 for all p′ ∈ {1, . . . , t}. Therefore the concatenated sequence
C1C

′
2 is k-r-bounded, and

|C1C
′
2| = p+ t

≤ rk + `k−1(cp+1,u)

= (s · `k−1(c,u))k + `k−1(cp+1,u),

which proves the claim.
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Let S = s+ 1. To complete the proof, note that

(s · `k−1(c,u))k + `k−1(c,u) ≤ ((s+ 1) · `k−1(c,u))k

= (s+ 1)k · (`k−1(c,u))k,

= Sk · (`k−1(c,u))k,

Recall that `0(c,u) = 1. A simple induction (see first few k for the intuition):

`1 ≤ Sk

`2 ≤ Sk · (Sk)k = Sk
2+k

`3 ≤ Sk · (Sk2+k)k = Sk
3+k2+k

`4 ≤ Sk · (Sk3+k2+k)k = Sk
4+k3+k2+k

. . .

shows that

`d ≤ Sk
d−1+kd−2+...+k

≤ Sk
d

= 2k
d logS

= 22d log k logS

= 22d log k2log log S

= 22d log k+log log S

Choosing c sufficiently large that c · d ≥ d log k + log logS shows that `d ≤ 22cd , completing
the proof.

2.12.3 =-reachability is decidable

I don’t understand this proof at all.


