
Computation with chemistry
slides © 2021, David Doty

ECS 232: Theory of Molecular Computation, UC Davis

1

Chemical reaction networks

2

• aTAM self-assembly describes stateless molecules that collide and stick together.

a

a

a a

Chemical reaction networks

2

• aTAM self-assembly describes stateless molecules that collide and stick together.
• Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.

a

a

a a

A
B C

D

Chemical reaction networks

2

• aTAM self-assembly describes stateless molecules that collide and stick together.
• Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.
• Allow more general reactions that produce/consume molecules.

a

a

a a

A
B C

D

Chemical reaction networks

2

R→P1+P2
reactant(s) product(s)

• aTAM self-assembly describes stateless molecules that collide and stick together.
• Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.
• Allow more general reactions that produce/consume molecules.

a

a

a a

A
B C

D

Chemical reaction networks

2

R→P1+P2

M1+M2→D

reactant(s) product(s)

dimermonomers

• aTAM self-assembly describes stateless molecules that collide and stick together.
• Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.
• Allow more general reactions that produce/consume molecules.

a

a

a a

A
B C

D

Chemical reaction networks

2

R→P1+P2

M1+M2→D

C+X→C+Y

reactant(s) product(s)

dimermonomers

catalyst

• aTAM self-assembly describes stateless molecules that collide and stick together.
• Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.
• Allow more general reactions that produce/consume molecules.

a

a

a a

A
B C

D

Chemical reaction networks

2

R→P1+P2

M1+M2→D

C+X→C+Y

Traditionally a descriptive modeling language…
Let’s instead use it as a prescriptive programming language

reactant(s) product(s)

dimermonomers

catalyst

• aTAM self-assembly describes stateless molecules that collide and stick together.
• Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.
• Allow more general reactions that produce/consume molecules.

a

a

a a

A
B C

D

What behavior is possible for chemistry in principle?

found in biology
inspiration

3

What behavior is possible for chemistry in principle?

found in biology

formally definable chemical reaction network
what we’ll study

inspiration

3

What behavior is possible for chemistry in principle?

found in biology

actual chemicals

formally definable chemical reaction network
what we’ll study

inspiration

ultimate interest

3

Computation with chemical reaction networks

• Key ideas setting chemical computation apart from others:
• cannot control order in which molecules collide

• can control how they react when they collide

4

Computation with chemical reaction networks

• Key ideas setting chemical computation apart from others:
• cannot control order in which molecules collide

• can control how they react when they collide

• Related model of distributed computing called population protocols
• originally motivated by mobile wireless sensor networks, e.g., attached to a

birds in a flock

4

[Computation in networks of passively mobile finite-state
sensors, Angluin, Aspnes, Diamadi, Fischer, Peralta. PODC 2004]

Example: Chemical caucusing

5

X+Y→U+U

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

opposite
opinions cancel

Example: Chemical caucusing

5

X+Y→U+U

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

X+U→X+X

Y+U→Y+Y

opposite
opinions cancel

both opinions
influence the
unopinionated

Example: Chemical caucusing

5

X+Y→U+U

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

X+U→X+X

Y+U→Y+Y

opposite
opinions cancel

both opinions
influence the
unopinionated

Example: Chemical caucusing

5

X+Y→U+U

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

X U Y

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

X+U→X+X

Y+U→Y+Y

opposite
opinions cancel

both opinions
influence the
unopinionated

Does chemistry compute?

6

X U Y

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

=X YU

X Y

Does chemistry compute?

6

X U Y

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

=

[Cardelli, Csikász-Nagy. The cell cycle switch computes
approximate majority. Nature Scientific Reports 2012]

≈

[Cardelli, Morphisms of reaction networks that couple
structure to function, BMC Systems Biology 2014]

X YU

Why compute
with chemistry? versus

7

Why compute
with chemistry? versus

speed?

7

Why compute
with chemistry? versus

slow fastspeed?

7

Why compute
with chemistry? versus

slow fastspeed?

component size?

7

Why compute
with chemistry? versus

slow fast

≈ 10-100 nm ≈ 10-100 nm

speed?

component size?

7

Why compute
with chemistry? versus

slow fast

≈ 10-100 nm ≈ 10-100 nm

yes not easily

speed?

component size?

compatible with
“wet environments”?

7

Why compute
with chemistry? versus

slow fast

≈ 10-100 nm ≈ 10-100 nm

yes not easily

speed?

component size?

compatible with
“wet environments”?

cells
smart drug
released only in
certain cellular
conditions

DNA storage
in-place computation
replacing expensive
read/write lab steps

bioreactors
chemical controller to
optimize yield of
metabolically produced
biofuels/drugs/etc.

7

Can we compute with chemistry?

8

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Can we compute with chemistry?

8

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

Can we compute with chemistry?

8

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

Can we compute with chemistry?

8

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

Can we compute with chemistry?

8

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

Can we compute with chemistry?

8

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X1+X2→X3

+

+

+

+

+

+

↔

→

→

9

DNA strand displacement implementing A+B→C

video: Microsoft Research Cambridge

Experimental implementations of synthetic
chemical reaction networks with DNA

10

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas,
Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

[Enzyme-free nucleic acid dynamical systems. Srinivas,
Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

Analog majority computation Chemical oscillator

X+Y→B+B

X+B→X+X

Y+B→Y+Y

A+B→B+B

B+C→C+C

C+A→A+A
time (hours)

re
la

ti
ve

 a
m

o
u

n
t

(%
)

co
n

c.
 d

er
iv

. (
n

M
/h

r)

1

2

15 30 45 60

time (hours)

What behavior is possible for chemistry in principle?

found in biology

actual chemicals

formally definable chemical reaction network

11

What behavior is possible for chemistry in principle?

found in biology

actual chemicals

≈
formally definable chemical reaction network

11

Theoretical Computer Science Approach

12

What computation is possible and what is not?
(Computability theory)

Theoretical Computer Science Approach

12

What computations necessarily take a
long time and what can be done quickly?
(Computational complexity theory)

What computation is possible and what is not?
(Computability theory)

NP
NP-complete

P

Boolean satisfiability

Hamiltonian path

protein folding

DNA sequence alignment

shortest path
integer multiplication

integer factoring

polynomial factoring

Chemical Reaction Networks (formal definition)

• finite set of reactions: e.g.

• finite set of d species Λ = { A, B, C, D, ... }

13

A+B→A+Ck1

k3C+2B→C

C→A+Ak2

Chemical Reaction Networks (formal definition)

• finite set of reactions: e.g.

• finite set of d species Λ = { A, B, C, D, ... }

13

A+B→A+Ck1

k3C+2B→C

C→A+Ak2

k1, k2, k3 are called rate constants;
if not specified, assume = 1.

Chemical Reaction Networks (formal definition)

• finite set of reactions: e.g.

• finite set of d species Λ = { A, B, C, D, ... }

• configuration x∈ℕd: molecular counts of each species

13

A+B→A+Ck1

k3C+2B→C

C→A+Ak2

k1, k2, k3 are called rate constants;
if not specified, assume = 1.

Chemical Reaction Networks (formal definition)

• finite set of reactions: e.g.

• finite set of d species Λ = { A, B, C, D, ... }

• configuration x∈ℕd: molecular counts of each species

13

A+B→A+Ck1

k3C+2B→C

C→A+Ak2

• reaction is applicable to x if x has enough of each reactant.

k1, k2, k3 are called rate constants;
if not specified, assume = 1.

A+B→A+C

C→A+A

B

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

x =

14

A

B

A

α applicable but not β

A+B→A+C

C→A+A

B

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

x =

14

A

B

A

α applicable but not β

A+B→A+C

C→A+A

B

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)

x =

14

A A

C

α applicable but not β

α,β both applicable

A+B→A+C

C→A+A

B

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)

x =

14

A A

C

α applicable but not β

α,β both applicable

A+B→A+C

C→A+A

B

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)⟹
β

(4, 1, 0)

x =

14

A A

A

A

α applicable but not β

α,β both applicable

A+B→A+C

C→A+A

B

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)⟹
β

(4, 1, 0)

x =

14

(2, 0, 2)

A A

A

A

α (another possibility)

α applicable but not β

α,β both applicable

A+B→A+C

C→A+A

B

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)⟹
β

(4, 1, 0)

x =

14

(2, 0, 2)

A A

A

A

α (another possibility)

α applicable but not β

α,β both applicable

A+B→A+C

C→A+A

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)⟹
β

(4, 1, 0)
⟹

α

(4, 0, 1)
...

x =

14

(2, 0, 2)

A A

A

A

C
α (another possibility)

α applicable but not β

α,β both applicable

A+B→A+C

C→A+A

What is possible:
Example reaction sequence (a.k.a. execution)

α:

β: (2, 2, 0)

A B C

⟹

α

(2, 1, 1)⟹
β

(4, 1, 0)
⟹

α

(4, 0, 1)
...

x =

14

(2, 0, 2)

A A

A

A

C
α (another possibility)

α applicable but not β

α,β both applicable

Formally, an execution is a
sequence of configurations x1,
x2, … such that each xi ⟹ xi+1 by
a single reaction.
If initial configuration x1 is
understood, the sequence of
reactions is sometimes called
the execution.

Some simple reactions

15

X Y
1

1

start with n copies of molecule X

Some simple reactions

15

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

Some simple reactions

15

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

Count of Y
never stabilizes

Some simple reactions

15

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

Count of Y
never stabilizes

Some simple reactions

15

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

#Y stabilizes, with expected value n/2

Count of Y
never stabilizes

Some simple reactions

15

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

#Y stabilizes, with expected value n/2

Count of Y
never stabilizes

Count of Y stabilizes, but
not to a deterministic value
based on initial count of X

Some simple reactions

15

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

#Y stabilizes, with expected value n/2

2 2

n/3 n/3

Count of Y
never stabilizes

Count of Y stabilizes, but
not to a deterministic value
based on initial count of X

Worse yet, both depend
crucially on rate constants.

Some simple reactions

15

X Y
1

1

#Y = n/2 expected at equilibrium

start with n copies of molecule X

X Y1

X 1

#Y stabilizes, with expected value n/2

2 2

n/3 n/3

Count of Y
never stabilizes

Count of Y stabilizes, but
not to a deterministic value
based on initial count of X

Worse yet, both depend
crucially on rate constants.

Examples of stable (rate-
independent) CRN computation

16

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

A

A

A

A

A

A

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A

A

A

A

A

A

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A

A

A

A

A

A

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A
A

A

A

A

Y

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A
A

A

A

A

Y

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A
A A

A

Y Y

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A
A A

A

Y Y

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A
A AY YY

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A
A AY YY

A

??

Examples of function computation

division by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A
A AY YY

⌊ ⌋

A

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

2A→Y

A

A

AA
A AY YY

⌊ ⌋

A

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

A→2Y
2A→Y

A

A

AA
A AY YY

⌊ ⌋

A

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

A→2Y
2A→Y

A

A
Y

Y
A

A AY YY

⌊ ⌋

A

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

A→2Y
2A→Y

A

YY
Y

Y
A

A AY YY

⌊ ⌋

A

Examples of function computation

multiplication by 2: f(a) = 2adivision by 2: f(a) = a/2

goal: end up with a/2 copies of Y

17

A→2Y
2A→Y

Y

Y

YY
Y

Y
A

A AY YY

⌊ ⌋

A

Examples of function computation

multiplication by 3: f(a) = 3a

18

A

A

A

Examples of function computation

multiplication by 3: f(a) = 3a

18

A→3Y

A

A

A

Examples of function computation

multiplication by 3: f(a) = 3a

18

A→3Y

Y

Y

YY

Y

YY

Y

Y

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = ⌊a/3⌋

18

A→3Y

Y

Y

YY

Y

Y

A

A

A

A

A

A

Y

Y

Y A

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = ⌊a/3⌋

18

A→3Y 3A→Y

Y

Y

YY

Y

Y

A

A

A

A

A

A

Y

Y

Y A

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = ⌊a/3⌋

18

A→3Y 3A→Y

Y

Y

YY

Y

Y

A

A

A

A

A

A

Y

Y

Y A

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = ⌊a/3⌋

18

A→3Y 3A→Y

Y

Y

YY

Y

Y

Y

Y

Y

Y

Y A

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A A

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y

A A

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y

A A

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y

Y

Y’
A

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y

Y

Y’
A

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y

Y

YY
A

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y

Y

YY

Y

Y’

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y

Y

YY

Y

YY

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y

Y

Y

A

A

A

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L0

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

A

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L0

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

A

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L0

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L1

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L1

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L2

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L2

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L0

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L0

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L1

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L1

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L2

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

A

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L2

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

Y

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L0

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

Y

Y

A

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L0

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

Y

Y

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L1

Y

Examples of function computation
f(a) = 3a using (≤ 2)-product reactions

19

A→Y+Y’
Y’→2Y L0+A→L1

L1+A→L2

L2+A→L0+Y

Y

Y

Y

Y

f(a) = ⌊a/3⌋ using bimolecular ((≤ 2)-reactant)
reactions, starting in config { 1 L0, a A }
(a.k.a., leader-driven)

Y

YY
L1

ends with 1 copy
of Li for i = ???

Examples of function computation

20

f(a) = ⌊a/3⌋ using bimolecular (≤ 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

Examples of function computation

20

f(a) = ⌊a/3⌋ using bimolecular (≤ 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A→ A2

A2+A→Y

Examples of function computation

20

f(a) = ⌊a/3⌋ using bimolecular (≤ 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A→ A2

A2+A→Y

A2+A2→A+Y

Examples of function computation

20

f(a) = ⌊a/3⌋ using bimolecular (≤ 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A→ A2

A2+A→Y

A2+A2→A+Y

Calling A = A1, in general to divide by constant c:
Ai+Aj→Ak if i+j < c, where k = i + j
Ai+Aj→Ak+Y if i+j > c, where k = i + j – c
Ai+Aj→Y if i+j = c

Examples of function computation

20

f(a) = ⌊a/3⌋ using bimolecular (≤ 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A→ A2

A2+A→Y

A2+A2→A+Y

Calling A = A1, in general to divide by constant c:
Ai+Aj→Ak if i+j < c, where k = i + j
Ai+Aj→Ak+Y if i+j > c, where k = i + j – c
Ai+Aj→Y if i+j = c

i.e., A’s start with 1 “ball” and pass balls to each other;
whenever someone gets ≥ c balls,
throw away c balls and produce a Y

Examples of function computation

addition: f(a,b) = a+b

21

A

A

B

Examples of function computation

addition: f(a,b) = a+b

21

A→Y
B→Y

A

A

B

Examples of function computation

addition: f(a,b) = a+b

21

A→Y
B→Y

Y

Y

Y

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

Y

Y

Y A

B

A A A A A

B

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y A

B

A A A A A

B

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y
Y

B

Y Y Y Y Y

B

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y
Y

B

Y Y Y Y Y

B

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y
Y Y Y Y

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y
Y Y Y Y

B B B B B

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y
Y Y Y Y

B B B B B

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y

B

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y

B

???

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a–b

21

A→Y
B→Y

A→Y
B+Y→∅

Y

Y

Y

B

max(0, a–b)

Examples of function computation

22

composition: f(a,b) = 3a–b

Examples of function computation

22

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

Examples of function computation

22

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)
???

Examples of function computation

22

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

Examples of function computation

22

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

Examples of function computation

minimum: f(a,b) = min(a,b)

22

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

Examples of function computation

minimum: f(a,b) = min(a,b)

22

A+B→Y

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b)

22

A+B→Y

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

= a+b–min(a,b)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b)

22

A+B→Y

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

= a+b–min(a,b)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b)

22

A+B→Y

A→Y+A2

B→Y+B2

addition

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

= a+b–min(a,b)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b)

22

A+B→Y

A→Y+A2

B→Y+B2

A2+B2→K

addition

minimum

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

= a+b–min(a,b)

Examples of function computation

minimum: f(a,b) = min(a,b)

maximum: f(a,b) = max(a,b)

22

A+B→Y

A→Y+A2

B→Y+B2

A2+B2→K

K+Y→∅

addition

minimum

subtraction

composition: f(a,b) = 3a–b

A→3Y
B+Y→∅

3a–(b/2)

2

???

only linear functions computable?

Examples of function computation

23

constant: f(a) = 1

Examples of function computation

23

constant: f(a) = 1

A→Y a.k.a. “leader election”
2Y→Y

Examples of function computation

23

constant: f(a) = 1

A→Y a.k.a. “leader election”
2Y→Y

subtract constant: f(a) = a–1

Examples of function computation

23

constant: f(a) = 1

A→Y a.k.a. “leader election”
2Y→Y

subtract constant: f(a) = a–1

2A→A+Y

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

24

A

A A

A

A

A A

A
A

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

24

A votes no; B votes yes

A

A A

A

A

A A

A
A

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

24

A votes no; B votes yes

A

A A

A

A

A AB

A
A

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

24

A votes no; B votes yes

A

A A

A

A

A AB

A
A

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

24

A votes no; B votes yes

A

A A

A

A

A AB

B

A
A

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

24

A votes no; B votes yes

A

A A

A

A

A AB

B

A
A

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

24

A votes no; B votes yes

A

A A

A

A

A AB

B

B

B

A
A

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

24

A votes no; B votes yes

A

A A

A

A

A AB

B

B

B

B B

B
AB

AB

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

Counting: φ(a,b) = yes ⇔ b > 1

24

A votes no; B votes yes

A

A A

A

A

A AB

B

B

B

B B

B
AB

AB

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

Counting: φ(a,b) = yes ⇔ b > 1

2B→2Y

24

A votes no; B votes yes

A

A A

A

A

A AB

B

B

B

B B

B
AB

AB

Examples of predicate computation

Detection: φ(a,b) = yes ⇔ b > 0

B+A → 2B

Counting: φ(a,b) = yes ⇔ b > 1

2B→2Y

Y+B→2Y

Y+A→2Y

24

A votes no; B votes yes

A,B vote no; Y votes yes
A

A A

A

A

A AB

B

B

B

B B

B
AB

AB

Examples of predicate computation

Majority: φ(a,b) = yes ⇔ a ≥ b

25

Examples of predicate computation

Majority: φ(a,b) = yes ⇔ a ≥ b

A+B→Af+Bf (both become “followers” but preserve difference between A’s and B’s)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Majority: φ(a,b) = yes ⇔ a ≥ b

A+B→Af+Bf (both become “followers” but preserve difference between A’s and B’s)

A+Bf→A+Af (leader changes vote of follower)

B+Af→B+Bf (leader changes vote of follower)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Majority: φ(a,b) = yes ⇔ a ≥ b

A+B→Af+Bf (both become “followers” but preserve difference between A’s and B’s)

A+Bf→A+Af (leader changes vote of follower)

B+Af→B+Bf (leader changes vote of follower)

Af+Bf→Af+Af (tiebreaker if no leaders left when a=b)

25

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087–1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

26

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

26

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

26

two leaders XOR their parity,
and one becomes follower

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Examples of predicate computation

Parity: φ(a)=Y ⇔ a is odd

a = Ao (subscript o/e means ODD/EVEN, and capital A means it is leader)

26

two leaders XOR their parity,
and one becomes follower

leader overwrites
bit of follower

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

Formal definition of CRN
computation

27

Modeling choices in formalizing “Computing with chemistry”

28

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

28

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input a1,…,ak, what is the initial configuration?
• only input species A1, …, Ak present?

• auxiliary species can be present?

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input a1,…,ak, what is the initial configuration?
• only input species A1, …, Ak present?

• auxiliary species can be present?

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input a1,…,ak, what is the initial configuration?
• only input species A1, …, Ak present?

• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input a1,…,ak, what is the initial configuration?
• only input species A1, …, Ak present?

• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input a1,…,ak, what is the initial configuration?
• only input species A1, …, Ak present?

• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

28

we’ll start with these choices

Modeling choices in formalizing “Computing with chemistry”

• integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

• what is the object being “computed”?
• yes/no decision problem? “#A’s > #B’s?”

• numerical function? “set #Y = #X/2”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent input a1,…,ak, what is the initial configuration?
• only input species A1, …, Ak present?

• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

28

we’ll start with these choices

Defining stable computation

29

Defining stable computation

29

i
initial

configuration

Defining stable computation

29

i xreactions

∀

any reachable
configuration

initial
configuration

Defining stable computation

29

i x oreactions reactions

∀ ∃

any reachable
configuration

initial
configuration

correct
output

Defining stable computation

29

i x o o’reactions reactions reactions

∀ ∃

any reachable
configuration

initial
configuration

correct
output

correct
output

∀
o is stable

Defining stable computation

29

i x o o’reactions reactions reactions

∀ ∃

any reachable
configuration

initial
configuration

correct
output

correct
output

∀
o is stable

(assuming finite set of reachable configurations) equivalent to:
The system will reach a correct stable configuration with probability 1.

Probability-1 correctness can be characterized
with only reachability

30

Probability-1 correctness can be characterized
with only reachability

30

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized
with only reachability

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i ⟹ Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o ∈ Y.

30

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized
with only reachability

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i ⟹ Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o ∈ Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

30

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized
with only reachability

Theorem: Let i be a configuration where Reach(i) is
finite, and let Y be a set of configurations. Then
(Pr[i ⟹ Y] = 1) ⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i ⟹ Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o ∈ Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

30

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized
with only reachability

Theorem: Let i be a configuration where Reach(i) is
finite, and let Y be a set of configurations. Then
(Pr[i ⟹ Y] = 1) ⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i ⟹ Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o ∈ Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

This theorem lets us use (often simpler) reachability
arguments and avoid discussing probability, while
still ensuring probability-1 correctness.

30

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized
with only reachability

Theorem: Let i be a configuration where Reach(i) is
finite, and let Y be a set of configurations. Then
(Pr[i ⟹ Y] = 1) ⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i ⟹ Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o ∈ Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

Proof:
1. (⟹): Assume (∃x∈Reach(i)) (∀o∈Reach(x)) o ∉ Y.
2. Since Pr[i ⟹ x] > 0, which prevents ever reaching Y,

Pr[i ⟹ Y] < 1. (Note this didn’t assume Reach(i) is finite.)
3. (⟸): Assume (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
4. For each x ∈ Reach(i), let Ex = (x,…,o) be any finite

execution leading from x to some o ∈ Y.
5. Let k = maxx ∈ Reach(i) |Ex| be the maximum length of any

of these finite executions reaching o.
6. Let px = Pr[Ex occurs from x] > 0.
7. Let 𝜀 = minx ∈ Reach(i) px. Since Reach(i) is finite, 𝜀 > 0.
8. Then for each x ∈ Reach(i), Pr[Ex does not occur from x

after the next k steps] ≤ 1 – 𝜀 < 1.
9. So, breaking the infinite execution into segments of

length k, the probability Ex is never followed within k
steps after any visit to an x ∈ Reach(i) is at most
ς𝑖=1
∞ (1 − 𝜀) = 0. QED

This theorem lets us use (often simpler) reachability
arguments and avoid discussing probability, while
still ensuring probability-1 correctness.

30

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Deterministic computation ≠ all executions correct

31

Deterministic computation ≠ all executions correct

31

False statement: If Pr[i ⟹ Y] = 1, then every sufficiently
long execution starting at i reaches to some c ∈ Y.

Deterministic computation ≠ all executions correct

• Counterexample??

31

False statement: If Pr[i ⟹ Y] = 1, then every sufficiently
long execution starting at i reaches to some c ∈ Y.

Deterministic computation ≠ all executions correct

• Counterexample??

• Suppose i = {A}, with reactions
• A ⇌ B

• B→C

31

False statement: If Pr[i ⟹ Y] = 1, then every sufficiently
long execution starting at i reaches to some c ∈ Y.

Deterministic computation ≠ all executions correct

• Counterexample??

• Suppose i = {A}, with reactions
• A ⇌ B

• B→C

• Then Pr[{A} ⟹ {C}] = 1, but the execution {A} ⟹ {B} ⟹ {A} ⟹ {B} ⟹ {A} ⟹ …
avoids it forever.

31

False statement: If Pr[i ⟹ Y] = 1, then every sufficiently
long execution starting at i reaches to some c ∈ Y.

Deterministic computation ≠ all executions correct

• Counterexample??

• Suppose i = {A}, with reactions
• A ⇌ B

• B→C

• Then Pr[{A} ⟹ {C}] = 1, but the execution {A} ⟹ {B} ⟹ {A} ⟹ {B} ⟹ {A} ⟹ …
avoids it forever.

• Lesson: it is too strict to require all sufficiently long executions to reach Y.

31

False statement: If Pr[i ⟹ Y] = 1, then every sufficiently
long execution starting at i reaches to some c ∈ Y.

Fair executions: Alternative characterization of stable computation

32

Definition: An infinite execution x0, x1, … is fair if

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]

“there exist infinitely many”Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
5. Let x0, x1, … be a fair execution with i=x0.

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
5. Let x0, x1, … be a fair execution with i=x0.
6. Since all xj∈Reach(i), for each j, by hypothesis ∃oj∈Reach(xj) oj ∈ Y.

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
5. Let x0, x1, … be a fair execution with i=x0.
6. Since all xj∈Reach(i), for each j, by hypothesis ∃oj∈Reach(xj) oj ∈ Y.
7. Since Y is finite, some o ∈ Y is reachable from infinitely many xj.

Goal of definition of fair is to make this theorem true:

Fair executions: Alternative characterization of stable computation

32

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then
(every fair execution starting at i reaches some o ∈ Y)
⇔ (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.

Definition: An infinite execution x0, x1, … is fair if
(∀o∈ℕΛ) [(∃∞i∈ℕ xi ⟹ o) implies (∃∞k∈ℕ xk = o)]
(every configuration infinitely often reachable is
infinitely often reached)

“there exist infinitely many”

Proof:
1. (⟹): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (∀x∈Reach(i)), i.e., for all x reachable via some finite

execution starting at i, (∃o∈Reach(x)) o ∈ Y, Y is reachable from x
by extending with a fair execution.

4. (⟸): Suppose (∀x∈Reach(i)) (∃o∈Reach(x)) o ∈ Y.
5. Let x0, x1, … be a fair execution with i=x0.
6. Since all xj∈Reach(i), for each j, by hypothesis ∃oj∈Reach(xj) oj ∈ Y.
7. Since Y is finite, some o ∈ Y is reachable from infinitely many xj.
8. Since x0, x1, … is fair and o is infinitely often reachable, there is k

such that xk = o ∈ Y, i.e., the fair execution reaches Y. QED

Goal of definition of fair is to make this theorem true:

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

33

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

• input specification: designate subset Σ ⊆ Λ as “input” species
• valid initial configuration i: all molecules are from Σ, e.g., {100 a, 100 b}

33

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

• input specification: designate subset Σ ⊆ Λ as “input” species
• valid initial configuration i: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species Y∈Λ whose count is the output

33

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

• input specification: designate subset Σ ⊆ Λ as “input” species
• valid initial configuration i: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species Y∈Λ whose count is the output

• o is stable if, for all o’ reachable from o, o(Y) = o’(Y)

33

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

• input specification: designate subset Σ ⊆ Λ as “input” species
• valid initial configuration i: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species Y∈Λ whose count is the output

• o is stable if, for all o’ reachable from o, o(Y) = o’(Y)

• CRN stably computes f if, for all valid initial configurations i, and all x
reachable from i, there is a stable o reachable from x such that o(Y) = f(i).

33

Definition of function computation

• goal: compute function f: ℕk→ℕ, e.g., f(a,b) = 2a + b/2

• input specification: designate subset Σ ⊆ Λ as “input” species
• valid initial configuration i: all molecules are from Σ, e.g., {100 a, 100 b}

• output specification: designate one species Y∈Λ whose count is the output

• o is stable if, for all o’ reachable from o, o(Y) = o’(Y)

• CRN stably computes f if, for all valid initial configurations i, and all x
reachable from i, there is a stable o reachable from x such that o(Y) = f(i).

• Recall: this is equivalent to saying that i reaches to a correct, stable o with probability 1, and
equivalent to saying that every fair execution from i reaches to a correct, stable o.

33

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

34
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial configurations i all molecules are from Σ, e.g., {100 A, 55 B}

34
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial configurations i all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

34
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial configurations i all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (configuration o outputs “yes”) if vote is unanimously yes: o(S)>0 ⟹ S∈ΛY

• ψ(o) = N (configuration o outputs “no”) if vote is unanimously no: o(S)>0 ⟹ S∈ΛN

• ψ(o) undefined otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

34
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial configurations i all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (configuration o outputs “yes”) if vote is unanimously yes: o(S)>0 ⟹ S∈ΛY

• ψ(o) = N (configuration o outputs “no”) if vote is unanimously no: o(S)>0 ⟹ S∈ΛN

• ψ(o) undefined otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

• o is stable if ψ(o) = ψ(o’) (and is defined) for all o’ reachable from o

34
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial configurations i all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (configuration o outputs “yes”) if vote is unanimously yes: o(S)>0 ⟹ S∈ΛY

• ψ(o) = N (configuration o outputs “no”) if vote is unanimously no: o(S)>0 ⟹ S∈ΛN

• ψ(o) undefined otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

• o is stable if ψ(o) = ψ(o’) (and is defined) for all o’ reachable from o

• CRN stably computes φ if, for all valid initial configurations i, and all x reachable
from i, there is a stable o reachable from x such that ψ(o) = φ(i) (o is correct).

34
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Definition of predicate (decision problem) computation

• goal: compute predicate φ: ℕk→{Y,N}, e.g., φ(a,b)=Y ⇔ a>b

• input specification: designate subset Σ ⊆ Λ as “input” species
• in valid initial configurations i all molecules are from Σ, e.g., {100 A, 55 B}

• output specification: partition species Λ into “yes” voters ΛY and “no” voters ΛN

• ψ(o) = Y (configuration o outputs “yes”) if vote is unanimously yes: o(S)>0 ⟹ S∈ΛY

• ψ(o) = N (configuration o outputs “no”) if vote is unanimously no: o(S)>0 ⟹ S∈ΛN

• ψ(o) undefined otherwise: (∃ S∈ΛN, S’∈ΛY) o(S)>0 and o(S’)>0

• o is stable if ψ(o) = ψ(o’) (and is defined) for all o’ reachable from o

• CRN stably computes φ if, for all valid initial configurations i, and all x reachable
from i, there is a stable o reachable from x such that ψ(o) = φ(i) (o is correct).

• We say the CRN stably decides the set φ–1(Y) = set of inputs mapping to output Y

34
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]

Feedforward CRNs
A class of CRNs with a simpler definition/proofs for computation

35

Stable versus terminal

36

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Stable versus terminal

36

Definition: A configuration is terminal
if no reaction is applicable to it.

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Stable versus terminal

36

Definition: A configuration is terminal
if no reaction is applicable to it.

Observation: Every terminal
configuration is stable.

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Stable versus terminal

36

Note: A configuration can be stable
without being terminal. Example?

Definition: A configuration is terminal
if no reaction is applicable to it.

Observation: Every terminal
configuration is stable.

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.
6. Let m = #(rk,P); Let Q’ be prefix (i, x1, …, xp) of Q such that xp ⟹ xp+1 by the

(m+1)’st execution of reaction rk.We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.
6. Let m = #(rk,P); Let Q’ be prefix (i, x1, …, xp) of Q such that xp ⟹ xp+1 by the

(m+1)’st execution of reaction rk.
• xp is the config just before the first time that rk happens more in Q than P.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.
6. Let m = #(rk,P); Let Q’ be prefix (i, x1, …, xp) of Q such that xp ⟹ xp+1 by the

(m+1)’st execution of reaction rk.
• xp is the config just before the first time that rk happens more in Q than P.

7. Note r1 … rk–1 occur least as much in P as in Q. (#(ri,P) ≥ #(ri,Q) for i=1 to k–1)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.
6. Let m = #(rk,P); Let Q’ be prefix (i, x1, …, xp) of Q such that xp ⟹ xp+1 by the

(m+1)’st execution of reaction rk.
• xp is the config just before the first time that rk happens more in Q than P.

7. Note r1 … rk–1 occur least as much in P as in Q. (#(ri,P) ≥ #(ri,Q) for i=1 to k–1)
8. Thus r1 … rk–1 occur least as much in P as in Q’. (since Q’ is prefix of Q)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.
6. Let m = #(rk,P); Let Q’ be prefix (i, x1, …, xp) of Q such that xp ⟹ xp+1 by the

(m+1)’st execution of reaction rk.
• xp is the config just before the first time that rk happens more in Q than P.

7. Note r1 … rk–1 occur least as much in P as in Q. (#(ri,P) ≥ #(ri,Q) for i=1 to k–1)
8. Thus r1 … rk–1 occur least as much in P as in Q’. (since Q’ is prefix of Q)
9. Also, #(rk,P) = #(rk,Q’) by our choice of Q’.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.
6. Let m = #(rk,P); Let Q’ be prefix (i, x1, …, xp) of Q such that xp ⟹ xp+1 by the

(m+1)’st execution of reaction rk.
• xp is the config just before the first time that rk happens more in Q than P.

7. Note r1 … rk–1 occur least as much in P as in Q. (#(ri,P) ≥ #(ri,Q) for i=1 to k–1)
8. Thus r1 … rk–1 occur least as much in P as in Q’. (since Q’ is prefix of Q)
9. Also, #(rk,P) = #(rk,Q’) by our choice of Q’.
10. So A is present in c, i.e., c(A) > 0.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

37

Definition: A CRN is feed-forward if reactions can be
ordered r1, r2, …, rn such that, for all k < ℓ, no reactant
of rk appears in rℓ (as either reactant or product).

Example: The max(A,B) CRN:
1. A→Y+A2 (A doesn’t appear below)

2. B→Y+B2 (B doesn’t appear below)

3. A2+B2→K (A2,B2 don’t appear below)

4. K+Y→∅

Lemma: Suppose in a feed-forward CRN that i ⟹ c by
execution P, and i ⟹ d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

Proof:
1. Let rk be first reaction in feed-forward order such that #(rk,P) < #(rk,Q).
2. For ease of exposition, assume rk has only one reactant A.
3. rk+1 … rn do not change #A, by the definition of feed-forward.
4. r1 … rk–1 can produce but not consume A. (why??)
5. So only r1 … rk can increase #A, and only rk can decrease #A.
6. Let m = #(rk,P); Let Q’ be prefix (i, x1, …, xp) of Q such that xp ⟹ xp+1 by the

(m+1)’st execution of reaction rk.
• xp is the config just before the first time that rk happens more in Q than P.

7. Note r1 … rk–1 occur least as much in P as in Q. (#(ri,P) ≥ #(ri,Q) for i=1 to k–1)
8. Thus r1 … rk–1 occur least as much in P as in Q’. (since Q’ is prefix of Q)
9. Also, #(rk,P) = #(rk,Q’) by our choice of Q’.
10. So A is present in c, i.e., c(A) > 0.
11. Thus rk is applicable at c, so c is not terminal. QED

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

#(rk,P) = number of times rk occurs in P

Ideas taken from [M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Stable function computation by feed-forward CRNs

38

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Stable function computation by feed-forward CRNs

38

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Stable function computation by feed-forward CRNs

38

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Stable function computation by feed-forward CRNs

38

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Stable function computation by feed-forward CRNs

38

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Answer: Letting oi = the unique terminal
configuration reachable from i, it computes
f(i) = oi(Y).

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Stable function computation by feed-forward CRNs

38

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Corollary: The CRN:
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅
stably computes the function f(A,B) = max(A,B).

Answer: Letting oi = the unique terminal
configuration reachable from i, it computes
f(i) = oi(Y).

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Stable function computation by feed-forward CRNs

38

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Corollary: The CRN:
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅
stably computes the function f(A,B) = max(A,B).

Proof:
1. Do the following reactions:

1. #A times rxn 1
2. #B times rxn 2
3. min(#A,#B) times rxn 3
4. min(#A,#B) times rxn 4

Answer: Letting oi = the unique terminal
configuration reachable from i, it computes
f(i) = oi(Y).

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Stable function computation by feed-forward CRNs

38

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Corollary: The CRN:
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅
stably computes the function f(A,B) = max(A,B).

Proof:
1. Do the following reactions:

1. #A times rxn 1
2. #B times rxn 2
3. min(#A,#B) times rxn 3
4. min(#A,#B) times rxn 4

2. This removes all A, B, (at least one of A2 or B2),
and K, so this is terminal. By Corollary 2 it stably
computes whatever #Y is now, which is…Answer: Letting oi = the unique terminal

configuration reachable from i, it computes
f(i) = oi(Y).

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Stable function computation by feed-forward CRNs

38

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Corollary: The CRN:
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅
stably computes the function f(A,B) = max(A,B).

Proof:
1. Do the following reactions:

1. #A times rxn 1
2. #B times rxn 2
3. min(#A,#B) times rxn 3
4. min(#A,#B) times rxn 4

2. This removes all A, B, (at least one of A2 or B2),
and K, so this is terminal. By Corollary 2 it stably
computes whatever #Y is now, which is…

3. CRN produces #A+#B count of Y by rxns 1 and 2,
and consumes min(#A,#B) Y’s by rxn 4, so
computes #A+#B–min(#A,#B) = max(#A,#B). QED

Answer: Letting oi = the unique terminal
configuration reachable from i, it computes
f(i) = oi(Y).

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Lemma (restated): Suppose that in a feed-forward CRN,
i ⟹ c by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ci reachable from initial
configuration i, then ci is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ci reachable from initial
configuration i, then ci is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:
1. Let P be the execution leading from i to ci.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ci reachable from initial
configuration i, then ci is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:
1. Let P be the execution leading from i to ci.
2. Any execution Q with with |Q| > |P| must have more of some

reaction r by the pigeonhole principle.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ci reachable from initial
configuration i, then ci is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:
1. Let P be the execution leading from i to ci.
2. Any execution Q with with |Q| > |P| must have more of some

reaction r by the pigeonhole principle.
1. By the Lemma, ci is not terminal, a contradiction.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ci reachable from initial
configuration i, then ci is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:
1. Let P be the execution leading from i to ci.
2. Any execution Q with with |Q| > |P| must have more of some

reaction r by the pigeonhole principle.
1. By the Lemma, ci is not terminal, a contradiction.
2. So no execution Q is longer than P.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ci reachable from initial
configuration i, then ci is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:
1. Let P be the execution leading from i to ci.
2. Any execution Q with with |Q| > |P| must have more of some

reaction r by the pigeonhole principle.
1. By the Lemma, ci is not terminal, a contradiction.
2. So no execution Q is longer than P.

3. Any execution Q with |Q| = |P| must be a permutation of P, or
else by pigeonhole Q would have more of some reaction, and this
would again contradict the terminality of ci.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

39

Lemma (restated): Suppose that in a feed-
forward CRN, i ⟹ c by execution P, and i ⟹ d
by execution Q. If any reaction occurs less in P
than Q, then c is not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ci reachable from initial
configuration i, then ci is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:
1. Let P be the execution leading from i to ci.
2. Any execution Q with with |Q| > |P| must have more of some

reaction r by the pigeonhole principle.
1. By the Lemma, ci is not terminal, a contradiction.
2. So no execution Q is longer than P.

3. Any execution Q with |Q| = |P| must be a permutation of P, or
else by pigeonhole Q would have more of some reaction, and this
would again contradict the terminality of ci.

4. Finally, to rule out that we might have some shorter terminal
execution, any execution Q with |Q| < |P| must have some
reaction r occurring more in P than Q, so by the Lemma, Q cannot
reach a terminal configuration. QED

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.
4. Since CRN is non-competitive, no reactant A of r can be consumed in t ≠ r.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.
4. Since CRN is non-competitive, no reactant A of r can be consumed in t ≠ r.

1. Some other reactions t might produce A.
We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.
4. Since CRN is non-competitive, no reactant A of r can be consumed in t ≠ r.

1. Some other reactions t might produce A.
2. Since #(t,P) ≥ #(t,Q’), each t ≠ r produces at least as much A in P has in Q’.We often convince ourselves a CRN

works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.
4. Since CRN is non-competitive, no reactant A of r can be consumed in t ≠ r.

1. Some other reactions t might produce A.
2. Since #(t,P) ≥ #(t,Q’), each t ≠ r produces at least as much A in P has in Q’.
3. Exactly as much A is consumed by r in P as in Q’.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.
4. Since CRN is non-competitive, no reactant A of r can be consumed in t ≠ r.

1. Some other reactions t might produce A.
2. Since #(t,P) ≥ #(t,Q’), each t ≠ r produces at least as much A in P has in Q’.
3. Exactly as much A is consumed by r in P as in Q’.
4. Thus xp(A) ≤ c(A) for all reactants A of r.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.
4. Since CRN is non-competitive, no reactant A of r can be consumed in t ≠ r.

1. Some other reactions t might produce A.
2. Since #(t,P) ≥ #(t,Q’), each t ≠ r produces at least as much A in P has in Q’.
3. Exactly as much A is consumed by r in P as in Q’.
4. Thus xp(A) ≤ c(A) for all reactants A of r.

5. Since r is applicable to xp, it is applicable to c.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Noncompetitive CRNs

40

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R→A or
2R→R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R→2R or R+X→R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:
1. A→Y+A2 (A isn’t a reactant elsewhere)

2. B→Y+B2 (B isn’t a reactant elsewhere)

3. A2+B2→K (A2,B2 aren’t reactants elsewhere)

4. K+Y→∅ (K, Y aren’t reactants elsewhere)

Lemma: Suppose in a non-competitive CRN that i⟹ c
by execution P, and i ⟹ d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

Proof:
1. Q’ = longest prefix (i, x1, …, xp) of Q such that #(r,P) ≥ #(r,Q) for all reactions r.

• i.e., xp+1 is the first time in Q that some reaction exceeds its count in P.
2. Let r be the reaction such that xp ⟹ xp+1 via r.
3. Note #(r,P) = #(r,Q’) and #(t,P) ≥ #(t,Q’) for all other reactions t ≠ r.
4. Since CRN is non-competitive, no reactant A of r can be consumed in t ≠ r.

1. Some other reactions t might produce A.
2. Since #(t,P) ≥ #(t,Q’), each t ≠ r produces at least as much A in P has in Q’.
3. Exactly as much A is consumed by r in P as in Q’.
4. Thus xp(A) ≤ c(A) for all reactants A of r.

5. Since r is applicable to xp, it is applicable to c.
6. So c is not terminal. QED

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasić, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

#(r,P) = number of times r occurs in P

Non-feedforward CRNs

41

Example of a non-feedforward CRN that
stably computes a function?

Non-feedforward CRNs

41

Example of a non-feedforward CRN that
stably computes a function?

f(x) = x/2

1. X⇌ Y+A

2. X+A→∅

Non-feedforward CRNs

41

Example of a non-feedforward CRN that
stably computes a function?

f(x) = x/2

1. X⇌ Y+A

2. X+A→∅

initial config

final
config

Not a plot of f!
It's the space of
reachable states.

Non-feedforward CRNs

41

Example of a non-feedforward CRN that
stably computes a function?

f(x) = x/2

1. X⇌ Y+A

2. X+A→∅ initial config

final
config

Non-feedforward CRNs

41

Example of a non-feedforward CRN that
stably computes a function?

f(x) = x/2

1. X⇌ Y+A

2. X+A→∅ initial config

final
config

Non-feedforward CRNs

41

Example of a non-feedforward CRN that
stably computes a function?

f(x) = x/2

1. X⇌ Y+A

2. X+A→∅ initial config

final
config

It’s even non-non-competitive!

Time complexity of CRNs

42

What is probable:
Stochastic kinetic model of chemical reaction networks

[McQuarrie 1967, van Kampen, Gillespie 1977]

Solution volume v

reaction type rate / propensity

k⋅ #A

k⋅ #A⋅ #B / v

43

A → …k

A+B → …k

What is probable:
Stochastic kinetic model of chemical reaction networks

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]

System evolves via a continuous time Markov process:

Solution volume v

reaction type rate / propensity

k⋅ #A

k⋅ #A⋅ #B / v

43

A → …k

A+B → …k

What is probable:
Stochastic kinetic model of chemical reaction networks

expected time until next reaction is 1 / (sum of all reaction rates)

Pr[next reaction is jth one] = rate of jth reaction / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]

System evolves via a continuous time Markov process:

Solution volume v

reaction type rate / propensity

k⋅ #A

k⋅ #A⋅ #B / v

43

A → …k

A+B → …k

Relationship to distributed computing

population protocol = list of transitions such as

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Relationship to distributed computing

population protocol = list of transitions such as

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Relationship to distributed computing

population protocol = list of transitions such as

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

• unit rate constants

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Relationship to distributed computing

population protocol = list of transitions such as

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

• unit rate constants

• volume = n = number of agents (never changes)

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Relationship to distributed computing

population protocol = list of transitions such as

x,y→x,x a,b→c,d a,a→a,a (null transition)

• Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
• two reactants, two products per reaction

• unit rate constants

• volume = n = number of agents (never changes)

population protocols ⊊ chemical reactions, but “most” ideas that
apply to one model also apply to the other

44
[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Time complexity in population protocols

45

• pair of agents picked uniformly at random to interact
(possibly null interaction)

• parallel time = number of interactions / n
i.e., each agent has O(1) interactions per “unit time”

46

Speed of computation

46

Speed of computation

How to fairly assess speed?

Like any respectable computer scientist…
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors

46

Speed of computation

n = total molecular count
reasonable requirement on volume: v = O(n)
i.e., require bounded concentration (finite density constraint)

How to fairly assess speed?

Like any respectable computer scientist…
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors

Full CRN time model (Gillespie kinetics)

47

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

k

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

• Other reaction types:

• A+A→… λ = k∙#A∙(#A–1) / v (symmetric bimolecular reaction)

k

k

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

• Other reaction types:

• A+A→… λ = k∙#A∙(#A–1) / v (symmetric bimolecular reaction)

• #A∙(#A–1)/2 = # ways to pick two A’s to react; factor ½ by convention is put into rate constant k

k

k

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

• Other reaction types:

• A+A→… λ = k∙#A∙(#A–1) / v (symmetric bimolecular reaction)

• #A∙(#A–1)/2 = # ways to pick two A’s to react; factor ½ by convention is put into rate constant k

• A→… λ = k∙#A (unimolecular reaction)

k

k

k

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

• Other reaction types:

• A+A→… λ = k∙#A∙(#A–1) / v (symmetric bimolecular reaction)

• #A∙(#A–1)/2 = # ways to pick two A’s to react; factor ½ by convention is put into rate constant k

• A→… λ = k∙#A (unimolecular reaction)

• no volume term since no collision required

k

k

k

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

• Other reaction types:

• A+A→… λ = k∙#A∙(#A–1) / v (symmetric bimolecular reaction)

• #A∙(#A–1)/2 = # ways to pick two A’s to react; factor ½ by convention is put into rate constant k

• A→… λ = k∙#A (unimolecular reaction)

• no volume term since no collision required

• A+B+C→… λ = k∙#A∙#B∙#C / v2 (trimolecular reaction)

k

k

k

k

k

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

• Other reaction types:

• A+A→… λ = k∙#A∙(#A–1) / v (symmetric bimolecular reaction)

• #A∙(#A–1)/2 = # ways to pick two A’s to react; factor ½ by convention is put into rate constant k

• A→… λ = k∙#A (unimolecular reaction)

• no volume term since no collision required

• A+B+C→… λ = k∙#A∙#B∙#C / v2 (trimolecular reaction)

• The volume term is squared because (roughly) if we define coordinate system so position of A is always at the
origin, then B and C are randomly moving around through v volume “cells”, and it takes v2 expected time for
them both to occupy the origin, to cause a three-way A-B-C collision

k

k

k

k

k

A

B

C

Full CRN time model (Gillespie kinetics)

47

• What should influence total rate λ (a.k.a., propensity) of bimolecular reaction A+B→C?
• molecular counts of reactants: λ ∝ #A∙#B (the more there are, the faster collisions happen)

• volume v: λ ∝ 1/v (the bigger the volume, the slower collisions happen)

• rate constant k: λ ∝ k (captures things not directly modeled, e.g., diffusion rates, probability that a
collision results in a reaction)

• For this example reaction A+B→C, combining these we get λ = k∙#A∙#B / v

• Other reaction types:

• A+A→… λ = k∙#A∙(#A–1) / v (symmetric bimolecular reaction)

• #A∙(#A–1)/2 = # ways to pick two A’s to react; factor ½ by convention is put into rate constant k

• A→… λ = k∙#A (unimolecular reaction)

• no volume term since no collision required

• A+B+C→… λ = k∙#A∙#B∙#C / v2 (trimolecular reaction)

• The volume term is squared because (roughly) if we define coordinate system so position of A is always at the
origin, then B and C are randomly moving around through v volume “cells”, and it takes v2 expected time for
them both to occupy the origin, to cause a three-way A-B-C collision

• In general, with r reactants, propensity is number of ways to pick reactants, times k, divided by vr–1

k

k

k

k

k

A

B

C

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first s secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

• define volume = n, and rate of interaction a,b →… as #a∙#b / n, i.e., expected time n / (#a∙#b)

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

• define volume = n, and rate of interaction a,b →… as #a∙#b / n, i.e., expected time n / (#a∙#b)

• PP model (time = #interactions / n)

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

• define volume = n, and rate of interaction a,b →… as #a∙#b / n, i.e., expected time n / (#a∙#b)

• PP model (time = #interactions / n)

• probability that next interaction is a,b →… is #a∙#b / (n choose 2) = 2∙#a∙#b / (n(n–1))

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

• define volume = n, and rate of interaction a,b →… as #a∙#b / n, i.e., expected time n / (#a∙#b)

• PP model (time = #interactions / n)

• probability that next interaction is a,b →… is #a∙#b / (n choose 2) = 2∙#a∙#b / (n(n–1))

• expected interactions until next a,b →… interaction = n(n–1) / (2∙#a∙#b), i.e., time (n–1) / (2∙#a∙#b)

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

• define volume = n, and rate of interaction a,b →… as #a∙#b / n, i.e., expected time n / (#a∙#b)

• PP model (time = #interactions / n)

• probability that next interaction is a,b →… is #a∙#b / (n choose 2) = 2∙#a∙#b / (n(n–1))

• expected interactions until next a,b →… interaction = n(n–1) / (2∙#a∙#b), i.e., time (n–1) / (2∙#a∙#b)

• If we treat interactions symmetrically, (i.e., a,b →c,d is an interaction if and only if b,a→d,c is an
interaction), then we have twice the probability, i.e., expected time becomes (n–1) / #a∙#b ∼ n / (#a∙#b),
essentially the same as the CRN model

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

• define volume = n, and rate of interaction a,b →… as #a∙#b / n, i.e., expected time n / (#a∙#b)

• PP model (time = #interactions / n)

• probability that next interaction is a,b →… is #a∙#b / (n choose 2) = 2∙#a∙#b / (n(n–1))

• expected interactions until next a,b →… interaction = n(n–1) / (2∙#a∙#b), i.e., time (n–1) / (2∙#a∙#b)

• If we treat interactions symmetrically, (i.e., a,b →c,d is an interaction if and only if b,a→d,c is an
interaction), then we have twice the probability, i.e., expected time becomes (n–1) / #a∙#b ∼ n / (#a∙#b),
essentially the same as the CRN model

• one possible convention to avoid symmetric interactions is simply define time = 2∙#interactions/n

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

48

Discrete versus continuous time
• Time between interactions in CRN model is exponential random variable T

• Time between interactions in PP model is geometric random variable T
• T = # of coin flips until a heads, with Pr[heads] = p, E[time] = 1/p

• (essentially the discrete version of an exponential random variable)

• in population protocol, heads event = non-null interaction

• CRN model: time = sum of exponential random variables

• define volume = n, and rate of interaction a,b →… as #a∙#b / n, i.e., expected time n / (#a∙#b)

• PP model (time = #interactions / n)

• probability that next interaction is a,b →… is #a∙#b / (n choose 2) = 2∙#a∙#b / (n(n–1))

• expected interactions until next a,b →… interaction = n(n–1) / (2∙#a∙#b), i.e., time (n–1) / (2∙#a∙#b)

• If we treat interactions symmetrically, (i.e., a,b →c,d is an interaction if and only if b,a→d,c is an
interaction), then we have twice the probability, i.e., expected time becomes (n–1) / #a∙#b ∼ n / (#a∙#b),
essentially the same as the CRN model

• one possible convention to avoid symmetric interactions is simply define time = 2∙#interactions/n

both are memoryless: ∀ s,r > 0
Pr[T > s + r | T > s] = Pr[T > r]

no rxn in
first r secs.

no rxn in
first s secs.

no rxn after r
additional secs.

Can use Chernoff bounds to show it is very likely that they end
up taking very close to the same amount of time for any event.

48

n molecules
volume v = O(n)

49

An exponential time difference

A

B

X

X

X
X

X

X

X

X X

X
X

X

X

X

X

X

X X X

X

X

X

n molecules
volume v = O(n)

49

An exponential time difference

A

B

X

X

X
X

X

X

X

X X

X
X

X

X

X

X

X

X X X

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

n molecules
volume v = O(n)

49

An exponential time difference

A

B

X

X

X
X

X

X

X

X X

X
X

X

X

X

X

X

X X X

O(log n)

B+X→B+B

A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

distributed computing terms:
• epidemic
• rumor/gossip spreading
chemical term:
• autocatalysis

n molecules
volume v = O(n)

49

An exponential time difference

A

B

X

X

X
X

X

X

X

X X

X
X

X

X

X

X

X

X X X

O(log n)

B+X→B+B

A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

one of these is always
count ≥ n/2

distributed computing terms:
• epidemic
• rumor/gossip spreading
chemical term:
• autocatalysis

n molecules
volume v = O(n)

49

An exponential time difference

A

B

X

X

X
X

X

X

X

X X

X
X

X

X

X

X

X

X X X

O(log n)

B+X→B+B

A+B→Y+B

X

X

X

A+B→Y+B

expected time to
produce Y: O(n)

propensity: #A·#B / v = O(1/n)

B

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Y
one of these is always
count ≥ n/2

distributed computing terms:
• epidemic
• rumor/gossip spreading
chemical term:
• autocatalysis

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

“direct communication”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))

“direct communication”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2

“direct communication”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

“direct communication”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

“direct communication”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

“direct communication” “epidemic”, “gossip”, “rumor spreading”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:

“direct communication” “epidemic”, “gossip”, “rumor spreading”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k

“direct communication” “epidemic”, “gossip”, “rumor spreading”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)

“direct communication” “epidemic”, “gossip”, “rumor spreading”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))

“direct communication” “epidemic”, “gossip”, “rumor spreading”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))
expected time until one X converted to B = 1/(n∙probability)
= (n–1) / (2k(n–k))

“direct communication” “epidemic”, “gossip”, “rumor spreading”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))
expected time until one X converted to B = 1/(n∙probability)
= (n–1) / (2k(n–k))
expected time until all X converted to B =

“direct communication” “epidemic”, “gossip”, “rumor spreading”

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))
expected time until one X converted to B = 1/(n∙probability)
= (n–1) / (2k(n–k))
expected time until all X converted to B =

“direct communication” “epidemic”, “gossip”, “rumor spreading”

𝑛 − 1

2

𝑘=1

𝑛−1
1

𝑘(𝑛 − 𝑘)

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))
expected time until one X converted to B = 1/(n∙probability)
= (n–1) / (2k(n–k))
expected time until all X converted to B =

“direct communication” “epidemic”, “gossip”, “rumor spreading”

𝑛 − 1

2

𝑘=1

𝑛−1
1

𝑘(𝑛 − 𝑘)
=
𝑛 − 1

2

𝑘=1

𝑛−1
1

𝑛

1

𝑘
+

1

𝑛 − 𝑘

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))
expected time until one X converted to B = 1/(n∙probability)
= (n–1) / (2k(n–k))
expected time until all X converted to B =

“direct communication” “epidemic”, “gossip”, “rumor spreading”

𝑛 − 1

2

𝑘=1

𝑛−1
1

𝑘(𝑛 − 𝑘)

≈
1

2

𝑘=1

𝑛
1

𝑘
+

𝑘=𝑛

1
1

𝑘
=

𝑘=1

𝑛
1

𝑘

=
𝑛 − 1

2

𝑘=1

𝑛−1
1

𝑛

1

𝑘
+

1

𝑛 − 𝑘

Time complexity analysis (basic motifs)

50

A+B→Y+W #A=#B=1, #X=n-2

population protocol time complexity:
time until non-null interaction is geometric
random variable with success probability
p = 1 / (n choose 2) = 2 / (n(n–1))
E[# interactions] = 1/p = (n(n–1)) / 2
E[time] = E[# interactions]/n = (n–1) / 2 = O(n)

B+X→B+B

CRN time complexity:
time until reaction is exponential random
variable with
rate λ = #A∙#B / n = 1 / n
E[time] = 1/λ = n

population protocol time complexity:
when #B = k, we have #X = n–k
Pr[B+X→B+B is next interaction | #B=k] = k(n–k) / (n choose 2)
= 2k(n–k) / ((n(n–1))
expected time until one X converted to B = 1/(n∙probability)
= (n–1) / (2k(n–k))
expected time until all X converted to B =

“direct communication” “epidemic”, “gossip”, “rumor spreading”

≈ ln𝑛

𝑛 − 1

2

𝑘=1

𝑛−1
1

𝑘(𝑛 − 𝑘)

≈
1

2

𝑘=1

𝑛
1

𝑘
+

𝑘=𝑛

1
1

𝑘
=

𝑘=1

𝑛
1

𝑘

=
𝑛 − 1

2

𝑘=1

𝑛−1
1

𝑛

1

𝑘
+

1

𝑛 − 𝑘

Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is
geometric random variable with success probability
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction]
= E[# interactions] / n = 1 / k

E[time to convert all A] =
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is
geometric random variable with success probability
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction]
= E[# interactions] / n = 1 / k

E[time to convert all A] =
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

A→B #A=n, #B=0

“no communication/ unimolecular decay”
(unimolecular CRN version)

Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is
geometric random variable with success probability
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction]
= E[# interactions] / n = 1 / k

E[time to convert all A] =
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:

A→B #A=n, #B=0

“no communication/ unimolecular decay”
(unimolecular CRN version)

Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is
geometric random variable with success probability
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction]
= E[# interactions] / n = 1 / k

E[time to convert all A] =
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:
When #A=k, time until next reaction is exponential
random variable with rate λ = k

A→B #A=n, #B=0

“no communication/ unimolecular decay”
(unimolecular CRN version)

Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is
geometric random variable with success probability
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction]
= E[# interactions] / n = 1 / k

E[time to convert all A] =
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:
When #A=k, time until next reaction is exponential
random variable with rate λ = k
E[time until next reaction] = 1/λ = 1/k

A→B #A=n, #B=0

“no communication/ unimolecular decay”
(unimolecular CRN version)

Time complexity analysis (basic motifs)

51

A+?→B+? #A=n, #B=0

“no communication”
? here means “every species” (including A)

population protocol time complexity:
When #A=k, time until non-null interaction is
geometric random variable with success probability
p = k(n-1) / (n choose 2) = k / (2n)
E[# interactions] = 1/p = n / k
E[time until non-null interaction]
= E[# interactions] / n = 1 / k

E[time to convert all A] =
1

2
σ𝑘=1
𝑛 1

𝑘
≈ (1/2) ln n

CRN time complexity:
When #A=k, time until next reaction is exponential
random variable with rate λ = k
E[time until next reaction] = 1/λ = 1/k

E[time for all n reactions] = σ𝑘=1
𝑛 1

𝑘
≈ ln n

A→B #A=n, #B=0

“no communication/ unimolecular decay”
(unimolecular CRN version)

Time complexity analysis (basic motifs)

52

A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

Time complexity analysis (basic motifs)

52

A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

CRN time complexity:
When #A=#B=k, next reaction has rate λ = k2/n

Time complexity analysis (basic motifs)

52

A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

CRN time complexity:
When #A=#B=k, next reaction has rate λ = k2/n
E[time until next reaction] = 1/λ = n/k2

Time complexity analysis (basic motifs)

52

A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

CRN time complexity:
When #A=#B=k, next reaction has rate λ = k2/n
E[time until next reaction] = 1/λ = n/k2

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘2

Time complexity analysis (basic motifs)

52

A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

CRN time complexity:
When #A=#B=k, next reaction has rate λ = k2/n
E[time until next reaction] = 1/λ = n/k2

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘2

< 𝑛σ𝑘=1
∞ 1

𝑘2

Time complexity analysis (basic motifs)

52

A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

CRN time complexity:
When #A=#B=k, next reaction has rate λ = k2/n
E[time until next reaction] = 1/λ = n/k2

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘2

< 𝑛σ𝑘=1
∞ 1

𝑘2

= n∙π2/6 = Θ(n)

Time complexity analysis (basic motifs)

52

A+B→C #A=n, #B=n, total volume = O(total count) = n

“pairing off”

A+A→C

“pairing off” (symmetric version)

CRN time complexity:
When #A=#B=k, next reaction has rate λ = k2/n
E[time until next reaction] = 1/λ = n/k2

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘2

< 𝑛σ𝑘=1
∞ 1

𝑘2

= n∙π2/6 = Θ(n)
similar analysis

Time complexity analysis (basic motifs)

53

L+A→L+B #L=1, #A=n, #B=0, total volume = O(total count) = n

“coupon collecting”

Time complexity analysis (basic motifs)

53

L+A→L+B #L=1, #A=n, #B=0, total volume = O(total count) = n

“coupon collecting”

CRN time complexity:
When #A=k, next reaction has rate λ = k/n
E[time until next reaction] = 1/λ = n/k

E[time for all n reactions] = σ𝑘=1
𝑛 𝑛

𝑘

< 𝑛σ𝑘=1
∞ 1

𝑘

= Θ(n log n)

Time complexity analysis of stably computing CRNs

54

Time complexity analysis of stably computing CRNs

55

multiplication by 2: f(a) = 2a
A→2Y

Time complexity analysis of stably computing CRNs

55

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.
E[time] =

𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.
E[time] =

𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑏)(𝑏−𝑖)

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.
E[time] =

𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑏)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎/2)(𝑏−𝑖)

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.
E[time] =

𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑏)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎/2)(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=0
𝑏−1 1

(𝑏−𝑖)

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.
E[time] =

𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑏)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎/2)(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=0
𝑏−1 1

(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=1
𝑏 1

𝑖
≈
2𝑛

𝑎
ln 𝑏

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.
E[time] =

𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑏)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎/2)(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=0
𝑏−1 1

(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=1
𝑏 1

𝑖
≈
2𝑛

𝑎
ln 𝑏

≤
2𝑛
2

3
𝑛
ln 𝑏 = 3 ln 𝑏

Time complexity analysis of stably computing CRNs

55

division by 2: f(a) = a/2
2A→Y

multiplication by 2: f(a) = 2a
A→2Y

O(log n) “unimolecular decay”

O(n) “pairing off”

addition: f(a,b) = a+b
A→Y
B→Y

O(log n): same as unimolecular
decay, just with two names for
decaying species

minimum: f(a,b) = min(a,b)
A+B→Y

O(n): “pairing off”
… worst case if a = b

Suppose a > b.
E[time] =

σ𝑖=0
𝑏−1 𝑛

(𝑎−𝑖)(𝑏−𝑖)

= 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

𝑏−𝑖 2

= 𝑛σ𝑖=1
𝑏 1

𝑖2

= O(n)
So it’s no slower… can it be
faster in some cases?

Suppose a > 2b, so a > 2n/3.
E[time] =

𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑖)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎−𝑏)(𝑏−𝑖)

< 𝑛σ𝑖=0
𝑏−1 1

(𝑎/2)(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=0
𝑏−1 1

(𝑏−𝑖)

=
2𝑛

𝑎
σ𝑖=1
𝑏 1

𝑖
≈
2𝑛

𝑎
ln 𝑏

≤
2𝑛
2

3
𝑛
ln 𝑏 = 3 ln 𝑏

Intuitively, there’s always a large
Ω(n) excess of A, so “acts like”
unimolecular decay of B.

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

• Unlike addition, this is a nontrivial combination of reactions: rate of second
reaction depends how many times first has happened.

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

• Unlike addition, this is a nontrivial combination of reactions: rate of second
reaction depends how many times first has happened.

• To simplify, we assume second reaction cannot happen until first has finished.

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

• Unlike addition, this is a nontrivial combination of reactions: rate of second
reaction depends how many times first has happened.

• To simplify, we assume second reaction cannot happen until first has finished.
• This simpler process “stochastically dominates” the real process: it takes even

longer than the real process, so suffices to show a time upper bound.

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

• Unlike addition, this is a nontrivial combination of reactions: rate of second
reaction depends how many times first has happened.

• To simplify, we assume second reaction cannot happen until first has finished.
• This simpler process “stochastically dominates” the real process: it takes even

longer than the real process, so suffices to show a time upper bound.

E[time] = E[time for first to finish] + E[time for second to finish]

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

• Unlike addition, this is a nontrivial combination of reactions: rate of second
reaction depends how many times first has happened.

• To simplify, we assume second reaction cannot happen until first has finished.
• This simpler process “stochastically dominates” the real process: it takes even

longer than the real process, so suffices to show a time upper bound.

E[time] = E[time for first to finish] + E[time for second to finish]
E[time for first to finish] = O(log n) (unimolecular decay)

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

• Unlike addition, this is a nontrivial combination of reactions: rate of second
reaction depends how many times first has happened.

• To simplify, we assume second reaction cannot happen until first has finished.
• This simpler process “stochastically dominates” the real process: it takes even

longer than the real process, so suffices to show a time upper bound.

E[time] = E[time for first to finish] + E[time for second to finish]
E[time for first to finish] = O(log n) (unimolecular decay)
E[time for second to finish] = O(n) in worst case: similar to minimum, worst case
when a=b, but O(log n) time if |a–b| = Ω(n).

Time complexity analysis of stably computing CRNs

56

subtraction: f(a,b) = a–b
A→Y
B+Y→∅

• Unlike addition, this is a nontrivial combination of reactions: rate of second
reaction depends how many times first has happened.

• To simplify, we assume second reaction cannot happen until first has finished.
• This simpler process “stochastically dominates” the real process: it takes even

longer than the real process, so suffices to show a time upper bound.

E[time] = E[time for first to finish] + E[time for second to finish]
E[time for first to finish] = O(log n) (unimolecular decay)
E[time for second to finish] = O(n) in worst case: similar to minimum, worst case
when a=b, but O(log n) time if |a–b| = Ω(n).
E[time] = O(log n) + O(n) = O(n)

Time complexity analysis of stably computing CRNs

57

maximum: f(a,b) = max(a,b)
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅

Time complexity analysis of stably computing CRNs

57

maximum: f(a,b) = max(a,b)
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅

• Assume reaction 3 waits for reactions 1 and 2 before starting,
and reaction 4 waits for reaction 3.

Time complexity analysis of stably computing CRNs

57

maximum: f(a,b) = max(a,b)
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅

• Assume reaction 3 waits for reactions 1 and 2 before starting,
and reaction 4 waits for reaction 3.

• E[time for 1 and 2] = O(log n)

Time complexity analysis of stably computing CRNs

57

maximum: f(a,b) = max(a,b)
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅

• Assume reaction 3 waits for reactions 1 and 2 before starting,
and reaction 4 waits for reaction 3.

• E[time for 1 and 2] = O(log n)
• E[time for 3] = O(n)

Time complexity analysis of stably computing CRNs

57

maximum: f(a,b) = max(a,b)
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅

• Assume reaction 3 waits for reactions 1 and 2 before starting,
and reaction 4 waits for reaction 3.

• E[time for 1 and 2] = O(log n)
• E[time for 3] = O(n)
• E[time for 4] = O(n)

Time complexity analysis of stably computing CRNs

57

maximum: f(a,b) = max(a,b)
1. A→Y+A2

2. B→Y+B2

3. A2+B2→K
4. K+Y→∅

• Assume reaction 3 waits for reactions 1 and 2 before starting,
and reaction 4 waits for reaction 3.

• E[time for 1 and 2] = O(log n)
• E[time for 3] = O(n)
• E[time for 4] = O(n)
• So E[time] = O(log n) + O(n) + O(n) = O(n)

Possibilities of stable
computation
What can be stably computed?

58

Summary: Possibilities and limits of stable computation

59

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

a>b? a=b? a is odd? a>0? a>1?

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

a>b? a=b? a is odd? a>0? a>1?

NOT a=b2? a is a power of 2? a is prime?

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

Functions

• f is stably computable if and only if
graph(f) = { (a,y) | f(a)=y } is semilinear.

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

NOT a=b2? a is a power of 2? a is prime?

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

Functions

• f is stably computable if and only if
graph(f) = { (a,y) | f(a)=y } is semilinear.

• piecewise affine, with semilinear
predicate to determine which piece.

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

NOT a=b2? a is a power of 2? a is prime?

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

Functions

• f is stably computable if and only if
graph(f) = { (a,y) | f(a)=y } is semilinear.

• piecewise affine, with semilinear
predicate to determine which piece.

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

a+b a–b 2a a/2 min(a,b) a+1 a–1
f(a) = 2a–b/3 if a+b is odd, else f(a) = a/4+5b

NOT a=b2? a is a power of 2? a is prime?

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

Functions

• f is stably computable if and only if
graph(f) = { (a,y) | f(a)=y } is semilinear.

• piecewise affine, with semilinear
predicate to determine which piece.

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

a+b a–b 2a a/2 min(a,b) a+1 a–1
f(a) = 2a–b/3 if a+b is odd, else f(a) = a/4+5b

NOT a=b2? a is a power of 2? a is prime?

NOT a2 2a 2a if a is prime, else 3a

Summary: Possibilities and limits of stable computation

Predicates

• φ is stably computable if and only if φ is
semilinear.

• semilinear = Boolean combination of
threshold and mod predicates: take weighted
sum s = w1∙a1 + … wd∙ad of inputs and ask if

s > t? (threshold)

s ≡ c mod m? (mod)

Functions

• f is stably computable if and only if
graph(f) = { (a,y) | f(a)=y } is semilinear.

• piecewise affine, with semilinear
predicate to determine which piece.

59

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in
networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are
semilinear, PODC 2006]

[Chen, Doty, Soloveichik, Deterministic function computation
with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction
networks, DNA 2013]

a>b? a=b? a is odd? a>0? a>1?

a+b a–b 2a a/2 min(a,b) a+1 a–1
f(a) = 2a–b/3 if a+b is odd, else f(a) = a/4+5b

All semilinear predicates/functions are
known to be computable in O(n) time.NOT a=b2? a is a power of 2? a is prime?

NOT a2 2a 2a if a is prime, else 3a

Linear sets

60

Definition: A set X ⊆ ℕd is linear if there are
vectors b, u1, …, up ∈ ℕ

d such that
X = { b + n1∙u1 + … + np∙up | n1, …, np ∈ ℕ }

multi-dimensional
generalization of
eventually periodic

Linear sets

60

Definition: A set X ⊆ ℕd is linear if there are
vectors b, u1, …, up ∈ ℕ

d such that
X = { b + n1∙u1 + … + np∙up | n1, …, np ∈ ℕ }

Example in dimension d=2:

b = (2,1)

u1 = (4,1)

u2 = (2,2)

0

1

2

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

0 1 2 3 4 5

multi-dimensional
generalization of
eventually periodic

Linear sets

60

Definition: A set X ⊆ ℕd is linear if there are
vectors b, u1, …, up ∈ ℕ

d such that
X = { b + n1∙u1 + … + np∙up | n1, …, np ∈ ℕ }

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Example in dimension d=2:

b = (2,1)

u1 = (4,1)

u2 = (2,2)

0

1

2

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

0 1 2 3 4 5

multi-dimensional
generalization of
eventually periodic

Linear sets

60

Definition: A set X ⊆ ℕd is linear if there are
vectors b, u1, …, up ∈ ℕ

d such that
X = { b + n1∙u1 + … + np∙up | n1, …, np ∈ ℕ }

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Example in dimension d=2:

b = (2,1)

u1 = (4,1)

u2 = (2,2)

0

1

2

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

0 1 2 3 4 5

b + 3u1 + 2u2

multi-dimensional
generalization of
eventually periodic

Semilinear sets

61

Definition: A set X ⊆ ℕd is semilinear if it is a
finite union of linear sets.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

union of two
linear sets:

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

examples:

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

examples:
is x1 > x2?

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Definition 1b: X ⊆ ℕd is a mod set if there are
integers c,m and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd ≡ c mod m }

examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Definition 1b: X ⊆ ℕd is a mod set if there are
integers c,m and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd ≡ c mod m }

examples:examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Definition 1b: X ⊆ ℕd is a mod set if there are
integers c,m and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd ≡ c mod m }

examples:
is x odd?

examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Definition 1b: X ⊆ ℕd is a mod set if there are
integers c,m and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd ≡ c mod m }

examples:
is x odd?
is x 2 more than a multiple of 3? = {2, 5, 8, 11, 14, …}

examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Definition 1b: X ⊆ ℕd is a mod set if there are
integers c,m and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd ≡ c mod m }

examples:
is x odd?
is x 2 more than a multiple of 3? = {2, 5, 8, 11, 14, …}
is x1 – 3x2 odd?

examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Definition 1b: X ⊆ ℕd is a mod set if there are
integers c,m and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd ≡ c mod m }

examples:
is x odd?
is x 2 more than a multiple of 3? = {2, 5, 8, 11, 14, …}
is x1 – 3x2 odd?

examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

example semilinear set:
is x1 > x2 and x1 + x2 is odd?

Equivalent definitions of semilinear

62

Definition 2: A set X ⊆ ℕd is semilinear if it is
a finite union of linear sets.

Definition 1: X ⊆ ℕd is semilinear if it is
Boolean combination (through finite unions,
intersections, and complements) of
threshold and mod sets

Definition 1a: X ⊆ ℕd is a threshold set if
there are integers t and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd > t }

Definition 1b: X ⊆ ℕd is a mod set if there are
integers c,m and w1 … wk such that
X = { (x1, …, xd) ∈ ℕd | w1∙x1 + … + wd∙xd ≡ c mod m }

examples:
is x odd?
is x 2 more than a multiple of 3? = {2, 5, 8, 11, 14, …}
is x1 – 3x2 odd?

examples:
is x1 > x2?
is x1 – 3x2 > x2 + 5?

example semilinear set:
is x1 > x2 and x1 + x2 is odd?

example semilinear set:
is x1 + x2 is not a multiple of 3?

Equivalent definitions of semilinear

63

Definition 3: X ⊆ ℕd is semilinear if it is definable
in the first-order theory of Presburger arithmetic.
(original definition,
hardest to understand;
we won’t use it.)

Equivalent definitions of semilinear

63

Definition 3: X ⊆ ℕd is semilinear if it is definable
in the first-order theory of Presburger arithmetic.
(original definition,
hardest to understand;
we won’t use it.)

Other places semilinear sets show up in computer science:
• Sets decidable by reversal-bounded counter machines.
• In 2D, they are conjectured to be the sets weakly self-

assembled by temperature τ=1 tile systems.

Limits of stable computation

64

Theorem 1: A set X⊆ ℕd is stably decided
by some CRN if and only if it is semilinear.

Limits of stable computation

64

Theorem 1: A set X⊆ ℕd is stably decided
by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But
we’ll show:
1. All semilinear sets can be stably decided.
2. The non-semilinear “squaring” set X =

{ (a,y) ∈ ℕ2 | a2 = y } cannot be stably decided.

Limits of stable computation

64

Theorem 1: A set X⊆ ℕd is stably decided
by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But
we’ll show:
1. All semilinear sets can be stably decided.
2. The non-semilinear “squaring” set X =

{ (a,y) ∈ ℕ2 | a2 = y } cannot be stably decided.

Definition: A function f: ℕd→ℕ is semilinear if
graph(f) = { (a,y) | f(a)=y } is a semilinear set.

Limits of stable computation

64

Theorem 1: A set X⊆ ℕd is stably decided
by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But
we’ll show:
1. All semilinear sets can be stably decided.
2. The non-semilinear “squaring” set X =

{ (a,y) ∈ ℕ2 | a2 = y } cannot be stably decided.

Definition: A function f: ℕd→ℕ is semilinear if
graph(f) = { (a,y) | f(a)=y } is a semilinear set.

Example of function graph: The squaring set X
to the right is the graph of the function f(a) = a2.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4

y
a

X = graph(f),
where f(a) = a2

Limits of stable computation

64

Theorem 1: A set X⊆ ℕd is stably decided
by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But
we’ll show:
1. All semilinear sets can be stably decided.
2. The non-semilinear “squaring” set X =

{ (a,y) ∈ ℕ2 | a2 = y } cannot be stably decided.

Theorem 2: A function f: ℕd→ℕ is
stably computed by some CRN if and
only if it is semilinear.

Definition: A function f: ℕd→ℕ is semilinear if
graph(f) = { (a,y) | f(a)=y } is a semilinear set.

Example of function graph: The squaring set X
to the right is the graph of the function f(a) = a2.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4

y
a

X = graph(f),
where f(a) = a2

Possibilities of stable
computation
All semilinear functions/predicates can be stably computed by CRNs

65

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY.

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY.
5. To “record” the votes of C1 and C2:

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY.
5. To “record” the votes of C1 and C2:

1. If Sb votes b ∈ {N,Y} in C1, add reaction Sb + 𝑉ത𝑏?→Sb+Vb? (i.e., Sb changes the first vote of V)

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY.
5. To “record” the votes of C1 and C2:

1. If Sb votes b ∈ {N,Y} in C1, add reaction Sb + 𝑉ത𝑏?→Sb+Vb? (i.e., Sb changes the first vote of V)

2. If Tb votes b ∈ {N,Y} in C2, add reaction Tb + 𝑉?ത𝑏→Tb+V?b (i.e., Tb changes the second vote of V)

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY.
5. To “record” the votes of C1 and C2:

1. If Sb votes b ∈ {N,Y} in C1, add reaction Sb + 𝑉ത𝑏?→Sb+Vb? (i.e., Sb changes the first vote of V)

2. If Tb votes b ∈ {N,Y} in C2, add reaction Tb + 𝑉?ത𝑏→Tb+V?b (i.e., Tb changes the second vote of V)

6. To stably decide X1∪X2, let yes voters be VNY, VYN, VYY

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY.
5. To “record” the votes of C1 and C2:

1. If Sb votes b ∈ {N,Y} in C1, add reaction Sb + 𝑉ത𝑏?→Sb+Vb? (i.e., Sb changes the first vote of V)

2. If Tb votes b ∈ {N,Y} in C2, add reaction Tb + 𝑉?ത𝑏→Tb+V?b (i.e., Tb changes the second vote of V)

6. To stably decide X1∪X2, let yes voters be VNY, VYN, VYY

7. To stably decide X1∩X2, let yes voter be VYY

For this proof, we assume that the voting
species can be a strict subset of all species.

Stably decidable sets are closed under
Boolean operations

66

Theorem: If sets X1,X2 ⊆ ℕ
d are stably

decided by some CRN, then so are
X1∪X2, X1∩X2, and 𝑋1.

Proof:
1. To stably decide 𝑋1, swap the yes and no voters.
2. For ∪ and ∩, let C1 and C2 stably decide X1 and X2.
3. Add the reaction A→A1+A2 for each input species A, and let Ai be the input species for Ci.
4. Add four new species VNN, VNY, VYN, and VYY.
5. To “record” the votes of C1 and C2:

1. If Sb votes b ∈ {N,Y} in C1, add reaction Sb + 𝑉ത𝑏?→Sb+Vb? (i.e., Sb changes the first vote of V)

2. If Tb votes b ∈ {N,Y} in C2, add reaction Tb + 𝑉?ത𝑏→Tb+V?b (i.e., Tb changes the second vote of V)

6. To stably decide X1∪X2, let yes voters be VNY, VYN, VYY

7. To stably decide X1∩X2, let yes voter be VYY

For this proof, we assume that the voting
species can be a strict subset of all species.

What if all species are required to vote??

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t
4. Start with 1 LN leader and

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t
4. Start with 1 LN leader and

1. t N if t > 0.
2. (–t) P if t < 0.

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t
4. Start with 1 LN leader and

1. t N if t > 0.
2. (–t) P if t < 0.

5. Now need to decide if #P > #N (including those
present initially)

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t
4. Start with 1 LN leader and

1. t N if t > 0.
2. (–t) P if t < 0.

5. Now need to decide if #P > #N (including those
present initially)

6. Add reactions
1. LY + N → LN

2. LN + P → LY

Mod and threshold sets are stably decidable

67

Theorem: Every mod set
M = { (x1, …, xd) | w1∙x1 + … + wd∙xd ≡ c mod m }
is stably decidable by a CRN.

Proof:
1. Start with 1 L0 leader.

The leader will “count the (weighted) input mod m.”

2. For each 1 ≤ i ≤ d and 0 ≤ j < m, add the
reaction Xi + Lj→Lj+wi mod m

3. Let Lc vote yes and all others vote no.

Theorem: Every threshold set
T = { (x1, …, xd) | w1∙x1 + … + wd∙xd > t }
is stably decidable by a CRN.

Proof:
1. If wi > 0, add reaction Xi→wi P
2. If wi < 0, add reaction Xi→(–wi) N
3. Need to decide if (#P produced) > (#N produced) + t
4. Start with 1 LN leader and

1. t N if t > 0.
2. (–t) P if t < 0.

5. Now need to decide if #P > #N (including those
present initially)

6. Add reactions
1. LY + N → LN

2. LN + P → LY

Corollary (since stably decidable sets are closed

under Boolean combinations): Every semilinear
set is stably decided by some CRN.

Also true for leaderless CRNs.
[Computation in networks of passively mobile finite-state sensors, Angluin, Aspnes, Diamadi, Fischer, Peralta. PODC 2004]

Semilinear functions are stably computable

68

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Each gi is affine (linear with constant offsets): there
are w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ such that each
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Furthermore, each “piece” dom gi is a linear set.

We won’t prove this; see [Chen, Doty, Soloveichik,
Deterministic function computation with chemical reaction
networks. DNA 2012]

Semilinear functions are stably computable

68

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Each gi is affine (linear with constant offsets): there
are w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ such that each
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Furthermore, each “piece” dom gi is a linear set.

We won’t prove this; see [Chen, Doty, Soloveichik,
Deterministic function computation with chemical reaction
networks. DNA 2012]

Semilinear functions are stably computable

68

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Each gi is affine (linear with constant offsets): there
are w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ such that each
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Furthermore, each “piece” dom gi is a linear set.

We won’t prove this; see [Chen, Doty, Soloveichik,
Deterministic function computation with chemical reaction
networks. DNA 2012]

g1(x) = ½∙x
g2(x) = ½∙(x–1)

Semilinear functions are stably computable

68

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Each gi is affine (linear with constant offsets): there
are w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ such that each
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Furthermore, each “piece” dom gi is a linear set.

We won’t prove this; see [Chen, Doty, Soloveichik,
Deterministic function computation with chemical reaction
networks. DNA 2012]

dom g1 = {x ≡ 0 mod 2}
dom g2 = {x ≡ 1 mod 2}

g1(x) = ½∙x
g2(x) = ½∙(x–1)

Semilinear function examples

69

g1(x) = x2

g2(x) = 0
dom g1 = {x1 > x2}

g1(x) = x1

g2(x) = x2

dom g1 = {x1 > x2}

Computing affine functions (by example)

70

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅ subtract constant offset ci from input xi:
start with 1 L, a A’s, b B’s
f(a,b) = 2(a–3) – (5/4)(b–1) + 6

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅ subtract constant offset ci from input xi:
start with 1 L, a A’s, b B’s
f(a,b) = 2(a–3) – (5/4)(b–1) + 6
L→ 6Y + La0 + Lb0 create d offset, and one leader for each input

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅ subtract constant offset ci from input xi:
start with 1 L, a A’s, b B’s
f(a,b) = 2(a–3) – (5/4)(b–1) + 6
L→ 6Y + La0 + Lb0 create d offset, and one leader for each input
La0 + A→ La1 remove 3 copies of A
La1 + A→ La2

La2 + A→ La3

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅ subtract constant offset ci from input xi:
start with 1 L, a A’s, b B’s
f(a,b) = 2(a–3) – (5/4)(b–1) + 6
L→ 6Y + La0 + Lb0 create d offset, and one leader for each input
La0 + A→ La1 remove 3 copies of A
La1 + A→ La2

La2 + A→ La3

La3 + A→ La3 + A’ convert remaining A to A’

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅ subtract constant offset ci from input xi:
start with 1 L, a A’s, b B’s
f(a,b) = 2(a–3) – (5/4)(b–1) + 6
L→ 6Y + La0 + Lb0 create d offset, and one leader for each input
La0 + A→ La1 remove 3 copies of A
La1 + A→ La2

La2 + A→ La3

La3 + A→ La3 + A’ convert remaining A to A’
A’→2Y compute 2(a–3) by doubling A’

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅ subtract constant offset ci from input xi:
start with 1 L, a A’s, b B’s
f(a,b) = 2(a–3) – (5/4)(b–1) + 6
L→ 6Y + La0 + Lb0 create d offset, and one leader for each input
La0 + A→ La1 remove 3 copies of A
La1 + A→ La2

La2 + A→ La3

La3 + A→ La3 + A’ convert remaining A to A’
A’→2Y compute 2(a–3) by doubling A’
Lb0 + B→ Lb1 remove 1 copy of B
Lb1 + B→ Lb1 + B’ convert remaining B to B’

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Computing affine functions (by example)

70

linear:
f(a,b,c) = 2a + (4/3)b – (5/6)c

A→2Y
3B→4Y

6C+5Y→∅ subtract constant offset ci from input xi:
start with 1 L, a A’s, b B’s
f(a,b) = 2(a–3) – (5/4)(b–1) + 6
L→ 6Y + La0 + Lb0 create d offset, and one leader for each input
La0 + A→ La1 remove 3 copies of A
La1 + A→ La2

La2 + A→ La3

La3 + A→ La3 + A’ convert remaining A to A’
A’→2Y compute 2(a–3) by doubling A’
Lb0 + B→ Lb1 remove 1 copy of B
Lb1 + B→ Lb1 + B’ convert remaining B to B’
4B’+5Y→∅ compute (–5/4)(b–1) on B’

General form: w1 … wd ∈ ℚ and b, c1, …, cd ∈ ℕ
gi(x1, …, xd) = w1∙(x1–c1) + … + wd∙(xd–cd) + b.

add constant offset:
start with 1 L, a A’s, b B’s
f(a,b) = 2a + 3b + 4

L→4Y
A→2Y

B→3Y

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.
2. Also in parallel, for each domain dom gi, compute the predicate [x ∈ dom gi?].

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.
2. Also in parallel, for each domain dom gi, compute the predicate [x ∈ dom gi?].
3. Yes-voters Ti and no-voters Fi for [x ∈ dom gi?] do:

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.
2. Also in parallel, for each domain dom gi, compute the predicate [x ∈ dom gi?].
3. Yes-voters Ti and no-voters Fi for [x ∈ dom gi?] do:

1. Ti + Yi →Ti + Y + Ŷi convert gi’s output Yi to “global” output Y

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.
2. Also in parallel, for each domain dom gi, compute the predicate [x ∈ dom gi?].
3. Yes-voters Ti and no-voters Fi for [x ∈ dom gi?] do:

1. Ti + Yi →Ti + Y + Ŷi convert gi’s output Yi to “global” output Y
2. Fi + Y + Ŷi →Fi + Yi convert back

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.
2. Also in parallel, for each domain dom gi, compute the predicate [x ∈ dom gi?].
3. Yes-voters Ti and no-voters Fi for [x ∈ dom gi?] do:

1. Ti + Yi →Ti + Y + Ŷi convert gi’s output Yi to “global” output Y
2. Fi + Y + Ŷi →Fi + Yi convert back

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Question 1: what’s the
point of species Ŷi?

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.
2. Also in parallel, for each domain dom gi, compute the predicate [x ∈ dom gi?].
3. Yes-voters Ti and no-voters Fi for [x ∈ dom gi?] do:

1. Ti + Yi →Ti + Y + Ŷi convert gi’s output Yi to “global” output Y
2. Fi + Y + Ŷi →Fi + Yi convert back

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Question 1: what’s the
point of species Ŷi?

Question 2: Something else
doesn’t work as described…
what is it?

Combining all affine function computations

71

Lemma: If f: ℕd→ℕ is a semilinear function, then it
is piecewise affine: a finite union of partial affine
functions gi: ℕ

d ⇢ℕ.

Furthermore, each “piece” dom gi is a linear set.

Proof sketch:
1. To compute whole semilinear function f, compute all these affine functions gi

in parallel, storing output of gi in species Yi.
• in parallel means: split each input species A via reaction A→A1 + A2 + …,

where Ai is used as input for computing gi.
2. Also in parallel, for each domain dom gi, compute the predicate [x ∈ dom gi?].
3. Yes-voters Ti and no-voters Fi for [x ∈ dom gi?] do:

1. Ti + Yi →Ti + Y + Ŷi convert gi’s output Yi to “global” output Y
2. Fi + Y + Ŷi →Fi + Yi convert back

Theorem: If f: ℕd→ℕ is a semilinear function, then
some CRN stably computes f.

⇒

Question 1: what’s the
point of species Ŷi?

Question 2: Something else
doesn’t work as described…
what is it?

Answer 2: Consuming Yi can disrupt computation of gi.
Can be solved using dual-rail encoding. (not shown)

Limits of stable computation
Non-semilinear functions/predicates cannot be stably computed by CRNs

72

Impossibility of stably deciding non-
semilinear sets

73

Theorem: Every stably decidable set X ⊆ ℕd is semilinear.

Impossibility of stably deciding non-
semilinear sets

73

Theorem: Every stably decidable set X ⊆ ℕd is semilinear.

We won’t prove this in full generality, but we will prove the simpler corollary
that the “squaring set” X = { (a,b) ∈ ℕ2 | a2 = b } is not stably decidable.

To start, we use the above theorem to prove the following:

Impossibility of stably deciding non-
semilinear sets

73

Theorem: Every stably decidable set X ⊆ ℕd is semilinear.

Theorem: Every stably computable function f: ℕd→ℕ is semilinear.

We won’t prove this in full generality, but we will prove the simpler corollary
that the “squaring set” X = { (a,b) ∈ ℕ2 | a2 = b } is not stably decidable.

To start, we use the above theorem to prove the following:

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:
• X→ Z + 2Y becomes X→Z + 2Y + 2YP since there are net 2 Y’s produced

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:
• X→ Z + 2Y becomes X→Z + 2Y + 2YP since there are net 2 Y’s produced
• X + 6Y→2Y becomes X + 6Y→2Y + 4YC since there are net 4 Y’s consumed

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:
• X→ Z + 2Y becomes X→Z + 2Y + 2YP since there are net 2 Y’s produced
• X + 6Y→2Y becomes X + 6Y→2Y + 4YC since there are net 4 Y’s consumed

5. For concreteness, assume k=1.
• CRN D deciding graph(f) has 2 input species. The first is A. Let the second input species be YC.

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:
• X→ Z + 2Y becomes X→Z + 2Y + 2YP since there are net 2 Y’s produced
• X + 6Y→2Y becomes X + 6Y→2Y + 4YC since there are net 4 Y’s consumed

5. For concreteness, assume k=1.
• CRN D deciding graph(f) has 2 input species. The first is A. Let the second input species be YC.

6. Since C stably computes f, eventually f(initial #A) more YP are produced than YC.

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:
• X→ Z + 2Y becomes X→Z + 2Y + 2YP since there are net 2 Y’s produced
• X + 6Y→2Y becomes X + 6Y→2Y + 4YC since there are net 4 Y’s consumed

5. For concreteness, assume k=1.
• CRN D deciding graph(f) has 2 input species. The first is A. Let the second input species be YC.

6. Since C stably computes f, eventually f(initial #A) more YP are produced than YC.
7. If and only if initially f(#A) = #YC, then eventually #YP = #YC.

Impossibility of stably computing non-semilinear functions

74

Theorem: Every stably computable function f: ℕk→ℕ is semilinear.

Proof:
1. Let C be a CRN stably computing f.
2. We convert C to a CRN D stably deciding graph(f) = { (x1,x2,…,xk,y) ∈ ℕk+1 | f(x1,x2,…,xk) = y }.
3. Then graph(f) must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

1. Key challenge: D will run C with D’s first k inputs. But D has to test the count of C’s output Y to compare it to
D’s last input, without consuming Y, since consuming Y could disrupt the correctness of C.

2. Solution: we introduce two new species YP and YC representing #Y that are only produced by C, never
consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: #Y = #YP – #YC

4. For each reaction in C changing the count of output Y, add YP or YC as products to track the change:
• X→ Z + 2Y becomes X→Z + 2Y + 2YP since there are net 2 Y’s produced
• X + 6Y→2Y becomes X + 6Y→2Y + 4YC since there are net 4 Y’s consumed

5. For concreteness, assume k=1.
• CRN D deciding graph(f) has 2 input species. The first is A. Let the second input species be YC.

6. Since C stably computes f, eventually f(initial #A) more YP are produced than YC.
7. If and only if initially f(#A) = #YC, then eventually #YP = #YC.
8. Add reactions to test for equality between #YP and #YC. (not shown, but easy)

Impossibility of stably deciding a non-semilinear set

75

Theorem: The “squaring set” S = { (x,y) ∈ ℕ2 | x2=y } is not
stably decidable by any CRN.

goal:

Additivity, nondecreasing sequences, minimal elements

76

Observation: Reachability is additive: if c ⇒ d, then for all e ∈ ℕd, c+e ⇒ d+e, i.e.,
the presence of extra molecules e cannot prevent reactions from being applicable.

Additivity, nondecreasing sequences, minimal elements

76

Observation: Reachability is additive: if c ⇒ d, then for all e ∈ ℕd, c+e ⇒ d+e, i.e.,
the presence of extra molecules e cannot prevent reactions from being applicable.

Definition: An infinite sequence of vectors c1, c2, … is nondecreasing
if ci ≤ ci+1 for all i. (ci ≤ ci+1 means ci(S) ≤ ci+1(S) for all species S)

Additivity, nondecreasing sequences, minimal elements

76

Observation: Reachability is additive: if c ⇒ d, then for all e ∈ ℕd, c+e ⇒ d+e, i.e.,
the presence of extra molecules e cannot prevent reactions from being applicable.

Definition: An infinite sequence of vectors c1, c2, … is nondecreasing
if ci ≤ ci+1 for all i. (ci ≤ ci+1 means ci(S) ≤ ci+1(S) for all species S)

Definition: Given A ⊆ ℕd, we say y ∈ A is minimal if, for
all x ∈ A, x ≤ y implies x = y, i.e., nothing in A is strictly
smaller than y. Let min(A) = minimal elements of A.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

min(A)

All vectors have a minimal vector under them

77

Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

All vectors have a minimal vector under them

77

Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof:
1. If x ∈min(A) then we’re done.

All vectors have a minimal vector under them

77

Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof:
1. If x ∈min(A) then we’re done.
2. Otherwise, since x ∉ min(A), there is x1 ∈ A such that x1 < x.

All vectors have a minimal vector under them

77

Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof:
1. If x ∈min(A) then we’re done.
2. Otherwise, since x ∉ min(A), there is x1 ∈ A such that x1 < x.
3. If x1 ∈ min(A) then we’re done since x1 ≤ x.

All vectors have a minimal vector under them

77

Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof:
1. If x ∈min(A) then we’re done.
2. Otherwise, since x ∉ min(A), there is x1 ∈ A such that x1 < x.
3. If x1 ∈ min(A) then we’re done since x1 ≤ x.
4. Otherwise, since x1 ∉ min(A), there is x2 ∈ A such that x2 < x1.

All vectors have a minimal vector under them

77

Observation: For all x ∈ A, there is a minimal vector m ∈min(A) such that m ≤ x.

Proof:
1. If x ∈min(A) then we’re done.
2. Otherwise, since x ∉ min(A), there is x1 ∈ A such that x1 < x.
3. If x1 ∈ min(A) then we’re done since x1 ≤ x.
4. Otherwise, since x1 ∉ min(A), there is x2 ∈ A such that x2 < x1.
5. …
6. Since there are only a finite number of y in ℕd such that y < x, this process

must terminate with a minimal vector m ∈ min(A). QED

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing.

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing.
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing.
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.

4. For condition (2), suppose that min(A) is infinite; put them in any order to make an infinite sequence.

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing.
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.

4. For condition (2), suppose that min(A) is infinite; put them in any order to make an infinite sequence.
5. By first condition, there’s an infinite nondecreasing subsequence m1 ≤ m2 ≤ … of distinct vectors in min(A).

Dickson’s Lemma: Nondecreasing subsequences

78

Dickson’s Lemma: (1) Every infinite sequence (x0, x1, …) of vectors in ℕd has an infinite
nondecreasing subsequence, and (2) every set A ⊆ ℕd has a finite number of minimal elements.

Proof:
1. We’ll show condition (1) by induction on d.
2. Base case d = 1: Let X = x0, x1, … be an infinite sequence of nonnegative integers.

1. case 1: some x ∈ ℕ appears infinitely often. Let the subsequence be (x, x, …), e.g. 1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4,…
2. case 2: every x ∈ ℕ appears finitely many times.

1. First element of subsequence is y0 = x0.
2. Assuming we have finite increasing subsequence y0 < y1 < … < yk–1, let xj be last occurrence of any integer ≤ yk–1 in

original sequence x0, x1, …, and let yk = xj+1, e.g., 2,1,0, 3,2,1, 4,3,2, 5,4,3, 6,5,4, 7,6,5, 8,7,6, 9,8,7, 10,9,8, 11,10,9…

3. Inductive case d > 1:
1. Inductively pick infinite subsequence X’ such that the length-(d–1) prefix vectors are nondecreasing.
2. Pick an infinite subsequence of X’ such that the d’th elements are also nondecreasing, as in base case.

4. For condition (2), suppose that min(A) is infinite; put them in any order to make an infinite sequence.
5. By first condition, there’s an infinite nondecreasing subsequence m1 ≤ m2 ≤ … of distinct vectors in min(A).
6. Since they are distinct, m1 < m2 < …, but m1 < m2 contradicts the minimality of m2. QED

Properties of stable configurations

79

• For convenience, assume every species votes.

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following

holds:

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following

holds:
• YES and NO voters both exist already in c (output undefined)

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following

holds:
• YES and NO voters both exist already in c (output undefined)
• Only YES voters exist, but a NO voter is producible in some c’ ∈ Reach(c).

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following

holds:
• YES and NO voters both exist already in c (output undefined)
• Only YES voters exist, but a NO voter is producible in some c’ ∈ Reach(c).
• Only NO voters exist, but a YES voter is producible in some c’ ∈ Reach(c).

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following

holds:
• YES and NO voters both exist already in c (output undefined)
• Only YES voters exist, but a NO voter is producible in some c’ ∈ Reach(c).
• Only NO voters exist, but a YES voter is producible in some c’ ∈ Reach(c).

• By additivity, for all δ ∈ ℕd, c+δ is unstable as well, since c’+δ ∈ Reach(c+δ) (since c’ has
the contradictory voter, so does c’+δ), leading to the following observation:

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following

holds:
• YES and NO voters both exist already in c (output undefined)
• Only YES voters exist, but a NO voter is producible in some c’ ∈ Reach(c).
• Only NO voters exist, but a YES voter is producible in some c’ ∈ Reach(c).

• By additivity, for all δ ∈ ℕd, c+δ is unstable as well, since c’+δ ∈ Reach(c+δ) (since c’ has
the contradictory voter, so does c’+δ), leading to the following observation:

Observation: The unstable configurations are closed upwards:
for all unstable c and all d ≥ c, d is also unstable.

Properties of stable configurations

79

• For convenience, assume every species votes.
• Thus a stable YES-output configuration o with output φ(o) = YES is one in which, for all

o’ ∈ Reach(o), all NO voters are absent from o’. (Similarly for stable NO-output.)
• Conversely, an unstable configuration c is one in which at least one of the following

holds:
• YES and NO voters both exist already in c (output undefined)
• Only YES voters exist, but a NO voter is producible in some c’ ∈ Reach(c).
• Only NO voters exist, but a YES voter is producible in some c’ ∈ Reach(c).

• By additivity, for all δ ∈ ℕd, c+δ is unstable as well, since c’+δ ∈ Reach(c+δ) (since c’ has
the contradictory voter, so does c’+δ), leading to the following observation:

Observation: The unstable configurations are closed upwards:
for all unstable c and all d ≥ c, d is also unstable.

Corollary: The stable configurations are closed downwards:
for all stable c and all b ≤ c, b is also stable.

Upper cones

80

Definition: For all c ∈ ℕd, let ∇(c) = { d ∈ ℕd | c ≤ d } denote the upper cone of c.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

c

∇(c)

Upper cones

80

Definition: For all c ∈ ℕd, let ∇(c) = { d ∈ ℕd | c ≤ d } denote the upper cone of c.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

c

Observation (reworded from previous slide):
For all unstable c and all d ∈ ∇(c),
d is also unstable.

∇(c)

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Lemma: Let U be the set of unstable configurations.
Then U 𝐦∈min(𝑈)∇(𝐦). (U is a finite union of cones.)ڂ =

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3min(U)

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Lemma: Let U be the set of unstable configurations.
Then U 𝐦∈min(𝑈)∇(𝐦). (U is a finite union of cones.)ڂ =

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3min(U)

Proof:
1. Let C 𝐦∈minڂ = 𝑈 ∇ 𝐦 . Need to show C = U.

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Lemma: Let U be the set of unstable configurations.
Then U 𝐦∈min(𝑈)∇(𝐦). (U is a finite union of cones.)ڂ =

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3min(U)

Proof:
1. Let C 𝐦∈minڂ = 𝑈 ∇ 𝐦 . Need to show C = U.

2. To see that C ⊆ U, let x ∈ C, i.e., x ∈ ∇(m) for some m ∈ min(U).

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Lemma: Let U be the set of unstable configurations.
Then U 𝐦∈min(𝑈)∇(𝐦). (U is a finite union of cones.)ڂ =

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3min(U)

Proof:
1. Let C 𝐦∈minڂ = 𝑈 ∇ 𝐦 . Need to show C = U.

2. To see that C ⊆ U, let x ∈ C, i.e., x ∈ ∇(m) for some m ∈ min(U).
3. By Observation 1, since m ∈ U, also x ∈ U, so C ⊆ U.

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Lemma: Let U be the set of unstable configurations.
Then U 𝐦∈min(𝑈)∇(𝐦). (U is a finite union of cones.)ڂ =

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3min(U)

Proof:
1. Let C 𝐦∈minڂ = 𝑈 ∇ 𝐦 . Need to show C = U.

2. To see that C ⊆ U, let x ∈ C, i.e., x ∈ ∇(m) for some m ∈ min(U).
3. By Observation 1, since m ∈ U, also x ∈ U, so C ⊆ U.
4. To see that U ⊆ C, let x ∈ U.

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Lemma: Let U be the set of unstable configurations.
Then U 𝐦∈min(𝑈)∇(𝐦). (U is a finite union of cones.)ڂ =

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3min(U)

Proof:
1. Let C 𝐦∈minڂ = 𝑈 ∇ 𝐦 . Need to show C = U.

2. To see that C ⊆ U, let x ∈ C, i.e., x ∈ ∇(m) for some m ∈ min(U).
3. By Observation 1, since m ∈ U, also x ∈ U, so C ⊆ U.
4. To see that U ⊆ C, let x ∈ U.
5. By Observation 2, for some m ∈ min(U), m ≤ x.

Set of unstable configurations is finite union of cones

81

Observation 1: Unstable configs are closed upwards:
For all unstable c and all d ∈ ∇(c), d is also unstable.

Observation 2: For all x ∈ A, there is a
minimal m ∈ min(A) such that m ≤ x.

Recall:

Lemma: Let U be the set of unstable configurations.
Then U 𝐦∈min(𝑈)∇(𝐦). (U is a finite union of cones.)ڂ =

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3min(U)

Proof:
1. Let C 𝐦∈minڂ = 𝑈 ∇ 𝐦 . Need to show C = U.

2. To see that C ⊆ U, let x ∈ C, i.e., x ∈ ∇(m) for some m ∈ min(U).
3. By Observation 1, since m ∈ U, also x ∈ U, so C ⊆ U.
4. To see that U ⊆ C, let x ∈ U.
5. By Observation 2, for some m ∈ min(U), m ≤ x.
6. Thus x ∈ ∇(m) ⊆ C, so U ⊆ C. QED

Stable configurations are closed upwards for
species that are already “large”

82

Recall stable configs are closed downward. They are also closed upward for “already large” species.

Stable configurations are closed upwards for
species that are already “large”

82

Definition: Let τ = max { m(S) | m ∈ min(U), S ∈ Λ }.
The hypercube with corner (τ, τ, …, τ) ∈ ℕd (and other
corner at origin) contains every minimal m defining U.

Recall stable configs are closed downward. They are also closed upward for “already large” species.

Stable configurations are closed upwards for
species that are already “large”

82

Definition: Let τ = max { m(S) | m ∈ min(U), S ∈ Λ }.
The hypercube with corner (τ, τ, …, τ) ∈ ℕd (and other
corner at origin) contains every minimal m defining U.

Lemma: Let c be stable such that for some species
S ∈ Λ, c(S) ≥ τ. Let d = c + {any amount of S}.
Then d is also stable.

Recall stable configs are closed downward. They are also closed upward for “already large” species.

#S

τ

τ

Stable configurations are closed upwards for
species that are already “large”

82

Definition: Let τ = max { m(S) | m ∈ min(U), S ∈ Λ }.
The hypercube with corner (τ, τ, …, τ) ∈ ℕd (and other
corner at origin) contains every minimal m defining U.

Lemma: Let c be stable such that for some species
S ∈ Λ, c(S) ≥ τ. Let d = c + {any amount of S}.
Then d is also stable.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

m1

m2

m3

c

d

Proof: By picture. τ = 6, c(S) = 6, d(S) = 8.
If c is not already in a cone ∇(m) defining
the unstable configurations U, we cannot
enter any cone by adding more S.

Recall stable configs are closed downward. They are also closed upward for “already large” species.

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.

c0

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.

c0

δ0c1=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.

c0

δ0c1=

δ1
c2=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.

c0

δ0c1=

δ1
c2=

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.

c0

δ0c1=

δ1
c2=

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.

c0

δ0c1=

δ1
c2=

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.

c0 o0⇒

δ0c1=

δ1
c2=

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.

c0 o0⇒

δ0c1=

δ1
c2=

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.
5. By correctness oi + δi ⇒ oi+1 for some stable oi+1.

c0 o0⇒

δ0c1=

δ1
c2=

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.
5. By correctness oi + δi ⇒ oi+1 for some stable oi+1.

c0 o0⇒

δ0c1= ⇒ o1

δ1
c2=

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.
5. By correctness oi + δi ⇒ oi+1 for some stable oi+1.

c0 o0⇒

δ0c1= ⇒ o1

δ1
c2=

⇒ o2

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.
5. By correctness oi + δi ⇒ oi+1 for some stable oi+1.
6. By Dickson’s Lemma pick infinite nondecreasing

subsequence o’0 ≤ o’1 ≤ … of oi’s. For the sake of readability
let’s assume this is just the original sequence o0 ≤ o1 ≤ ….

c0 o0⇒

δ0c1= ⇒ o1

δ1
c2=

⇒ o2

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.
5. By correctness oi + δi ⇒ oi+1 for some stable oi+1.
6. By Dickson’s Lemma pick infinite nondecreasing

subsequence o’0 ≤ o’1 ≤ … of oi’s. For the sake of readability
let’s assume this is just the original sequence o0 ≤ o1 ≤ ….

7. Let Γ = { S | limi→∞ oi(S) = ∞ } (species with unbounded counts).

c0 o0⇒

δ0c1= ⇒ o1

δ1
c2=

⇒ o2

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.
5. By correctness oi + δi ⇒ oi+1 for some stable oi+1.
6. By Dickson’s Lemma pick infinite nondecreasing

subsequence o’0 ≤ o’1 ≤ … of oi’s. For the sake of readability
let’s assume this is just the original sequence o0 ≤ o1 ≤ ….

7. Let Γ = { S | limi→∞ oi(S) = ∞ } (species with unbounded counts).
8. For large enough i, if S ∈ Γ, then oi(S) ≥ τ, and if S ∉ Γ, then

oi(S) = cS where cS is the largest S ever gets in the oi’s. c0 o0⇒

δ0c1= ⇒ o1

δ1
c2=

⇒ o2

δ2

c3=

A pumping lemma

83

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Proof:
1. By Dickson’s Lemma there is infinite nondecreasing

subsequence c0 ≤ c1 ≤ …, each ci ∈ A. Let δi = ci+1 – ci.
2. Define sequence of stable o0, o1, … inductively as follows.
3. Base case: c0 ⇒ o0 for some stable o0.
4. Inductive case: By additivity ci+1 = ci + δi ⇒ oi + δi.
5. By correctness oi + δi ⇒ oi+1 for some stable oi+1.
6. By Dickson’s Lemma pick infinite nondecreasing

subsequence o’0 ≤ o’1 ≤ … of oi’s. For the sake of readability
let’s assume this is just the original sequence o0 ≤ o1 ≤ ….

7. Let Γ = { S | limi→∞ oi(S) = ∞ } (species with unbounded counts).
8. For large enough i, if S ∈ Γ, then oi(S) ≥ τ, and if S ∉ Γ, then

oi(S) = cS where cS is the largest S ever gets in the oi’s.
9. Then oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.

c0 o0⇒

δ0c1= ⇒ o1

δ1
c2=

⇒ o2

δ2

c3=

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.

oi

δi

oi

ε⇒

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.
5. Apply the same execution to n copies of δi: oi +nδi ⇒ oi+nε.

oi

δi

oi

ε⇒

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.
5. Apply the same execution to n copies of δi: oi +nδi ⇒ oi+nε.

oi

δi

oi

ε⇒
δi

δi

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.
5. Apply the same execution to n copies of δi: oi +nδi ⇒ oi+nε.

oi

δi

oi

ε⇒
ε⇒
ε⇒

δi

δi

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.
5. Apply the same execution to n copies of δi: oi +nδi ⇒ oi+nε.
6. oi +nε is larger than oi only on species S with count oi(S) ≥ τ.

oi

δi

oi

ε⇒
ε⇒
ε⇒

δi

δi

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.
5. Apply the same execution to n copies of δi: oi +nδi ⇒ oi+nε.
6. oi +nε is larger than oi only on species S with count oi(S) ≥ τ.
7. By closure of stable configurations upwards for “already large”

species, since oi is stable, oi +nε is also stable, with the same output
YES, since they have the same species present.

oi

δi

oi

ε⇒
ε⇒
ε⇒

δi

δi

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.
5. Apply the same execution to n copies of δi: oi +nδi ⇒ oi+nε.
6. oi +nε is larger than oi only on species S with count oi(S) ≥ τ.
7. By closure of stable configurations upwards for “already large”

species, since oi is stable, oi +nε is also stable, with the same output
YES, since they have the same species present.

8. In other words, we can reach from ci+nδi to a stable YES
configuration, so ci+nδi ∈ A for all n ∈ ℕ.

oi

δi

oi

ε⇒
ε⇒
ε⇒

δi

δi

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

A pumping lemma (proof continued)

84

Proof: (continued)
1. Fix large enough i that oi+1(S) = oi(S) if S ∉ Γ and oi(S) ≥ τ otherwise.
2. Write ε = oi+1 – oi.
3. Note that ε(S) > 0 implies oi(S) ≥ τ.
4. Then oi +δi ⇒ oi+1 = oi+ε, i.e., oi is like a “catalyst” that transforms δi

into ε.
5. Apply the same execution to n copies of δi: oi +nδi ⇒ oi+nε.
6. oi +nε is larger than oi only on species S with count oi(S) ≥ τ.
7. By closure of stable configurations upwards for “already large”

species, since oi is stable, oi +nε is also stable, with the same output
YES, since they have the same species present.

8. In other words, we can reach from ci+nδi to a stable YES
configuration, so ci+nδi ∈ A for all n ∈ ℕ.

9. Let c = ci and d = ci+1, with δ = δi. QED

oi

δi

oi

ε⇒
ε⇒
ε⇒

δi

δi

Pumping Lemma: Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

c+2δ

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)
4. Formally, suppose otherwise: c+2δ = (2z–x, 2z2–x2) ∈ S.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

c+2δ

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)
4. Formally, suppose otherwise: c+2δ = (2z–x, 2z2–x2) ∈ S.
5. Then (2z–x)2 = (2z2–x2), so

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

c+2δ

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)
4. Formally, suppose otherwise: c+2δ = (2z–x, 2z2–x2) ∈ S.
5. Then (2z–x)2 = (2z2–x2), so

0 = (2z–x)2 – (2z2–x2)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

c+2δ

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)
4. Formally, suppose otherwise: c+2δ = (2z–x, 2z2–x2) ∈ S.
5. Then (2z–x)2 = (2z2–x2), so

0 = (2z–x)2 – (2z2–x2)
= (4z2–4xz+x2) – (2z2–x2)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

c+2δ

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)
4. Formally, suppose otherwise: c+2δ = (2z–x, 2z2–x2) ∈ S.
5. Then (2z–x)2 = (2z2–x2), so

0 = (2z–x)2 – (2z2–x2)
= (4z2–4xz+x2) – (2z2–x2)
= 2z2 – 4xz + 2x2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

c+2δ

Impossibility of stably deciding squaring set

85

Pumping Lemma : Suppose a CRN stably decides infinite set A ⊆ ℕd.
Then there are c<d such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ A.

Theorem: The “squaring set” S = { (x,y) | x2=y } is not stably decidable by any CRN.

Proof:
1. By our Pumping Lemma, there are points c=(x,x2) and d=(z,z2), x < z,

such that, letting δ = d–c, for all n ∈ ℕ, c+nδ ∈ S.
2. Claim: the point c+2δ ∉ S, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at ≤ 2 points)
4. Formally, suppose otherwise: c+2δ = (2z–x, 2z2–x2) ∈ S.
5. Then (2z–x)2 = (2z2–x2), so

0 = (2z–x)2 – (2z2–x2)
= (4z2–4xz+x2) – (2z2–x2)
= 2z2 – 4xz + 2x2

= 2(z–x)2, which contradicts x ≠ z. QED
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8

y

x

c

d

δ

c+2δ

Limits of efficient stable
computation

86

What is known to be computable in less than time O(n)?

87

What is known to be computable in less than time O(n)?

Predicates

Boolean combination of detection
predicates

“detection” means φ(a) = [a > 0?]

87

What is known to be computable in less than time O(n)?

Predicates

Boolean combination of detection
predicates

“detection” means φ(a) = [a > 0?]

87

φ(a,b,c) = a>0 OR (b>0 AND c=0)

i.e., constant except when a variable
changes from 0 to positive

What is known to be computable in less than time O(n)?

Predicates

Boolean combination of detection
predicates

“detection” means φ(a) = [a > 0?]

Functions

ℕ-linear functions (coefficients
are nonnegative integers)

87

φ(a,b,c) = a>0 OR (b>0 AND c=0)

i.e., constant except when a variable
changes from 0 to positive

What is known to be computable in less than time O(n)?

Predicates

Boolean combination of detection
predicates

“detection” means φ(a) = [a > 0?]

Functions

ℕ-linear functions (coefficients
are nonnegative integers)

87

e.g., f(a,b) = 2a + 3b
a→y+y
b→y+y+y

φ(a,b,c) = a>0 OR (b>0 AND c=0)

[Angluin, Aspnes, Eisenstat, Fast computation by population protocols with a leader, DISC 2006]
[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]

i.e., constant except when a variable
changes from 0 to positive

Both computable in O(log n) time

Known time lower bounds: leader election/majority

Leader election

Leader election (computing the constant
function f(a)=1) requires Ω(n) time

Majority (and other “explicit” predicates)

Majority (and many other “explicit” predicates
such as equality) require Ω(n / polylog n) time,
even with up to ½ log log n states.*

If the protocol satisfies a technical condition
called “output dominance”, then even with up
to log n states, Ω(n0.999) time is required.**

88

[Doty, Soloveichik, Stable leader election in
population protocols requires linear time, DISC 2015]

*[Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest, SODA 2017]

**[Alistarh, Aspnes, Gelashvili, SODA 2018]: “output dominance”
= changing positive counts of states in a stable configuration
leaves it able to reach a stable configuration with the same output

Known time lower bounds: “most” predicates/functions

• Informal: “most” semilinear predicates and functions not known to be computable in
o(n) time, actually require at least Ω(n) time to compute

89

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

Known time lower bounds: “most” predicates/functions

• Informal: “most” semilinear predicates and functions not known to be computable in
o(n) time, actually require at least Ω(n) time to compute

• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b) for
all a,b with all components ≥ m

89

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

Known time lower bounds: “most” predicates/functions

• Informal: “most” semilinear predicates and functions not known to be computable in
o(n) time, actually require at least Ω(n) time to compute

• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b) for
all a,b with all components ≥ m

• Definition: f: ℕk→ℕ is eventually ℕ-linear if there is m∈ℕ so that f(a) is ℕ-linear for
all a with all components ≥ m

• Both definitions allow exceptions “near a face of ℕk”

89

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

Known time lower bounds: “most” predicates/functions

• Informal: “most” semilinear predicates and functions not known to be computable in
o(n) time, actually require at least Ω(n) time to compute

• Definition: φ: ℕk→{Y,N} is eventually constant if there is m∈ℕ so that φ(a) = φ(b) for
all a,b with all components ≥ m

• Definition: f: ℕk→ℕ is eventually ℕ-linear if there is m∈ℕ so that f(a) is ℕ-linear for
all a with all components ≥ m

• Both definitions allow exceptions “near a face of ℕk”

• Formal theorem: Every predicate that is not eventually constant, and every function
that is not eventually ℕ-linear, requires at least time Ω(n) to compute.

• They’re all computable in at most O(n) time, so this settles their time complexity.

89

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

What is currently known/unknown

90

Predicates Functions

computable in
O(log n) time

detection (constant unless
changing between 0 and positive)

a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable in
less than Ω(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol is
O(n) time)

eventually constant but not
constant on all positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwise

f(a) =

What is currently known/unknown

90

Predicates Functions

computable in
O(log n) time

detection (constant unless
changing between 0 and positive)

a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable in
less than Ω(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol is
O(n) time)

eventually constant but not
constant on all positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwise

f(a) =

What is currently known/unknown

90

Predicates Functions

computable in
O(log n) time

detection (constant unless
changing between 0 and positive)

a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable in
less than Ω(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol is
O(n) time)

eventually constant but not
constant on all positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwise

f(a) =

What is currently known/unknown

90

Predicates Functions

computable in
O(log n) time

detection (constant unless
changing between 0 and positive)

a>0 AND (b>0 OR c=0)

ℕ-linear
3a + b + 2c

not computable in
less than Ω(n)
time

non-eventually constant
a>b? a=b? a is odd?

non-eventually ℕ-linear
a/2 a–b a+1 a–1 1
min(a,b) max(a,b)
max(a, min(b + 3, 2c)) – c – 1

unknown (best
known protocol is
O(n) time)

eventually constant but not
constant on all positive values
a>1?

eventually ℕ-linear but not ℕ-linear

0
1
2
3
4
5

0 1 2 3 4 5 a

f(a)
a if a>1,
0 otherwise

f(a) =

Other modeling choices?

91

• integer counts (“stochastic”) or real concentrations (“mass-action”)?

• what is the object being “computed”?
• yes/no decision problem? “number of A’s > number of B’s?”

• numerical function? “make Y become double the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent an input n1,…,nk, what is the initial configuration?
• only input species present?

• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

Modeling choices in formalizing “Computing with chemistry”

92

first part of slides

• integer counts (“stochastic”) or real concentrations (“mass-action”)?

• what is the object being “computed”?
• yes/no decision problem? “number of A’s > number of B’s?”

• numerical function? “make Y become double the amount of X”

• guaranteed to get correct answer? or allow small probability of error?
• if Pr[error] = 0, system works no matter the reaction rates

• to represent an input n1,…,nk, what is the initial configuration?
• only input species present?

• auxiliary species can be present?

• when is the computation finished? when…
• the output stops changing? (convergence)

• the output becomes unable to change? (stabilization)

• a certain species T is first produced? (termination)

• require exact numerical answer? or allow an approximation?

Modeling choices in formalizing “Computing with chemistry”

92

summarized in
next few slides

Auxiliary species present initially ≈ “initial leader”

Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

93

Auxiliary species present initially ≈ “initial leader”

Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

93

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Auxiliary species present initially ≈ “initial leader”

Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

93

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Auxiliary species present initially ≈ “initial leader”

Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

93

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Le+A→Lo

Lo+A→Le

with a
leader Le

Auxiliary species present initially ≈ “initial leader”

Instead of starting with { 100 A } to represent input value 100, start
with { 1 L, 100 A }

93

some predicates/functions get “easier” (i.e., it’s easy to think of the reactions)

Ao+Ao→ Ae+ae

Ae+Ae → Ae+ae

Ao+Ae → Ao+ao

Ao+ae → Ao+ao

Ae+ao → Ae+ae

parity: φ(a) = “a is odd”

without
a leader

Le+A→Lo

Lo+A→Le

with a
leader Le

But fundamental computability doesn’t change:
exactly the semilinear predicates/functions can
be computed (same as without a leader).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, PODC 2004] [Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012] [Doty, Hajiaghayi, DNA 2013]

94

Convergence vs stabilization and leader vs anarchy

94

Convergence vs stabilization and leader vs anarchy

initial

94

Convergence vs stabilization and leader vs anarchy

initial convergence

...
Y# =3 Y# =2

94

Convergence vs stabilization and leader vs anarchy

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

94

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-

ℕ-linear functions require at least Ω(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

94

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-

ℕ-linear functions require at least Ω(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

Previous work: With a leader, all semilinear predicates/functions can be computed in

at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

94

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-

ℕ-linear functions require at least Ω(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

Previous work: With a leader, all semilinear predicates/functions can be computed in

at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

Conjecture: With a leader, all non-detection predicates and non-ℕ-linear functions

require at least Ω(n) stabilization time.

94

Convergence vs stabilization and leader vs anarchy

Theorem: Without a leader, all non-eventually constant predicates and non-eventually-

ℕ-linear functions require at least Ω(n) stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

initial convergence

...
Y# =3 Y# =2

...
stabilization

Y# =2 Y# =2 stable

Previous work: With a leader, all semilinear predicates/functions can be computed in

at most O(log5 n) convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

Conjecture: With a leader, all non-detection predicates and non-ℕ-linear functions

require at least Ω(n) stabilization time.

False conjecture: Without a leader, all non-detection predicates and non-ℕ-linear

functions require at least Ω(n) convergence time.

[resolved negatively by Kosowski, Uznański, Population Protocols are Fast , PODC Brief Announcement 2018]

What if we use real-valued concentrations?

95

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

What if we use real-valued concentrations?

95

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

n

f(n) semilinear example

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

What if we use real-valued concentrations?

95

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

n

f(n) semilinear example

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

What if we use real-valued concentrations?

95

Theorem: A function is stably
computable by a real-valued chemical
reaction network if and only if it is
continuous and piecewise linear.

Theorem: A function is stably computable
by an integer-valued chemical reaction
network if and only if it is semilinear.

continuous piecewise linear example

[Chen, Doty, Reeves, Soloveichik, JACM 2023]

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

n

f(n) semilinear example

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

96

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

96

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

96

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008] … “efficiently” (polynomial-time slowdown) …

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

96

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

… “efficiently” (polynomial-time slowdown) …

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

96

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

Furthermore, computation doesn’t merely
converge to the correct answer eventually, but can
be made “terminating”: producing a molecule T
signaling when the computation is done.
(provably impossible when Pr[error] = 0)

… “efficiently” (polynomial-time slowdown) …

What if we allow a small probability of error?
(i.e., allow reaction rates to influence outcome)

96

Theorem: A function is computable with probability of error < 1% by an integer-valued
chemical reaction network if and only if it is computable by any algorithm whatsoever…

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

n

f(n) computable example

2

3

5

7

11

[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

… if we have an initial leader.

Furthermore, computation doesn’t merely
converge to the correct answer eventually, but can
be made “terminating”: producing a molecule T
signaling when the computation is done.
(provably impossible when Pr[error] = 0)

Conjecture: Even without a leader, any
computable function can be efficiently
computed with high probability.

… “efficiently” (polynomial-time slowdown) …

What if we use real-valued concentrations… and allow
reaction rates to influence outcome??

97

Theorem: A function is computable by a real-valued chemical reaction network using
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

What if we use real-valued concentrations… and allow
reaction rates to influence outcome??

97

Theorem: A function is computable by a real-valued chemical reaction network using
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

mass-action kinetics:

X → Y+Y

Y+Z → X

k1

k2

[X] = –k1[X] + k2[Y][Z]

[Y] = 2k1[X] – k2[Y][Z]

[Z] = – k2[Y][Z]

What if we use real-valued concentrations… and allow
reaction rates to influence outcome??

97

Theorem: A function is computable by a real-valued chemical reaction network using
mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of
mixed analog-digital programs. Computational Methods in Systems Biology – CMSB 2017]

mass-action kinetics:

X → Y+Y

Y+Z → X

k1

k2

[X] = –k1[X] + k2[Y][Z]

[Y] = 2k1[X] – k2[Y][Z]

[Z] = – k2[Y][Z]

… with only a polynomial-time
slowdown.

[Bournez, Graça, Pouly. Polynomial time corresponds to
solutions of polynomial ordinary differential equations
of polynomial length. Journal of the ACM 2017]

Fast approximate division by 2

98

X+A→B+Y
X+B→A

initial configuration:
{ n X, εn A, εn B }

guaranteed to get
Y = n/2 ± εn
E[time] = O(log n) / ε

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

Fast approximate division by 2

98

X+A→B+Y
X+B→A

initial configuration:
{ n X, εn A, εn B }

guaranteed to get
Y = n/2 ± εn
E[time] = O(log n) / ε

n = 100 ε = 0.1

[Belleville, Doty, Soloveichik, Hardness of computing and approximating
predicates and functions with leaderless population protocols, ICALP 2017]

CRN computation with a small
chance of error

99

Counter (register) machine

1)

2)

3)

4)

5)

6)

r s t

Counter (register) machine

1)

2)

3)

4)

5)

6)

r s t

Counter (register) machine

1)

2)

3)

4)

5)

6)

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

HALT

“input” counter

r s t

Counter (register) machine

1) dec r

2) inc s

3) inc s

4) inc s

5) dec t

6) inc s

if empty goto 6

if empty goto 1

computes f(n) = 3n+1

HALT

“input” counter

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

101

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

• Start with inputs n1, n2, …, nl ∈ ℕ as values of c1, c2, …, cl, and cl+1, …, ck start 0.

101

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

• Start with inputs n1, n2, …, nl ∈ ℕ as values of c1, c2, …, cl, and cl+1, …, ck start 0.

• Finite-state machine, where each state is one of:

101

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

• Start with inputs n1, n2, …, nl ∈ ℕ as values of c1, c2, …, cl, and cl+1, …, ck start 0.

• Finite-state machine, where each state is one of:
• inc c: increment counter c

101

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

• Start with inputs n1, n2, …, nl ∈ ℕ as values of c1, c2, …, cl, and cl+1, …, ck start 0.

• Finite-state machine, where each state is one of:
• inc c: increment counter c

• dec c: decrement counter c; no effect if c = 0

101

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

• Start with inputs n1, n2, …, nl ∈ ℕ as values of c1, c2, …, cl, and cl+1, …, ck start 0.

• Finite-state machine, where each state is one of:
• inc c: increment counter c

• dec c: decrement counter c; no effect if c = 0

• if c=0 goto i: if counter c is 0, then jump to state i

101

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

• Start with inputs n1, n2, …, nl ∈ ℕ as values of c1, c2, …, cl, and cl+1, …, ck start 0.

• Finite-state machine, where each state is one of:
• inc c: increment counter c

• dec c: decrement counter c; no effect if c = 0

• if c=0 goto i: if counter c is 0, then jump to state i

• goto i (can be shorthand for if c=0 goto i for unused c)

101

Counter machines

• Finite state machine with a fixed number of counters c1, c2, …, ck, each holding a
nonnegative integer.

• Start with inputs n1, n2, …, nl ∈ ℕ as values of c1, c2, …, cl, and cl+1, …, ck start 0.

• Finite-state machine, where each state is one of:
• inc c: increment counter c

• dec c: decrement counter c; no effect if c = 0

• if c=0 goto i: if counter c is 0, then jump to state i

• goto i (can be shorthand for if c=0 goto i for unused c)

• may also have accept/reject semantics, or interpret the final value of some
counter as the output

101

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

input a

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

input a f(a) = 2a

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

input a

1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

f(a) = 2a

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

input a input a

1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

f(a) = 2a

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

input a input a

1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

f(a) = 2a f(a) = ⌊a/2⌋

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

1. if a=0 goto 7
2. dec a
3. if a=0 goto 6
4. dec a
5. goto 1
6. accept
7. reject

input a input a

input a

1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

f(a) = 2a f(a) = ⌊a/2⌋

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

1. if a=0 goto 7
2. dec a
3. if a=0 goto 6
4. dec a
5. goto 1
6. accept
7. reject

input a input a

input a

1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

f(a) = 2a f(a) = ⌊a/2⌋

φ(a) = “a is odd”

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

1. if a=0 goto 7
2. dec a
3. if a=0 goto 6
4. dec a
5. goto 1
6. accept
7. reject

1. while a>0:
2. dec a
3. while b>0:
4. dec b
5. inc c
6. inc d
7. while c>0:
8. dec c
9. inc b

input a input a

input a

inputs a,b
1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

f(a) = 2a f(a) = ⌊a/2⌋

φ(a) = “a is odd”

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

1. if a=0 goto 7
2. dec a
3. if a=0 goto 6
4. dec a
5. goto 1
6. accept
7. reject

1. while a>0:
2. dec a
3. while b>0:
4. dec b
5. inc c
6. inc d
7. while c>0:
8. dec c
9. inc b

input a input a

input a

inputs a,b
1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

f(a) = 2a f(a) = ⌊a/2⌋

φ(a) = “a is odd”

f(a,b) = ab

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

1. if a=0 goto 7
2. dec a
3. if a=0 goto 6
4. dec a
5. goto 1
6. accept
7. reject

1. while a>0:
2. dec a
3. while b>0:
4. dec b
5. inc c
6. inc d
7. while c>0:
8. dec c
9. inc b

input a input a

input a

inputs a,b
1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

1. inc b
2. while a>0:
3. dec a
4. while b>0:
5. dec b
6. inc c
7. inc c
8. while c>0:
9. dec c
10. inc b

input a

f(a) = 2a f(a) = ⌊a/2⌋

φ(a) = “a is odd”

f(a,b) = ab

Example counter machines

102

1. if a=0 goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end

1. while a>0:
2. dec a
3. dec a
4. inc b

1. if a=0 goto 7
2. dec a
3. if a=0 goto 6
4. dec a
5. goto 1
6. accept
7. reject

1. while a>0:
2. dec a
3. while b>0:
4. dec b
5. inc c
6. inc d
7. while c>0:
8. dec c
9. inc b

input a input a

input a

inputs a,b
1. while a>0:
2. <instruction>
3. <instruction>
…
i. …
is a shorthand for
1. if a=0 goto i
2. <instruction>
3. <instruction>
…
i-1. goto 1
i. …

1. inc b
2. while a>0:
3. dec a
4. while b>0:
5. dec b
6. inc c
7. inc c
8. while c>0:
9. dec c
10. inc b

input a

f(a) = 2a f(a) = ⌊a/2⌋

φ(a) = “a is odd”

f(a,b) = ab
f(a) = 2a

3-counter machines are Turing universal

104

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1a =
2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

= 39

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1

1 1 0 0 0

a =

b =

2

2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

= 39

= 24

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1

1 1 0 0 0

a =

b =

Turing machine operation Counter machine implementation

read bit under tape head

change bit under tape head

move tape head right

move tape head left

test if tape head is on blank
and if so, change it to 1

Need a third “work” counter c to help do the following
operations on counters a and b:

2

2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

= 39

= 24

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1

1 1 0 0 0

a =

b =

Turing machine operation Counter machine implementation

read bit under tape head

change bit under tape head

move tape head right

move tape head left

test if tape head is on blank
and if so, change it to 1

Need a third “work” counter c to help do the following
operations on counters a and b:

2

2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

is a odd?

= 39

= 24

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1

1 1 0 0 0

a =

b =

Turing machine operation Counter machine implementation

read bit under tape head

change bit under tape head

move tape head right

move tape head left

test if tape head is on blank
and if so, change it to 1

Need a third “work” counter c to help do the following
operations on counters a and b:

2

2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

inc/dec a

is a odd?

= 39

= 24

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1

1 1 0 0 0

a =

b =

Turing machine operation Counter machine implementation

read bit under tape head

change bit under tape head

move tape head right

move tape head left

test if tape head is on blank
and if so, change it to 1

Need a third “work” counter c to help do the following
operations on counters a and b:

2

2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

inc/dec a

set a = 2a (+ 1) ; set b = ⌊b/2⌋

is a odd?

= 39

= 24

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1

1 1 0 0 0

a =

b =

Turing machine operation Counter machine implementation

read bit under tape head

change bit under tape head

move tape head right

move tape head left

test if tape head is on blank
and if so, change it to 1

Need a third “work” counter c to help do the following
operations on counters a and b:

2

2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

inc/dec a

set a = 2a (+ 1) ; set b = ⌊b/2⌋

set b = 2b (+ 1) ; set a = ⌊a/2⌋

is a odd?

= 39

= 24

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

3-counter machines are Turing universal

104

0 0 1 1 1 0 0 0 1 _

q6

1 0 0 1 1 1

1 1 0 0 0

a =

b =

Turing machine operation Counter machine implementation

read bit under tape head

change bit under tape head

move tape head right

move tape head left

test if tape head is on blank
and if so, change it to 1

Need a third “work” counter c to help do the following
operations on counters a and b:

2

2

Assume Turing machine
• has a single blank on rightmost cell
• if rightmost blank overwritten, it

grows a new blank cell to right

inc/dec a

set a = 2a (+ 1) ; set b = ⌊b/2⌋

set b = 2b (+ 1) ; set a = ⌊a/2⌋

if b=1 then
set a = 2a + 1

is a odd?

= 39

= 24

Interpret tape on each side of tape head as binary number;
append new leading 1 to make this mapping 1-1, in case the
binary string has no leading 1 already, since 001112, 01112,
and 1112 are all considered the number 7.

1-counter machines are not
Turing-universal… why?

2-counter machines are (sort of) Turing universal

105

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.

105

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

105

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

• To decrement a, set x = ⌊x/2⌋.

105

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

• To decrement a, set x = ⌊x/2⌋.

• To test if c = 0, test if x ≡ 0 mod 5.

105

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

• To decrement a, set x = ⌊x/2⌋.

• To test if c = 0, test if x ≡ 0 mod 5.

• To start with a = n and b = c = 0, start with x = 2n∙30∙50 =2n.

105

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

• To decrement a, set x = ⌊x/2⌋.

• To test if c = 0, test if x ≡ 0 mod 5.

• To start with a = n and b = c = 0, start with x = 2n∙30∙50 =2n.

• If f:ℕ→ ℕ is any computable function, this machine can start with x=2n and halt
with x=2f(n).

105

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

• To decrement a, set x = ⌊x/2⌋.

• To test if c = 0, test if x ≡ 0 mod 5.

• To start with a = n and b = c = 0, start with x = 2n∙30∙50 =2n.

• If f:ℕ→ ℕ is any computable function, this machine can start with x=2n and halt
with x=2f(n).

• Caveat about encoding: there is no 2-counter machine that starts with x=n and
halts with x=2n.

105

[Schroeppel 1972, A Two Counter Machine Cannot Calculate 2N]
“Theorem: Any counter machine can be simulated by a 2-counter machine,
provided an obscure coding is accepted for the input and output.”

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

• To decrement a, set x = ⌊x/2⌋.

• To test if c = 0, test if x ≡ 0 mod 5.

• To start with a = n and b = c = 0, start with x = 2n∙30∙50 =2n.

• If f:ℕ→ ℕ is any computable function, this machine can start with x=2n and halt
with x=2f(n).

• Caveat about encoding: there is no 2-counter machine that starts with x=n and
halts with x=2n.

• 2-counter machines can do universal computation on encoded inputs (n encoded as 2n), but
they cannot compute the encoding/decoding themselves.

105

[Schroeppel 1972, A Two Counter Machine Cannot Calculate 2N]
“Theorem: Any counter machine can be simulated by a 2-counter machine,
provided an obscure coding is accepted for the input and output.”

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines are (sort of) Turing universal

• To represent counter values (a,b,c) in a single counter x, let x = 2a∙3b∙5c and y = 0.
• To increment b, set x = 3x. (using y as a work counter)

• To decrement a, set x = ⌊x/2⌋.

• To test if c = 0, test if x ≡ 0 mod 5.

• To start with a = n and b = c = 0, start with x = 2n∙30∙50 =2n.

• If f:ℕ→ ℕ is any computable function, this machine can start with x=2n and halt
with x=2f(n).

• Caveat about encoding: there is no 2-counter machine that starts with x=n and
halts with x=2n.

• 2-counter machines can do universal computation on encoded inputs (n encoded as 2n), but
they cannot compute the encoding/decoding themselves.

• However, the fact that 2-counter machines can simulate arbitrary 3-counter machines implies
that the Halting Problem for 2-counter machines is undecidable.

105

[Schroeppel 1972, A Two Counter Machine Cannot Calculate 2N]
“Theorem: Any counter machine can be simulated by a 2-counter machine,
provided an obscure coding is accepted for the input and output.”

[Minsky 1967, Computation: Finite and Infinite Machines]

2-counter machines: Finite automata robots on the plane

106

Finite automaton occupying a point (x,y) ∈ ℕ2.

It cannot write anything, or see anything.

It can sense if it is touching the southern wall, or
western wall (or both).

It can move north, south, east, or west based on its
current state and 2 “wall bits”, and of course change
state:

δ: S × {wall, no wall}2→S × {,,,→}

2-counter machines: Finite automata robots on the plane

106

Finite automaton occupying a point (x,y) ∈ ℕ2.

It cannot write anything, or see anything.

It can sense if it is touching the southern wall, or
western wall (or both).

It can move north, south, east, or west based on its
current state and 2 “wall bits”, and of course change
state:

δ: S × {wall, no wall}2→S × {,,,→}

There is an automaton A so that this problem
is undecidable: given (x,y) ∈ ℕ2, if started at
(x,y), will A ever visit the lower-left corner?

CRNs can simulate counter machines with probability < 1

1)

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

CRNs can simulate counter machines with probability < 1

1)

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

Counter machine:
r = input n, start line 1

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

1)

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

Counter machine:
r = input n, start line 1

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

1)

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

Counter machine:
r = input n, start line 1

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

1) L
1

→ L
2

+ R

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

Counter machine:
r = input n, start line 1

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

2) L
2

+ R → L
3

1) L
1

→ L
2

+ R

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

Counter machine:
r = input n, start line 1

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

2) L
2

+ R → L
3

1) L
1

→ L
2

+ R

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

Counter machine:
r = input n, start line 1

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

2) L
2

+ R → L
3

1) L
1

→ L
2

+ R

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

; L
2

→ L
1

Counter machine:
r = input n, start line 1

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

2) L
2

+ R → L
3

3) L
3

→ L
4

+ S

4) L
4

+ S → L
5

1) L
1

→ L
2

+ R

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

; L
4

→ L
2

; L
2

→ L
1

Counter machine:
r = input n, start line 1

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

2) L
2

+ R → L
3

3) L
3

→ L
4

+ S

4) L
4

+ S → L
5

1) L
1

→ L
2

+ R

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

; L
4

→ L
2

; L
2

→ L
1

Counter machine:
r = input n, start line 1

Error occurs when R is present, but reaction L2 → L1 occurs instead of L2 + R → L3.
Semantic effect on register machine: when r > 0, it may jump from line 2 to 1 without decrementing.
There’s a positive probability of error; how to reduce it? Need to slow down L2 → L

1
.

1) inc r

2) dec r if zero goto 1

3) inc s

4) dec s if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:
initial state {n R, 1 L1}

Need to be

very slow!

2) L
2

+ R → L
3

3) L
3

→ L
4

+ S

4) L
4

+ S → L
5

1) L
1

→ L
2

+ R

[Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008, Angluin, Aspnes, Eisenstat, DISC 2006, Distributed Computing 2008]

; L
4

→ L
2

; L
2

→ L
1

Counter machine:
r = input n, start line 1

Error occurs when R is present, but reaction L2 → L1 occurs instead of L2 + R → L3.
Semantic effect on register machine: when r > 0, it may jump from line 2 to 1 without decrementing.
There’s a positive probability of error; how to reduce it? Need to slow down L2 → L

1
.

Problem with adjusting rate constant to slow down
reactions for achieving Turing-universal computation

Could make rate constant k very small
• If correct reaction rc: L2+R → L3 has rate constant 1, how small should k be to

achieve Pr[ri occurs instead of rc] = Pr[error] = ε?

• rate of rc = λc = #L2∙#R/v = #R/v ≥ 1/v

• rate of ri = λi = k∙#L2 = k

• Pr[error] = λi / (λi + λc) ≤ k / (k + 1/v)

• For Pr[error] = ε, set k = ε / (v–vε) ≈ ε/v

108

Problems with simulation scheme so far

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.
• halving rate constant k decreases Pr[error] by half, but doubles expected running time of all jump steps

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.
• halving rate constant k decreases Pr[error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.
• halving rate constant k decreases Pr[error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.

5. To store b bits, we need Ω(2b) molecules.

109

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.
• halving rate constant k decreases Pr[error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.

5. To store b bits, we need Ω(2b) molecules.

109

• Problem 5 is fundamental in CRNs: they necessarily store a “unary” encoding of any integer.

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.
• halving rate constant k decreases Pr[error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.

5. To store b bits, we need Ω(2b) molecules.

109

• Problem 5 is fundamental in CRNs: they necessarily store a “unary” encoding of any integer.
• Theorem(ish): There is a CRN solving problems 1–4.

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.
• halving rate constant k decreases Pr[error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.

5. To store b bits, we need Ω(2b) molecules.

109

• Problem 5 is fundamental in CRNs: they necessarily store a “unary” encoding of any integer.
• Theorem(ish): There is a CRN solving problems 1–4.
• We’ll see how to solve problems 1–3 by simulating a register machine more efficiently.

Problems with simulation scheme so far
1. Adjusting rate constants means designing new chemicals.

• Easier to adjust counts of existing molecules than to design new ones.

2. Pr[error in any time step] increases for longer computations.
• By union bound we can only say Pr[error in any time step] ≤ ε∙t (t = running time), so to achieve total error

probability ≤ δ over all the computation requires setting ε ≤ δ/t, i.e., k ≤ δ/(t∙v).

• Universal computation requires that we can simulate a program without knowing in advance how many
steps it will take.

3. Reducing error slows down the computation “significantly”.
• halving rate constant k decreases Pr[error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.

5. To store b bits, we need Ω(2b) molecules.

109

• Problem 5 is fundamental in CRNs: they necessarily store a “unary” encoding of any integer.
• Theorem(ish): There is a CRN solving problems 1–4.
• We’ll see how to solve problems 1–3 by simulating a register machine more efficiently.
• To handle Problem 4, see [Soloveichik, Cook, Winfree, Bruck, Computation with Finite

Stochastic Chemical Reaction Networks, NaCo 2008]

How to slow down reaction L2 → L1?

Use a clock:

1 C
1
, 1 F, n B

How to slow down reaction L2 → L1?

Use a clock:

1 C
1
, 1 F, n B

F + C
1

→ F + C
2

B + C
2

→ B + C
1

F + C
2

→ F + C
3

B + C
3

→ B + C
2

…

How to slow down reaction L2 → L1?

Use a clock:

1 C
1
, 1 F, n B

F + C
1

→ F + C
2

B + C
2

→ B + C
1

F + C
2

→ F + C
3

B + C
3

→ B + C
2

…

C
1

C
2

C
3

C
k

…
1 1 1 1

nnnn

reverse-biased random walk

How to slow down reaction L2 → L1?

Use a clock:

1 C
1
, 1 F, n B

F + C
1

→ F + C
2

B + C
2

→ B + C
1

F + C
2

→ F + C
3

B + C
3

→ B + C
2

…

C
1

C
2

C
3

C
k

…
1 1 1 1

nnnn

reverse-biased random walk

C
k

appears after

expected time ≈ nk-1

How to slow down reaction L2 → L1?

Use a clock:

1 C
1
, 1 F, n B

F + C
1

→ F + C
2

B + C
2

→ B + C
1

F + C
2

→ F + C
3

B + C
3

→ B + C
2

C
k

+ L
2

→ C
1

+ L
1

…

C
1

C
2

C
3

C
k

…
1 1 1 1

nnnn

reverse-biased random walk

C
k

appears after

expected time ≈ nk-1

How to slow down reaction L2 → L1?

Use a clock:

1 C
1
, 1 F, n B

F + C
1

→ F + C
2

B + C
2

→ B + C
1

F + C
2

→ F + C
3

B + C
3

→ B + C
2

C
k

+ L
2

→ C
1

+ L
1

…

C
1

C
2

C
3

C
k

…
1 1 1 1

nnnn

reverse-biased random walk

C
k

appears after

expected time ≈ nk-1

E[time for L
2

+ R → L
3
] ≤ n

How to slow down reaction L2 → L1?

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.
Pr[ri] = Pr[#Ck = 1] ≤ 1/nk, where n = #B.

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.
Pr[ri] = Pr[#Ck = 1] ≤ 1/nk, where n = #B.
Setting k = 2, Pr[ri] ≤ 1/n2.

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.
Pr[ri] = Pr[#Ck = 1] ≤ 1/nk, where n = #B.
Setting k = 2, Pr[ri] ≤ 1/n2.

Solution: increase B after every decrement and jump:

ri: Ck + L2 → C1 + L1 + B
rc: L2 + R → L3 + B

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.
Pr[ri] = Pr[#Ck = 1] ≤ 1/nk, where n = #B.
Setting k = 2, Pr[ri] ≤ 1/n2.

Solution: increase B after every decrement and jump:

ri: Ck + L2 → C1 + L1 + B
rc: L2 + R → L3 + B
So Pr[ri ever occurs when it shouldn’t] ≤ σ𝑛=1

∞ 1/𝑛2 = π2/6.F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.
Pr[ri] = Pr[#Ck = 1] ≤ 1/nk, where n = #B.
Setting k = 2, Pr[ri] ≤ 1/n2.

Solution: increase B after every decrement and jump:

ri: Ck + L2 → C1 + L1 + B
rc: L2 + R → L3 + B
So Pr[ri ever occurs when it shouldn’t] ≤ σ𝑛=1

∞ 1/𝑛2 = π2/6.
Still not a great probability bound, but we can scale that to
any constant error probability ε by setting starting value of B:

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.
Pr[ri] = Pr[#Ck = 1] ≤ 1/nk, where n = #B.
Setting k = 2, Pr[ri] ≤ 1/n2.

Solution: increase B after every decrement and jump:

ri: Ck + L2 → C1 + L1 + B
rc: L2 + R → L3 + B
So Pr[ri ever occurs when it shouldn’t] ≤ σ𝑛=1

∞ 1/𝑛2 = π2/6.
Still not a great probability bound, but we can scale that to
any constant error probability ε by setting starting value of B:
For ε = 1/100, set initial #B = 102, since σ𝑛=102

∞ 1/𝑛2 < 0.01.

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 1: Now all rate constants = 1.

How to handle the three problems

Recall three problems we claimed we would solve:
1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation “significantly”.

Problem 2: How to make Pr[error in any time step] < ε,
no matter how long the computation goes?

Two competing reactions, ri incorrect, and rc correct:

ri: Ck + L2 → C1 + L1

rc: L2 + R → L3
If both possible, worst case is #R=1, whereas #Ck = 0 or 1.
Pr[ri] = Pr[#Ck = 1] ≤ 1/nk, where n = #B.
Setting k = 2, Pr[ri] ≤ 1/n2.

Solution: increase B after every decrement and jump:

ri: Ck + L2 → C1 + L1 + B
rc: L2 + R → L3 + B
So Pr[ri ever occurs when it shouldn’t] ≤ σ𝑛=1

∞ 1/𝑛2 = π2/6.
Still not a great probability bound, but we can scale that to
any constant error probability ε by setting starting value of B:
For ε = 1/100, set initial #B = 102, since σ𝑛=102

∞ 1/𝑛2 < 0.01.

F + C1 → F + C2 B + C2 → B + C1

F + C2 → F + C3 B + C3 → B + C2

Problem 3: Also solved! i.e., halving error probability no
longer doubles computation time (derivation not shown)

Problem 1: Now all rate constants = 1.

	introduction
	Slide 1: Computation with chemistry
	Slide 2: Chemical reaction networks
	Slide 3: Chemical reaction networks
	Slide 4: Chemical reaction networks
	Slide 5: Chemical reaction networks
	Slide 6: Chemical reaction networks
	Slide 7: Chemical reaction networks
	Slide 8: Chemical reaction networks
	Slide 9: What behavior is possible for chemistry in principle?
	Slide 10: What behavior is possible for chemistry in principle?
	Slide 11: What behavior is possible for chemistry in principle?
	Slide 12: Computation with chemical reaction networks
	Slide 13: Computation with chemical reaction networks
	Slide 14: Example: Chemical caucusing
	Slide 15: Example: Chemical caucusing
	Slide 16: Example: Chemical caucusing
	Slide 17: Example: Chemical caucusing
	Slide 18: Does chemistry compute?
	Slide 19: Does chemistry compute?
	Slide 20: Why compute with chemistry?
	Slide 21: Why compute with chemistry?
	Slide 22: Why compute with chemistry?
	Slide 23: Why compute with chemistry?
	Slide 24: Why compute with chemistry?
	Slide 25: Why compute with chemistry?
	Slide 26: Why compute with chemistry?
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Experimental implementations of synthetic chemical reaction networks with DNA
	Slide 35: What behavior is possible for chemistry in principle?
	Slide 36: What behavior is possible for chemistry in principle?
	Slide 37: Theoretical Computer Science Approach
	Slide 38: Theoretical Computer Science Approach
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Some simple reactions
	Slide 53: Some simple reactions
	Slide 54: Some simple reactions
	Slide 55: Some simple reactions
	Slide 56: Some simple reactions
	Slide 57: Some simple reactions
	Slide 58: Some simple reactions
	Slide 59: Some simple reactions

	examples of stable CRN computation
	Slide 60: Examples of stable (rate-independent) CRN computation
	Slide 61: Examples of function computation
	Slide 62: Examples of function computation
	Slide 63: Examples of function computation
	Slide 64: Examples of function computation
	Slide 65: Examples of function computation
	Slide 66: Examples of function computation
	Slide 67: Examples of function computation
	Slide 68: Examples of function computation
	Slide 69: Examples of function computation
	Slide 70: Examples of function computation
	Slide 71: Examples of function computation
	Slide 72: Examples of function computation
	Slide 73: Examples of function computation
	Slide 74: Examples of function computation
	Slide 75: Examples of function computation
	Slide 76: Examples of function computation
	Slide 77: Examples of function computation
	Slide 78: Examples of function computation
	Slide 79: Examples of function computation
	Slide 80: Examples of function computation
	Slide 81: Examples of function computation
	Slide 82: Examples of function computation
	Slide 83: Examples of function computation
	Slide 84: Examples of function computation
	Slide 85: Examples of function computation
	Slide 86: Examples of function computation
	Slide 87: Examples of function computation
	Slide 88: Examples of function computation
	Slide 89: Examples of function computation
	Slide 90: Examples of function computation
	Slide 91: Examples of function computation
	Slide 92: Examples of function computation
	Slide 93: Examples of function computation
	Slide 94: Examples of function computation
	Slide 95: Examples of function computation
	Slide 96: Examples of function computation
	Slide 97: Examples of function computation
	Slide 98: Examples of function computation
	Slide 99: Examples of function computation
	Slide 100: Examples of function computation
	Slide 101: Examples of function computation
	Slide 102: Examples of function computation
	Slide 103: Examples of function computation
	Slide 104: Examples of function computation
	Slide 105: Examples of function computation
	Slide 106: Examples of function computation
	Slide 107: Examples of function computation
	Slide 108: Examples of function computation
	Slide 109: Examples of function computation
	Slide 110: Examples of function computation
	Slide 111: Examples of function computation
	Slide 112: Examples of function computation
	Slide 113: Examples of function computation
	Slide 114: Examples of function computation
	Slide 115: Examples of function computation
	Slide 116: Examples of function computation
	Slide 117: Examples of function computation
	Slide 118: Examples of function computation
	Slide 119: Examples of function computation
	Slide 120: Examples of function computation
	Slide 121: Examples of function computation
	Slide 122: Examples of function computation
	Slide 123: Examples of function computation
	Slide 124: Examples of function computation
	Slide 125: Examples of function computation
	Slide 126: Examples of function computation
	Slide 127: Examples of function computation
	Slide 128: Examples of function computation
	Slide 129: Examples of function computation
	Slide 130: Examples of function computation
	Slide 131: Examples of function computation
	Slide 132: Examples of function computation
	Slide 133: Examples of function computation
	Slide 134: Examples of function computation
	Slide 135: Examples of function computation
	Slide 136: Examples of function computation
	Slide 137: Examples of function computation
	Slide 138: Examples of function computation
	Slide 139: Examples of function computation
	Slide 140: Examples of function computation
	Slide 141: Examples of function computation
	Slide 142: Examples of predicate computation
	Slide 143: Examples of predicate computation
	Slide 144: Examples of predicate computation
	Slide 145: Examples of predicate computation
	Slide 146: Examples of predicate computation
	Slide 147: Examples of predicate computation
	Slide 148: Examples of predicate computation
	Slide 149: Examples of predicate computation
	Slide 150: Examples of predicate computation
	Slide 151: Examples of predicate computation
	Slide 152: Examples of predicate computation
	Slide 153: Examples of predicate computation
	Slide 154: Examples of predicate computation
	Slide 155: Examples of predicate computation
	Slide 156: Examples of predicate computation
	Slide 157: Examples of predicate computation
	Slide 158: Examples of predicate computation
	Slide 159: Examples of predicate computation
	Slide 160: Examples of predicate computation

	formal definition of CRN computation
	Slide 161: Formal definition of CRN computation
	Slide 162: Modeling choices in formalizing “Computing with chemistry”
	Slide 163: Modeling choices in formalizing “Computing with chemistry”
	Slide 164: Modeling choices in formalizing “Computing with chemistry”
	Slide 165: Modeling choices in formalizing “Computing with chemistry”
	Slide 166: Modeling choices in formalizing “Computing with chemistry”
	Slide 167: Modeling choices in formalizing “Computing with chemistry”
	Slide 168: Modeling choices in formalizing “Computing with chemistry”
	Slide 169: Modeling choices in formalizing “Computing with chemistry”
	Slide 170: Modeling choices in formalizing “Computing with chemistry”
	Slide 171: Modeling choices in formalizing “Computing with chemistry”
	Slide 172: Modeling choices in formalizing “Computing with chemistry”
	Slide 173: Modeling choices in formalizing “Computing with chemistry”
	Slide 174: Modeling choices in formalizing “Computing with chemistry”
	Slide 175: Defining stable computation
	Slide 176: Defining stable computation
	Slide 177: Defining stable computation
	Slide 178: Defining stable computation
	Slide 179: Defining stable computation
	Slide 180: Defining stable computation
	Slide 181: Probability-1 correctness can be characterized with only reachability
	Slide 182: Probability-1 correctness can be characterized with only reachability
	Slide 183: Probability-1 correctness can be characterized with only reachability
	Slide 184: Probability-1 correctness can be characterized with only reachability
	Slide 185: Probability-1 correctness can be characterized with only reachability
	Slide 186: Probability-1 correctness can be characterized with only reachability
	Slide 187: Probability-1 correctness can be characterized with only reachability
	Slide 188: Deterministic computation ≠ all executions correct
	Slide 189: Deterministic computation ≠ all executions correct
	Slide 190: Deterministic computation ≠ all executions correct
	Slide 191: Deterministic computation ≠ all executions correct
	Slide 192: Deterministic computation ≠ all executions correct
	Slide 193: Deterministic computation ≠ all executions correct
	Slide 194: Fair executions: Alternative characterization of stable computation
	Slide 195: Fair executions: Alternative characterization of stable computation
	Slide 196: Fair executions: Alternative characterization of stable computation
	Slide 197: Fair executions: Alternative characterization of stable computation
	Slide 198: Fair executions: Alternative characterization of stable computation
	Slide 199: Fair executions: Alternative characterization of stable computation
	Slide 200: Fair executions: Alternative characterization of stable computation
	Slide 201: Fair executions: Alternative characterization of stable computation
	Slide 202: Fair executions: Alternative characterization of stable computation
	Slide 203: Fair executions: Alternative characterization of stable computation
	Slide 204: Fair executions: Alternative characterization of stable computation
	Slide 205: Fair executions: Alternative characterization of stable computation
	Slide 206: Fair executions: Alternative characterization of stable computation
	Slide 207: Definition of function computation
	Slide 208: Definition of function computation
	Slide 209: Definition of function computation
	Slide 210: Definition of function computation
	Slide 211: Definition of function computation
	Slide 212: Definition of function computation
	Slide 213: Definition of predicate (decision problem) computation
	Slide 214: Definition of predicate (decision problem) computation
	Slide 215: Definition of predicate (decision problem) computation
	Slide 216: Definition of predicate (decision problem) computation
	Slide 217: Definition of predicate (decision problem) computation
	Slide 218: Definition of predicate (decision problem) computation
	Slide 219: Definition of predicate (decision problem) computation

	feedforward CRNs
	Slide 220: Feedforward CRNs
	Slide 221: Stable versus terminal
	Slide 222: Stable versus terminal
	Slide 223: Stable versus terminal
	Slide 224: Stable versus terminal
	Slide 225: Feed-forward CRNs
	Slide 226: Feed-forward CRNs
	Slide 227: Feed-forward CRNs
	Slide 228: Feed-forward CRNs
	Slide 229: Feed-forward CRNs
	Slide 230: Feed-forward CRNs
	Slide 231: Feed-forward CRNs
	Slide 232: Feed-forward CRNs
	Slide 233: Feed-forward CRNs
	Slide 234: Feed-forward CRNs
	Slide 235: Feed-forward CRNs
	Slide 236: Feed-forward CRNs
	Slide 237: Feed-forward CRNs
	Slide 238: Feed-forward CRNs
	Slide 239: Feed-forward CRNs
	Slide 240: Feed-forward CRNs
	Slide 241: Stable function computation by feed-forward CRNs
	Slide 242: Stable function computation by feed-forward CRNs
	Slide 243: Stable function computation by feed-forward CRNs
	Slide 244: Stable function computation by feed-forward CRNs
	Slide 245: Stable function computation by feed-forward CRNs
	Slide 246: Stable function computation by feed-forward CRNs
	Slide 247: Stable function computation by feed-forward CRNs
	Slide 248: Stable function computation by feed-forward CRNs
	Slide 249: Stable function computation by feed-forward CRNs
	Slide 250: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 251: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 252: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 253: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 254: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 255: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 256: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 257: In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it
	Slide 258: Noncompetitive CRNs
	Slide 259: Noncompetitive CRNs
	Slide 260: Noncompetitive CRNs
	Slide 261: Noncompetitive CRNs
	Slide 262: Noncompetitive CRNs
	Slide 263: Noncompetitive CRNs
	Slide 264: Noncompetitive CRNs
	Slide 265: Noncompetitive CRNs
	Slide 266: Noncompetitive CRNs
	Slide 267: Noncompetitive CRNs
	Slide 268: Noncompetitive CRNs
	Slide 269: Noncompetitive CRNs
	Slide 270: Noncompetitive CRNs
	Slide 271: Noncompetitive CRNs
	Slide 272: Noncompetitive CRNs
	Slide 273: Non-feedforward CRNs
	Slide 274: Non-feedforward CRNs
	Slide 275: Non-feedforward CRNs
	Slide 276: Non-feedforward CRNs
	Slide 277: Non-feedforward CRNs
	Slide 278: Non-feedforward CRNs

	time complexity
	Slide 279: Time complexity of CRNs
	Slide 280
	Slide 281
	Slide 282
	Slide 283: Relationship to distributed computing
	Slide 284: Relationship to distributed computing
	Slide 285: Relationship to distributed computing
	Slide 286: Relationship to distributed computing
	Slide 287: Relationship to distributed computing
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292: Full CRN time model (Gillespie kinetics)
	Slide 293: Full CRN time model (Gillespie kinetics)
	Slide 294: Full CRN time model (Gillespie kinetics)
	Slide 295: Full CRN time model (Gillespie kinetics)
	Slide 296: Full CRN time model (Gillespie kinetics)
	Slide 297: Full CRN time model (Gillespie kinetics)
	Slide 298: Full CRN time model (Gillespie kinetics)
	Slide 299: Full CRN time model (Gillespie kinetics)
	Slide 300: Full CRN time model (Gillespie kinetics)
	Slide 301: Full CRN time model (Gillespie kinetics)
	Slide 302: Full CRN time model (Gillespie kinetics)
	Slide 303: Full CRN time model (Gillespie kinetics)
	Slide 304: Full CRN time model (Gillespie kinetics)
	Slide 305: Discrete versus continuous time
	Slide 306: Discrete versus continuous time
	Slide 307: Discrete versus continuous time
	Slide 308: Discrete versus continuous time
	Slide 309: Discrete versus continuous time
	Slide 310: Discrete versus continuous time
	Slide 311: Discrete versus continuous time
	Slide 312: Discrete versus continuous time
	Slide 313: Discrete versus continuous time
	Slide 314: Discrete versus continuous time
	Slide 315: Discrete versus continuous time
	Slide 316: Discrete versus continuous time
	Slide 317: Discrete versus continuous time
	Slide 318: Discrete versus continuous time
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324: Time complexity analysis (basic motifs)
	Slide 325: Time complexity analysis (basic motifs)
	Slide 326: Time complexity analysis (basic motifs)
	Slide 327: Time complexity analysis (basic motifs)
	Slide 328: Time complexity analysis (basic motifs)
	Slide 329: Time complexity analysis (basic motifs)
	Slide 330: Time complexity analysis (basic motifs)
	Slide 331: Time complexity analysis (basic motifs)
	Slide 332: Time complexity analysis (basic motifs)
	Slide 333: Time complexity analysis (basic motifs)
	Slide 334: Time complexity analysis (basic motifs)
	Slide 335: Time complexity analysis (basic motifs)
	Slide 336: Time complexity analysis (basic motifs)
	Slide 337: Time complexity analysis (basic motifs)
	Slide 338: Time complexity analysis (basic motifs)
	Slide 339: Time complexity analysis (basic motifs)
	Slide 340: Time complexity analysis (basic motifs)
	Slide 341: Time complexity analysis (basic motifs)
	Slide 342: Time complexity analysis (basic motifs)
	Slide 343: Time complexity analysis (basic motifs)
	Slide 344: Time complexity analysis (basic motifs)
	Slide 345: Time complexity analysis (basic motifs)
	Slide 346: Time complexity analysis (basic motifs)
	Slide 347: Time complexity analysis (basic motifs)
	Slide 348: Time complexity analysis (basic motifs)
	Slide 349: Time complexity analysis (basic motifs)
	Slide 350: Time complexity analysis (basic motifs)
	Slide 351: Time complexity analysis (basic motifs)
	Slide 352: Time complexity analysis (basic motifs)
	Slide 353: Time complexity analysis (basic motifs)
	Slide 354: Time complexity analysis (basic motifs)
	Slide 355: Time complexity analysis (basic motifs)

	time complexity analysis of stably computing CRNs
	Slide 356: Time complexity analysis of stably computing CRNs
	Slide 357: Time complexity analysis of stably computing CRNs
	Slide 358: Time complexity analysis of stably computing CRNs
	Slide 359: Time complexity analysis of stably computing CRNs
	Slide 360: Time complexity analysis of stably computing CRNs
	Slide 361: Time complexity analysis of stably computing CRNs
	Slide 362: Time complexity analysis of stably computing CRNs
	Slide 363: Time complexity analysis of stably computing CRNs
	Slide 364: Time complexity analysis of stably computing CRNs
	Slide 365: Time complexity analysis of stably computing CRNs
	Slide 366: Time complexity analysis of stably computing CRNs
	Slide 367: Time complexity analysis of stably computing CRNs
	Slide 368: Time complexity analysis of stably computing CRNs
	Slide 369: Time complexity analysis of stably computing CRNs
	Slide 370: Time complexity analysis of stably computing CRNs
	Slide 371: Time complexity analysis of stably computing CRNs
	Slide 372: Time complexity analysis of stably computing CRNs
	Slide 373: Time complexity analysis of stably computing CRNs
	Slide 374: Time complexity analysis of stably computing CRNs
	Slide 375: Time complexity analysis of stably computing CRNs
	Slide 376: Time complexity analysis of stably computing CRNs
	Slide 377: Time complexity analysis of stably computing CRNs
	Slide 378: Time complexity analysis of stably computing CRNs
	Slide 379: Time complexity analysis of stably computing CRNs
	Slide 380: Time complexity analysis of stably computing CRNs
	Slide 381: Time complexity analysis of stably computing CRNs
	Slide 382: Time complexity analysis of stably computing CRNs
	Slide 383: Time complexity analysis of stably computing CRNs
	Slide 384: Time complexity analysis of stably computing CRNs
	Slide 385: Time complexity analysis of stably computing CRNs
	Slide 386: Time complexity analysis of stably computing CRNs
	Slide 387: Time complexity analysis of stably computing CRNs
	Slide 388: Time complexity analysis of stably computing CRNs
	Slide 389: Time complexity analysis of stably computing CRNs
	Slide 390: Time complexity analysis of stably computing CRNs
	Slide 391: Time complexity analysis of stably computing CRNs
	Slide 392: Time complexity analysis of stably computing CRNs

	possibilities of stable computation: positive results
	Slide 393: Possibilities of stable computation
	Slide 394: Summary: Possibilities and limits of stable computation
	Slide 395: Summary: Possibilities and limits of stable computation
	Slide 396: Summary: Possibilities and limits of stable computation
	Slide 397: Summary: Possibilities and limits of stable computation
	Slide 398: Summary: Possibilities and limits of stable computation
	Slide 399: Summary: Possibilities and limits of stable computation
	Slide 400: Summary: Possibilities and limits of stable computation
	Slide 401: Summary: Possibilities and limits of stable computation
	Slide 402: Summary: Possibilities and limits of stable computation
	Slide 403: Summary: Possibilities and limits of stable computation
	Slide 404: Linear sets
	Slide 405: Linear sets
	Slide 406: Linear sets
	Slide 407: Linear sets
	Slide 408: Semilinear sets
	Slide 409: Equivalent definitions of semilinear
	Slide 410: Equivalent definitions of semilinear
	Slide 411: Equivalent definitions of semilinear
	Slide 412: Equivalent definitions of semilinear
	Slide 413: Equivalent definitions of semilinear
	Slide 414: Equivalent definitions of semilinear
	Slide 415: Equivalent definitions of semilinear
	Slide 416: Equivalent definitions of semilinear
	Slide 417: Equivalent definitions of semilinear
	Slide 418: Equivalent definitions of semilinear
	Slide 419: Equivalent definitions of semilinear
	Slide 420: Equivalent definitions of semilinear
	Slide 421: Equivalent definitions of semilinear
	Slide 422: Equivalent definitions of semilinear
	Slide 423: Equivalent definitions of semilinear
	Slide 424: Limits of stable computation
	Slide 425: Limits of stable computation
	Slide 426: Limits of stable computation
	Slide 427: Limits of stable computation
	Slide 428: Limits of stable computation

	limits of stable computation: positive results
	Slide 429: Possibilities of stable computation
	Slide 430: Stably decidable sets are closed under Boolean operations
	Slide 431: Stably decidable sets are closed under Boolean operations
	Slide 432: Stably decidable sets are closed under Boolean operations
	Slide 433: Stably decidable sets are closed under Boolean operations
	Slide 434: Stably decidable sets are closed under Boolean operations
	Slide 435: Stably decidable sets are closed under Boolean operations
	Slide 436: Stably decidable sets are closed under Boolean operations
	Slide 437: Stably decidable sets are closed under Boolean operations
	Slide 438: Stably decidable sets are closed under Boolean operations
	Slide 439: Stably decidable sets are closed under Boolean operations
	Slide 440: Stably decidable sets are closed under Boolean operations
	Slide 441: Stably decidable sets are closed under Boolean operations
	Slide 442: Mod and threshold sets are stably decidable
	Slide 443: Mod and threshold sets are stably decidable
	Slide 444: Mod and threshold sets are stably decidable
	Slide 445: Mod and threshold sets are stably decidable
	Slide 446: Mod and threshold sets are stably decidable
	Slide 447: Mod and threshold sets are stably decidable
	Slide 448: Mod and threshold sets are stably decidable
	Slide 449: Mod and threshold sets are stably decidable
	Slide 450: Mod and threshold sets are stably decidable
	Slide 451: Mod and threshold sets are stably decidable
	Slide 452: Mod and threshold sets are stably decidable
	Slide 453: Mod and threshold sets are stably decidable
	Slide 454: Mod and threshold sets are stably decidable
	Slide 455: Semilinear functions are stably computable
	Slide 456: Semilinear functions are stably computable
	Slide 457: Semilinear functions are stably computable
	Slide 458: Semilinear functions are stably computable
	Slide 459: Semilinear function examples
	Slide 460: Computing affine functions (by example)
	Slide 461: Computing affine functions (by example)
	Slide 462: Computing affine functions (by example)
	Slide 463: Computing affine functions (by example)
	Slide 464: Computing affine functions (by example)
	Slide 465: Computing affine functions (by example)
	Slide 466: Computing affine functions (by example)
	Slide 467: Computing affine functions (by example)
	Slide 468: Computing affine functions (by example)
	Slide 469: Computing affine functions (by example)
	Slide 470: Computing affine functions (by example)
	Slide 471: Computing affine functions (by example)
	Slide 472: Computing affine functions (by example)
	Slide 473: Computing affine functions (by example)
	Slide 474: Computing affine functions (by example)
	Slide 475: Computing affine functions (by example)
	Slide 476: Combining all affine function computations
	Slide 477: Combining all affine function computations
	Slide 478: Combining all affine function computations
	Slide 479: Combining all affine function computations
	Slide 480: Combining all affine function computations
	Slide 481: Combining all affine function computations
	Slide 482: Combining all affine function computations
	Slide 483: Combining all affine function computations
	Slide 484: Combining all affine function computations
	Slide 485: Combining all affine function computations

	limits of stable computation: negative results
	Slide 486: Limits of stable computation
	Slide 487: Impossibility of stably deciding non-semilinear sets
	Slide 488: Impossibility of stably deciding non-semilinear sets
	Slide 489: Impossibility of stably deciding non-semilinear sets
	Slide 490: Impossibility of stably computing non-semilinear functions
	Slide 491: Impossibility of stably computing non-semilinear functions
	Slide 492: Impossibility of stably computing non-semilinear functions
	Slide 493: Impossibility of stably computing non-semilinear functions
	Slide 494: Impossibility of stably computing non-semilinear functions
	Slide 495: Impossibility of stably computing non-semilinear functions
	Slide 496: Impossibility of stably computing non-semilinear functions
	Slide 497: Impossibility of stably computing non-semilinear functions
	Slide 498: Impossibility of stably computing non-semilinear functions
	Slide 499: Impossibility of stably computing non-semilinear functions
	Slide 500: Impossibility of stably computing non-semilinear functions
	Slide 501: Impossibility of stably computing non-semilinear functions
	Slide 502: Impossibility of stably deciding a non-semilinear set
	Slide 503: Additivity, nondecreasing sequences, minimal elements
	Slide 504: Additivity, nondecreasing sequences, minimal elements
	Slide 505: Additivity, nondecreasing sequences, minimal elements
	Slide 506: All vectors have a minimal vector under them
	Slide 507: All vectors have a minimal vector under them
	Slide 508: All vectors have a minimal vector under them
	Slide 509: All vectors have a minimal vector under them
	Slide 510: All vectors have a minimal vector under them
	Slide 511: All vectors have a minimal vector under them
	Slide 512: Dickson’s Lemma: Nondecreasing subsequences
	Slide 513: Dickson’s Lemma: Nondecreasing subsequences
	Slide 514: Dickson’s Lemma: Nondecreasing subsequences
	Slide 515: Dickson’s Lemma: Nondecreasing subsequences
	Slide 516: Dickson’s Lemma: Nondecreasing subsequences
	Slide 517: Dickson’s Lemma: Nondecreasing subsequences
	Slide 518: Dickson’s Lemma: Nondecreasing subsequences
	Slide 519: Dickson’s Lemma: Nondecreasing subsequences
	Slide 520: Dickson’s Lemma: Nondecreasing subsequences
	Slide 521: Dickson’s Lemma: Nondecreasing subsequences
	Slide 522: Dickson’s Lemma: Nondecreasing subsequences
	Slide 523: Dickson’s Lemma: Nondecreasing subsequences
	Slide 524: Dickson’s Lemma: Nondecreasing subsequences
	Slide 525: Properties of stable configurations
	Slide 526: Properties of stable configurations
	Slide 527: Properties of stable configurations
	Slide 528: Properties of stable configurations
	Slide 529: Properties of stable configurations
	Slide 530: Properties of stable configurations
	Slide 531: Properties of stable configurations
	Slide 532: Properties of stable configurations
	Slide 533: Properties of stable configurations
	Slide 534: Upper cones
	Slide 535: Upper cones
	Slide 536: Set of unstable configurations is finite union of cones
	Slide 537: Set of unstable configurations is finite union of cones
	Slide 538: Set of unstable configurations is finite union of cones
	Slide 539: Set of unstable configurations is finite union of cones
	Slide 540: Set of unstable configurations is finite union of cones
	Slide 541: Set of unstable configurations is finite union of cones
	Slide 542: Set of unstable configurations is finite union of cones
	Slide 543: Set of unstable configurations is finite union of cones
	Slide 544: Stable configurations are closed upwards for species that are already “large”
	Slide 545: Stable configurations are closed upwards for species that are already “large”
	Slide 546: Stable configurations are closed upwards for species that are already “large”
	Slide 547: Stable configurations are closed upwards for species that are already “large”
	Slide 548: A pumping lemma
	Slide 549: A pumping lemma
	Slide 550: A pumping lemma
	Slide 551: A pumping lemma
	Slide 552: A pumping lemma
	Slide 553: A pumping lemma
	Slide 554: A pumping lemma
	Slide 555: A pumping lemma
	Slide 556: A pumping lemma
	Slide 557: A pumping lemma
	Slide 558: A pumping lemma
	Slide 559: A pumping lemma
	Slide 560: A pumping lemma
	Slide 561: A pumping lemma
	Slide 562: A pumping lemma
	Slide 563: A pumping lemma
	Slide 564: A pumping lemma
	Slide 565: A pumping lemma (proof continued)
	Slide 566: A pumping lemma (proof continued)
	Slide 567: A pumping lemma (proof continued)
	Slide 568: A pumping lemma (proof continued)
	Slide 569: A pumping lemma (proof continued)
	Slide 570: A pumping lemma (proof continued)
	Slide 571: A pumping lemma (proof continued)
	Slide 572: A pumping lemma (proof continued)
	Slide 573: A pumping lemma (proof continued)
	Slide 574: A pumping lemma (proof continued)
	Slide 575: A pumping lemma (proof continued)
	Slide 576: A pumping lemma (proof continued)
	Slide 577: Impossibility of stably deciding squaring set
	Slide 578: Impossibility of stably deciding squaring set
	Slide 579: Impossibility of stably deciding squaring set
	Slide 580: Impossibility of stably deciding squaring set
	Slide 581: Impossibility of stably deciding squaring set
	Slide 582: Impossibility of stably deciding squaring set
	Slide 583: Impossibility of stably deciding squaring set
	Slide 584: Impossibility of stably deciding squaring set
	Slide 585: Impossibility of stably deciding squaring set
	Slide 586: Impossibility of stably deciding squaring set
	Slide 587: Impossibility of stably deciding squaring set
	Slide 588: Impossibility of stably deciding squaring set
	Slide 589: Impossibility of stably deciding squaring set

	limits of efficient stable computation
	Slide 590: Limits of efficient stable computation
	Slide 591: What is known to be computable in less than time O(n)?
	Slide 592: What is known to be computable in less than time O(n)?
	Slide 593: What is known to be computable in less than time O(n)?
	Slide 594: What is known to be computable in less than time O(n)?
	Slide 595: What is known to be computable in less than time O(n)?
	Slide 596: Known time lower bounds: leader election/majority
	Slide 597: Known time lower bounds: “most” predicates/functions
	Slide 598: Known time lower bounds: “most” predicates/functions
	Slide 599: Known time lower bounds: “most” predicates/functions
	Slide 600: Known time lower bounds: “most” predicates/functions
	Slide 601: What is currently known/unknown
	Slide 602: What is currently known/unknown
	Slide 603: What is currently known/unknown
	Slide 604: What is currently known/unknown

	other modeling choices
	Slide 605: Other modeling choices?
	Slide 606: Modeling choices in formalizing “Computing with chemistry”
	Slide 607: Modeling choices in formalizing “Computing with chemistry”
	Slide 608: Auxiliary species present initially ≈ “initial leader”
	Slide 609: Auxiliary species present initially ≈ “initial leader”
	Slide 610: Auxiliary species present initially ≈ “initial leader”
	Slide 611: Auxiliary species present initially ≈ “initial leader”
	Slide 612: Auxiliary species present initially ≈ “initial leader”
	Slide 613: Convergence vs stabilization and leader vs anarchy
	Slide 614: Convergence vs stabilization and leader vs anarchy
	Slide 615: Convergence vs stabilization and leader vs anarchy
	Slide 616: Convergence vs stabilization and leader vs anarchy
	Slide 617: Convergence vs stabilization and leader vs anarchy
	Slide 618: Convergence vs stabilization and leader vs anarchy
	Slide 619: Convergence vs stabilization and leader vs anarchy
	Slide 620: Convergence vs stabilization and leader vs anarchy
	Slide 621: What if we use real-valued concentrations?
	Slide 622: What if we use real-valued concentrations?
	Slide 623: What if we use real-valued concentrations?
	Slide 624: What if we use real-valued concentrations?
	Slide 625: What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	Slide 626: What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	Slide 627: What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	Slide 628: What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	Slide 629: What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	Slide 630: What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)
	Slide 631: What if we use real-valued concentrations… and allow reaction rates to influence outcome??
	Slide 632: What if we use real-valued concentrations… and allow reaction rates to influence outcome??
	Slide 633: What if we use real-valued concentrations… and allow reaction rates to influence outcome??
	Slide 634: Fast approximate division by 2
	Slide 635: Fast approximate division by 2

	computation with small chance of error
	Slide 636: CRN computation with a small chance of error
	Slide 637
	Slide 638
	Slide 639
	Slide 640
	Slide 641
	Slide 642
	Slide 643
	Slide 644
	Slide 645
	Slide 646
	Slide 647
	Slide 648
	Slide 649
	Slide 650
	Slide 651
	Slide 652
	Slide 653
	Slide 654
	Slide 655
	Slide 656
	Slide 657
	Slide 658
	Slide 659
	Slide 660
	Slide 661
	Slide 662
	Slide 663
	Slide 664
	Slide 665: Counter machines
	Slide 666: Counter machines
	Slide 667: Counter machines
	Slide 668: Counter machines
	Slide 669: Counter machines
	Slide 670: Counter machines
	Slide 671: Counter machines
	Slide 672: Counter machines
	Slide 673: Example counter machines
	Slide 674: Example counter machines
	Slide 675: Example counter machines
	Slide 676: Example counter machines
	Slide 677: Example counter machines
	Slide 678: Example counter machines
	Slide 679: Example counter machines
	Slide 680: Example counter machines
	Slide 681: Example counter machines
	Slide 682: Example counter machines
	Slide 683: Example counter machines
	Slide 690: 3-counter machines are Turing universal
	Slide 691: 3-counter machines are Turing universal
	Slide 692: 3-counter machines are Turing universal
	Slide 693: 3-counter machines are Turing universal
	Slide 694: 3-counter machines are Turing universal
	Slide 695: 3-counter machines are Turing universal
	Slide 696: 3-counter machines are Turing universal
	Slide 697: 3-counter machines are Turing universal
	Slide 698: 3-counter machines are Turing universal
	Slide 699: 3-counter machines are Turing universal
	Slide 700: 2-counter machines are (sort of) Turing universal
	Slide 701: 2-counter machines are (sort of) Turing universal
	Slide 702: 2-counter machines are (sort of) Turing universal
	Slide 703: 2-counter machines are (sort of) Turing universal
	Slide 704: 2-counter machines are (sort of) Turing universal
	Slide 705: 2-counter machines are (sort of) Turing universal
	Slide 706: 2-counter machines are (sort of) Turing universal
	Slide 707: 2-counter machines are (sort of) Turing universal
	Slide 708: 2-counter machines are (sort of) Turing universal
	Slide 709: 2-counter machines are (sort of) Turing universal
	Slide 710: 2-counter machines: Finite automata robots on the plane
	Slide 711: 2-counter machines: Finite automata robots on the plane
	Slide 712
	Slide 713
	Slide 714
	Slide 715
	Slide 716
	Slide 717
	Slide 718
	Slide 719
	Slide 720
	Slide 721
	Slide 722
	Slide 723: Problem with adjusting rate constant to slow down reactions for achieving Turing-universal computation
	Slide 724: Problems with simulation scheme so far
	Slide 725: Problems with simulation scheme so far
	Slide 726: Problems with simulation scheme so far
	Slide 727: Problems with simulation scheme so far
	Slide 728: Problems with simulation scheme so far
	Slide 729: Problems with simulation scheme so far
	Slide 730: Problems with simulation scheme so far
	Slide 731: Problems with simulation scheme so far
	Slide 732: Problems with simulation scheme so far
	Slide 733: Problems with simulation scheme so far
	Slide 734: Problems with simulation scheme so far
	Slide 735: Problems with simulation scheme so far
	Slide 736: Problems with simulation scheme so far
	Slide 737: Problems with simulation scheme so far
	Slide 738: How to slow down reaction L2 → L1?
	Slide 739: How to slow down reaction L2 → L1?
	Slide 740: How to slow down reaction L2 → L1?
	Slide 741: How to slow down reaction L2 → L1?
	Slide 742: How to slow down reaction L2 → L1?
	Slide 743: How to slow down reaction L2 → L1?
	Slide 744: How to slow down reaction L2 → L1?
	Slide 745: How to handle the three problems
	Slide 746: How to handle the three problems
	Slide 747: How to handle the three problems
	Slide 748: How to handle the three problems
	Slide 749: How to handle the three problems
	Slide 750: How to handle the three problems
	Slide 751: How to handle the three problems
	Slide 752: How to handle the three problems
	Slide 753: How to handle the three problems
	Slide 754: How to handle the three problems
	Slide 755: How to handle the three problems
	Slide 756: How to handle the three problems

