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Chemical reaction networks

aTAM self-assembly describes stateless molecules that collide and stick together.
Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.
Allow more general reactions that produce/consume molecules. @," E> @ E>

reactant(s) R - P1+P2 product(s)
monomers I\/]1+I\/I2 D dimer
catalyst C+X - C+Y

Traditionally a descriptive modeling language...
Let’s instead use it as a prescriptive programming language
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Computation with chemical reaction networks

* Key ideas setting chemical computation apart from others:
* cannot control order in which molecules collide
e can control how they react when they collide

e Related model of distributed computing called population protocols

 originally motivated by mobile wireless sensor networks, e.g., attached to a
birds in a flock S ok S5

[Computation in networks of passively mobile finite-state
sensors, Angluin, Aspnes, Diamadi, Fischer, Peralta. PODC 2004]
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Does chemistry compute?

unreplicated
DNA

Active - -
S 2 o b

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

[Cardelli, Csikasz-Nagy. The cell cycle switch computes
approximate majority. Nature Scientific Reports 2012]
[Cardelli, Morphisms of reaction networks that couple
structure to function, BMC Systems Biology 2014]
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Why compute
with chemistry?

cells

o SW? fast
" ___ smartdrug

T/

=l ..
. ﬁ ®e " released only in
Z@ | certain cellul
| certain cellular

SoP Ny =~ 10-100 nm compo@gRnt size? =~ 10-100 nm

conditions

Versus

yes compatible with not easily
“wet environments”?

in-place computation
replacing expensive
read/write lab steps

chemical controller to
optimize yield of
metabolically produced
biofuels/drugs/etc.
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DNA strand displacement implementing A+B - C
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Experimental implementations of synthetic
chemical reaction networks with DNA

/Analog majority computation Xo=07,Y,=03
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[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas,
\ Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]
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What computation is possible and what is not?
(Computability theory)
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What computations necessarily take a

What computation is possible and what is not? long time and what can be done quickly?
(Computability theory) (Computational complexity theory)
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Chemical Reaction Networks (formal definition)

® finite set of d species A={A,B,C,D, ...}

® finite set of reactions: e.g. A+B 5% A+C

k
k,, k,, k5 are called rate constants; C — A+A
if not specified, assume = 1.
C+2B 5 C

® configuration x€ENY: molecular counts of each species

® reaction is applicable to x if x has enough of each reactant.
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o A+B
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What is possible:
Example reaction sequence (a.k.a. execution)

a: A+B

B: C—)A+A

Formally, an execution is a
sequence of configurations x,,
X,, ... such that each x, = x.,, by
a single reaction.

If initial configuration x is
understood, the sequence of
reactions is sometimes called
the execution.

A B C

x=(2, 2, 0) aapplicable but notf

a |

(2, 1, 1) a,Bbothapplicable
B U N\ @ (another possibility)

(4, 1, 0) (2, 0, 2)

o |

(4, 0, 1)
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Some simple reactions

1 ofe
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Examples of function computation

fla) = |a/3] using bimolecular (< 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A - A, Calling A =A,, in general to divide by constant c:
A+A Y A+A A, ifitj<c,wherek=i+j
A+A, 5 A+Y A+A - A+Y ifi+j>c, wherek=i+j—c

AFA Y ifitj=c
i.e., A’s start with 1 “ball” and pass balls to each other;
whenever someone gets > ¢ balls,
throw away c balls and produce a Y
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addition: f(o,b) = a+b subtraction: f(a,b) = <
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Examples of function computation

composition: f(a,b) = 3<f ??? maximum: f(a,b) = max(a,b) = a+b—min(a,b)
A3y 3a(bh2)
2B+Y > @

only linear functions computable?

minimum: f(a,b) = min(a,b)

A+B Y

22



Examples of function computation

composition: f(a,b) = 3<f ??? maximum: f(a,b) = max(a,b) =|a+b+min(a,b)
3a—(b/2) r
S A=A gdition
28+Y - BoY+B, 0

only linear functions computable? }

minimum: f(a,b) = min(a,b)

A+B Y

22



Examples of function computation

composition: f(a,b) = 3<f ??? maximum: f(a,b) = max(a,b) = a+btmin(a,b)
3a—(b/2) r
noy A= T, ddition
28+Y - Boy+B, N0

A,+B, - K minimum

[ only linear functions computable? }

minimum: f(a,b) = min(a,b)

A+B Y

22



Examples of function computation

composition: f(a,b) = 3»< ???
A3y 3a(bh2)

2B+Y S @

[ only linear functions computable? }

minimum: f(a,b) = min(a,b)

A+B Y

in(a,b)

maximum: f(a,b) = max(a,b) = a+t
A~ VA, addition
B - Y+B,
A,+B, - K minimum
K+Y->Q subtraction

22



Examples of function computation

constant: f(a) =1



Examples of function computation

constant: f(a) =1

A=Y a.k.a. “leader election”
2Y Y



Examples of function computation

constant: f(a) =1

A=Y a.k.a. “leader election”
2Y Y

subtract constant: f(a) = 0—1



Examples of function computation

constant: f(a) =1

A=Y a.k.a. “leader election”
2Y Y

subtract constant: f(a) = 0—1

2A > A+Y



Examples of predicate computation

Detection: (a,b) =yes & b >0

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

OO0 O

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

an::

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

OO0 O

2 o
99

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

of{:

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

OO0 ¢

© o
90

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A - 2B

A votes no; B votes yes

00 ¢©O
B

© o
99

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A - 2B

A votes no; B votes yes

00 ¢©O
B

© o
99

Counting: ¢(a,b) =yes & b >1

24



Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A - 2B

A votes no; B votes yes

00 ¢©O
B

© o
99

Counting: ¢(a,b) =yes & b >1
2B - 2Y

24



Examples of predicate computation

Detection: (a,b) =yes & b >0 Counting: ¢(a,b) =yes & b >1
B+A _ 2B 2B 2Y
Y+B - 2Y
A votes no; B votes yes
Y+A - 2Y
e e e e A,B vote no; Y votes yes

© o
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5
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Majority: ¢(a,b) =yes & a=b
A+B - A+B; (both become “followers” but preserve difference between A’s and B’s)

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087-1109, 2012]

[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]
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Examples of predicate computation

Majority: ¢(a,b) =yes & a=b
A+B - AA+B; (both become “followers” but preserve difference between A’s and B’s)

A+B; — A+A; (leader changes vote of follower)
B+A; — B+B; (leader changes vote of follower)

AAB: - A+A;  (tiebreaker if no leaders left when a=b)

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087-1109, 2012]

[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]
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Examples of predicate computation

Parity: ¢(a)=Y © ais odd

a= AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

r N
A0+Ao - Ae+ae

A+A, - A +a, two leaders XOR their parity,
and one becomes follower
LA0+Ae - Ao+ao

Ao+ae - Ao+ao leader overwrites
Ae+c7O N Ae+(Je bit of follower

\ v




Formal definition of CRN
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o is stable

i mmm) x EEmm) o EmEm) o

initial any reachable correct correct
configuration configuration
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Defining stable computation

o is stable

i Erm) x EEE) o Emm) o

initial any reachable correct correct
configuration configuration
() ® Py ® . °
e ¢ o ¢ ° ° ) )
® e, : e o * o ° : ° .: oo ®
o ¢ o, e ® o o .' o ¢ o,
oo.o o ¢ o 0% o ce’e o0 °
PS o © e © .. o ® ® o o © e © o
°t e 00, ce, ° e®% o ®e,’ °
.00.0. .o e * o ....o. ..
(]

(assuming finite set of reachable configurations) equivalent to:
The system will reach a correct stable configuration with probability 1.

29
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Probability-1 correctness can be characterized

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

with only reachability

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i = Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o €Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

Theorem: Let i be a configuration where Reach(i) is
finite, and let Y be a set of configurations. Then
(Pr[i= Y] =1) © (Vx€Reach(i)) (3o€EReach(x)) o €Y.

This theorem lets us use (often simpler) reachability
arguments and avoid discussing probability, while
still ensuring probability-1 correctness.

Proof:

1. (=): Assume (IxEReach(i)) (VoEReach(x)) o € Y.

2. Since Pr[i = x] > 0, which prevents ever reaching Y,
Pr[i = Y] < 1. (Note this didn’t assume Reach(i) is finite.)

3. («): Assume (VxEReach(i)) (3o€Reach(x)) o € Y.

4. For each x € Reach(i), let E, = (x,...,0) be any finite
execution leading from x to some o €Y.

5. Let k= maXx, ¢ geacnii) | Ex| b€ the maximum length of any
of these finite executions reaching o.

6. Letp, = Pr[E, occurs from x] > O.

7. Let & =min, ¢ peachii) Px- Since Reach(i) is finite, € > 0.

8. Then for each x € Reach(i), Pr[E, does not occur from x
after the next ksteps] <1—-e< 1.

9. So, breaking the infinite execution into segments of

length k, the probability E, is never followed within k
steps after any visit to an x € Reach(i) is at most

[[;2,(1 —&)=0.QED
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e Suppose i = {A}, with reactions
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Deterministic computation # all executions correct

False statement: If Pr[i = Y] = 1, then every sufficiently
long execution starting at i reaches to some c €Y.

* Counterexample??

e Suppose i = {A}, with reactions
e A=B
e BLC
e Then Pr[{A} = {C}] = 1, but the execution {A} = {B} = {A} = {B} = {A} = ...
avoids it forever.

* Lesson: it is too strict to require all sufficiently long executions to reach Y.
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Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2



Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

* input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}



Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

* input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}

e output specification: designate one species YEA whose count is the output



Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

* input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}

e output specification: designate one species YEA whose count is the output

o is stable if, for all o’ reachable from o, o(Y) = 0’(Y)



Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

* input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}

e output specification: designate one species YEA whose count is the output
o is stable if, for all o’ reachable from o, o(Y) = 0’(Y)

CRN stably computes f if, for all valid initial configurations i, and all x
reachable from i, there is a stable o reachable from x such that o(Y) = f{i).



Definition of function computation

goal: compute function f: N* - N, e.g., fla,b) =2a + b/2
input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}
output specification: designate one species YEA whose count is the output
o is stable if, for all o’ reachable from o, o(Y) = 0’(Y)

CRN stably computes f if, for all valid initial configurations i, and all x
reachable from i, there is a stable o reachable from x such that o(Y) = f{i).

* Recall: this is equivalent to saying that i reaches to a correct, stable o with probability 1, and
equivalent to saying that every fair execution from i reaches to a correct, stable o.
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Definition of predicate (decision problem) computation

 goal: compute predicate ¢: N L {Y,N}, e.g., @(a,b)=Y & a>b
* input specification: designate subset 2 € A as “input” species

* in valid initial configurations i all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
e (0) =Y (configuration o outputs “yes”) if vote is unanimously yes: 0(5)>0 = SEA,

* (0) = N (configuration o outputs “no”) if vote is unanimously no: 0(S)>0 = SEA,
* (o) undefined otherwise: (3 SEA,, S'€A,) o(S)>0 and o(5")>0

e ois stable if (o) = P(0’) (and is defined) for all o’ reachable from o

* CRN stably computes @ if, for all valid initial configurations i, and all x reachable
from i, there is a stable o reachable from x such that (o) = (i) (o is correct).
* We say the CRN stably decides the set ¢~1(Y) = set of inputs mapping to output Y
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Feedforward CRNs

A class of CRNs with a simpler definition/proofs for computation
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Stable versus terminal

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Definition: A configuration is terminal Observation: Every terminal
if no reaction is applicable to it. configuration is stable.

Note: A configuration can be stable
without being terminal. Example?



Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be
ordered ry, r,, ..., I, such that, for all k < €, no reactant
of r, appears in r, (as either reactant or product).

Ideas taken from [M. Vasi¢, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]
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works by examining just one execution
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same output.” This reasoning becomes
sound with feed-forward CRNs.

Ideas taken from [M. Vasic, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-

Lemma: Suppose in a feed-forward CRN that i = c by
execution P, and i = d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.
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Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
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Proof: #(r,,P) = number of times r, occurs in P

1. Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).
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6

. Let m = #(r,,P); Let Q’ be prefix (i, x, ..., xp) of Q such that X, = Xp11 by the
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i = c by execution P, and i = d by execution Q. If any 1. Ao Y+A,
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3.A,+B, -
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3. min(#A,#B) times rxn 3
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In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed-
forward CRN, i = c by execution P, and i = d
by execution Q. If any reaction occurs less in P
than Q, then cis not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration c; reachable from initial
configuration i, then ¢; is reached by every
sufficiently long execution fromi.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:

1. Let P be the execution leading from i to c,.

2. Any execution Q with with |Q| > | P| must have more of some
reaction r by the pigeonhole principle.

1. Bythe Lemma, ¢;is not terminal, a contradiction.
2. So no execution Q is longer than P.

3. Any execution Q with |Q]| = | P| must be a permutation of P, or
else by pigeonhole Q would have more of some reaction, and this
would again contradict the terminality of c,.

4. Finally, to rule out that we might have some shorter terminal

execution, any execution Q with |Q| < | P| must have some
reaction r occurring more in P than Q, so by the Lemma, Q cannot
reach a terminal configuration. QED



Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R—A or

2R > R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.q.,
~R—2Ror R+X - R+Y, but then no reaction can net consume it)

[M. Vasi¢, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]
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2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.
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Example of a non-feedforward CRN that
stably computes a function?
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Non-feedforward CRNs

Example of a non-feedforward CRN that
stably computes a function?

p 9
fx) = x/2 5
v
1.XT V+A <D
2. X+A — @ : \ initial config

It’s even non-non-competitive!
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What is probable:
Stochastic kinetic model of chemical reaction networks

Solution volume v

reaction type rate / propensity
Ak k- #A
A+B X .. K-#A-#B /v

[McQuarrie 1967, van Kampen, Gillespie 1977]
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What is probable:
Stochastic kinetic model of chemical reaction networks

Solution volume v

reaction type rate / propensity
Ak k- #A
A+B X .. K-#A-#B /v

System evolves via a continuous time Markov process:
0 Pr[next reaction is j" one] = rate of ji" reaction / (sum of all reaction rates)

@ expected time until next reaction is 1 / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]
43



Relationship to distributed computing

population protocol = list of transitions such as

X,y — X,X a,b-cd a,a —»a,a (null transition)

* Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/ 4
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Relationship to distributed computing

population protocol = list of transitions such as

X,y — X,X a,b-cd a,a —»a,a (null transition)

* Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
e two reactants, two products per reaction

* unit rate constants
* volume = n = number of agents (never changes)

population protocols & chemical reactions, but “most” ideas that
apply to one model also apply to the other

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/
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Time complexity in population protocols

e pair of agents picked uniformly at random to interact
(possibly null interaction)

 parallel time = number of interactions / n
i.e., each agent has O(1) interactions per “unit time”
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Speed of computation

How to fairly assess speed?

Like any respectable computer scientist...
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors
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Speed of computation

How to fairly assess speed?

Like any respectable computer scientist...
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors

n = total molecular count
reasonable requirement on volume: v = O(n)
i.e., require bounded concentration (finite density constraint)

46



Full CRN time model (Gillespie kinetics)



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)
» volume v: A « 1/v (the bigger the volume, the slower collisions happen)



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)
» volume v: A « 1/v (the bigger the volume, the slower collisions happen)

* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)

» volume v: A « 1/v (the bigger the volume, the slower collisions happen)
* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)

« For this example reaction A+B X C, combining these we get A = k-HA-#B / v



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)

» volume v: A « 1/v (the bigger the volume, the slower collisions happen)
* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)

« For this example reaction A+B X C, combining these we get A = k-HA-#B / v

e Other reaction types:
. AtAK .. A= k-#A-(#A-1) /v (symmetric bimolecular reaction)



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)
» volume v: A « 1/v (the bigger the volume, the slower collisions happen)
* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)
« For this example reaction A+B X C, combining these we get A = k-HA-#B / v

e Other reaction types:

. AtAK .. A= k-#A-(#A-1) /v (symmetric bimolecular reaction)
« #A-(#A-1)/2 = # ways to pick two A’s to react; factor ¥ by convention is put into rate constant k



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)
» volume v: A « 1/v (the bigger the volume, the slower collisions happen)
* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)
« For this example reaction A+B X C, combining these we get A = k-HA-#B / v

e Other reaction types:
. AtAK .. A= k-#A-(#A-1) /v (symmetric bimolecular reaction)
« #A-(#A-1)/2 = # ways to pick two A’s to react; factor ¥ by convention is put into rate constant k
. Ak .. A= k-#A (unimolecular reaction)



Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of rea