
Computation with chemistry
slides © 2021, David Doty

ECS 232: Theory of Molecular Computation, UC Davis

1

Chemical reaction networks

2

R→P1+P2

M1+M2→D

C+X→C+Y

Traditionally a descriptive modeling language…
Let’s instead use it as a prescriptive programming language

reactant(s) product(s)

dimermonomers

catalyst

• aTAM self-assembly describes stateless molecules that collide and stick together.
• Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.
• Allow more general reactions that produce/consume molecules.

a

a

a a

A
B C

D

What behavior is possible for chemistry in principle?

found in biology

actual chemicals

formally definable chemical reaction network
what we’ll study

inspiration

ultimate interest

3

Computation with chemical reaction networks

• Key ideas setting chemical computation apart from others:
• cannot control order in which molecules collide

• can control how they react when they collide

• Related model of distributed computing called population protocols
• originally motivated by mobile wireless sensor networks, e.g., attached to a

birds in a flock

4

[Computation in networks of passively mobile finite-state
sensors, Angluin, Aspnes, Diamadi, Fischer, Peralta. PODC 2004]

Example: Chemical caucusing

5

X+Y→U+U

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

X U Y

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

X+U→X+X

Y+U→Y+Y

opposite
opinions cancel

both opinions
influence the
unopinionated

X Y

Does chemistry compute?

6

X U Y

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

=

[Cardelli, Csikász-Nagy. The cell cycle switch computes
approximate majority. Nature Scientific Reports 2012]

≈

[Cardelli, Morphisms of reaction networks that couple
structure to function, BMC Systems Biology 2014]

X YU

Why compute
with chemistry? versus

slow fast

≈ 10-100 nm ≈ 10-100 nm

yes not easily

speed?

component size?

compatible with
“wet environments”?

cells
smart drug
released only in
certain cellular
conditions

DNA storage
in-place computation
replacing expensive
read/write lab steps

bioreactors
chemical controller to
optimize yield of
metabolically produced
biofuels/drugs/etc.

7

Can we compute with chemistry?

8

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

+

+

+

+

+

+

↔

→

→

9

DNA strand displacement implementing A+B→C

video: Microsoft Research Cambridge

Experimental implementations of synthetic
chemical reaction networks with DNA

10

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas,
Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

[Enzyme-free nucleic acid dynamical systems. Srinivas,
Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

Analog majority computation Chemical oscillator

X+Y→B+B

X+B→X+X

Y+B→Y+Y

A+B→B+B

B+C→C+C

C+A→A+A
time (hours)

re
la

ti
ve

 a
m

o
u

n
t

(%
)

co
n

c.
 d

er
iv

. (
n

M
/h

r)

1

2

15 30 45 60

time (hours)

What behavior is possible for chemistry in principle?

found in biology

actual chemicals

≈
formally definable chemical reaction network

11

Theoretical Computer Science Approach

12

What computations necessarily take a
long time and what can be done quickly?
(Computational complexity theory)

What computation is possible and what is not?
(Computability theory)

NP
NP-complete

P

Boolean satisfiability

Hamiltonian path

protein folding

DNA sequence alignment

shortest path
integer multiplication

integer factoring

polynomial factoring

Chemical Reaction Networks (formal definition)

• finite set of reactions: e.g.

• finite set of d species Λ = { A, B, C, D, ... }

• configuration x∈ℕd: molecular counts of each species

13

A+B→A+Ck1

k3C+2B→C

C→A+Ak2

• reaction is applicable to x if x has enough of each reactant.

k1, k2, k3 are called rate constants;
if not specified, assume = 1.

A+B→A+C

C→A+A

B

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)⟹
β

(4, 1, 0)
⟹

α

(4, 0, 1)
...

x =

14

(2, 0, 2)

A

B

A

C
A

A

C
α (another possibility)

α applicable but not β

α,β both applicable

Formally, an execution is a
sequence of configurations x1,
x2, … such that each xi ⟹ xi+1 by
a single reaction.
If initial configuration x1 is
understood, the sequence of
reactions is sometimes called
the execution.

Some simple reactions

15

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

#Y stabilizes, with expected value n/2

2 2

n/3 n/3

Count of Y
never stabilizes

Count of Y stabilizes, but
not to a deterministic value
based on initial count of X

Worse yet, both depend
crucially on rate constants.

Examples of stable (rate-
independent) CRN computation

16

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

A→2Y
2A→Y

A

A

A
Y

Y

YY
Y

Y
A

A

A

A

A

A

Y YY

⌊ ⌋

A

??

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = ⌊a/3⌋

18

A→3Y 3A→Y

A

A

A
Y

Y

YY

Y

Y

A

A

A

A

A

AY

Y

Y

Y

Y A

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

A
Y

Y

A

A

A

A

A

A

Y

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y’
A
Y

YY Y’
L0 L1 L2

ends with 1 copy
of Li for i = ???

Examples of function computation

20

f(a) = ⌊a/3⌋ using bimolecular (≤ 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A→ A2

A2+A→Y

A2+A2→A+Y

Calling A = A1, in general to divide by constant c:
Ai+Aj→Ak if i+j < c, where k = i + j
Ai+Aj→Ak+Y if i+j > c, where k = i + j – c
Ai+Aj→Y if i+j = c

i.e., A’s start with 1 “ball” and pass balls to each other;
whenever someone gets ≥ c balls,
throw away c balls and produce a Y

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

A

A

B
Y

Y

Y A
Y

B

A A A A A
Y Y Y Y Y

BB B B B B

???

max(0, a–b)

= a+b–min(a,b)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b)

22

A+B→Y

A→Y+A2

B→Y+B2

A2+B2→K

K+Y→∅

addition

minimum

subtraction

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

Examples of function computation

23

constant: f(a) = 1

A→Y a.k.a. “leader election”
2Y→Y

subtract constant: f(a) = a–1

2A→A+Y

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

Counting: φ(a,b) = yes ⇔ b > 1

2B→2Y

Y+B→2Y

Y+A→2Y

24

A votes no; B votes yes

A,B vote no; Y votes yes
A

A A

A

A

A AB

B

B

B

B B

B
AB

AB

Examples of predicate computation

Majority: φ(a,b) = yes ⇔ a ≥ b

A+B→Af+Bf (both become “followers” but preserve difference between A’s and B’s)

A+Bf→A+Af (leader changes vote of follower)

B+Af→B+Bf (leader changes vote of follower)

Af+Bf→Af+Af (tiebreaker if no leaders left when a=b)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

26

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

Formal definition of CRN
computation

27

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input a1,…,ak, what is the initial configuration?
• only input species A1, …, Ak present?

• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

28

we’ll start with these choices

Defining stable computation

29

i x o o’reactions reactions reactions

∀ ∃

any reachable
configuration

initial
configuration

correct
output

correct
output

∀
o is stable

(assuming finite set of reachable configurations) equivalent to:
The system will reach a correct stable configuration with probability 1.

Probability-1 correctness can be characterized
with only reachability

Theorem: Let i be a configuration where Reach(i) is
finite, and let Y be a set of configurations. Then
(Pr[i ⟹ Y] = 1) ⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i ⟹ Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o ∈ Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

Proof:
1. (⟹): Assume (∃x∈Reach(i)) (∀o∈Reach(x)) o ∉ Y.
2. Since Pr[i ⟹ x] > 0, which prevents ever reaching Y,

Pr[i ⟹ Y] < 1. (Note this didn’t assume Reach(i) is finite.)
3. (⟸): Assume (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
4. For each x ∈ Reach(i), let Ex = (x,…,o) be any finite

execution leading from x to some o ∈ Y.
5. Let k = maxx ∈ Reach(i) |Ex| be the maximum length of any

of these finite executions reaching o.
6. Let px = Pr[Ex occurs from x] > 0.
7. Let 𝜀 = minx ∈ Reach(i) px. Since Reach(i) is finite, 𝜀 > 0.
8. Then for each x ∈ Reach(i), Pr[Ex does not occur from x

after the next k steps] ≤ 1 – 𝜀 < 1.
9. So, breaking the infinite execution into segments of

length k, the probability Ex is never followed within k
steps after any visit to an x ∈ Reach(i) is at most
ς𝑖=1
∞ (1 − 𝜀) = 0. QED

This theorem lets us use (often simpler) reachability
arguments and avoid discussing probability, while
still ensuring probability-1 correctness.

30

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Deterministic computation ≠ all executions correct

• Counterexample??

• Suppose i = {A}, with reactions
• A ⇌ B

• B→C

• Then Pr[{A} ⟹ {C}] = 1, but the execution {A} ⟹ {B} ⟹ {A} ⟹ {B} ⟹ {A} ⟹ …
avoids it forever.

• Lesson: it is too strict to require all sufficiently long executions to reach Y.

31

False statement: If Pr[i ⟹ Y] = 1, then every sufficiently
long execution starting at i reaches to some c ∈ Y.

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
5. Let x0, x1, … be a fair execution with i=x0.
6. Since all xj∈Reach(i), for each j, by hypothesis ∃oj∈Reach(xj) oj ∈ Y.
7. Since Y is finite, some o ∈ Y is reachable from infinitely many xj.
8. Since x0, x1, … is fair and o is infinitely often reachable, there is k

such that xk = o ∈ Y, i.e., the fair execution reaches Y. QED

Goal of definition of fair is to make this theorem true:

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

• input specification: designate subset Σ ⊆ Λ as “input” species
• valid initial configuration i: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species Y∈Λ whose count is the output

• o is stable if, for all o’ reachable from o, o(Y) = o’(Y)

• CRN stably computes f if, for all valid initial configurations i, and all x
reachable from i, there is a stable o reachable from x such that o(Y) = f(i).

• Recall: this is equivalent to saying that i reaches to a correct, stable o with probability 1, and
equivalent to saying that every fair execution from i reaches to a correct, stable o.

33

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial configurations i all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (configuration o outputs “yes”) if vote is unanimously yes: o(S)>0 ⟹ S∈ΛY

• ψ(o) = N (configuration o outputs “no”) if vote is unanimously no: o(S)>0 ⟹ S∈ΛN

• ψ(o) undefined otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

• o is stable if ψ(o) = ψ(o’) (and is defined) for all o’ reachable from o

• CRN stably computes φ if, for all valid initial configurations i, and all x reachable
from i, there is a stable o reachable from x such that ψ(o) = φ(i) (o is correct).

• We say the CRN stably decides the set φ–1(Y) = set of inputs mapping to output Y

34
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Feedforward CRNs
A class of CRNs with a simpler definition/proofs for computation

35

Stable versus terminal

36

Note: A configuration can be stable
without being terminal. Example?

Definition: A configuration is terminal
if no reaction is applicable to it.

Observation: Every terminal
configuration is stable.

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.
6. Let m = #(rk,P); Let Q’ be prefix (i, x1, …, xp) of Q such that xp ⟹ xp+1 by the

(m+1)’st execution of reaction rk.
• xp is the config just before the first time that rk happens more in Q than P.

7. Note r1 … rk–1 occur least as much in P as in Q. (#(ri,P) ≥ #(ri,Q) for i=1 to k–1)
8. Thus r1 … rk–1 occur least as much in P as in Q’. (since Q’ is prefix of Q)
9. Also, #(rk,P) = #(rk,Q’) by our choice of Q’.
10. So A is present in c, i.e., c(A) > 0.
11. Thus rk is applicable at c, so c is not terminal. QED

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Stable function computation by feed-forward CRNs

38

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Corollary: The CRN:
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅
stably computes the function f(A,B) = max(A,B).

Proof:
1. Do the following reactions:

1. #A times rxn 1
2. #B times rxn 2
3. min(#A,#B) times rxn 3
4. min(#A,#B) times rxn 4

2. This removes all A, B, (at least one of A2 or B2),
and K, so this is terminal. By Corollary 2 it stably
computes whatever #Y is now, which is…

3. CRN produces #A+#B count of Y by rxns 1 and 2,
and consumes min(#A,#B) Y’s by rxn 4, so
computes #A+#B–min(#A,#B) = max(#A,#B). QED

Answer: Letting oi = the unique terminal
configuration reachable from i, it computes
f(i) = oi(Y).

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ci reachable from initial
configuration i, then ci is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:
1. Let P be the execution leading from i to ci.
2. Any execution Q with with |Q| > |P| must have more of some

reaction r by the pigeonhole principle.
1. By the Lemma, ci is not terminal, a contradiction.
2. So no execution Q is longer than P.

3. Any execution Q with |Q| = |P| must be a permutation of P, or
else by pigeonhole Q would have more of some reaction, and this
would again contradict the terminality of ci.

4. Finally, to rule out that we might have some shorter terminal
execution, any execution Q with |Q| < |P| must have some
reaction r occurring more in P than Q, so by the Lemma, Q cannot
reach a terminal configuration. QED

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.
4. Since CRN is non-competitive, no reactant A of r can be consumed in t ≠ r.

1. Some other reactions t might produce A.
2. Since #(t,P) ≥ #(t,Q’), each t ≠ r produces at least as much A in P has in Q’.
3. Exactly as much A is consumed by r in P as in Q’.
4. Thus xp(A) ≤ c(A) for all reactants A of r.

5. Since r is applicable to xp, it is applicable to c.
6. So c is not terminal. QED

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Non-feedforward CRNs

41

Example of a non-feedforward CRN that
stably computes a function?

f(x) = x/2

1. X⇌ Y+A

2. X+A→∅

initial config

final
config

Not a plot of f!
It's the space of
reachable states.

It’s even non-non-competitive!

Time complexity of CRNs

42

What is probable:
Stochastic kinetic model of chemical reaction networks

expected time until next reaction is 1 / (sum of all reaction rates)

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]

System evolves via a continuous time Markov process:

Solution volume v

reaction type rate / propensity

k⋅ #A

k⋅ #A⋅ #B / v

43

A → …k

A+B → …k

Relationship to distributed computing

population protocol = list of transitions such as

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

• unit rate constants

• volume = n = number of agents (never changes)

population protocols ⊊ chemical reactions, but “most” ideas that
apply to one model also apply to the other

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Time complexity in population protocols

45

• pair of agents picked uniformly at random to interact
(possibly null interaction)

• parallel time = number of interactions / n
i.e., each agent has O(1) interactions per “unit time”

46

Speed of computation

n = total molecular count
reasonable requirement on volume: v = O(n)
i.e., require bounded concentration (finite density constraint)

How to fairly assess speed?

Like any respectable computer scientist…
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

• Other reaction types:

• A+A→… λ = k∙#A∙(#A–1) / v (symmetric bimolecular reaction)

• #A∙(#A–1)/2 = # ways to pick two A’s to react; factor ½ by convention is put into rate constant k

• A→… λ = k∙#A (unimolecular reaction)

• no volume term since no collision required

• A+B+C→… λ = k∙#A∙#B∙#C / v2 (trimolecular reaction)

• The volume term is squared because (roughly) if we define coordinate system so position of A is always at the
origin, then B and C are randomly moving around through v volume “cells”, and it takes v2 expected time for
them both to occupy the origin, to cause a three-way A-B-C collision

• In general, with r reactants, propensity is number of ways to pick reactants, times k, divided by vr–1

k

k

k

k

k

A

B

C

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

• define volume = n, and rate of interaction a,b →… as #a∙#b / n, i.e., expected time n / (#a∙#b)

• PP model (time = #interactions / n)

• probability that next interaction is a,b →… is #a∙#b / (n choose 2) = 2∙#a∙#b / (n(n–1))

• expected interactions until next a,b →… interaction = n(n–1) / (2∙#a∙#b), i.e., time (n–1) / (2∙#a∙#b)

• If we treat interactions symmetrically, (i.e., a,b →c,d is an interaction if and only if b,a→d,c is an
interaction), then we have twice the probability, i.e., expected time becomes (n–1) / #a∙#b ∼ n / (#a∙#b),
essentially the same as the CRN model

• one possible convention to avoid symmetric interactions is simply define time = 2∙#interactions/n

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

Can use Chernoff bounds to show it is very likely that they end
up taking very close to the same amount of time for any event.

48

n molecules
volume v = O(n)

49

An exponential time difference

A

B

X

X

X
X

X

X

X

X X

X
X

X

X

X

X

X

X X X

O(log n)

B+X→B+B

A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

B

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Y
one of these is always
count ≥ n/2

distributed computing terms:
• epidemic
• rumor/gossip spreading
chemical term:
• autocatalysis

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))
expected time until one X converted to B = 1/(n∙probability)
= (n–1) / (2k(n–k))
expected time until all X converted to B =

“direct communication” “epidemic”, “gossip”, “rumor spreading”

≈ ln𝑛

𝑛 − 1

2
෍

𝑘=1

𝑛−1
1

𝑘(𝑛 − 𝑘)

≈
1

2
෍

𝑘=1

𝑛
1

𝑘
+ ෍

𝑘=𝑛

1
1

𝑘
= ෍

𝑘=1

𝑛
1

𝑘

=
𝑛 − 1

2
෍

𝑘=1

𝑛−1
1

𝑛

1

𝑘
+

1

𝑛 − 𝑘

Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is
geometric random variable with success probability
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction]
= E[# interactions] / n = 1 / k

E[time to convert all A] =
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:
When #A=k, time until next reaction is exponential
random variable with rate λ = k
E[time until next reaction] = 1/λ = 1/k

E[time for all n reactions] = σ𝑘=1
𝑛 1

𝑘
≈ ln n

A→B #A=n, #B=0

“no communication/ unimolecular decay”
(unimolecular CRN version)

Time complexity analysis (basic motifs)

52

A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

A+A→C

“pairing off” (symmetric version)

CRN time complexity:
When #A=#B=k, next reaction has rate λ = k2/n
E[time until next reaction] = 1/λ = n/k2

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘2

< 𝑛σ𝑘=1
∞ 1

𝑘2

= n∙π2/6 = Θ(n)
similar analysis

Time complexity analysis (basic motifs)

53

L+A→L+B #L=1, #A=n, #B=0, total volume = O(total count) = n

“coupon collecting”

CRN time complexity:
When #A=k, next reaction has rate λ = k/n
E[time until next reaction] = 1/λ = n/k

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘

< 𝑛σ𝑘=1
∞ 1

𝑘

= Θ(n log n)

Time complexity analysis of stably computing CRNs

54

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.
E[time] =

𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑏)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎/2)(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=0
𝑏−1 1

(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=1
𝑏 1

𝑖
≈
2𝑛

𝑎
ln 𝑏

≤
2𝑛
2

3
𝑛
ln 𝑏 = 3 ln 𝑏

Intuitively, there’s always a large
Ω(n) excess of A, so “acts like”
unimolecular decay of B.

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

• Unlike addition, this is a nontrivial combination of reactions: rate of second
reaction depends how many times first has happened.

• To simplify, we assume second reaction cannot happen until first has finished.
• This simpler process “stochastically dominates” the real process: it takes even

longer than the real process, so suffices to show a time upper bound.

E[time] = E[time for first to finish] + E[time for second to finish]
E[time for first to finish] = O(log n) (unimolecular decay)
E[time for second to finish] = O(n) in worst case: similar to minimum, worst case
when a=b, but O(log n) time if |a–b| = Ω(n).
E[time] = O(log n) + O(n) = O(n)

Time complexity analysis of stably computing CRNs

57

maximum: f(a,b) = max(a,b)
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅

• Assume reaction 3 waits for reactions 1 and 2 before starting,
and reaction 4 waits for reaction 3.

• E[time for 1 and 2] = O(log n)
• E[time for 3] = O(n)
• E[time for 4] = O(n)
• So E[time] = O(log n) + O(n) + O(n) = O(n)

Possibilities of stable
computation
What can be stably computed?

58

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

Functions

• f is stably computable if and only if
graph(f) = { (a,y) | f(a)=y } is semilinear.

• piecewise affine, with semilinear
predicate to determine which piece.

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

a+b a–b 2a a/2 min(a,b) a+1 a–1
f(a) = 2a–b/3 if a+b is odd, else f(a) = a/4+5b

All semilinear predicates/functions are
known to be computable in O(n) time.NOT a=b2? a is a power of 2? a is prime?

NOT a2 2a 2a if a is prime, else 3a

Linear sets

60

Definition: A set X ⊆ ℕd is linear if there are
vectors b, u1, …, up ∈ ℕ

d such that
X = { b + n1∙u1 + … + np∙up | n1, …, np ∈ ℕ }

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Example in dimension d=2:

b = (2,1)

u1 = (4,1)

u2 = (2,2)

0

1

2

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

0 1 2 3 4 5

b + 3u1 + 2u2

multi-dimensional
generalization of
eventually periodic

Semilinear sets

61

Definition: A set X ⊆ ℕd is semilinear if it is a
finite union of linear sets.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

union of two
linear sets:

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Definition 1b: X ⊆ ℕd is a mod set if there are
integers c,m and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd ≡ c mod m }

examples:
is x odd?
is x 2 more than a multiple of 3? = {2, 5, 8, 11, 14, …}
is x1 – 3x2 odd?

examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

example semilinear set:
is x1 > x2 and x1 + x2 is odd?

example semilinear set:
is x1 + x2 is not a multiple of 3?

Equivalent definitions of semilinear

63

Definition 3: X ⊆ ℕd is semilinear if it is definable
in the first-order theory of Presburger arithmetic.
(original definition,
hardest to understand;
we won’t use it.)

Other places semilinear sets show up in computer science:
• Sets decidable by reversal-bounded counter machines.
• In 2D, they are conjectured to be the sets weakly self-

assembled by temperature τ=1 tile systems.

Limits of stable computation

64

Theorem 1: A set X⊆ ℕd is stably decided
by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But
we’ll show:
1. All semilinear sets can be stably decided.
2. The non-semilinear “squaring” set X =

{ (a,y) ∈ ℕ2 | a2 = y } cannot be stably decided.

Theorem 2: A function f: ℕd→ℕ is
stably computed by some CRN if and
only if it is semilinear.

Definition: A function f: ℕd→ℕ is semilinear if
graph(f) = { (a,y) | f(a)=y } is a semilinear set.

Example of function graph: The squaring set X
to the right is the graph of the function f(a) = a2.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4

y
a

X = graph(f),
where f(a) = a2

Possibilities of stable
computation
All semilinear functions/predicates can be stably computed by CRNs

65

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY.
5. To “record” the votes of C1 and C2:

1. If Sb votes b ∈ {N,Y} in C1, add reaction Sb + 𝑉ത𝑏?→Sb+Vb? (i.e., Sb changes the first vote of V)

2. If Tb votes b ∈ {N,Y} in C2, add reaction Tb + 𝑉?ത𝑏→Tb+V?b (i.e., Tb changes the second vote of V)

6. To stably decide X1∪X2, let yes voters be VNY, VYN, VYY

7. To stably decide X1∩X2, let yes voter be VYY

For this proof, we assume that the voting
species can be a strict subset of all species.

What if all species are required to vote??

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t
4. Start with 1 LN leader and

1. t N if t > 0.
2. (–t) P if t < 0.

5. Now need to decide if #P > #N (including those
present initially)

6. Add reactions
1. LY + N → LN

2. LN + P → LY

Corollary (since stably decidable sets are closed

under Boolean combinations): Every semilinear
set is stably decided by some CRN.

Also true for leaderless CRNs.
[Computation in networks of passively mobile finite-state sensors, Angluin, Aspnes, Diamadi, Fischer, Peralta. PODC 2004]

Semilinear functions are stably computable

68

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Each gi is affine (linear with constant offsets): there
are w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ such that each
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Furthermore, each “piece” dom gi is a linear set.

We won’t prove this; see [Chen, Doty, Soloveichik,
Deterministic function computation with chemical reaction
networks. DNA 2012]

dom g1 = {x ≡ 0 mod 2}
dom g2 = {x ≡ 1 mod 2}

g1(x) = ½∙x
g2(x) = ½∙(x–1)

Semilinear function examples

69

g1(x) = x2

g2(x) = 0
dom g1 = {x1 > x2}

g1(x) = x1

g2(x) = x2

dom g1 = {x1 > x2}

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅ subtract constant offset ci from input xi:
start with 1 L, a A’s, b B’s
f(a,b) = 2(a–3) – (5/4)(b–1) + 6
L→ 6Y + La0 + Lb0 create d offset, and one leader for each input
La0 + A→ La1 remove 3 copies of A
La1 + A→ La2

La2 + A→ La3

La3 + A→ La3 + A’ convert remaining A to A’
A’→2Y compute 2(a–3) by doubling A’
Lb0 + B→ Lb1 remove 1 copy of B
Lb1 + B→ Lb1 + B’ convert remaining B to B’
4B’+5Y→∅ compute (–5/4)(b–1) on B’

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.
2. Also in parallel, for each domain dom gi, compute the predicate [x ∈ dom gi?].
3. Yes-voters Ti and no-voters Fi for [x ∈ dom gi?] do:

1. Ti + Yi →Ti + Y + Ŷi convert gi’s output Yi to “global” output Y
2. Fi + Y + Ŷi →Fi + Yi convert back

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Question 1: what’s the
point of species Ŷi?

Question 2: Something else
doesn’t work as described…
what is it?

Answer 2: Consuming Yi can disrupt computation of gi.
Can be solved using dual-rail encoding. (not shown)

Limits of stable computation
Non-semilinear functions/predicates cannot be stably computed by CRNs

72

Impossibility of stably deciding non-
semilinear sets

73

Theorem: Every stably decidable set X ⊆ ℕd is semilinear.

Theorem: Every stably computable function f: ℕd→ℕ is semilinear.

We won’t prove this in full generality, but we will prove the simpler corollary
that the “squaring set” X = { (a,b) ∈ ℕ2 | a2 = b } is not stably decidable.

To start, we use the above theorem to prove the following:

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:
• X→ Z + 2Y becomes X→Z + 2Y + 2YP since there are net 2 Y’s produced
• X + 6Y→2Y becomes X + 6Y→2Y + 4YC since there are net 4 Y’s consumed

5. For concreteness, assume k=1.
• CRN D deciding graph(f) has 2 input species. The first is A. Let the second input species be YC.

6. Since C stably computes f, eventually f(initial #A) more YP are produced than YC.
7. If and only if initially f(#A) = #YC, then eventually #YP = #YC.
8. Add reactions to test for equality between #YP and #YC. (not shown, but easy)

Impossibility of stably deciding a non-semilinear set

75

Theorem: The “squaring set” S = { (x,y) ∈ ℕ2 | x2=y } is not
stably decidable by any CRN.

goal:

Additivity, nondecreasing sequences, minimal elements

76

Observation: Reachability is additive: if c ⇒ d, then for all e ∈ ℕd, c+e ⇒ d+e, i.e.,
the presence of extra molecules e cannot prevent reactions from being applicable.

Definition: An infinite sequence of vectors c1, c2, … is nondecreasing
if ci ≤ ci+1 for all i. (ci ≤ ci+1 means ci(S) ≤ ci+1(S) for all species S)

Definition: Given A ⊆ ℕd, we say y ∈ A is minimal if, for
all x ∈ A, x ≤ y implies x = y, i.e., nothing in A is strictly
smaller than y. Let min(A) = minimal elements of A.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

min(A)

All vectors have a minimal vector under them

77

Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof:
1. If x ∈min(A) then we’re done.
2. Otherwise, since x ∉ min(A), there is x1 ∈ A such that x1 < x.
3. If x1 ∈ min(A) then we’re done since x1 ≤ x.
4. Otherwise, since x1 ∉ min(A), there is x2 ∈ A such that x2 < x1.
5. …
6. Since there are only a finite number of y in ℕd such that y < x, this process

must terminate with a minimal vector m ∈ min(A). QED

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing.
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.

4. For condition (2), suppose that min(A) is infinite; put them in any order to make an infinite sequence.
5. By first condition, there’s an infinite nondecreasing subsequence m1 ≤ m2 ≤ … of distinct vectors in min(A).
6. Since they are distinct, m1 < m2 < …, but m1 < m2 contradicts the minimality of m2. QED

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following

holds:
• YES and NO voters both exist already in c (output undefined)
• Only YES voters exist, but a NO voter is producible in some c’ ∈ Reach(c).
• Only NO voters exist, but a YES voter is producible in some c’ ∈ Reach(c).

• By additivity, for all δ ∈ ℕd, c+δ is unstable as well, since c’+δ ∈ Reach(c+δ) (since c’ has
the contradictory voter, so does c’+δ), leading to the following observation:

Observation: The unstable configurations are closed upwards:
for all unstable c and all d ≥ c, d is also unstable.

Corollary: The stable configurations are closed downwards:
for all stable c and all b ≤ c, b is also stable.

Upper cones

80

Definition: For all c ∈ ℕd, let ∇(c) = { d ∈ ℕd | c ≤ d } denote the upper cone of c.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

c

Observation (reworded from previous slide):
For all unstable c and all d ∈ ∇(c),
d is also unstable.

∇(c)

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Lemma: Let U be the set of unstable configurations.
Then U 𝐦∈min(𝑈)∇(𝐦). (U is a finite union of cones.)ڂ =

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3min(U)

Proof:
1. Let C 𝐦∈minڂ = 𝑈 ∇ 𝐦 . Need to show C = U.

2. To see that C ⊆ U, let x ∈ C, i.e., x ∈ ∇(m) for some m ∈ min(U).
3. By Observation 1, since m ∈ U, also x ∈ U, so C ⊆ U.
4. To see that U ⊆ C, let x ∈ U.
5. By Observation 2, for some m ∈ min(U), m ≤ x.
6. Thus x ∈ ∇(m) ⊆ C, so U ⊆ C. QED

#S

τ

τ

Stable configurations are closed upwards for
species that are already “large”

82

Definition: Let τ = max { m(S) | m ∈ min(U), S ∈ Λ }.
The hypercube with corner (τ, τ, …, τ) ∈ ℕd (and other
corner at origin) contains every minimal m defining U.

Lemma: Let c be stable such that for some species
S ∈ Λ, c(S) ≥ τ. Let d = c + {any amount of S}.
Then d is also stable.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3

c

d

Proof: By picture. τ = 6, c(S) = 6, d(S) = 8.
If c is not already in a cone ∇(m) defining
the unstable configurations U, we cannot
enter any cone by adding more S.

Recall stable configs are closed downward. They are also closed upward for “already large” species.

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.
5. By correctness oi + δi ⇒ oi+1 for some stable oi+1.
6. By Dickson’s Lemma pick infinite nondecreasing

subsequence o’0 ≤ o’1 ≤ … of oi’s. For the sake of readability
let’s assume this is just the original sequence o0 ≤ o1 ≤ ….

7. Let Γ = { S | limi→∞ oi(S) = ∞ } (species with unbounded counts).
8. For large enough i, if S ∈ Γ, then oi(S) ≥ τ, and if S ∉ Γ, then

oi(S) = cS where cS is the largest S ever gets in the oi’s.
9. Then oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.

c0 o0⇒

δ0c1= ⇒ o1

δ1
c2=

⇒ o2

δ2

c3=

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.
5. Apply the same execution to n copies of δi: oi +nδi ⇒ oi+nε.
6. oi +nε is larger than oi only on species S with count oi(S) ≥ τ.
7. By closure of stable configurations upwards for “already large”

species, since oi is stable, oi +nε is also stable, with the same output
YES, since they have the same species present.

8. In other words, we can reach from ci+nδi to a stable YES
configuration, so ci+nδi ∈ A for all n ∈ ℕ.

9. Let c = ci and d = ci+1, with δ = δi. QED

oi

δi

oi

ε⇒
ε⇒
ε⇒

δi

δi

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)
4. Formally, suppose otherwise: c+2δ = (2z–x, 2z2–x2) ∈ S.
5. Then (2z–x)2 = (2z2–x2), so

0 = (2z–x)2 – (2z2–x2)
= (4z2–4xz+x2) – (2z2–x2)
= 2z2 – 4xz + 2x2

= 2(z–x)2, which contradicts x ≠ z. QED
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

c+2δ

Limits of efficient stable
computation

86

What is known to be computable in less than time O(n)?

Predicates

Boolean combination of detection
predicates

“detection” means φ(a) = [a > 0?]

Functions

ℕ-linear functions (coefficients
are nonnegative integers)

87

e.g., f(a,b) = 2a + 3b
a→y+y
b→y+y+y

φ(a,b,c) = a>0 OR (b>0 AND c=0)

[Angluin, Aspnes, Eisenstat, Fast computation by population protocols with a leader, DISC 2006]
[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]

i.e., constant except when a variable
changes from 0 to positive

Both computable in O(log n) time

Known time lower bounds: leader election/majority

Leader election

Leader election (computing the constant
function f(a)=1) requires Ω(n) time

Majority (and other “explicit” predicates)

Majority (and many other “explicit” predicates
such as equality) require Ω(n / polylog n) time,
even with up to ½ log log n states.*

If the protocol satisfies a technical condition
called “output dominance”, then even with up
to log n states, Ω(n0.999) time is required.**

88

[Doty, Soloveichik, Stable leader election in
population protocols requires linear time, DISC 2015]

*[Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest, SODA 2017]

**[Alistarh, Aspnes, Gelashvili, SODA 2018]: “output dominance”
= changing positive counts of states in a stable configuration
leaves it able to reach a stable configuration with the same output

Known time lower bounds: “most” predicates/functions

• Informal: “most” semilinear predicates and functions not known to be computable in
o(n) time, actually require at least Ω(n) time to compute

• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b) for
all a,b with all components ≥ m

• Definition: f: ℕk→ℕ is eventually ℕ-linear if there is m∈ℕ so that f(a) is ℕ-linear for
all a with all components ≥ m

• Both definitions allow exceptions “near a face of ℕk”

• Formal theorem: Every predicate that is not eventually constant, and every function
that is not eventually ℕ-linear, requires at least time Ω(n) to compute.

• They’re all computable in at most O(n) time, so this settles their time complexity.

89

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

What is currently known/unknown

90

Predicates Functions

computable in
O(log n) time

detection (constant unless
changing between 0 and positive)

a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable in
less than Ω(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol is
O(n) time)

eventually constant but not
constant on all positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwise

f(a) =

Other modeling choices?

91

• integer counts (“stochastic”) or real concentrations (“mass-action”)?

• what is the object being “computed”?
• yes/no decision problem? “number of A’s > number of B’s?”

• numerical function? “make Y become double the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent an input n1,…,nk, what is the initial configuration?
• only input species present?

• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

Modeling choices in formalizing “Computing with chemistry”

92

first part of slides

summarized in
next few slides

Auxiliary species present initially ≈ “initial leader”

Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

93

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Le+A→Lo

Lo+A→Le

with a
leader Le

But fundamental computability doesn’t change:
exactly the semilinear predicates/functions can
be computed (same as without a leader).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, PODC 2004] [Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012] [Doty, Hajiaghayi, DNA 2013]

94

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-

ℕ-linear functions require at least Ω(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

Previous work: With a leader, all semilinear predicates/functions can be computed in

at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

Conjecture: With a leader, all non-detection predicates and non-ℕ-linear functions

require at least Ω(n) stabilization time.

False conjecture: Without a leader, all non-detection predicates and non-ℕ-linear

functions require at least Ω(n) convergence time.

[resolved negatively by Kosowski, Uznański, Population Protocols are Fast , PODC Brief Announcement 2018]

What if we use real-valued concentrations?

95

Theorem: A function is stably
computable by a real-valued chemical
reaction network if and only if it is
continuous and piecewise linear.

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

continuous piecewise linear example

[Chen, Doty, Reeves, Soloveichik, JACM 2023]

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

n

f(n) semilinear example

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

96

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

Furthermore, computation doesn’t merely
converge to the correct answer eventually, but can
be made “terminating”: producing a molecule T
signaling when the computation is done.
(provably impossible when Pr[error] = 0)

Conjecture: Even without a leader, any
computable function can be efficiently
computed with high probability.

… “efficiently” (polynomial-time slowdown) …

What if we use real-valued concentrations… and allow
reaction rates to influence outcome??

97

Theorem: A function is computable by a real-valued chemical reaction network using
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

mass-action kinetics:

X → Y+Y

Y+Z → X

k1

k2

[X] = –k1[X] + k2[Y][Z]

[Y] = 2k1[X] – k2[Y][Z]

[Z] = – k2[Y][Z]

… with only a polynomial-time
slowdown.

[Bournez, Graça, Pouly. Polynomial time corresponds to
solutions of polynomial ordinary differential equations
of polynomial length. Journal of the ACM 2017]

Fast approximate division by 2

98

X+A→B+Y
X+B→A

initial configuration:
{ n X, εn A, εn B }

guaranteed to get
Y = n/2 ± εn
E[time] = O(log n) / ε

n = 100 ε = 0.1

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

CRN computation with a small
chance of error

99

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

computes f(n) = 3n+1

HALT

“input” counter

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

• Start with inputs n1, n2, …, nl ∈ ℕ as values of c1, c2, …, cl, and cl+1, …, ck start 0.

• Finite-state machine, where each state is one of:
• inc c: increment counter c

• dec c: decrement counter c; no effect if c = 0

• if c=0 goto i: if counter c is 0, then jump to state i

• goto i (can be shorthand for if c=0 goto i for unused c)

• may also have accept/reject semantics, or interpret the final value of some
counter as the output

101

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

1. if a=0 goto 7
2. dec a
3. if a=0 goto 6
4. dec a
5. goto 1
6. accept
7. reject

1. while a>0:
2. dec a
3. while b>0:
4. dec b
5. inc c
6. inc d
7. while c>0:
8. dec c
9. inc b

input a input a

input a

inputs a,b
1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

1. inc b
2. while a>0:
3. dec a
4. while b>0:
5. dec b
6. inc c
7. inc c
8. while c>0:
9. dec c
10. inc b

input a

f(a) = 2a f(a) = ⌊a/2⌋

φ(a) = “a is odd”

f(a,b) = ab
f(a) = 2a

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1

1 1 0 0 0

a =

b =

Turing machine operation Counter machine implementation

read bit under tape head

change bit under tape head

move tape head right

move tape head left

test if tape head is on blank
and if so, change it to 1

Need a third “work” counter c to help do the following
operations on counters a and b:

2

2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

inc/dec a

set a = 2a (+ 1) ; set b = ⌊b/2⌋

set b = 2b (+ 1) ; set a = ⌊a/2⌋

if b=1 then
set a = 2a + 1

is a odd?

= 39

= 24

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

1-counter machines are not
Turing-universal… why?

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

• To decrement a, set x = ⌊x/2⌋.

• To test if c = 0, test if x ≡ 0 mod 5.

• To start with a = n and b = c = 0, start with x = 2n∙30∙50 =2n.

• If f:ℕ→ ℕ is any computable function, this machine can start with x=2n and halt
with x=2f(n).

• Caveat about encoding: there is no 2-counter machine that starts with x=n and
halts with x=2n.

• 2-counter machines can do universal computation on encoded inputs (n encoded as 2n), but
they cannot compute the encoding/decoding themselves.

• However, the fact that 2-counter machines can simulate arbitrary 3-counter machines implies
that the Halting Problem for 2-counter machines is undecidable.

105

[Schroeppel 1972, A Two Counter Machine Cannot Calculate 2N]
“Theorem: Any counter machine can be simulated by a 2-counter machine,
provided an obscure coding is accepted for the input and output.”

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines: Finite automata robots on the plane

106

Finite automaton occupying a point (x,y) ∈ ℕ2.

It cannot write anything, or see anything.

It can sense if it is touching the southern wall, or
western wall (or both).

It can move north, south, east, or west based on its
current state and 2 “wall bits”, and of course change
state:

δ: S × {wall, no wall}2→S × {,,,→}

There is an automaton A so that this problem
is undecidable: given (x,y) ∈ ℕ2, if started at
(x,y), will A ever visit the lower-left corner?

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

Need to be

very slow!

2) L
2

+ R → L
3

3) L
3

→ L
4

+ S

4) L
4

+ S → L
5

1) L
1

→ L
2

+ R

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

; L
4

→ L
2

; L
2

→ L
1

Counter machine:
r = input n, start line 1

Error occurs when R is present, but reaction L2 → L1 occurs instead of L2 + R → L3.
Semantic effect on register machine: when r > 0, it may jump from line 2 to 1 without decrementing.
There’s a positive probability of error; how to reduce it? Need to slow down L2 → L

1
.

Problem with adjusting rate constant to slow down
reactions for achieving Turing-universal computation

Could make rate constant k very small
• If correct reaction rc: L2+R → L3 has rate constant 1, how small should k be to

achieve Pr[ri occurs instead of rc] = Pr[error] = ε?

• rate of rc = λc = #L2∙#R/v = #R/v ≥ 1/v

• rate of ri = λi = k∙#L2 = k

• Pr[error] = λi / (λi + λc) ≤ k / (k + 1/v)

• For Pr[error] = ε, set k = ε / (v–vε) ≈ ε/v

108

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.
• halving rate constant k decreases Pr[error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.

5. To store b bits, we need Ω(2b) molecules.

109

• Problem 5 is fundamental in CRNs: they necessarily store a “unary” encoding of any integer.
• Theorem(ish): There is a CRN solving problems 1–4.
• We’ll see how to solve problems 1–3 by simulating a register machine more efficiently.
• To handle Problem 4, see [Soloveichik, Cook, Winfree, Bruck, Computation with Finite

Stochastic Chemical Reaction Networks, NaCo 2008]

Use a clock:

1 C
1
, 1 F, n B

F + C
1

→ F + C
2

B + C
2

→ B + C
1

F + C
2

→ F + C
3

B + C
3

→ B + C
2

C
k

+ L
2

→ C
1

+ L
1

…

C
1

C
2

C
3

C
k

…
1 1 1 1

nnnn

reverse-biased random walk

C
k

appears after

expected time ≈ nk-1

E[time for L
2

+ R → L
3
] ≤ n

How to slow down reaction L2 → L1?

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.
Pr[ri] = Pr[#Ck = 1] ≤ 1/nk, where n = #B.
Setting k = 2, Pr[ri] ≤ 1/n2.

Solution: increase B after every decrement and jump:

ri: Ck + L2 → C1 + L1 + B
rc: L2 + R → L3 + B
So Pr[ri ever occurs when it shouldn’t] ≤ σ𝑛=1

∞ 1/𝑛2 = π2/6.
Still not a great probability bound, but we can scale that to
any constant error probability ε by setting starting value of B:
For ε = 1/100, set initial #B = 102, since σ𝑛=102

∞ 1/𝑛2 < 0.01.

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 3: Also solved! i.e., halving error probability no
longer doubles computation time (derivation not shown)

Problem 1: Now all rate constants = 1.

	introduction
	Slide 1: Computation with chemistry
	Slide 2: Chemical reaction networks
	Slide 3: What behavior is possible for chemistry in principle?
	Slide 4: Computation with chemical reaction networks
	Slide 5: Example: Chemical caucusing
	Slide 6: Does chemistry compute?
	Slide 7: Why compute with chemistry?
	Slide 8
	Slide 9
	Slide 10: Experimental implementations of synthetic chemical reaction networks with DNA
	Slide 11: What behavior is possible for chemistry in principle?
	Slide 12: Theoretical Computer Science Approach
	Slide 13
	Slide 14
	Slide 15: Some simple reactions

	examples of stable CRN computation
	Slide 16: Examples of stable (rate-independent) CRN computation
	Slide 17: Examples of function computation
	Slide 18: Examples of function computation
	Slide 19: Examples of function computation
	Slide 20: Examples of function computation
	Slide 21: Examples of function computation
	Slide 22: Examples of function computation
	Slide 23: Examples of function computation
	Slide 24: Examples of predicate computation
	Slide 25: Examples of predicate computation
	Slide 26: Examples of predicate computation

	formal definition of CRN computation
	Slide 27: Formal definition of CRN computation
	Slide 28: Modeling choices in formalizing “Computing with chemistry”
	Slide 29: Defining stable computation
	Slide 30: Probability-1 correctness can be characterized with only reachability
	Slide 31: Deterministic computation ≠ all executions correct
	Slide 32: Fair executions: Alternative characterization of stable computation
	Slide 33: Definition of function computation
	Slide 34: Definition of predicate (decision problem) computation

	feedforward CRNs
	Slide 35: Feedforward CRNs
	Slide 36: Stable versus terminal
	Slide 37: Feed-forward CRNs
	Slide 38: Stable function computation by feed-forward CRNs
	Slide 39: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 40: Noncompetitive CRNs
	Slide 41: Non-feedforward CRNs

	time complexity
	Slide 42: Time complexity of CRNs
	Slide 43
	Slide 44: Relationship to distributed computing
	Slide 45
	Slide 46
	Slide 47: Full CRN time model (Gillespie kinetics)
	Slide 48: Discrete versus continuous time
	Slide 49
	Slide 50: Time complexity analysis (basic motifs)
	Slide 51: Time complexity analysis (basic motifs)
	Slide 52: Time complexity analysis (basic motifs)
	Slide 53: Time complexity analysis (basic motifs)

	time complexity analysis of stably computing CRNs
	Slide 54: Time complexity analysis of stably computing CRNs
	Slide 55: Time complexity analysis of stably computing CRNs
	Slide 56: Time complexity analysis of stably computing CRNs
	Slide 57: Time complexity analysis of stably computing CRNs

	possibilities of stable computation: positive results
	Slide 58: Possibilities of stable computation
	Slide 59: Summary: Possibilities and limits of stable computation
	Slide 60: Linear sets
	Slide 61: Semilinear sets
	Slide 62: Equivalent definitions of semilinear
	Slide 63: Equivalent definitions of semilinear
	Slide 64: Limits of stable computation

	limits of stable computation: positive results
	Slide 65: Possibilities of stable computation
	Slide 66: Stably decidable sets are closed under Boolean operations
	Slide 67: Mod and threshold sets are stably decidable
	Slide 68: Semilinear functions are stably computable
	Slide 69: Semilinear function examples
	Slide 70: Computing affine functions (by example)
	Slide 71: Combining all affine function computations

	limits of stable computation: negative results
	Slide 72: Limits of stable computation
	Slide 73: Impossibility of stably deciding non-semilinear sets
	Slide 74: Impossibility of stably computing non-semilinear functions
	Slide 75: Impossibility of stably deciding a non-semilinear set
	Slide 76: Additivity, nondecreasing sequences, minimal elements
	Slide 77: All vectors have a minimal vector under them
	Slide 78: Dickson’s Lemma: Nondecreasing subsequences
	Slide 79: Properties of stable configurations
	Slide 80: Upper cones
	Slide 81: Set of unstable configurations is finite union of cones
	Slide 82: Stable configurations are closed upwards for species that are already “large”
	Slide 83: A pumping lemma
	Slide 84: A pumping lemma (proof continued)
	Slide 85: Impossibility of stably deciding squaring set

	limits of efficient stable computation
	Slide 86: Limits of efficient stable computation
	Slide 87: What is known to be computable in less than time O(n)?
	Slide 88: Known time lower bounds: leader election/majority
	Slide 89: Known time lower bounds: “most” predicates/functions
	Slide 90: What is currently known/unknown

	other modeling choices
	Slide 91: Other modeling choices?
	Slide 92: Modeling choices in formalizing “Computing with chemistry”
	Slide 93: Auxiliary species present initially ≈ “initial leader”
	Slide 94: Convergence vs stabilization and leader vs anarchy
	Slide 95: What if we use real-valued concentrations?
	Slide 96: What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	Slide 97: What if we use real-valued concentrations… and allow reaction rates to influence outcome??
	Slide 98: Fast approximate division by 2

	computation with small chance of error
	Slide 99: CRN computation with a small chance of error
	Slide 100
	Slide 101: Counter machines
	Slide 102: Example counter machines
	Slide 104: 3-counter machines are Turing universal
	Slide 105: 2-counter machines are (sort of) Turing universal
	Slide 106: 2-counter machines: Finite automata robots on the plane
	Slide 107
	Slide 108: Problem with adjusting rate constant to slow down reactions for achieving Turing-universal computation
	Slide 109: Problems with simulation scheme so far
	Slide 110: How to slow down reaction L2 → L1?
	Slide 111: How to handle the three problems

