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Traditionally a descriptive modeling language… 
Let’s instead use it as a prescriptive programming language
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What behavior is possible for chemistry in principle?

found in biology

actual chemicals

formally definable chemical reaction network
what we’ll study

inspiration

ultimate interest
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Computation with chemical reaction networks

• Key ideas setting chemical computation apart from others:
• cannot control order in which molecules collide

• can control how they react when they collide

• Related model of distributed computing called population protocols
• originally motivated by mobile wireless sensor networks, e.g., attached to a 

birds in a flock
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[Computation in networks of passively mobile finite-state 
sensors, Angluin, Aspnes, Diamadi, Fischer, Peralta. PODC 2004]
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distributed algorithm for “approximate majority”: 
initial majority (X or Y) quickly overtakes whole population 
(with high probability)
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[Angluin, Aspnes, Eisenstat,    A simple population protocol for fast robust approximate majority, DISC 2007]
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Does chemistry compute?

6

X U Y

[Dodd, Micheelsen, Sneppen, Thon.   Theoretical analysis of 
epigenetic cell memory by nucleosome modification, Cell 2007]

=

[Cardelli, Csikász-Nagy.   The cell cycle switch computes 
approximate majority. Nature Scientific Reports 2012]

≈

[Cardelli, Morphisms of reaction networks that couple 
structure to function, BMC Systems Biology 2014]

X YU
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Why compute 
with chemistry? versus

slow fast

≈ 10-100 nm ≈ 10-100 nm

yes not easily

speed?

component size?

compatible with 
“wet environments”?

cells
smart drug 
released only in 
certain cellular 
conditions

DNA storage
in-place computation 
replacing expensive 
read/write lab steps

bioreactors
chemical controller to 
optimize yield of 
metabolically produced 
biofuels/drugs/etc.
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Can we compute with chemistry?
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“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically 
implement any chemical reaction network using DNA strand displacement

X1+X2→X3
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DNA strand displacement implementing A+B→C

video: Microsoft Research Cambridge



Experimental implementations of synthetic 
chemical reaction networks with DNA
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[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas, 
Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

[Enzyme-free nucleic acid dynamical systems. Srinivas, 
Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

Analog majority computation Chemical oscillator
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What behavior is possible for chemistry in principle?

found in biology

actual chemicals

≈
formally definable chemical reaction network
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(Computability theory)
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What computations necessarily take a 
long time and what can be done quickly?
(Computational complexity theory) 

What computation is possible and what is not?
(Computability theory)

NP
NP-complete

P

Boolean satisfiability

Hamiltonian path

protein folding

DNA sequence alignment

shortest path
integer multiplication

integer factoring

polynomial factoring
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Chemical Reaction Networks (formal definition)

• finite set of reactions:   e.g.

• finite set of d species Λ = { A, B, C, D, ... }

• configuration x∈ℕd: molecular counts of each species  

13

A+B→A+Ck1

k3C+2B→C

C→A+Ak2

• reaction is applicable to x if x has enough of each reactant.

k1, k2, k3 are called rate constants; 
if not specified, assume = 1.
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What is possible: 
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)⟹
β

(4, 1, 0)
⟹

α

(4, 0, 1)
...

x =

14

(2, 0, 2)

A A

A

A

C
α (another possibility)

α applicable but not β

α,β both applicable

Formally, an execution is a 
sequence of configurations x1, 
x2, … such that each xi ⟹ xi+1 by 
a single reaction. 
If initial configuration x1 is 
understood, the sequence of 
reactions is sometimes called 
the execution.
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f(a) = ⌊a/3⌋ using bimolecular (≤ 2-reactant) 
reactions, starting in config {a A} (a.k.a., leaderless)
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A2+A→Y

A2+A2→A+Y

Calling A = A1, in general to divide by constant c: 
Ai+Aj→Ak if i+j < c, where k = i + j
Ai+Aj→Ak+Y if i+j > c, where k = i + j – c
Ai+Aj→Y if i+j = c

i.e., A’s start with 1 “ball” and pass balls to each other;
whenever someone gets ≥ c balls, 
throw away c balls and produce a Y
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maximum: f(a,b) = max(a,b)

22

A+B→Y

A→Y+A2

B→Y+B2

A2+B2→K

K+Y→∅

addition

minimum
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composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?
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Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

Counting: φ(a,b) = yes ⇔ b > 1

2B→2Y

Y+B→2Y

Y+A→2Y

24

A votes no; B votes yes

A,B vote no; Y votes yes
A
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A
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Majority: φ(a,b) = yes ⇔ a ≥ b

A+B→Af+Bf (both become “followers” but preserve difference between A’s and B’s)

A+Bf→A+Af (leader changes vote of follower)

B+Af→B+Bf (leader changes vote of follower)

Af+Bf→Af+Af (tiebreaker if no leaders left when a=b)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization, 
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and 
very Small Local Memory, Distributed Computing 2015]
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Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

26

two leaders XOR their parity, 
and one becomes follower

leader overwrites 
bit of follower

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae



Formal definition of CRN 
computation

27
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i x o o’reactions reactions reactions
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any reachable
configuration

initial
configuration

correct
output
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(assuming finite set of reachable configurations) equivalent to:
The system will reach a correct stable configuration with probability 1.
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finite, and let Y be a set of configurations. Then 
(Pr[i ⟹ Y] = 1) ⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: Let i be a configuration and Y be a set 
of configurations. Write Pr[i ⟹ Y] to denote the 
probability of the random event that, starting in 
configuration i, the CRN eventually reaches some 
configuration o ∈ Y.

Definition: For any configuration i, let Reach(i) 
denote the set of configurations reachable from i.

Proof:
1. (⟹): Assume (∃x∈Reach(i)) (∀o∈Reach(x)) o ∉ Y. 
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execution leading from x to some o ∈ Y. 
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of these finite executions reaching o.
6. Let px = Pr[Ex occurs from x] > 0.
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8. Then for each x ∈ Reach(i), Pr[Ex does not occur from x

after the next k steps] ≤ 1 – 𝜀 < 1.
9. So, breaking the infinite execution into segments of 

length k, the probability Ex is never followed within k
steps after any visit to an x ∈ Reach(i) is at most 
ς𝑖=1
∞ (1 − 𝜀) = 0. QED

This theorem lets us use (often simpler) reachability 
arguments and avoid discussing probability, while 
still ensuring probability-1 correctness.
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• Then Pr[{A} ⟹ {C}] = 1, but the execution {A} ⟹ {B} ⟹ {A} ⟹ {B} ⟹ {A} ⟹ … 
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31

False statement: If Pr[i ⟹ Y] = 1, then every sufficiently 
long execution starting at i reaches to some c ∈ Y.



Fair executions: Alternative characterization of stable computation

32

Definition: An infinite execution x0, x1, … is fair if



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]

“there exist infinitely many”Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is 
infinitely often reached)

“there exist infinitely many”Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is 
infinitely often reached)

“there exist infinitely many”

Proof: 
1. (⟹): Suppose every fair execution from i reaches Y.

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is 
infinitely often reached)

“there exist infinitely many”

Proof: 
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is 
infinitely often reached)

“there exist infinitely many”

Proof: 
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite 

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is 
infinitely often reached)

“there exist infinitely many”

Proof: 
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite 

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is 
infinitely often reached)

“there exist infinitely many”

Proof: 
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite 

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
5. Let x0, x1, … be a fair execution with i=x0.

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is 
infinitely often reached)

“there exist infinitely many”

Proof: 
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite 

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
5. Let x0, x1, … be a fair execution with i=x0.
6. Since all xj∈Reach(i), for each j, by hypothesis ∃oj∈Reach(xj) oj ∈ Y.

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a 
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is 
infinitely often reached)

“there exist infinitely many”

Proof: 
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite 

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
5. Let x0, x1, … be a fair execution with i=x0.
6. Since all xj∈Reach(i), for each j, by hypothesis ∃oj∈Reach(xj) oj ∈ Y.
7. Since Y is finite, some o ∈ Y is reachable from infinitely many xj.

Goal of definition of fair is to make this theorem true:



Fair executions: Alternative characterization of stable computation

32
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Proof: 
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite 
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4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
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• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

• input specification: designate subset Σ ⊆ Λ as “input” species
• valid initial configuration i: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species Y∈Λ whose count is the output

• o is stable if, for all o’ reachable from o, o(Y) = o’(Y)

• CRN stably computes f if, for all valid initial configurations i, and all x
reachable from i, there is a stable o reachable from x such that o(Y) = f(i).

• Recall: this is equivalent to saying that i reaches to a correct, stable o with probability 1, and
equivalent to saying that every fair execution from i reaches to a correct, stable o.
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• o is stable if ψ(o) = ψ(o’) (and is defined) for all o’ reachable from o

• CRN stably computes φ if, for all valid initial configurations i, and all x reachable 
from i, there is a stable o reachable from x such that ψ(o) = φ(i) (o is correct).

• We say the CRN stably decides the set φ–1(Y) = set of inputs mapping to output Y
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Feedforward CRNs
A class of CRNs with a simpler definition/proofs for computation
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Lemma (restated): Suppose that in a feed-forward CRN, 
i ⟹ c by execution P, and i ⟹ d by execution Q. If any 
reaction occurs less in P than Q, then c is not terminal.
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Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial 
configuration.

Lemma (restated): Suppose that in a feed-forward CRN, 
i ⟹ c by execution P, and i ⟹ d by execution Q. If any 
reaction occurs less in P than Q, then c is not terminal.
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Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial 
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initial config

final
config

Not a plot of f!    
It's the space of 
reachable states.
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41

Example of a non-feedforward CRN that 
stably computes a function?

f(x) = x/2

1. X⇌ Y+A

2. X+A→∅ initial config

final
config

It’s even non-non-competitive!
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What is probable: 
Stochastic kinetic model of chemical reaction networks

expected time until next reaction is 1 / (sum of all reaction rates) 

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]

System evolves via a continuous time Markov process:
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(react) and change state (species).

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/


Relationship to distributed computing

population protocol = list of transitions such as 

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/


Relationship to distributed computing

population protocol = list of transitions such as 

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

• unit rate constants

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/


Relationship to distributed computing

population protocol = list of transitions such as 

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

• unit rate constants

• volume = n = number of agents (never changes)

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/


Relationship to distributed computing

population protocol = list of transitions such as 

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

• unit rate constants

• volume = n = number of agents (never changes)

population protocols ⊊ chemical reactions, but “most” ideas that 
apply to one model also apply to the other

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/
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• pair of agents picked uniformly at random to interact 
(possibly null interaction)

• parallel time = number of interactions / n
i.e., each agent has O(1) interactions per “unit time”
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Speed of computation
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Speed of computation

How to fairly assess speed?

Like any respectable computer scientist… 
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors
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Speed of computation

n = total molecular count
reasonable requirement on volume: v = O(n)
i.e., require bounded concentration (finite density constraint)

How to fairly assess speed?

Like any respectable computer scientist… 
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors
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• no volume term since no collision required

• A+B+C→… λ = k∙#A∙#B∙#C / v2 (trimolecular reaction)

• The volume term is squared because (roughly) if we define coordinate system so position of A is always at the 
origin, then B and C are randomly moving around through v volume “cells”, and it takes v2 expected time for 
them both to occupy the origin, to cause a three-way A-B-C collision

• In general, with r reactants, propensity is number of ways to pick reactants, times k, divided by vr–1
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Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
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E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random 
variable with 
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[ B+X→B+B is next interaction | #B=k ] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))
expected time until one X converted to B = 1/(n∙probability)          
= (n–1) / (2k(n–k))
expected time until all X converted to B = 

“direct communication” “epidemic”, “gossip”, “rumor spreading”

≈ ln𝑛

𝑛 − 1

2


𝑘=1

𝑛−1
1

𝑘(𝑛 − 𝑘)

≈
1

2
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𝑛
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𝑘
+ 

𝑘=𝑛

1
1

𝑘
= 
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𝑛
1

𝑘

=
𝑛 − 1
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𝑛−1
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𝑛
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𝑘
+

1

𝑛 − 𝑘



Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)



Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is 
geometric random variable with success probability 
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction] 
= E[# interactions] / n = 1 / k

E[time to convert all A] = 
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n



Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is 
geometric random variable with success probability 
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction] 
= E[# interactions] / n = 1 / k

E[time to convert all A] = 
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

A→B #A=n, #B=0

“no communication/ unimolecular decay” 
(unimolecular CRN version)



Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is 
geometric random variable with success probability 
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction] 
= E[# interactions] / n = 1 / k

E[time to convert all A] = 
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:

A→B #A=n, #B=0

“no communication/ unimolecular decay” 
(unimolecular CRN version)



Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is 
geometric random variable with success probability 
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction] 
= E[# interactions] / n = 1 / k

E[time to convert all A] = 
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:
When #A=k, time until next reaction is exponential 
random variable with rate λ = k

A→B #A=n, #B=0

“no communication/ unimolecular decay” 
(unimolecular CRN version)



Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is 
geometric random variable with success probability 
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction] 
= E[# interactions] / n = 1 / k

E[time to convert all A] = 
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:
When #A=k, time until next reaction is exponential 
random variable with rate λ = k
E[time until next reaction] = 1/λ = 1/k

A→B #A=n, #B=0

“no communication/ unimolecular decay” 
(unimolecular CRN version)



Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0
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? here means “every species” (including A)
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When #A=k, time until non-null interaction is 
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p = k(n-1) / (n choose 2) = k / (2n)
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E[time until non-null interaction] 
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E[time to convert all A] = 
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:
When #A=k, time until next reaction is exponential 
random variable with rate λ = k
E[time until next reaction] = 1/λ = 1/k

E[time for all n reactions] = σ𝑘=1
𝑛 1

𝑘
≈ ln n

A→B #A=n, #B=0

“no communication/ unimolecular decay” 
(unimolecular CRN version)
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A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

A+A→C

“pairing off” (symmetric version)

CRN time complexity:
When #A=#B=k, next reaction has rate λ = k2/n
E[time until next reaction] = 1/λ = n/k2

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘2

< 𝑛σ𝑘=1
∞ 1

𝑘2

= n∙π2/6 = Θ(n)
similar analysis
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L+A→L+B #L=1, #A=n, #B=0, total volume = O(total count) = n

“coupon collecting”

CRN time complexity:
When #A=k, next reaction has rate λ = k/n
E[time until next reaction] = 1/λ = n/k

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘

< 𝑛σ𝑘=1
∞ 1

𝑘

= Θ(n log n)
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Ω(n) excess of A, so “acts like” 
unimolecular decay of B.
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maximum: f(a,b) = max(a,b)
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅

• Assume reaction 3 waits for reactions 1 and 2 before starting, 
and reaction 4 waits for reaction 3.

• E[time for 1 and 2] = O(log n)
• E[time for 3] = O(n)
• E[time for 4] = O(n)
• So E[time] = O(log n) + O(n) + O(n) = O(n)
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Definition: A set X ⊆ ℕd is semilinear if it is a 
finite union of linear sets.
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Definition 3: X ⊆ ℕd is semilinear if it is definable 
in the first-order theory of Presburger arithmetic. 
(original definition, 
hardest to understand; 
we won’t use it.)

Other places semilinear sets show up in computer science: 
• Sets decidable by reversal-bounded counter machines.
• In 2D, they are conjectured to be the sets weakly self-

assembled by temperature τ=1 tile systems.
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Example of function graph: The squaring set X
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Possibilities of stable 
computation
All semilinear functions/predicates can be stably computed by CRNs

65
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Theorem: If sets X1,X2 ⊆ ℕ
d are stably 

decided by some CRN, then so are 
X1∪X2, X1∩X2, and 𝑋1.

Proof: 
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY. 
5. To “record” the votes of C1 and C2:

1. If Sb votes b ∈ {N,Y} in C1, add reaction Sb + 𝑉ത𝑏?→Sb+Vb? (i.e., Sb changes the first vote of V)

2. If Tb votes b ∈ {N,Y} in C2, add reaction Tb + 𝑉?ത𝑏→Tb+V?b (i.e., Tb changes the second vote of V)

6. To stably decide X1∪X2, let yes voters be VNY, VYN, VYY

7. To stably decide X1∩X2, let yes voter be VYY

For this proof, we assume that the voting 
species can be a strict subset of all species.

What if all species are required to vote??
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Theorem: Every mod set 
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Proof: 
1. Start with 1 L0 leader.
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1. t N if t > 0.
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5. Now need to decide if #P > #N (including those 
present initially)
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Theorem: Every mod set 
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m } 
is stably decidable by a CRN.

Proof: 
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the 
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set 
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t } 
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Proof: 
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t
4. Start with 1 LN leader and 

1. t N if t > 0.
2. (–t) P if t < 0.

5. Now need to decide if #P > #N (including those 
present initially)

6. Add reactions
1. LY + N → LN

2. LN + P → LY
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Theorem: Every mod set 
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m } 
is stably decidable by a CRN.

Proof: 
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the 
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set 
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t } 
is stably decidable by a CRN.

Proof: 
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t
4. Start with 1 LN leader and 

1. t N if t > 0.
2. (–t) P if t < 0.

5. Now need to decide if #P > #N (including those 
present initially)

6. Add reactions
1. LY + N → LN

2. LN + P → LY

Corollary (since stably decidable sets are closed 

under Boolean combinations): Every semilinear
set is stably decided by some CRN.

Also true for leaderless CRNs.
[Computation in networks of passively mobile finite-state sensors, Angluin, Aspnes, Diamadi, Fischer, Peralta. PODC 2004]



Semilinear functions are stably computable
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Lemma: If f: ℕd→ℕ is a semilinear function, then it 
is piecewise affine: a finite union of partial affine 
functions gi: ℕ

d ⇢ℕ. 

Each gi is affine (linear with constant offsets): there 
are w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ such that each 
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Furthermore, each “piece” dom gi is a linear set. 

We won’t prove this; see [Chen, Doty, Soloveichik, 
Deterministic function computation with chemical reaction 
networks. DNA 2012]
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Lemma: If f: ℕd→ℕ is a semilinear function, then it 
is piecewise affine: a finite union of partial affine 
functions gi: ℕ

d ⇢ℕ. 

Each gi is affine (linear with constant offsets): there 
are w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ such that each 
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Furthermore, each “piece” dom gi is a linear set. 

We won’t prove this; see [Chen, Doty, Soloveichik, 
Deterministic function computation with chemical reaction 
networks. DNA 2012]

dom g1 = {x ≡ 0 mod 2}
dom g2 = {x ≡ 1 mod 2}

g1(x) = ½∙x
g2(x) = ½∙(x–1)
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69

g1(x) = x2

g2(x) = 0
dom g1 = {x1 > x2}

g1(x) = x1

g2(x) = x2

dom g1 = {x1 > x2}
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Proof sketch:
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some CRN stably computes f. 

⇒

Question 1: what’s the 
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Question 2: Something else 
doesn’t work as described… 
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Answer 2: Consuming Yi can disrupt computation of gi.
Can be solved using dual-rail encoding. (not shown)
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Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof: 
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1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to 
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never 
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:
• X→ Z + 2Y becomes     X→Z + 2Y + 2YP since there are net 2 Y’s produced
• X + 6Y→2Y becomes     X + 6Y→2Y + 4YC since there are net 4 Y’s consumed

5. For concreteness, assume k=1. 
• CRN D deciding graph(f) has 2 input species. The first is A. Let the second input species be YC.

6. Since C stably computes f, eventually f(initial #A) more YP are produced than YC.
7. If and only if initially f(#A) = #YC, then eventually #YP = #YC.
8. Add reactions to test for equality between #YP and #YC. (not shown, but easy)
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Theorem: The “squaring set” S = { (x,y) ∈ ℕ2 | x2=y } is not
stably decidable by any CRN.

goal:
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Observation: Reachability is additive: if c ⇒ d, then for all e ∈ ℕd, c+e ⇒ d+e, i.e., 
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Additivity, nondecreasing sequences, minimal elements

76

Observation: Reachability is additive: if c ⇒ d, then for all e ∈ ℕd, c+e ⇒ d+e, i.e., 
the presence of extra molecules e cannot prevent reactions from being applicable.

Definition: An infinite sequence of vectors c1, c2, … is nondecreasing
if ci ≤ ci+1 for all i. (ci ≤ ci+1 means ci(S) ≤ ci+1(S) for all species S)



Additivity, nondecreasing sequences, minimal elements

76

Observation: Reachability is additive: if c ⇒ d, then for all e ∈ ℕd, c+e ⇒ d+e, i.e., 
the presence of extra molecules e cannot prevent reactions from being applicable.

Definition: An infinite sequence of vectors c1, c2, … is nondecreasing
if ci ≤ ci+1 for all i. (ci ≤ ci+1 means ci(S) ≤ ci+1(S) for all species S)

Definition: Given A ⊆ ℕd, we say y ∈ A is minimal if, for 
all x ∈ A, x ≤ y implies x = y, i.e., nothing in A is strictly 
smaller than y. Let min(A) = minimal elements of A.
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Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof: 
1. If x ∈min(A) then we’re done.
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Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof: 
1. If x ∈min(A) then we’re done.
2. Otherwise, since x ∉ min(A), there is x1 ∈ A such that x1 < x.
3. If x1 ∈ min(A) then we’re done since x1 ≤ x.
4. Otherwise, since x1 ∉ min(A), there is x2 ∈ A such that x2 < x1.



All vectors have a minimal vector under them

77

Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof: 
1. If x ∈min(A) then we’re done.
2. Otherwise, since x ∉ min(A), there is x1 ∈ A such that x1 < x.
3. If x1 ∈ min(A) then we’re done since x1 ≤ x.
4. Otherwise, since x1 ∉ min(A), there is x2 ∈ A such that x2 < x1.
5. …
6. Since there are only a finite number of y in ℕd such that y < x, this process 

must terminate with a minimal vector m ∈ min(A). QED
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1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing. 
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.
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3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing. 
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.

4. For condition (2), suppose that min(A) is infinite; put them in any order to make an infinite sequence.
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Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite 
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof: 
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times. 

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in 

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing. 
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.

4. For condition (2), suppose that min(A) is infinite; put them in any order to make an infinite sequence.
5. By first condition, there’s an infinite nondecreasing subsequence m1 ≤ m2 ≤ … of distinct vectors in min(A).
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Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite 
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof: 
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times. 

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in 

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing. 
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.

4. For condition (2), suppose that min(A) is infinite; put them in any order to make an infinite sequence.
5. By first condition, there’s an infinite nondecreasing subsequence m1 ≤ m2 ≤ … of distinct vectors in min(A).
6. Since they are distinct, m1 < m2 < …, but m1 < m2 contradicts the minimality of m2. QED
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o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following 

holds: 
• YES and NO voters both exist already in c (output undefined)
• Only YES voters exist, but a NO voter is producible in some c’ ∈ Reach(c).
• Only NO voters exist, but a YES voter is producible in some c’ ∈ Reach(c).

• By additivity, for all δ ∈ ℕd, c+δ is unstable as well, since c’+δ ∈ Reach(c+δ) (since c’ has 
the contradictory voter, so does c’+δ), leading to the following observation:

Observation: The unstable configurations are closed upwards: 
for all unstable c and all d ≥ c, d is also unstable.

Corollary: The stable configurations are closed downwards:   
for all stable c and all b ≤ c, b is also stable.
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Proof: 
1. Let C 𝐦∈minڂ = 𝑈 ∇ 𝐦 . Need to show C = U.

2. To see that C ⊆ U, let x ∈ C, i.e.,  x ∈ ∇(m) for some m ∈ min(U).
3. By Observation 1, since m ∈ U, also x ∈ U, so C ⊆ U.
4. To see that U ⊆ C, let x ∈ U. 
5. By Observation 2, for some m ∈ min(U), m ≤ x.
6. Thus x ∈ ∇(m) ⊆ C, so U ⊆ C.  QED
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Definition: Let τ = max { m(S) | m ∈ min(U), S ∈ Λ }.
The hypercube with corner (τ, τ, …, τ) ∈ ℕd (and other 
corner at origin) contains every minimal m defining U.
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Proof: By picture. τ = 6, c(S) = 6, d(S) = 8.
If c is not already in a cone ∇(m) defining 
the unstable configurations U, we cannot 
enter any cone by adding more S.

Recall stable configs are closed downward. They are also closed upward for “already large” species.
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into ε.
5. Apply the same execution to n copies of δi:   oi +nδi ⇒ oi+nε.
6. oi +nε is larger than oi only on species S with count oi(S) ≥ τ.
7. By closure of stable configurations upwards for “already large” 

species, since oi is stable, oi +nε is also stable, with the same output 
YES, since they have the same species present.

8. In other words, we can reach from ci+nδi to a stable YES 
configuration, so ci+nδi ∈ A for all n ∈ ℕ.
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into ε.
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6. oi +nε is larger than oi only on species S with count oi(S) ≥ τ.
7. By closure of stable configurations upwards for “already large” 

species, since oi is stable, oi +nε is also stable, with the same output 
YES, since they have the same species present.

8. In other words, we can reach from ci+nδi to a stable YES 
configuration, so ci+nδi ∈ A for all n ∈ ℕ.

9. Let c = ci and d = ci+1, with δ = δi.  QED
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Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.
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4. Formally, suppose otherwise: c+2δ = (2z–x, 2z2–x2) ∈ S.
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Boolean combination of detection 
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“detection” means φ(a)  =  [a > 0?]

Functions

ℕ-linear functions (coefficients 
are nonnegative integers)

87

e.g., f(a,b) = 2a + 3b
a→y+y
b→y+y+y

φ(a,b,c) = a>0 OR (b>0 AND c=0)

[Angluin, Aspnes, Eisenstat, Fast computation by population protocols with a leader, DISC 2006]
[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]

i.e., constant except when a variable 
changes from 0 to positive

Both computable in O(log n) time



Known time lower bounds: leader election/majority

Leader election

Leader election (computing the constant 
function f(a)=1) requires Ω(n) time 

Majority (and other “explicit” predicates)

Majority (and many other “explicit” predicates 
such as equality) require Ω(n / polylog n) time, 
even with up to ½ log log n states.*

If the protocol satisfies a technical condition 
called “output dominance”, then even with up 
to log n states, Ω(n0.999) time is required.**

88

[Doty, Soloveichik, Stable leader election in 
population protocols requires linear time, DISC 2015]

*[Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest, SODA 2017]

**[Alistarh, Aspnes, Gelashvili, SODA 2018]: “output dominance” 
= changing positive counts of states in a stable configuration 
leaves it able to reach a stable configuration with the same output



Known time lower bounds: “most” predicates/functions
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• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b) for 
all a,b with all components ≥ m

• Definition: f: ℕk→ℕ is eventually ℕ-linear if there is m∈ℕ so that f(a) is ℕ-linear for 
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• Both definitions allow exceptions “near a face of ℕk”

• Formal theorem: Every predicate that is not eventually constant, and every function 
that is not eventually ℕ-linear, requires at least time Ω(n) to compute.

• They’re all computable in at most O(n) time, so this settles their time complexity.
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[Belleville, Doty, Soloveichik, Hardness of computing and approximating 
predicates and functions with leaderless population protocols, ICALP 2017]
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Other modeling choices?
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• integer counts  (“stochastic”) or real concentrations  (“mass-action”)?

• what is the object being “computed”?
• yes/no decision problem?   “number of A’s > number of B’s?”

• numerical function?             “make Y become double the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent an input n1,…,nk, what is the initial configuration?
• only input species present? 

• auxiliary species can be present?

• when is the computation finished?  when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

Modeling choices in formalizing “Computing with chemistry”
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summarized in 
next few slides
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some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Le+A→Lo

Lo+A→Le

with a 
leader Le

But fundamental computability doesn’t change: 
exactly the semilinear predicates/functions can 
be computed (same as without a leader).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, PODC 2004] [Angluin, Aspnes, Eisenstat, PODC 2006] 
[Chen, Doty, Soloveichik, DNA 2012] [Doty, Hajiaghayi, DNA 2013]
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Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-

ℕ-linear functions require at least Ω(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

Previous work: With a leader, all semilinear predicates/functions can be computed in 

at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

Conjecture: With a leader, all non-detection predicates and non-ℕ-linear functions 

require at least Ω(n) stabilization time.

False conjecture: Without a leader, all non-detection predicates and non-ℕ-linear 

functions require at least Ω(n) convergence time.

[resolved negatively by Kosowski, Uznański, Population Protocols are Fast , PODC Brief Announcement 2018]
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What if we use real-valued concentrations?

95

Theorem: A function is stably 
computable by a real-valued chemical 
reaction network if and only if it is 
continuous and piecewise linear.

Theorem: A function is stably computable 
by an integer-valued chemical reaction 
network if and only if it is semilinear.

continuous piecewise linear example

[Chen, Doty, Reeves, Soloveichik, JACM 2023]
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[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

Furthermore, computation doesn’t merely 
converge to the correct answer eventually, but can 
be made “terminating”: producing a molecule T
signaling when the computation is done.
(provably impossible when Pr[error] = 0)

Conjecture: Even without a leader, any 
computable function can be efficiently 
computed with high probability.

… “efficiently” (polynomial-time slowdown) …
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Theorem: A function is computable by a real-valued chemical reaction network using 
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly.   Strong Turing completeness of continuous chemical reaction networks and compilation of 
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]
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Theorem: A function is computable by a real-valued chemical reaction network using 
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly.   Strong Turing completeness of continuous chemical reaction networks and compilation of 
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

mass-action kinetics:

X → Y+Y

Y+Z → X

k1

k2

[X] = –k1[X] + k2[Y][Z]

[Y] = 2k1[X] – k2[Y][Z]

[Z] =             – k2[Y][Z]

… with only a polynomial-time 
slowdown. 

[Bournez, Graça, Pouly.  Polynomial time corresponds to 
solutions of polynomial ordinary differential equations 
of polynomial length. Journal of the ACM 2017]



Fast approximate division by 2
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X+A→B+Y
X+B→A

initial configuration: 
{ n X, εn A, εn B }

guaranteed to get 
Y = n/2 ± εn
E[time] = O(log n) / ε

[Belleville, Doty, Soloveichik, Hardness of computing and approximating 
predicates and functions with leaderless population protocols, ICALP 2017]



Fast approximate division by 2

98

X+A→B+Y
X+B→A

initial configuration: 
{ n X, εn A, εn B }

guaranteed to get 
Y = n/2 ± εn
E[time] = O(log n) / ε

n = 100      ε = 0.1

[Belleville, Doty, Soloveichik, Hardness of computing and approximating 
predicates and functions with leaderless population protocols, ICALP 2017]



CRN computation with a small 
chance of error
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1) dec r
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3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

computes f(n) = 3n+1

HALT
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Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a 
nonnegative integer.
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• dec c: decrement counter c; no effect if c = 0

• if c=0 goto i: if counter c is 0, then jump to state i

• goto i (can be shorthand for if c=0 goto i for unused c) 

• may also have accept/reject semantics, or interpret the final value of some 
counter as the output
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Need a third “work” counter c to help do the following 
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Assume Turing machine 
• has a single blank on rightmost cell
• if rightmost blank overwritten, it 

grows a new blank cell to right

inc/dec a

set a = 2a (+ 1) ; set b = ⌊b/2⌋

set b = 2b (+ 1) ; set a = ⌊a/2⌋

if b=1 then 
set a = 2a + 1

is a odd?

=   39

=   24

Interpret tape on each side of tape head as binary number; 
append new leading 1 to make this mapping 1-1, in case the 
binary string has no leading 1 already, since 001112, 01112, 
and 1112 are all considered the number 7.

1-counter machines are not 
Turing-universal… why?
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• If f:ℕ→ ℕ is any computable function, this machine can start with x=2n and halt 
with x=2f(n).

• Caveat about encoding: there is no 2-counter machine that starts with x=n and 
halts with x=2n.

• 2-counter machines can do universal computation on encoded inputs (n encoded as 2n), but 
they cannot compute the encoding/decoding themselves.

• However, the fact that 2-counter machines can simulate arbitrary 3-counter machines implies 
that the Halting Problem for 2-counter machines is undecidable.
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Finite automaton occupying a point (x,y) ∈ ℕ2.

It cannot write anything, or see anything.

It can sense if it is touching the southern wall, or 
western wall (or both).

It can move north, south, east, or west based on its 
current state and 2 “wall bits”, and of course change 
state:

δ: S × {wall, no wall}2→S × {,,,→}

There is an automaton A so that this problem 
is undecidable: given (x,y) ∈ ℕ2, if started at 
(x,y), will A ever visit the lower-left corner?
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Problem with adjusting rate constant to slow down 
reactions for achieving Turing-universal computation 

Could make rate constant k very small 
• If correct reaction rc: L2+R → L3 has rate constant 1, how small should k be to 

achieve Pr[ri occurs instead of rc] = Pr[error] = ε? 

• rate of rc = λc = #L2∙#R/v = #R/v ≥ 1/v

• rate of ri = λi = k∙#L2 = k

• Pr[error] = λi / (λi + λc)  ≤  k / (k + 1/v)

• For Pr[error] = ε, set k = ε / (v–vε) ≈ ε/v
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• Theorem(ish): There is a CRN solving problems 1–4.
• We’ll see how to solve problems 1–3 by simulating a register machine more efficiently.
• To handle Problem 4, see [Soloveichik, Cook, Winfree, Bruck, Computation with Finite 

Stochastic Chemical Reaction Networks, NaCo 2008]
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