

Structural DNA nanotechnology

a.k.a. DNA carpentry
a.k.a. DNA self-assembly
slides © 2021, David Doty
ECS 232: Theory of Molecular Computation, UC Davis

Building things

Building things by hand: use tools! Great for scale of $10^{ \pm 2} \times$

Building tools that build things: specify target object with a computer program

Programming things to build themselves: for building in small wet places where our hands or tools can't reach

Our topic: self-assembling molecules that compute as they build themselves

DNA as a building material

DNA strands bind even if only part of strands are complementary:

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns
Nature 2006

DNA origami

Paul Rothemund
Folding DNA to create nanoscale shapes and patterns Nature 2006

Binding graphs

DNA origami: star graph
(all binding is between staples and scaffold)

DNA tiles: grid graph
(tiles bind to each other, each has ≤ 4 neighbors)

DNA tile self-assembly

monomers ("tiles" made from DNA) bind into a crystal lattice

Practice of DNA tile self-assembly

Practice of DNA tile self-assembly

Place many copies of DNA tile in solution...

(not the same tile motif in this image)

Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011

Practice of DNA tile self-assembly

What really happens in practice to Holliday junction ("base stacking")

Practice of DNA tile self-assembly

Figure from Schulman, Winfree, PNAS 2009
double crossover

Practice of DNA tile self-assembly

triple-crossover
tile (LaBean, Yan,
Kopatsch, Liu,
Winfree, Reif,
Seeman, JACS 2000)

4x4 tile (Yan, Park, Finkelstein, Reif, LaBean, Science 2003)

single-stranded tile (Yin, Hariadi, Sahu, Choi, Park, LaBean, Reif, Science 2008)
60.5 nm

DNA origami tile (Liu, Zhong, Wang, Seeman, Angewandte Chemie 2011)

Tikhomirov, Petersen, Qian, Nature Nanotechnology 2017

Theory of algorithmic self-assembly

What if...
... there is more than one tile type?
... some sticky ends are "weak"?

Erik Winfree

abstract Tile Assembly Model (aTAM)

- tile type = unit square
- each side has a glue with a label and strength (0,1 , or 2)
- tiles cannot rotate

Erik Winfree, Ph.D. thesis, Caltech 1998

- finitely many tile types
- infinitely many tiles: copies of each type
- assembly starts as a single copy of a special seed tile
- tile can bind to the assembly if total binding strength ≥ 2 (two weak glues or one strong glue)

Example tile set

Algorithmic self-assembly in action

n raw AFM image

sheared image

aTAM simulator (ISU TAS by Matt Patitz)

http://self-assembly.net/wiki/index.php?title=ISU TAS
http://self-assembly.net/wiki/index.php?title=ISU TAS Tutorials See also WebTAS by the same group:
http://self-assembly.net/software/WebTAS/WebTAS-latest/

VersaTile (by Eric Martinez and Cameron Chalk) https://github.com/ericmichael/polyomino and xgrow (by Erik Winfree) https://www.dna.caltech.edu/Xgrow/

Tile complexity of squares

Tile complexity

- Resource bound to minimize, like time or memory with a traditional algorithm.
- Why minimize number of tile types?
- Physically synthesizing new tile types is difficult.
- Designing DNA sequences for new tile types is difficult. (DNA sequence design is tougher when more DNA sequences are present.)
- But due to how modern synthesis technologies work, once a tile type is designed, making 50 quadrillion copies of the tile is as easy as making one copy.
- So, we ask: how many unique tile types to we need to self-assemble some shapes?
- We start with $n \times n$ squares as the "simplest" benchmark shape.
- Why not a $1 \times n$ line as an even simpler shape? What is its tile complexity?
- [Note: we have not formally defined the aTAM yet... first let's build intuition.]

The program size complexity of selfassembled squares

Question: How many tile types do we need to self-assemble an $n \times n$ square?

Concretely: how to assemble a 4×4 square?

All glues are strength 2
(alternately: all are strength 1 and temperature $\tau=1$)

How many tile types does this construction need in general
to assemble an $n \times n$ square?
n^{2}

Tile complexity at temperature $\tau=1$ (i.e., no cooperative binding allowed)

Is n^{2} optimal? Can we do better?

Note all pairs of adjacent tiles bind with positive strength:

Theorem: At temperature $\tau=1$, if all pairs of adjacent tiles bind with positive strength, then for every positive integer n, n^{2} tile types are necessary to self-assemble an $n \times n$ square.

Proof: Suppose for contradiction we use the same tile type i at positions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then they have a path L between them with all positive-strength glues, and this can happen instead:

Tile complexity at temperature $\tau=1$, where not all adjacent tiles are bound

7

Tile complexity of this construction?

$$
2 n-1=O(n)
$$

Conjecture: The temperature $\tau=1$ tile complexity of an $n \times n$ square is $\Omega(n)$.
(most recent progress:
https://arxiv.org/abs/1902.02253
https://arxiv.org/abs/2002.04012)

Tile complexity at temperature $\tau=2$ (i.e., cooperative binding allowed)

Tile complexity at temperature $\tau=2$

```
Goal: complete a \(1 \times n\) line into an \(n \times n\) square
```


$$
\text { Tile complexity }=n+4
$$

Logarithmic tile complexity at temperature $\tau=2$

Goal: rectangle of height n using $O(\log n)$ tile types
for width of k bits, stops when it reaches what value?

Logarithmic tile complexity at temperature $\tau=2$

$\Omega(\log n / \log \log n)$ tile complexity lower bound for $n \times n$ squares

- What does $\Omega(\log n / \log \log n)$ tile complexity lower bound mean?
- First let's think about what we already showed: what does $O(\log n)$ tile complexity upper bound mean? For all $n, O(\log n)$ tile types is enough to self-assemble an $n \times n$ square.
- A lower bound looks like: For infinitely many $n, o(\log n / \log \log n)$ tile types is not enough to selfassemble an $n \times n$ square.
- How to prove? It's a counting argument:
- Count number of (functionally distinct) tile systems with fewer than $1 / 4 \log p / \log \log p$ tile types.
- We'll show that it's fewer than p.
- There are p squares with width n between $p+1$ and $2 p$; each needs a different tile system.
- By pigeonhole, some $n \times n$ square cannot be assembled with $<1 / 4 \log p / \log \log p$ tile types.
- Since $p \leq n / 2$, we have $1 / 4 \log p / \log \log p \leq 1 / 4 \log n / \log \log n$.
- Since we can do this for every positive integer p, there are infinitely many n that require more than $1 / 4 \log n / \log \log n$ tile types (a stronger result holds: "most" values of n require that many)

How many tile systems with k tile types?

- Goal: show that there are fewer than p ("functionally distinct") tile systems with $k=1 / 4 \log p / \log \log p$ tile types.
- How many have exactly k tile types? Count each of the ways to define the tile system:
a) How many different glues can we have? $4 k$
b) How many ways can we choose the 4 glues for one tile type? $a^{4}=(4 k)^{4}$
c) How many ways to choose the glues for all k tile types?

$$
b^{k}=(4 k)^{4 k}
$$

d) How many ways to choose the seed tile? k

- How many tile systems? $\quad c \cdot d=k(4 k)^{4 k}$

How many tile systems with k tile types?

- Number of tile systems with exactly k tile types: $\leq k(4 k)^{4 k}$
- Number of tile systems with at most k tile types: $\leq k^{2}(4 k)^{4 k}$
- Recall $k=1 / 4 \log p / \log \log p ;$ by algebra (see notes), $k^{2}(4 k)^{4 k}<p$.
- By pigeonhole principle, for some width n with $p<n \leq 2 p$, the $n \times n$ square is not self-assembled by one of these $k^{2}(4 k)^{4 k}$ tile systems. Since those are all the tile systems with at most k tile types, the $n \times n$ square requires more than $1 / 4 \log p / \log \log p$ tile types to selfassemble. QED

"Descriptional Complexity" proof

- Can be formalized with Kolmogorov complexity
- https://en.wikipedia.org/wiki/Kolmogorov complexity

Fact: "most" integers n require $\geq \log n$ bits to "describe".
(Though some require fewer: 1111111111111111111111
can be described by its length 22 in binary: 10110)

- We can "describe" n with a tile system that self-assembles an $n \times n$ square.
- How many bits do we need to describe a tile system with k tile types?
- $\log (4 k)$ to describe one of the $4 k$ glues, e.g., 8 glues: $000,001,010,011,100,101,110,111$
- $4 \log (4 k)$ to describe one tile type consisting of 4 glues, e.g., tile $b=(010,011,111,100)$
- $4 k \log (4 k)$ to describe all k tile types, plus $\log k$ to give index of the seed.
- So $O(k \log k)$ bits total.
- For any n in the Fact, $\log n=O(k \log k)$, i.e., $k=\Omega(\log n / \log \log n)$.

Note: we're ignoring glue strengths here; adds 2 bits per glue to describe at temperature 2.
(since there are 3 possible strengths $0,1,2$);

Which bound is tight?

1. All $n \times n$ squares can be assembled with $O(\log n)$ tile types; can we get it down to $O(\log n / \log \log n)$?
2. Or do we need $\Omega(\log n)$ tile types to assemble infinitely many $n \times n$ squares?

Improved upper bound: self-assembling an $n \times n$ square with $O(\log n / \log \log n)$ tile types

Idea:

1) Use same 23 tiles that turn the seed row encoding a binary integer n^{\prime} (related to n) into an $n \times n$ square.
2) Create the binary seed row from only $\log n / \log \log n$ tiles.

Creating a row of $\log n$ glues with arbitrary bit string $s \in\{0,1\}^{\log n}$ using $\mathrm{O}(\log n / \log \log n)$ tile types

- Key idea: choose larger power-of-two base $b=2^{k}$, with $b \approx \log n / \log \log n$, and convert from base b to base 2 .
- How many base- b digits needed to represent a $\log (n)$-bit integer?
- Each base- b digit is k bits
- e.g., if $b=2^{3}=8$, then $0=0001=0012=0103=0114=1005=1016=1107=111$
- e.g., the octal number 7125_{8} in binary is 111001010101_{2}
- need $\log (n) / k=\log (n) / \log (\log n / \log \log n)=\log (n) /(\log \log n-\log \log \log n)$ $\approx \log (n) / \log \log n$ base- b digits.

Creating a row of $\log n$ glues with arbitrary bit string $s \in\{0,1\}^{*}$ using $\log n / \log \log n$ tile types (i.e., base conversion from b to 2)
$s=110001011101$
$b=2^{3}=8$
hard-coded tiles:

[^0]mark glues of most and least significant bit

Formal definition of aTAM

abstract Tile Assembly Model (aTAM), formal definition

- Fix a finite alphabet Σ. A glue is a pair $g=(\ell, s) \in \Sigma^{*} \times \mathbb{N}$, with label ℓ and strength s.
- A tile type is a 4-tuple of glues $t \in\left(\Sigma^{*} \times \mathbb{N}\right)^{4}$, with each glue listed in order north, east, south, west.
- Define unit vectors $N=(0,1), S=(0,-1), E=(1,0), W=(-1,0)$
- For $d \in\{\mathrm{~N}, \mathrm{E}, \mathrm{S}, \mathrm{W}\}$, let d^{*} denote the opposite direction of d, i.e., $\mathrm{N}^{*}=\mathrm{S}, \mathrm{S}^{*}=\mathrm{N}, \mathrm{E}^{*}=\mathrm{W}, \mathrm{W}^{*}=\mathrm{E}$.
- Let $t[\mathrm{~N}], t[\mathrm{E}], t[\mathrm{~S}], t[\mathrm{~W}]$ be the glues of t in order.
- T denotes the set of tile types.
- An assembly is a partial function $\alpha: \mathbb{Z}^{2} \cdots T$, such that dom α (set of points where α is defined) is connected.
- a partial function indicating, for each $(x, y) \in \mathbb{Z}^{2}$, which tile is at (x, y), with $\alpha(x, y)$ undefined if no tile appears there.
- Let $S_{\alpha}=\operatorname{dom} \alpha$ denote the shape of α. Let $|\alpha|=\left|S_{\alpha}\right|$.
- Given $p, q \in S_{\alpha}$, two tiles $t_{p}=\alpha(p)$ and $t_{q}=\alpha(q)$ interact (a.k.a. bind) if:
- $\|p-q\|_{2}=1$ (positions $p \in \mathbb{Z}^{2}$ and $q \in \mathbb{Z}^{2}$ are adjacent)
- letting $d=q-p$ (the direction pointing from p to $q), t_{p}[d]=t_{q}\left[d^{*}\right]$ (the glues match where t_{p} and t_{q} touch)
- $t_{p}[d]$ has positive strength (the glues are not zero-strength)
- Let $\mathrm{B}_{\alpha}=(V, E)$ denote the binding graph of α, where
- $V=S_{\alpha}$
- $E=\{(p, q) \mid \alpha(p)$ and $\alpha(q)$ interact $\}$
- B_{α} is a weighted, undirected graph: Each edge's weight is the strength of the glue it represents.
- Given $\tau \in \mathbb{N}^{+}, \alpha$ is τ-stable if the minimum weight cut of B_{α} is at least τ.
- i.e., to separate α into two pieces requires breaking bonds of strength at least t .

abstract Tile Assembly Model (aTAM), formal definition

- Given assemblies $\alpha, \beta: \mathbb{Z}^{2} \ldots \mathrm{~T}$, we say α is a subassembly of β, written $\alpha \sqsubseteq \beta$ if
- $S_{\alpha} \subseteq S_{\beta}(\alpha$ is contained in $\beta)$, and

Question: If $\alpha \sqsubseteq \beta$,
can α grow into β ?

- for all $p \in \mathrm{~S}_{\alpha}, \alpha(p)=\beta(p)$ (α and β agree on tile types wherever they share a position)
- We say $\Theta=(T, \sigma, \tau)$ is a tile system, where T is a finite set of tile types, $\tau \in \mathbb{N}^{+}$is the temperature, and $\sigma: \mathbb{Z}^{2} \cdots T$ is the finite, τ-stable seed assembly.
- We say α produces β in one step, denoted $\alpha \rightarrow{ }_{1} \beta$, to denote that $\alpha \sqsubseteq \beta,\left|S_{\beta} \backslash S_{\alpha}\right|=1$, and letting $\{p\}=S_{\beta} \backslash S_{\alpha}$ be the point in β but not α, the cut $\left(\{p\}, S_{\alpha}\right)$ of the binding graph B_{β} has weight $\geq \tau$.
- (one new tile $\beta(p)$ attaches to α with strength at least τ to create β)
- If the tile type added is t, write $\beta=\alpha+(p \mapsto t)$.
- The frontier of α is denoted $\partial \alpha=U_{\alpha \rightarrow 1 \beta}\left(S_{\beta} \backslash S_{\alpha}\right)$ (empty locations adjacent to α where a tile can stably attach to α.)
- A sequence of $k \in \mathbb{N} \cup\{\infty\}$ assemblies $\alpha_{0}, \alpha_{1}, \ldots$ is an assembly sequence if for all $0 \leq i<k, \alpha_{i} \rightarrow \alpha_{i+1}$.
- We say that α produces β (in 0 or more steps), denoted $\alpha \rightarrow \beta$, if there is an assembly sequence $\alpha_{0}, \alpha_{1}, \ldots$ of length $k \in \mathbb{N} \cup\{\infty\}$ such that
- $\alpha=\alpha_{0}$
- for all $0 \leq i<k, \alpha_{i} \subseteq \beta$, and
- $S_{\beta}=U_{i} S_{\alpha i}$

Why can't we just say \rightarrow is the reflexive, transitive closure $\rightarrow_{1}{ }^{*}$ of \rightarrow_{1} ?

Sometimes we write $\alpha \rightarrow^{\Theta} \beta$ to emphasize this is with respect to a particular tile system Θ.

- We say β is the result of the assembly sequence.
- If k is finite, it is routine to verify that $\beta=\alpha_{k}$, and $\rightarrow \underline{\text { is }}$ the reflexive, transitive closure $\rightarrow_{1}{ }^{*}$ of \rightarrow_{1}.

abstract Tile Assembly Model (aTAM), formal definition

- Given tile system $\Theta=(T, \sigma, \tau)$, we say α is producible if $\sigma \rightarrow \alpha$.
- Write $\mathrm{A}[\Theta]$ to denote the set of all producible assemblies.
- We say α is terminal if α is stable and $\partial \alpha=\emptyset$. (no tile can stably attach to it)
- Write $A_{[}[\Theta] \subseteq A[\Theta]$ to denote the set of all producible, terminal assemblies.
- We say Θ is directed (a.k.a., deterministic) if
- $\left|\mathrm{A}_{\square}[\Theta]\right|=1$. (this is what we want it to mean: only one terminal producible assembly)
- equivalently, the partially ordered set $(\mathrm{A}[\Theta], \rightarrow)$ is directed: for each $\alpha, \beta \in \mathrm{A}[\Theta]$, there exists $\gamma \in A[\Theta]$ such that $\alpha \rightarrow \gamma$ and $\beta \rightarrow \gamma$.
- equivalently, for all $\alpha, \beta \in \mathrm{A}[\Theta]$ and all $p \in \mathrm{~S}_{\alpha} \cap \mathrm{S}_{\beta}, \alpha(p)=\beta(p)$.
- Let X be a shape, a connected subset of \mathbb{Z}^{2}. Θ strictly self-assembles X if, for all $\alpha \in A_{\square}[\Theta], S_{\alpha}=X$. (every terminal producible assembly has shape X)
- Note X can be infinite.
- Example: strict self-assembly of entire second quadrant $X=\left\{(x, y) \in \mathbb{Z}^{2} \mid x \geq 0\right.$ and $\left.y \leq 0\right\}$
- Example of tile system Θ that does not strictly self-assemble any shape?
- Let $X \subseteq \mathbb{Z}^{2}$. Θ weakly self-assembles X if there is a subset $B \subseteq T$ (the "blue tiles") such that, for all $\alpha \in A_{\square}[\Theta], X=\alpha^{-1}(B)$. (every terminal producible assembly puts blue tiles exactly on X.)
- example: weak self-assembly of the discrete Sierpinski triangle.

Basic stability result

Observation: Let $\alpha \sqsubseteq \beta$ be stable assemblies and $p \in \mathbb{Z}^{2} \backslash \mathrm{~S}_{\beta}$ such that $\alpha+(p \mapsto t)$ is stable. Then $\beta+(p \mapsto t)$ is also stable.

Intuition: if a tile can attach to α, it can attach in the presence of extra tiles on α.
example:

Basic reachability result

Rothemund's Lemma: Let $\alpha \sqsubseteq \beta \sqsubseteq \gamma$ be stable assemblies such that $\alpha \rightarrow \gamma$. Then $\beta \rightarrow \gamma$.

Proof:

1. Let $\alpha=\alpha_{0}, \alpha_{1}$, ... be an assembly sequence with result γ.
2. For each i, let $p_{i}=\mathrm{S}_{\alpha i+1} \backslash \mathrm{~S}_{\alpha i}$ (i'th attachment position) and t_{i} the i 'th tile added.
3. Let $i(0)<i(1)<\ldots$ such that $S_{\gamma} \backslash S_{\beta}=\{i(0), i(1), \ldots\}$ (subsequence of indices of tile attached outside of β).
4. Define assembly sequence $\beta=\beta_{0}, \beta_{1}, \ldots$ by $\beta_{j+1}=\beta_{j}+\left(p_{i(j)} \mapsto t_{i(j)}\right)$. (adding tiles to $S_{\nu} \mid S_{\beta}$ in order they were added to α, skipping tiles already in S_{β}.)
5. Then for each $j, \alpha_{i(j)} \subseteq \beta_{j}$, so previous Observation implies that $\beta_{j}+\left(p_{i(j)} \mapsto t_{i(j)}\right)$ is stable.
6. Thus the assembly sequence is valid (each tile attachment is stable), showing $\beta \rightarrow \gamma$. QED

Intuition: if α can grow into γ, then if some of what will attach is already present (β), the remaining tiles can still attach.

then

example of usefulness of Rothemund's Lemma

- Recall two alternate characterizations of deterministic tile systems:
(a) $\left|A_{\square}[\Theta]\right|=1$.
(b) for all $\alpha, \beta \in A[\Theta]$ and all $p \in S_{\alpha} \cap S_{\beta}, \alpha(p)=\beta(p)$.
- Rothemund's Lemma can be used to show that (b) implies (a)
- will skip in lecture (optional problem on homework 1)

Fair assembly sequences

Definition: Let $\alpha_{0}, \alpha_{1}, \ldots$ be an assembly sequence. We say it is fair if, for all $i \in \mathbb{N}$ and all $p \in \partial \alpha_{i}$, there exists $j>i$ such that $p \in S_{\alpha j}$.

Lemma: Let $\alpha_{0}, \alpha_{1}, \ldots$ be a fair assembly sequence. Then its result γ is terminal.

Intuition: Every frontier location eventually gets a tile; none are "starved"

Proof:

1. Suppose for the sake of contradiction that γ is not terminal, i.e., it has frontier location $p \in \partial \gamma ;$ note in particular $p \notin \mathrm{~S}_{\gamma}$.
2. Simpler if assembly sequence is finite:
3. in this case, $\gamma=\alpha_{k-1}$, so p never receives a tile.
4. Thus the assembly sequence is not fair. (there is no $j>k-1$ such that $p \in S_{\alpha j}$)
5. Now assume assembly sequence is infinite. (actually, rest of proof works in finite case)
6. Since $p \in \partial \gamma$, there are positions adjacent to p with enough strength to bind a tile t. Let N be the set of these positions. Note N is finite since p has at most four neighbors.
7. Since $S_{\gamma}=\bigcup_{i} S_{\alpha i}$, there exists i such that $N \subseteq \partial \alpha_{i}$ (after some finite number of tile attachments, all of the positions in N are on the frontier of the current assembly)
8. Thus $p \in \partial \alpha_{i}$. (the tile t can attach to α_{j} reached after only i steps)
9. By fairness, there exists j such that $p \in S_{\alpha j} \subseteq S_{\gamma}$ (eventually p gets a tile), which contradicts the claim that $p \notin \mathrm{~S}_{\gamma}$. QED

Proof: Pick any fair assembly sequence $\alpha=\alpha_{0}, \alpha_{1}, \ldots$; its result γ is terminal and $\alpha \rightarrow \gamma$. QED

Concrete example of simulation algorithm creating a fair assembly sequence?

How computationally powerful are self-assembling tiles?

Turing machines

state \approx line of code

initial state $=s$

tape \approx memory

Tile assembly is Turing-universal

Complexity of self-assembled shapes

- We've seen how use algorithmic tiles to:
- self-assemble $n \times n$ squares with "few" tile types $O(\log n / \log \log n)$
- simulate a Turing machine that grows a "wedge" describing its space-time configuration history
- What other shapes can be self-assembled?
- Define a shape to be a finite, connected subset of \mathbb{N}^{2}.
- Any shape with n points can be self-assembled

0,2	1,2	2,2
0,1	1,1	2,1
0,0	1,0	2,0

- Is there an infinite family of shapes S_{1}, S_{2}, \ldots, with $\left|S_{n}\right|=n$, such that each S_{n} requires at least n tile types to self-assemble?

$$
S_{1}=\square
$$

$$
S_{2}=\square
$$

$$
S_{3}=\square
$$

$$
S_{4}=\square \quad \ldots
$$

Complexity of self-assembled shapes

Suppose we are content to create a scaled up version of the shape:

Theorem: For any shape S, there is a constant c so that S^{c} can be selfassembled with $O(k / \log k)$ tile types, where k is the length in bits of the shortest program (input to a universal Turing machine) that, on input (x, y), indicates whether $(x, y) \in S$.

Theorem (that we won't prove): This is optimal! No smaller tile system could selfassemble any scaling of S. If one existed, we could turn it into a program with $<k$ bits "describing" S in this way. (Why?)
a)

b)

c)

Fig. 5.1. Forming a shape out of blocks: (a) A coordinated shape S. (b) An assembly composed of $c \times c$ blocks that grow according to transmitted instructions such that the shape of the final assembly is \tilde{S} (not drawn to scale). Arrows indicate information flow and order of assembly. The seed block and the circled growth block are schematically expanded in Figure 5.2. (c) The nomenclature describing the types of block sides.

Programming a shape

 (inaccurate cartoonish overview)

base-conversion to produce k bits from $k / \log k$ tile types

More accurate detailed overview

seed block

growth block

fully-detailed example of growth block

Two interpretations

i.e., T is a universal set of tile types that can self-assemble any shape, by giving it the right seed.
as stated for single seed tile:
Theorem: For any shape S, there is a constant c so that S^{c} can be selfassembled with $O(k / \log k)$ tile types, where k is the length in bils of the shortest program (input to a universal Turing machine) that, oh input (x, y), indicates whether $(x, y) \in S$.
most of the tile complexity is encoding the binary string representing the program P that encodes shape S, and $O(1)$ tile types can read that string and self-assemble S^{c} from it.
alternative statement for larger seed:

Theorem: There is a single set T of tile types ($\underline{O(1) \text { tile types), so that, for any }}$ finite shape S, there a constant c and a seed assembly σ_{S} "encoding" S, so that T self-assembles S^{c} from σ_{S}.

Strict and weak self-assembly

Computability-theoretic questions about self-assembly

Strict and weak self-assembly

Recall:

Let $X \subseteq \mathbb{Z}^{2}$ be a shape, a connected subset of \mathbb{Z}^{2}. Θ strictly self-assembles X if, for all $\alpha \in \mathrm{A}_{\square}[\Theta], \mathrm{S}_{\alpha}=X$.
(every terminal producible assembly has shape X)

Let $X \subseteq \mathbb{Z}^{2}$. Θ weakly self-assembles X if there is a subset $B \subseteq T$ (the "blue tiles") such that, for all $\alpha \in A_{\square}[\Theta], X=\alpha^{-1}(B)$.
(every terminal producible assembly puts blue tiles exactly on X.)

Tile system on right strictly self-assembles the whole second quadrant, and it weakly selfassembles the discrete Sierpinski triangle.

Strict self-assembly

Observation: There is an infinite shape $S \subseteq \mathbb{Z}^{2}$ that cannot be strictly self-assembled by any tile system.

Proof:

There are uncounfably many shapes but only countablý many tile systems.

Observation is non-constructive: Doesn't tell us what is the shape S. Can we devise a concrete example of a shape that cannot be strictly selfassembled?

Homework problem: you will show that any shape $S \subseteq \mathbb{Z}^{2}$ that can be strictly self-assembled is also computably enumerable.

Use that fact now to define an explicit shape that cannot be strictly self-assembled.
path in block n has a "turnout" if and only if n 'th Turing machine halts on empty input

Question: Is there a computable shape $S \subseteq \mathbb{Z}^{2}$ that cannot be strictly self-assembled?

A famous fractal

- Let $S_{0}=\{(0,0)\}$
- Let $V=\{(0,0),(0,1),(1,0)\}$ be three vectors for "recursive translation".
- S is known as the discrete Sierpinski triangle...

S_{3}
S_{4}

The discrete Sierpinkski triangle cannot be strictly self-assembled

:

Proof:

1. The shape is a tree: no cycles in the grid graph.
2. The x-axis has infinitely many pinch points: points where the subtree above the point is distinct from any other pinch point.
3. The north glue must be distinct at each pinch point, so no finite tile set suffices to self-assemble X. QED
[Lathrop, Lutz, Summers, Strict self-assembly of discrete Sierpinski triangles, Theoretical Computer Science 2009.

Weak self-assembly

Theorem: Some computable sets $X \subseteq \mathbb{Z}^{2}$ cannot be weakly self-assembled.

Proof:

Theorem: Every computable set $X \subseteq \mathbb{N}$, "embedded straightforwardly" in \mathbb{Z}^{2}, can be weakly self-assembled.

[Patitz, Summers, Self-assembly of decidable sets, UCNC 2008.]

1. The Time Hierarchy Theorem says there is a computable set $A \subseteq\{1\}^{*}$ not computable in $O\left(n^{4}\right)$ time.
2. Let $R=\{|x|: x \in A\}$ be the set of lengths of strings in A.
3. Define $X \subseteq \mathbb{Z}^{2}$ to be the set of "concentric diamonds" whose L_{1} radii are in R, e.g., if $R=\{1,4,8, \ldots\}$

4. Suppose X could be weakly self-assembled. Then simulating selfassembly for $(2 n)^{2}$ steps necessarily places a tile at some point at L_{1} radius n from the origin; the tile's color tells us whether $n \in R \Leftrightarrow 1^{n} \in A$.
5. This can be done in time $O\left(n^{4}\right)$ time (why?), a contradiction. QED

Randomized self-assembly

Tile complexity of universal shape construction

- Recall: if we can have a seed structure encoding a shape S (in a binary string $x \in\{0,1\}^{*}$, in glues on one side), we can self-assemble some scaling S^{c} of S with $O(1)$ additional tile types that read and interpret x.
- $\Theta(K(x) / \log K(x))$ tile types are necessary and sufficient to create x from a single seed tile in the aTAM. $(\mathrm{K}(x)=$ length in bits of shortest program for universal Turing machine that prints x)
- We'll see how to get this down to $O(1)$ with high probability by concentration programming.
- i.e., move the effort from designing new tile types to (the plausibly simpler lab step of altering concentrations of existing tile types

Nondeterministic binding

$$
\operatorname{Pr}[-\sqrt{-6}]=11 / 12
$$

$$
\operatorname{Pr}[-4 s]=1 / 12
$$

Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006]

	seed, G	, G	G		G	G	\cdots	,	G	G	G	G ${ }^{\text {G }}$		G	G		G	G	G		

Programming polymer length (improved)

Bounding the probability the length deviates much from its mean

- r total stages, each with $\operatorname{Pr}[$ next tile s, i
- Let $\mathbf{L}(r, p)=$ total length; number of tile attachments until attaching
- Expected total length $\mathrm{E}[\mathrm{L}(r, p)]=r / p$.
- Recall: a binomial random variable $\mathbf{B}(n, p)=$ number of heads when flipping a coin n times, with $\operatorname{Pr}[$ heads $]=p . \mathrm{E}[\mathbf{B}(n, p)]=n p$.
- for any $n, r, p: \operatorname{Pr}[\mathbf{L}(r, p) \leq n]=\operatorname{Pr}[\mathbf{B}(n, p) \geq r]$

- similarly,

$$
\operatorname{Pr}[\mathbf{L}(r, p) \geq n]=\operatorname{Pr}[\mathbf{B}(n, p) \leq r]
$$

Chernoff bound

Chernoff bound: For a binomial random variable $\mathbf{B}(n, p)$ (recall $\mathrm{E}[\mathbf{B}(n, p)]=n p)$, and for any $0<\delta<1$, $\operatorname{Pr}[\mathrm{B}(n, p)>(1+\delta) n p]<\exp \left(-\delta^{2} n p / 3\right)$ $\operatorname{Pr}[\mathbf{B}(n, p)<(1-\delta) n p]<\exp \left(-\delta^{2} n p / 2\right)$

Let $\delta \approx 0.27$ and set p such that $r / p(1-\delta)=2^{k}$.
Let $\delta^{\prime} \approx 0.44$: then $r / p\left(1+\delta^{\prime}\right) \approx 2^{k-1}$.
Applying this to our setting gives
$\operatorname{Pr}\left[L(r, p)\right.$ is not between 2^{k-1} and $\left.2^{k}\right]<2 \cdot 0.9421^{r}$

Programming polymer length (improved)

if $r=90$ stages, expected length midway in $\left[2^{k-1}, 2^{k}\right)$
 with probability > 99\%, actual length in $\left[2^{k-1}, 2^{k}\right)$

$$
[\mathrm{G}] \approx 7 \quad[\mathrm{~s}]=[\mathrm{s}] \approx 2
$$

$\square G|G| G|G| G|S| G \mid S$
\square GIGG|G SGGGGISGGGIS GGGGSGGGIS

\square GGGGGGIGGGGGGGGGGGSIGGGGIS
i.e., we can't target a precise length L, but we can target precisely the number of bits $\lceil\log L\rceil$ in L's binary expansion.

$$
[\mathrm{G}] \approx 7 \quad[\mathrm{~s}]=[\mathrm{s}] \approx 1
$$

Programming polymer length 2^{k} precisely

Programming a binary string

Programming a shape

 (inaccurate cartoonish overview)

Sampling tiles to (probably) produce a binary string
-

Universal self-assembling molecules

A fixed set of tile types can assemble any finite (scaled) shape (with high probability) by mixing them in the right concentrations.

[Doty, Randomized self-assembly for exact shapes, SICOMP 2010, FOCS 2009]

Other plausible modifications of aTAM model that can reduce tile complexity

- staged self-assembly:
- https://doi.org/10.1007/s11047-008-9073-0
- temperature programming:
- https://dl.acm.org/doi/10.5555/1109557.1109620

The power of nondeterminism in self-assembly

Can nondeterminism help to self-assemble shapes?

Nondeterminism in Biology

Nondeterminism can allow complex structures to be created from a compact encoding.

Nondeterminism in Computer Science

Algorithm types:
Nondeterministic:
flips coins; magical

Randomized:
flips coins; realistic

Trivially nondeterministic ("pseudodeterministic"): flips coins, but final output independent of flip results

> Deterministic: entire computation uniquely determined by input

Nondeterminism in Self-Assembly

More meaningful:
at a single binding
site, ≥ 2 tile types
attachable

Nondeterminism in Self-Assembly

- A tile set is deterministic if it has only one terminal assembly (map of tile types to points).
- This tile set has multiple terminal assemblies, but they all have the same shape.

- The tile set self-assembles a 2×2 square.

Power of Nondeterminism

Question: Let S be a finite shape self-assembled by some nondeterministic tile set. Does some deterministic tile set also self-assemble S ?

In this example, we can
convert this nondeterministic
tile set that self-assembles a 2×2 square

... to this deterministic tile set that self-assembles the same shape.

In general???

Power of Nondeterminism

Power of Nondeterminism

Question 1: Let S be an infinite shape strictly selfassembled by some nondeterministic tile system. Does some deterministic tile set also self-assemble S ? Is tile computability unaffected by nondeterminism? Answer: No

Remainder of talk
Question 2: Let S be a finite shape strictly selfassembled by some nondeterministic tile system with k tile types. Does some deterministic tile system with at most k tile types also self-assemble S ?
Is tile complexity unaffected by nondeterminism?
Answer: No

There is an infinite shape S strictly self-assembled by only nondeterministic tile systems.

There is a finite shape S strictly self-assembled with at most k tile types by only nondeterministic tile systems.

Optimization Problems

MinTileSet

Given: finite shape S
Find: size of smallest tile system that self-assembles S
MinDetTileSet
Given: finite shape S
Find: size of smallest deterministic tile system that self-assembles S
False statement: Nondeterminism does not affect tile complexity: for every nondeterministic tile set of size k that self-assembles a shape S, there is a deterministic tile set of size at most k that self-assembles S. if true, would imply MinDetTileSet = MinTileSet

Main Result

- We show: MinTileSet is NPNP-complete.

$$
\text { a.k.a., } \Sigma_{2}^{P}
$$

- MinDetTileSet is NP-complete. (Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, Rothemund, STOC 2002)
- NP $\neq \mathbf{N P N P} \Rightarrow$ MinTileSet \neq MinDetTileSet

Nondeterminism in Algorithms and Self-Assembly

Algorithm that flips coins but always produces same output - coin flips useless

Tile set that flips coins but always produces same shape - coin flips useful

But ... finding smallest tile set is harder if it flips coins.

A Finite Shape for which Nondeterminism Affects Tile Complexity

in NPNP-hardness reduction, compete to assign bits to variable in Boolean formula

- Smallest tile set: $\approx 2 h$ tile types
- Smallest deterministic tile set: $\approx 3 h$ tile types

NPNP-hardness Reduction

- NPNP-complete problem (Stockmeyer,Wrathall 1976): $\exists \forall C N F-U N S A T$
- Given: CNF Boolean formula Φ with $k+n$ input bits $x=x_{1} \ldots x_{k}$ and $y=y_{1} \ldots y_{n}$
- Question: is $(\exists x)(\forall y) \neg \Phi(x, y)$ true?
- Reduction goal: Given Φ, output shape S and integer c such that $(\exists x)(\forall y) \neg \Phi(x, y)$ holds if and only if some tile set of size at most c self-assembles S.

NPNP-hardness Reduction

Main idea (due to Adleman et al. STOC 2002):

- Given a tree shape (no simple cycles), it is possible to compute its minimum tile set in polynomial time.
- Create a tree shape r that "encodes" Φ.
- Compute r 's minimal tile set T. ($c=T$)
- Create shape $S \supset$ r such that

- If $(\exists x)(\forall y) \neg \Phi(x, y)$, tiles from T can be altered to assemble S.
- Otherwise, tiles from T cannot be altered to assemble S.
- "Since $r \subseteq S$," every tile set that assembles S contains T, so if tiles from T cannot be altered to assemble S then additional tiles are needed; i.e., S requires more than $c=|T|$ tile types.

Evaluation of Formula

- Order variables $w=w_{1} \ldots w_{n}$ (both \exists and \forall variables) and clauses $C_{1} \ldots C_{m}$ arbitrarily.
- Fix an assignment to variables.
- For each clause C_{j} and variable w_{i}, let $a_{i j}$ be the pair (U/S, T/F) representing whether C_{j} is satisfied by w_{k} for $k \leq i$, and whether w_{k} is true or false.
- The matrix $A=\left(a_{i j}\right)$ looks like

$$
\begin{aligned}
& w=0011 \\
& \Phi=\left(w_{1} \vee w_{3}\right) \wedge\left(w_{1} \vee w_{2} \vee w_{4}\right) \wedge\left(\neg w_{1} \vee w_{2}\right)
\end{aligned}
$$

C_{3}	SF	SF	ST	ST
C_{2}	UF	UF	UT	ST
C_{1}	UF	UF	ST	ST
	W_{1}	W_{2}	W_{3}	w_{4}

\longmapsto| C_{3} | USF | SSF | SST | SST |
| :---: | :---: | :---: | :---: | :---: |
| C_{2} | UUF | UUF | UUT | UST |
| C_{1} | UUF | UUF | UST | SST |
| | w_{1} | w_{2} | w_{3} | w_{4} |

Gadgets (Adleman et al. 2002)

For each variable w_{i} and clause C_{j}, value of $w_{i}=\mathrm{T} / \mathrm{F}$ and $\mathrm{SS}_{i j}-C_{j}$ satisfied by a previous variable (w_{k} for $k<i$) $\mathrm{US}_{i j}-C_{j}$ unsatisfied by previous variables but is satisfied by w_{i} $\mathrm{UU}_{i j}-C_{j}$ unsatisfied by previous variables and by w_{i}

Shape S

$T_{\Upsilon}=$ tile types to self-assemble Υ; size $c=\left|T_{\curlyvee}\right|$
$(\exists x)(\forall y) \neg \Phi(x, y)$ is true \Leftrightarrow tiles in T_{r} can be modified to self-assemble S

Open Questions

- How large is the gap between deterministic tile complexity and unrestricted tile complexity? our example has ratio $3 / 2$; Schweller (unpublished) improved to quadratic gap: https://faculty.utrgv.edu/robert.schweller/papers/TheGap.pdf
- Hardness of approximation of minimum tile set problem
- Minimum tile set problem when shape is a square
- deterministic case in P; likely not NP-hard by Mahaney's theorem (no sparse set is NP-hard unless $\mathbf{P}=\mathbf{N P}$)
- Weak self-assembly (pattern painting): paint some tile types "black", and say "pattern assembled" is set of points with a black tile
- Minimum tile set problem: uncomputable! (NP-complete with some restrictions: https://arxiv.org/abs/1404.0967)
- Power of nondeterminism: is it possible to uniquely paint a pattern, but only by assembling more than one shape on which the pattern is painted?

Errors in algorithmic self-assembly

Errors in self-assembly

- abstract Tile Assembly Model (aTAM, the model we've used so far):
- tiles attach but never detach
- tiles bind only with strength 2 or higher
- unrealistic... what's a better model?
- kinetic Tile Assembly Model (kTAM); essential differences with aTAM:
- tiles can detach
- tiles can bind with strength 1

Modeling errors: kinetic Tile Assembly Model

- All tiles attach with rate r_{f} (no matter how many glues match)
- Tiles detach with rate $r_{r, b}$, if they are attached by total glue strength b
- "rate" = time until it occurs is exponential random variable with that rate; expected time 1/rate
- a.k.a., continuous time Markov process
- Take home message: tiles bound with fewer glues (potential errors) fall off faster, but could get locked in by subsequent neighboring attachment
main cause of algorithmic errors: tile

kTAM simulators

- ISU TAS (developed by Matt Patitz) also does kTAM simulation:
- http://self-assembly.net/wiki/index.php?title=ISU TAS
- http://self-assembly.net/wiki/index.php?title=ISU TAS Tutorials
- xgrow (developed by Erik Winfree)
- https://www.dna.caltech.edu/Xgrow/
- older and a bit less intuitive

Tradeoff between assembly speed and errors

- attach rate r_{f} can be controlled through concentrations
- "energy" of attachment is called $G_{m c}$ (monomer concentration): $\mathrm{r}_{\mathrm{f}} \propto e^{-m \mathrm{~m}}$
- detach rate $r_{r, b}$ can be controlled through temperature
- "energy" of detachment is called $G_{\text {se }}$ (sticky end): $r_{r, b} \propto e^{-b \cdot G s e}$
- Intuitively, setting $r_{f} \approx r_{r, 2}$ is like "temperature $\tau=2$ " assembly
- ... but with net zero growth rate
- make r_{f} a little larger, and growth is faster, but error rates go up

Theorem [Winfree, 1998]: To have total error rate ε, for fastest assembly speed, set $G_{\text {se }}=\ln (4 / \varepsilon)$ and $G_{m c}=\ln \left(8 / \varepsilon^{2}\right)$, i.e., $G_{m c}=2 G_{s e}-\ln 2$, i.e., $r_{f} / r_{r, 2}=2$

Proofreading: Algorithmic error correction

$k \times k$ proofreading: replace each tile with all strength -1 glues by a $k x k$ block of tiles:

Proposition: No tiling of the $k \times k$ region with "consistent external glues" (all represent the same glue in original tile set) has m mismatches, where $0<m<k$, i.e., if any mismatch occurs, then at least k mismatches occur before the $k \times k$ block can be completed to represent the wrong external glue.
glues external to the block come in k versions that each represent an original glue

2×2 block X

 (4 tiles)Theorem(ish): If the error rate of the original tile system is ε, the error rate of the $k \times k$ proofreading tile system is $\mathrm{O}\left(\varepsilon^{k}\right)$, e.g., if $\varepsilon=0.01$, then 2×2 proofreading gets error rate about $\varepsilon^{2}=0.0001$.

Experimental algorithmic selfassembly

Crystals that think about how they're growing

joint work with Damien Woods, Erik Winfree, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin
slides for ECS 232: Theory of Molecular Computation
Cnuía
Inria Paris

UC Davis

Harvard

Acknowledgements

Caltech

Inria Paris

Harvard

Damien Woods
(co-first author)

Erik Winfree

co-authors
Cameron Myhrvold

Felix Zhou

Peng Yin

Joy Hui

UC Davis
C Davis

lab/science help

Constantine Evans
Sarina Mohanty Niranjan Srinivas
Deborah Fygenson Yannick Rondolez
Mingjie Dai Nikhil Gopalkrishnan
Chris Thachuk Nadine Dabby
Jongmin Kim Paul Rothemund
Bryan Wei Cody Geary
Ashwin Gopinath

Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Damien Woods†, David Doty†, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, Erik Winfree. Nature 2019. †These authors contributed equally.

Hierarchy of abstractions

\longrightarrow Bits:
Tiles:
DNA:

Boolean circuits compute
Tile growth implements circuits
DNA strands implement tiles

Harmonious arrangement

Odd bits

a.k.a. parity

Parity

Circuit model

gate: function with two input bits i_{1}, i_{2} and two output bits O_{1}, O_{2}

Circuit model

Circuit model

Randomization: Each row may be assigned ≥ 2 gates, with associated probabilities, e.g., $\operatorname{Pr}\left[\mathrm{g}_{\mathrm{NN}}\right]=\operatorname{Pr}\left[\mathrm{g}_{\mathrm{XA}}\right]=1 / 2$

Circuit model

Programmer specifies layer:
gates to go in each row

User gives n input bits

Example circuits with same gate in every row

Copy gates

Example circuits with different gates in each row

Parity

MultipleOf3

$$
011011_{2}=27_{10}=3 \cdot 9
$$

Randomization: "Lazy" sorting

If 1 and 0 out of order, flip a coin to decide whether to swap them.

Deterministic circuits

simulate cellular automata
Theorem: Rule 110 can efficiently execute any algorithm.
[Cook, Complex Systems 2004] [Neary, Woods, ICALP 2006]

Randomized circuits

Hierarchy of abstractions

Bits: Boolean circuits compute
\longrightarrow Tiles:
DNA: DNA strands implement tiles

Gates \rightarrow Tiles

How tiles compute while growing (algorithmic self-assembly)

"data-free" tile wraps top to bottom to form a tube

Hierarchy of abstractions

Bits: Boolean circuits compute
Tiles: Tile growth implements circuits
\longrightarrow DNA: DNA strands implement tiles

DNA single-stranded tiles

L1.1		L1. 2		L1.3	L1.4
-					
U2.1	U2.2		U2.3	U2.4	U2.5
U3.1	1 U3.2		U3.3		U3.4
U4.1	U4.2		U4.3	U4.4	U4.5
U5.	U5.2		U5.3	U5.4	
U6.1	U6.2		U6.3	U6.4	U6.5
L6.1		L6.2		L6.3	6.4

Yin, Hariadi, Sahu, Choi, Park, LaBean, and Reif. Programming DNA tube circumferences.

Single-stranded tiles for making any shape

Bryan Wei, Mingjie Dai, and Peng Yin.
Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012.

A		C		E		6	H	4	
K	,	M	N	0	P		R	S	5
U		W	\times	Y	2			- 1	!
		"	\sim	Q	H	5	8		
$>$		-	*	λ		1		i	1 In
(e)		-	-	©	\cdots	-	-	-	
¢		${ }^{\text {ch }}$		\bigcirc	4	h			
,		*	*	\pm	中	\%	T		$8{ }^{8}$
-		O		者					

Uniquely addressed self-assembly versus algorithmic

Unique addressing: each DNA "monomer" appears exactly once in final structure.

Algorithmic: DNA tiles are reused throughout the structure.

single DNA origami

staple strand for position (4,2)
array of many DNA origamis

uniquely-addressed tiles

Single-stranded tile tubes

DNA-level diagram of 20-helix tube

Seeded growth

single-stranded tiles implementing circuit gates

need barrier to nucleation (tile growth without seed); hold 8-48 hours [tile]=100 nM; temperature $=50.9^{\circ} \mathrm{C}$

Tubes to ribbons

DNA sequence design

Bar-coding origami seed for imaging multiple samples at once

Experimental protocol

To execute circuit γ on input $x \in\{0,1\}^{*}$:

- Mix
- origami seed (bar-coded to identify γ and x)
- "adapter" strands encoding x
- tiles computing γ

- Anneal $90^{\circ} \mathrm{C}$ to $50.9^{\circ} \mathrm{C}$ in 1 hour (origami seeds form)
- Hold at $50.9^{\circ} \mathrm{C}$ for 1-2 days (tiles grow tubes from seed)
- Add "unzipper" strands (remove seam to convert tube to ribbon)
- Add "guard" strands (complements of output sticky ends, to deactivate tiles)

- Deposit on mica, buffer wash, add streptavidin, AFM

Results

```
def test_parity():
    actual = parity('100101')
```



```
    assertEquals(expected, actual)
```


SORTING

Parity
Is the number of 1 's odd?

MultipleOf3

Is the input binary number a multiple of 3 ?

Recognise21
Is the binary input $=21$?

 1) CR 4ino

PALINDROME

Is the input a palindrome?

211%

\%1	\% \%
	$\Rightarrow 83, n y p^{2}+4$
2	O

ZIG-ZAG
Repeating pattern

LAZYPARITY

LeaderElection

LAZYSORTING

$n x+m$	
1.1	

Waves

RandomWalkingBit

AbsorbingRandomWalkingBit Random walker absorbs to top/bottom

FAIRCOIN

Unbiasing a biased coin

Rule110
Simulation of a cellular automaton

Prob[result=yes]

distance to yes/no result (nm)
$200-1$

Counting to 63

Circuit with 63 distinct strings

Is there a 64-counter?

No!

Proof by Tristan Stérin, Maynooth University
Consequence of following theorem:
No Boolean function computes an odd permutation if some output bit does not depend on all input bits.

Parity tested on all inputs

$2^{6}=64$ inputs with 6 bits

$\sigma(6$-bit input $)=3$-digit barcode representing that input
150 nm
$12 \mu \mathrm{~m}$ AFM image of parity ribbons for several inputs whose output is 1

What did we learn?

A small(ish) library of molecules can be reprogrammed to self-assemble reliably into many complex patterns, by processing information as they grow.

Contrasting with other self-assembly work:

Next big challenge: $\underline{\text { Algorithmically control shape }}$

We "drew" interesting patterns on a boring shape (infinite rectangle)

Can we run algorithms to grow interesting shapes?

Theorem: There is a single set T of tile types, so that, for any finite shape S, from an appropriately chosen seed σ_{S} "encoding" S, T self-assembles S.

These tiles are universally programmable for building any shape.
[Complexity of Self-Assembled Shapes. Soloveichik and Winfree, SIAM Journal on Computing 2007]

[^0]: "almost" works... what's missing?

