Computation with chemistry

slides © 2021, David Doty
ECS 232: Theory of Molecular Computation, UC Davis

Chemical reaction networks

$a=a$

- aTAM self-assembly describes stateless molecules that collide and stick together.

Chemical reaction networks

- aTAM self-assembly describes stateless molecules that collide and stick together.
- Chemical reaction network model describes stateful molecules that collide and bounce apart, but that might change state as a result of the collision.

Chemical reaction networks

- aTAM self-assembly describes stateless molecules that collide and stick together.
- Chemical reaction network model describes stateful molecules that collide and bounce apart, but that might change state as a result of the collision. - Allow more general reactions that produce/consume molecules.

Chemical reaction networks

- aTAM self-assembly describes stateless molecules that collide and stick together.
- Chemical reaction network model describes stateful molecules that collide and bounce apart, but that might change state as a result of the collision. - Allow more general reactions that produce/consume molecules.

reactant(s)

$$
R \rightarrow P_{1}+P_{2} \quad \text { product(s) }
$$

Chemical reaction networks

- aTAM self-assembly describes stateless molecules that collide and stick together.
- Chemical reaction network model describes stateful molecules that collide and bounce apart, but that might change state as a result of the collision. - Allow more general reactions that produce/consume molecules.

$$
\text { reactant(s) } \quad R \rightarrow P_{1}+P_{2} \quad \text { product(s) }
$$

monomers

$$
M_{1}+M_{2} \rightarrow D
$$

dimer

Chemical reaction networks

- aTAM self-assembly describes stateless molecules that collide and stick together.
- Chemical reaction network model describes stateful molecules that collide and bounce apart, but that might change state as a result of the collision. - Allow more general reactions that produce/consume molecules.

reactant(s)

$$
R \rightarrow P_{1}+P_{2} \quad \text { product(s) }
$$

monomers

$$
M_{1}+M_{2} \rightarrow D
$$

dimer
catalyst

$$
C+X \rightarrow C+Y
$$

Chemical reaction networks

- aTAM self-assembly describes stateless molecules that collide and stick together.
- Chemical reaction network model describes stateful molecules that collide and bounce apart, but that might change state as a result of the collision.
- Allow more general reactions that produce/consume molecules.

reactant(s)

$$
R \rightarrow P_{1}+P_{2} \quad \text { product(s) }
$$

monomers

$$
\begin{aligned}
M_{1}+M_{2} & \rightarrow D \\
C+X & \rightarrow C+Y
\end{aligned}
$$

dimer

$$
\text { catalyst } \quad C+X \rightarrow C+Y
$$

Traditionally a descriptive modeling language...
Let's instead use it as a prescriptive programming language

What behavior is possible for chemistry in principle?

What behavior is possible for chemistry in principle?

formally definable chemical reaction network

found in biology inspiration

What behavior is possible for chemistry in principle?

formally definable chemical reaction network

actual chemicals

Computation with chemical reaction networks

- Key ideas setting chemical computation apart from others:
- cannot control order in which molecules collide
- can control how they react when they collide

Computation with chemical reaction networks

- Key ideas setting chemical computation apart from others:
- cannot control order in which molecules collide
- can control how they react when they collide
- Related model of distributed computing called population protocols
- originally motivated by mobile wireless sensor networks, e.g., attached to a birds in a flock

Example: Chemical caucusing

```
opposite
opinions cancel
X+Y 
```

distributed algorithm for "approximate majority": initial majority (X or Y) quickly overtakes whole population (with high probability)

Example: Chemical caucusing

```
opposite
opinions cancel
X+Y->U+U
both opinions
influence the
unopinionated
\[
\begin{aligned}
& X+U \rightarrow X+X \\
& Y+U \rightarrow Y+Y
\end{aligned}
\]
```

distributed algorithm for "approximate majority": initial majority (X or Y) quickly overtakes whole population (with high probability)

Example: Chemical caucusing

opposite
opinions cancel

$$
X+Y \rightarrow U+U
$$

both opinions influence the unopinionated

$$
\begin{aligned}
& X+U \rightarrow X+X \\
& Y+U \rightarrow Y+Y
\end{aligned}
$$

distributed algorithm for "approximate majority": initial majority (X or Y) quickly overtakes whole population (with high probability)

Example: Chemical caucusing

opposite opinions cancel
both opinions influence the unopinionated

$$
\begin{aligned}
& X+Y \rightarrow U+U \\
& X+U \rightarrow X+X \\
& Y+U \rightarrow Y+Y
\end{aligned}
$$

distributed algorithm for "approximate majority": initial majority (X or Y) quickly overtakes whole population (with high probability)

[^0]Does chemistry compute?

I jibionjobiojkI
atione ...on It

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

Does chemistry compute?

$=$

[Cardelli, Csikász-Nagy. The cell cycle switch computes approximate majority. Nature Scientific Reports 2012] [Cardelli, Morphisms of reaction networks that couple structure to function, BMC Systems Biology 2014]

Why compute with chemistry?

versus

Why compute with chemistry?

speed?

Why compute with chemistry?

Why compute with chemistry?

versus

fast
component size?

Why compute with chemistry?

Why compute with chemistry?

Why compute with chemistry?

slow
$\approx 10-100 \mathrm{~nm}$
yes

versus

fast

compatible with not easily

DNA storage

in-place computation replacing expensive read/write lab steps
chemical controller to optimize yield of metabolically produced biofuels/drugs/etc.

Can we compute with chemistry?

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"

Can we compute with chemistry?

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"
Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically implement any chemical reaction network using DNA strand displacement

Can we compute with chemistry?

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"
Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically implement any chemical reaction network using DNA strand displacement

$$
X_{1}+X_{2} \rightarrow X_{3}
$$

Can we compute with chemistry?

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"
Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically implement any chemical reaction network using DNA strand displacement

$$
X_{1}+X_{2} \rightarrow X_{3}
$$

Can we compute with chemistry?

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"
Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically implement any chemical reaction network using DNA strand displacement

$$
X_{1}+X_{2} \rightarrow X_{3}
$$

$$
\begin{array}{lll}
5 & 6 \quad 12 \\
O_{i}
\end{array}
$$

Can we compute with chemistry?

"Not every chemical reaction network describes real chemicals!", i.e. "where's the compiler?"
Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically implement any chemical reaction network using DNA strand displacement

$$
X_{1}+X_{2} \rightarrow X_{3}
$$

DNA strand displacement implementing $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$

Experimental implementations of synthetic chemical reaction networks with DNA

What behavior is possible for chemistry in principle?

formally definable chemical reaction network
actual chemicals
found in biology

What behavior is possible for chemistry in principle?

formally definable chemical reaction network
\approx
actual chemicals
found in biology

Theoretical Computer Science Approach

What computation is possible and what is not?
(Computability theory)

Theoretical Computer Science Approach

What computation is possible and what is not? (Computability theory)

NP	NP-complete
	protein folding
	Boolean satisfiability
	Hamiltonian path
	integer factoring
	P DNA sequence alignment polynomial factoring integer multiplication shortest path

What computations necessarily take a long time and what can be done quickly? (Computational complexity theory)

Chemical Reaction Networks (formal definition)

- finite set of d species $\Lambda=\{A, B, C, D, \ldots\}$
- finite set of reactions: e.g. $\quad A+B \xrightarrow{k_{1}} A+C$

$$
\begin{aligned}
C & \xrightarrow{k_{2}} A+A \\
C+2 B & \xrightarrow{k_{3}} C
\end{aligned}
$$

Chemical Reaction Networks (formal definition)

- finite set of d species $\Lambda=\{A, B, C, D, \ldots\}$
- finite set of reactions: e.g. $\quad A+B \xrightarrow{k_{1}} A+C$
k_{1}, k_{2}, k_{3} are called rate constants; $C \xrightarrow{k_{2}} A+A$
$C+2 B \xrightarrow{k_{3}} C$

Chemical Reaction Networks (formal definition)

- finite set of d species $\Lambda=\{A, B, C, D, \ldots\}$
- finite set of reactions: e.g. $\quad A+B \xrightarrow{k_{1}} A+C$

```
\(k_{1}, k_{2}, k_{3}\) are called rate constants;
``` if not specified, assume = 1 .
\[
\begin{gathered}
C \xrightarrow{k_{2}} A+A \\
C+2 B \xrightarrow{k_{k}} C
\end{gathered}
\]
- configuration \(\mathbf{x} \in \mathbb{N}^{d}\) : molecular counts of each species

\section*{Chemical Reaction Networks (formal definition)}
- finite set of \(d\) species \(\Lambda=\{A, B, C, D, \ldots\}\)
- finite set of reactions: e.g. \(\quad A+B \xrightarrow{k_{1}} A+C\)
```

k

```
if not specified, assume = 1 .
\[
\begin{aligned}
& \xrightarrow{k_{2}} A+A \\
& C+2 B \xrightarrow{k_{3}} C
\end{aligned}
\]
- configuration \(\mathbf{x} \in \mathbb{N}^{d}\) : molecular counts of each species
- reaction is applicable to \(\mathbf{x}\) if \(\mathbf{x}\) has enough of each reactant.

\section*{What is possible:}

\section*{Example reaction sequence (a.k.a. execution)}
\[
\begin{array}{lrrll}
\alpha: & A+B \rightarrow A+C & A & B \quad C \\
\beta: & C \rightarrow A+A & \mathbf{x}=(2,2,0) & \alpha \text { applicable but not } \beta
\end{array}
\]
(B) (B)

\section*{What is possible:}

Example reaction sequence (a.k.a. execution)
\[
\begin{array}{lrrll}
\alpha: & A+B \rightarrow A+C & A & B & C \\
\beta: & C \rightarrow A+A & \mathbf{x}=(2, & 2, & 0) \\
\alpha \text { applicable but not } \beta
\end{array}
\]

\section*{What is possible:}

\section*{Example reaction sequence (a.k.a. execution)}

\(A B C\)
\(\mathbf{x}=(2,2,0) \quad \alpha\) applicable but not \(\beta\) \(\alpha \Downarrow\)
(2, 1, 1) \(\alpha, \beta\) both applicable

\section*{What is possible:}

\section*{Example reaction sequence (a.k.a. execution)}
\(\alpha: \quad A+B \rightarrow A+C\)
\(A \quad B \quad C\)
\(\beta\) :
C) \(\rightarrow A+A\)
\(\mathbf{x}=(2,2,0) \quad \alpha\) applicable but not \(\beta\)

(2, 1, 1) \(\alpha, \beta\) both applicable

\section*{What is possible:}

Example reaction sequence (a.k.a. execution)

\section*{What is possible:}

\section*{Example reaction sequence (a.k.a. execution)}
\(\alpha: \quad A+B \rightarrow A+C\) \(A \quad B \quad C\)
\(\beta\) :

\section*{What is possible:}

\section*{Example reaction sequence (a.k.a. execution)}
\(\begin{array}{rlr}\alpha: & \quad A+B \rightarrow A+C \\ \beta: & C \rightarrow A+A \\ & A\end{array}\)

\(\mathbf{x}=(2,2, \quad 0) \quad \alpha\) applicable but not \(\beta\)
\(\alpha \Downarrow\)
(2, 1, 1) \(\alpha, \beta\) both applicable
\(\beta \Downarrow \quad \boxtimes \alpha\) (another possibility)
\((4,1,0) \quad(2,0,2)\)

\section*{What is possible:}

\section*{Example reaction sequence (a.k.a. execution)}
\[
\begin{aligned}
& \alpha: \quad A+B \rightarrow-A+C \quad A \quad B \quad C \\
& \beta \text { : }
\end{aligned}
\]

\section*{What is possible:}

\section*{Example reaction sequence (a.k.a. execution)}

\section*{Some simple reactions}
\[
X \underset{1}{\stackrel{1}{\rightleftarrows}} Y
\]
start with \(n\) copies of molecule \(X\)

\section*{Some simple reactions}
\[
X \underset{1}{\stackrel{1}{\rightleftharpoons}} Y
\]
start with \(n\) copies of molecule \(X\)

\section*{Some simple reactions}
\[
X \underset{1}{\stackrel{1}{\rightleftharpoons}} Y
\]

Count of \(Y\) never stabilizes
start with \(n\) copies of molecule \(X\)

\section*{Some simple reactions}
\[
X \underset{1}{\stackrel{1}{\rightleftarrows}} Y \quad \begin{aligned}
& \text { Count of } Y \\
& \text { never stabilizes }
\end{aligned} \quad \begin{aligned}
& X \xrightarrow{1} Y \\
&
\end{aligned}
\]
start with \(n\) copies of molecule \(X\)

\section*{Some simple reactions}
\[
X \underset{1}{\stackrel{1}{\rightleftharpoons}} Y
\]

\section*{Count of \(Y\)}
never stabilizes
\[
\begin{aligned}
& X \xrightarrow{\text { I }} Y \\
& X \xrightarrow{\xrightarrow{2}}
\end{aligned}
\]
start with \(n\) copies of molecule \(X\)

\(\# Y\) stabilizes, with expected value \(n / 2\)

\section*{Some simple reactions}

Count of \(Y\)
never stabilizes

Count of \(Y\) stabilizes, but not to a deterministic value based on initial count of \(X\)
start with \(n\) copies of molecule \(X\)

\(\# Y\) stabilizes, with expected value \(n / 2\)

\section*{Some simple reactions}

Worse yet, both depend crucially on rate constants.
\[
X \underset{\overrightarrow{72}}{\stackrel{1}{\rightleftarrows}} Y
\]
```

Count of $Y$
never stabilizes

```


Count of \(Y\) stabilizes, but not to a deterministic value based on initial count of \(X\)
start with \(n\) copies of molecule \(X\)
n/3
\(\# Y=n / 2\) expected at equilibrium
\(n / 3\)
\(\# Y\) stabilizes, with expected value \(n / \frac{2}{n}\)

\section*{Some simple reactions} crucially on rate constants.

Count of \(Y\)
never stabilizes
\[
\begin{aligned}
& X \xrightarrow{\text { 1 }} Y \\
& X \xrightarrow{+2}
\end{aligned}
\]

Count of \(Y\) stabilizes, but not to a deterministic value based on initial count of \(X\)
start with \(n\) copies of molecule \(X\)

\[
n / 3
\]
\(\# Y\) stabilizes, with expected value \(\xlongequal{n / 2}\)

\title{
Examples of stable (rateindependent) CRN computation
}

\section*{Examples of function computation}
division by 2: \(f(a)=a / 2\)
goal: end up with \(a / 2\) copies of \(Y\)
A
(A) A
A
(A) A

\section*{Examples of function computation}
division by \(\mathbf{2 :} f(a)=a / 2\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]

\section*{Examples of function computation}
division by \(\mathbf{2 :} f(a)=a / 2\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]

\section*{Examples of function computation}
division by \(\mathbf{2 :} f(a)=a / 2\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]

\section*{Examples of function computation}
division by 2: \(f(a)=a / 2\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]

\section*{Examples of function computation}
division by \(\mathbf{2 :} f(a)=a / 2\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]

Y
(A)

\section*{Examples of function computation}
division by \(\mathbf{2 :} f(a)=a / 2\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]

\section*{Examples of function computation}
division by \(\mathbf{2 :} f(a)=a / 2\)
goal: end up with \(\alpha / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]

Y
Y

\section*{Examples of function computation}
??
division by 2: \(f(a)=a / 2\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]
(A)

\(Y\)

\section*{Examples of function computation}
division by 2: \(f(a)=\lfloor a / 2\rfloor\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]
(A)

\(Y\)

\section*{Examples of function computation}
division by 2: \(f(a)=\lfloor a / 2\rfloor\)
goal: end up with \(a / 2\) copies of \(Y\) multiplication by 2: \(f(a)=2 a\) \(2 A \rightarrow Y\)

\section*{Examples of function computation}
division by 2: \(f(a)=\lfloor a / 2\rfloor\)
goal: end up with \(a / 2\) copies of \(Y\)
multiplication by 2: \(f(a)=2 a\)
\[
A \rightarrow 2 Y
\]
\(2 A \rightarrow Y\)
(A)
(1) 8
(A)

\section*{Examples of function computation}
division by 2: \(f(a)=\lfloor a / 2\rfloor\)
goal: end up with \(a / 2\) copies of \(Y\)

multiplication by 2: \(f(a)=2 a\)
\[
A \rightarrow 2 Y
\]

\section*{Examples of function computation}
division by 2: \(f(a)=\lfloor a / 2\rfloor\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]
(A)

\section*{Examples of function computation}
division by 2: \(f(a)=\lfloor a / 2\rfloor\)
goal: end up with \(a / 2\) copies of \(Y\)
\[
2 A \rightarrow Y
\]

multiplication by 2: \(f(a)=2 a\)
\[
A \rightarrow 2 Y
\]

Y
。

\section*{Examples of function computation}
multiplication by 3: \(f(a)=3 a\)

A
(A)

\section*{Examples of function computation}
multiplication by 3: \(f(a)=3 a\)
\[
A \rightarrow 3 Y
\]

A

A

\section*{Examples of function computation}
multiplication by 3: \(f(a)=3 a\)
\(A \rightarrow 3 Y\)

\(Y\)
Y

\section*{Examples of function computation}
multiplication by 3: \(f(a)=3 a\)
\(A \rightarrow 3 Y\)

(A)
division by 3: \(f(a)=\lfloor a / 3\rfloor\)

A

\section*{Examples of function computation}
multiplication by 3: \(f(a)=3 a\)
\(A \rightarrow 3 Y\)

(A)

\section*{Examples of function computation}
multiplication by 3: \(f(a)=3 a\)
\(A \rightarrow 3 Y\)

(1)
r
division by 3: \(f(a)=\lfloor a / 3\rfloor\)
\(3 A \rightarrow Y\)
(A)

\section*{Examples of function computation}
multiplication by 3: \(f(a)=3 a\)
\(A \rightarrow 3 Y\)

(Y) \(Y\)

Y
division by 3: \(f(a)=\lfloor a / 3\rfloor\)
\(3 A \rightarrow Y\)
(A)

Y
\(Y\)
Y

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
(A)
(A)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]
(A)
(A)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\frac{A \rightarrow Y+Y^{\prime}}{Y^{\prime} \rightarrow 2 Y}
\]
(A)
(A)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

A

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{gathered}
A \rightarrow Y+Y^{\prime} \\
Y^{\prime} \rightarrow 2 Y
\end{gathered}
\]

A

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

\(y Y\)
\(y\)
(A)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

\(Y Y\)
\(Y\)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

© 0
Y
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]
(A)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

© 0
\(Y\)
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

A
(A)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

(1) 1
\(Y\)
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

(A)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

(1) (1)

Y
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

A
A

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

(1) (1)
\(Y\)
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

© 0
\(Y\)
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

© 0
Y
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

© 0
\(Y\)
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

A
(A)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]

© 0
\(Y\)
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

A
A

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]
\(Y\) (Y)
Y
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]
\(Y\)
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

A

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]
(1) 1

Y
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]
\(Y \quad Y\)

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]
(1) (1)
\(Y\)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]
(Y) \(Y\)

Y
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=3 a\) using (\(\leq 2\))-product reactions
\[
\begin{aligned}
& A \rightarrow Y+Y^{\prime} \\
& Y^{\prime} \rightarrow 2 Y
\end{aligned}
\]
(1) 1

Y
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular ((\(\leq 2)\)-reactant) reactions, starting in config \(\left\{1 L_{0}, a A\right\}\) (a.k.a., leader-driven)
\[
\begin{aligned}
& L_{0}+A \rightarrow L_{1} \\
& L_{1}+A \rightarrow L_{2} \\
& L_{2}+A \rightarrow L_{0}+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular (\(\leq 2\)-reactant) reactions, starting in config \(\{a \mathrm{~A}\}\) (a.k.a., leaderless)

\section*{Examples of function computation}
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular (\(\leq 2\)-reactant) reactions, starting in config \(\{a \mathrm{~A}\}\) (a.k.a., leaderless)
\[
\begin{aligned}
& A+A \rightarrow A_{2} \\
& A_{2}+A \rightarrow Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular (\(\leq 2\)-reactant) reactions, starting in config \(\{a \mathrm{~A}\}\) (a.k.a., leaderless)
\[
\begin{aligned}
& A+A \rightarrow A_{2} \\
& A_{2}+A \rightarrow Y \\
& A_{2}+A_{2} \rightarrow A+Y
\end{aligned}
\]

\section*{Examples of function computation}
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular (\(\leq 2\)-reactant) reactions, starting in config \(\{a \mathrm{~A}\}\) (a.k.a., leaderless)
\[
\begin{aligned}
& A+A \rightarrow A_{2} \\
& A_{2}+A \rightarrow Y \\
& A_{2}+A_{2} \rightarrow A+Y
\end{aligned}
\]

Calling \(A=A_{1}\), in general to divide by constant \(c\) :
\[
\begin{array}{ll}
A_{i}+A_{j} \rightarrow A_{k} & \text { if } i+j<c, \text { where } k=i+j \\
A_{i}+A_{j} \rightarrow A_{k}+Y & \text { if } i+j>c, \text { where } k=i+j-c \\
A_{i}+A_{j} \rightarrow Y & \text { if } i+j=c
\end{array}
\]

\section*{Examples of function computation}
\(f(a)=\lfloor a / 3\rfloor\) using bimolecular (\(\leq 2\)-reactant) reactions, starting in config \(\{a \mathrm{~A}\}\) (a.k.a., leaderless)
\[
\begin{aligned}
& A+A \rightarrow A_{2} \\
& A_{2}+A \rightarrow Y \\
& A_{2}+A_{2} \rightarrow A+Y
\end{aligned}
\]

Calling \(A=A_{1}\), in general to divide by constant \(c\) :
\[
\begin{array}{ll}
A_{i}+A_{j} \rightarrow A_{k} & \text { if } i+j<c, \text { where } k=i+j \\
A_{i}+A_{j} \rightarrow A_{k}+Y & \text { if } i+j>c, \text { where } k=i+j-c \\
A_{i}+A_{j} \rightarrow Y & \text { if } i+j=c
\end{array}
\]
i.e., \(A\) 's start with 1 "ball" and pass balls to each other; whenever someone gets \(\geq c\) balls, throw away \(c\) balls and produce a \(Y\)

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
(A)

B
(A)

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]

B
A

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
-
(

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\) subtraction: \(f(a, b)=a-b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
\(Y\)
A A A A A

B
B

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]\(Y\)
\(Y\)
subtraction: \(f(a, b)=a-b\)
\[
\begin{aligned}
A & \rightarrow Y \\
B+Y & \rightarrow \emptyset
\end{aligned}
\]

B
B

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
subtraction: \(f(a, b)=a-b\)
\[
\begin{aligned}
A & \rightarrow Y \\
B+Y & \rightarrow \emptyset
\end{aligned}
\]

\(\begin{array}{ccc}Y & Y & Y \\ B & B & Y \\ & B & \end{array}\)

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
subtraction: \(f(a, b)=a-b\)
\[
\begin{aligned}
A & \rightarrow Y \\
B+Y & \rightarrow \emptyset
\end{aligned}
\]

\(Y \quad Y \quad Y \quad Y \quad Y \quad Y\)

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
subtraction: \(f(a, b)=a-b\)
\[
\begin{aligned}
A & \rightarrow Y \\
B+Y & \rightarrow \emptyset
\end{aligned}
\]
\(Y\)
\(Y\) Y

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
subtraction: \(f(a, b)=a-b\)
\[
\begin{gathered}
A \rightarrow Y \\
B+Y \rightarrow \emptyset
\end{gathered}
\]

\(Y\)
B
\(Y\)
B
-。
B B

\section*{B}

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
subtraction: \(f(a, b)=a-b\)
\[
\begin{aligned}
A & \rightarrow Y \\
B+Y & \rightarrow \emptyset
\end{aligned}
\]

B

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
subtraction: \(f(a, b)=a-b\)
\[
\begin{aligned}
A & \rightarrow Y \\
B+Y & \rightarrow \emptyset
\end{aligned}
\]

\section*{Examples of function computation}
???
addition: \(f(a, b)=a+b\)
subtraction: \(f(a, b)=\) 东友
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
\[
\begin{aligned}
A & \rightarrow Y \\
B+Y & \rightarrow \emptyset
\end{aligned}
\]

\section*{Examples of function computation}
addition: \(f(a, b)=a+b\)
\[
\begin{aligned}
& A \rightarrow Y \\
& B \rightarrow Y
\end{aligned}
\]
subtraction: \(f(a, b)=\) a \(\quad \max (0, a-b)\)
\[
\begin{aligned}
A & \rightarrow Y \\
B+Y & \rightarrow \emptyset
\end{aligned}
\]

\section*{Examples of function computation}
composition: \(f(a, b)=3 a-b\)

\section*{Examples of function computation}
composition: \(f(a, b)=3 a-b\)
\[
\begin{aligned}
& A \rightarrow 3 Y \\
& B+Y \rightarrow \emptyset
\end{aligned}
\]

\section*{Examples of function computation}
composition: \(f(a, b)=3-b ? ?\)
\[
\begin{array}{ll}
A \rightarrow 3 Y & 3 a-(b / 2) \\
B+Y \rightarrow \emptyset
\end{array}
\]

\section*{Examples of function computation}
composition: \(f(a, b)=3-b ? ?\)
\[
\begin{array}{cc}
A \rightarrow 3 Y & 3 a-(b / 2) \\
2 B+Y \rightarrow \emptyset &
\end{array}
\]

\section*{Examples of function computation}
composition: \(f(a, b)=3<\) ? ??
\[
\begin{gathered}
A \rightarrow 3 Y \\
2 B+Y \rightarrow \emptyset
\end{gathered}
\]
only linear functions computable?

\section*{Examples of function computation}
composition: \(f(a, b)=3<\) ? ??
\[
\begin{gathered}
A \rightarrow 3 Y \\
2 B+Y \rightarrow \emptyset
\end{gathered}
\]
only linear functions computable?
minimum: \(f(a, b)=\min (a, b)\)

\section*{Examples of function computation}
composition: \(f(a, b)=3<\) ? ??
\[
\begin{gathered}
A \rightarrow 3 Y \\
2 B+Y \rightarrow \emptyset
\end{gathered}
\]
only linear functions computable?
minimum: \(f(a, b)=\min (a, b)\)
\[
A+B \rightarrow Y
\]

\section*{Examples of function computation}
composition: \(f(a, b)=30\) ? ? ?
\[
\begin{gathered}
A \rightarrow 3 Y \\
2 B+Y \rightarrow \emptyset
\end{gathered}
\]
only linear functions computable?
minimum: \(f(a, b)=\min (a, b)\)
\[
A+B \rightarrow Y
\]
maximum: \(f(a, b)=\max (a, b)\)

\section*{Examples of function computation}
composition: \(f(a, b)=30-6\) ???
\[
\begin{array}{ll}
A \rightarrow 3 Y & 3 a-(b / 2) \\
2 B+Y \rightarrow \emptyset &
\end{array}
\]
maximum: \(f(a, b)=\max (a, b)=a+b-\min (a, b)\)
only linear functions computable?
minimum: \(f(a, b)=\min (a, b)\)
\[
A+B \rightarrow Y
\]

\section*{Examples of function computation}
composition: \(f(a, b)=30<\) ? ??
\[
\begin{array}{cc}
A \rightarrow 3 Y & 3 a-(b / 2) \\
2 B+Y \rightarrow \emptyset &
\end{array}
\]
maximum: \(f(a, b)=\max (a, b)=a+b-\min (a, b)\)
\[
\begin{aligned}
& A \rightarrow Y+A_{2} \quad \text { addition } \\
& B \rightarrow Y+B_{2} \quad
\end{aligned}
\]
only linear functions computable?
minimum: \(f(a, b)=\min (a, b)\)
\[
A+B \rightarrow Y
\]

\section*{Examples of function computation}
composition: \(f(a, b)=30-6\) ???

\(2 B+Y \rightarrow \emptyset\)
only linear functions computable?
minimum: \(f(a, b)=\min (a, b)\)
\[
A+B \rightarrow Y
\]
maximum: \(f(a, b)=\max (a, b)=a+b-\min (a, b)\)
\[
\begin{aligned}
& A \rightarrow Y+A_{2} \quad \text { addition } \\
& B \rightarrow Y+B_{2}
\end{aligned}
\]
\[
A_{2}+B_{2} \rightarrow K \quad \text { minimum }
\]

\section*{Examples of function computation}
composition: \(f(a, b)=30\) ? ??

\(2 B+Y \rightarrow \varnothing\)
only linear functions computable? maximum: \(f(a, b)=\max (a, b)=a+b \square \min (a, b)\)
\[
\begin{aligned}
& A \rightarrow Y+A_{2} \quad \text { addition } \\
& B \rightarrow Y+B_{2}
\end{aligned} \quad \text { }
\]
\[
\begin{array}{ll}
\hline A_{2}+B_{2} \rightarrow K & \text { minimum } \\
& \\
K+Y \rightarrow \emptyset & \text { subtraction }
\end{array}
\]
minimum: \(f(a, b)=\min (a, b)\)
\[
A+B \rightarrow Y
\]
\(\square\)

\section*{Examples of function computation}
constant: \(f(a)=1\)

\section*{Examples of function computation}
constant: \(f(a)=1\)
\[
A \rightarrow Y
\]
a.k.a. "leader election"

\section*{Examples of function computation}
constant: \(f(a)=1\)
\[
\begin{aligned}
A & \rightarrow Y \\
2 Y & \rightarrow Y
\end{aligned} \quad \text { a.k.a. "leader election" }
\]
subtract constant: \(f(a)=a-1\)

\section*{Examples of function computation}
constant: \(f(a)=1\)
\[
\begin{aligned}
A & \rightarrow Y \\
2 Y \rightarrow Y & \text { a.k.a. "leader election" }
\end{aligned}
\]
subtract constant: \(f(a)=a-1\)
\[
2 A \rightarrow A+Y
\]

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes
(A) A A
(A) A
(A)

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes

(A)

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes

B B
B B
B B
B
(B)

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
Counting: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>1\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes

B B
B B
B B
B
B

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]

Counting: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>1\)
\(2 B \rightarrow 2 Y\)
\(A\) votes no; \(B\) votes yes

B B
B
B B
B

B
B

\section*{Examples of predicate computation}

Detection: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>0\)
\[
B+A \rightarrow 2 B
\]
\(A\) votes no; \(B\) votes yes

B B
B
(B)

B
B
(B)

Counting: \(\varphi(a, b)=\) yes \(\Leftrightarrow b>1\)
\[
\begin{aligned}
& 2 B \rightarrow 2 Y \\
& Y+B \rightarrow 2 Y \\
& Y+A \rightarrow 2 Y
\end{aligned}
\]

\section*{Examples of predicate computation}

Majority: \(\varphi(a, b)=\) yes \(\Leftrightarrow a \geq b\)

\section*{Examples of predicate computation}

Majority: \(\varphi(a, b)=\) yes \(\Leftrightarrow a \geq b\)
\(A+B \rightarrow A_{\mathrm{f}}+B_{\mathrm{f}} \quad\) (both become "followers" but preserve difference between \(A^{\prime}\) 's and \(B^{\prime} \mathrm{s}\))
[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization, 50(3):1087-1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and very Small Local Memory, Distributed Computing 2015]

\section*{Examples of predicate computation}

Majority: \(\varphi(a, b)=\) yes \(\Leftrightarrow a \geq b\)
\(A+B \rightarrow A_{\mathrm{f}}+B_{\mathrm{f}} \quad\) (both become "followers" but preserve difference between \(A^{\prime}\) 's and \(B^{\prime} \mathrm{s}\))
\(A+B_{f} \rightarrow A+A_{f} \quad\) (leader changes vote of follower)
\(B+A_{f} \rightarrow B+B_{f} \quad\) (leader changes vote of follower)
[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization, 50(3):1087-1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and very Small Local Memory, Distributed Computing 2015]

\section*{Examples of predicate computation}

Majority: \(\varphi(a, b)=\) yes \(\Leftrightarrow a \geq b\)
\(A+B \rightarrow A_{\mathrm{f}}+B_{\mathrm{f}} \quad\) (both become "followers" but preserve difference between \(A^{\prime} \mathrm{s}\) and \(B^{\prime} \mathrm{s}\))
\(A+B_{f} \rightarrow A+A_{f} \quad\) (leader changes vote of follower)
\(B+A_{f} \rightarrow B+B_{f} \quad\) (leader changes vote of follower)
\(A_{f}+B_{f} \rightarrow A_{f}+A_{f} \quad\) (tiebreaker if no leaders left when \(a=b\))

\footnotetext{
[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization, 50(3):1087-1109, 2012]
[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and very Small Local Memory, Distributed Computing 2015]
}

\section*{Examples of predicate computation}

Parity: \(\varphi(a)=\mathrm{Y} \Leftrightarrow a\) is odd

\section*{Examples of predicate computation}

\section*{Parity: \(\varphi(a)=\mathrm{Y} \Leftrightarrow a\) is odd}
\(a=A_{\circ}\)
(subscript o/e means ODD/EVEN, and capital \(A\) means it is leader)

\section*{Examples of predicate computation}

Parity: \(\varphi(a)=\mathrm{Y} \Leftrightarrow a\) is odd
\(a=A\) 。
(subscript o/e means ODD/EVEN, and capital \(A\) means it is leader)
\[
\begin{aligned}
& A_{\mathrm{o}}+A_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \\
& A_{\mathrm{e}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \text { two leaders XOR their parity, } \\
& A_{\mathrm{o}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}}
\end{aligned}
\]

\section*{Examples of predicate computation}

Parity: \(\varphi(a)=\mathrm{Y} \Leftrightarrow a\) is odd
\(a=A\) 。
(subscript o/e means ODD/EVEN, and capital \(A\) means it is leader)
\[
\begin{aligned}
& A_{\mathrm{o}}+A_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \\
& A_{\mathrm{e}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \quad \text { two leaders XOR their parity, } \\
& A_{\mathrm{o}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}}
\end{aligned}
\]
\(A_{\mathrm{o}}+a_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}}\) leader overwrites
\(A_{\mathrm{e}}+a_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}}\) bit of follower

Formal definition of CRN computation

Modeling choices in formalizing "Computing with chemistry"

\section*{Modeling choices in formalizing "Computing with chemistry"}
- integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?

\title{
Modeling choices in formalizing "Computing with chemistry"
}
- integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")? we'll start with these choices

\section*{Modeling choices in formalizing "Computing with chemistry"}
- integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
- yes/no decision problem? "\#A's > \#B's?"
- numerical function? "set \#Y = \#X/2"

\section*{Modeling choices in formalizing "Computing with chemistry"}
- integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem? "\#A's > \#B's?"

- numerical function? "set \#Y = \#X/2"

```

\section*{Modeling choices in formalizing "Computing with chemistry"}
- integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem? "\#A's > \#B's?"
numerical function? "set \#Y = \#X/2"

```
- guaranteed to get correct answer? or allow small probability of error?
- if \(\operatorname{Pr}[\) error] \(=0\), system works no matter the reaction rates

\section*{we'll start with these choices}

\section*{Modeling choices in formalizing "Computing with chemistry"}
integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem? "\#A's > \#B's?"
numerical function? "set \#Y = \#X/2"

```
guaranteed to get correct answer or allow small probability of error?
- if \(\operatorname{Pr}[\) error] \(=0\), system works no matter the reaction rates

\section*{we'll start with these choices}

\section*{Modeling choices in formalizing "Computing with chemistry"}
integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem? "\#A's > \#B's?"
numerical function? "set \# Y = \#X/2"

```
guaranteed to get correct answer or allow small probability of error?
- if Pr[error] = 0, system works no matter the reaction rates
- to represent input \(a_{1}, \ldots, a_{k}\), what is the initial configuration?
- only input species \(A_{1}, \ldots, A_{k}\) present?
- auxiliary species can be present?

\section*{Modeling choices in formalizing "Computing with chemistry"}
integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem? "\#A's > \#B's?"
numerical function? "set \#Y = \#X/2"

```
guaranteed to get correct answer or allow small probability of error?
- if \(\operatorname{Pr}[\) error] \(=0\), system works no matter the reaction rates
- to represent input \(a_{1}, \ldots, a_{k}\), what is the initial configuration?
- only input species \(A_{1}, \ldots, A_{k}\) present
- auxiliary species can be present?

\section*{Modeling choices in formalizing "Computing with chemistry"}
integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem?
"\#A's > \#B's?"
numerical function?
"set \#Y = \#X/2"

```
guaranteed to get correct answer or allow small probability of error?
- if Pr[error] = 0, system works no matter the reaction rates
- to represent input \(a_{1}, \ldots, a_{k}\), what is the initial configuration?
- only input species \(A_{1}, \ldots, A_{k}\) present
- auxiliary species can be present?
- when is the computation finished? when...

\section*{we'll start with these choices}
- the output stops changing? (convergence)
- the output becomes unable to change? (stabilization)
- a certain species \(T\) is first produced? (termination)

\section*{Modeling choices in formalizing "Computing with chemistry"}
integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem?
"\#A's > \#B's?"
numerical function?
"set \#Y = \#X/2"

```
guaranteed to get correct answer or allow small probability of error?
- if \(\operatorname{Pr}[\) error \(]=0\), system works no matter the reaction rates
- to represent input \(a_{1}, \ldots, a_{k}\), what is the initial configuration?
- only input species \(A_{1}, \ldots, A_{k}\) present
- auxiliary species can be present?
- when is the computation finished? when...

\section*{we'll start with these choices}
- the output stops changing? (convergence)
- the output becomes unable to change? (stabilization)
- a certain species \(T\) is first produced? (termination)

\section*{Modeling choices in formalizing "Computing with chemistry"}
integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem?
numerical function?
"\#A's > \#B's?"
"set \#Y = \#X/2"

```
guaranteed to get correct answer or allow small probability of error?
- if \(\operatorname{Pr}[\) error] \(=0\), system works no matter the reaction rates
- to represent input \(a_{1}, \ldots, a_{k}\), what is the initial configuration?
- only input species \(A_{1}, \ldots, A_{k}\) present
- auxiliary species can be present?
- when is the computation finished? when...

\section*{we'll start with these choices}
- the output stops changing? (convergence)
- the output becomes unable to change? (stabilization)
- a certain species \(T\) is first produced? (termination)
- require exact numerical answer? or allow an approximation?

\section*{Modeling choices in formalizing "Computing with chemistry"}
integer counts ("stochastic") or real concentrations ("mass-action"/"deterministic")?
- what is the object being "computed"?
```

yes/no decision problem?
numerical function?
"\#A's > \#B's?"
"set \#Y = \#X/2"

```
guaranteed to get correct answer or allow small probability of error?
- if \(\operatorname{Pr}[\) error] \(=0\), system works no matter the reaction rates
- to represent input \(a_{1}, \ldots, a_{k}\), what is the initial configuration?
- only input species \(A_{1}, \ldots, A_{k}\) present
- auxiliary species can be present?
- when is the computation finished? when...

\section*{we'll start with these choices}
- the output stops changing? (convergence)
- the output becomes unable to change? (stabilization)
- a certain species \(T\) is first produced? (termination)
- require exact numerical answer or allow an approximation?

\section*{Defining stable computation}

\section*{Defining stable computation}

\section*{Defining stable computation}

\section*{Defining stable computation}

\section*{Defining stable computation}

\section*{Defining stable computation}

(assuming finite set of reachable configurations) equivalent to: The system will reach a correct stable configuration with probability 1.

\section*{Probability-1 correctness can be characterized} with only reachability

\section*{Probability-1 correctness can be characterized} with only reachability

To understand this slide, only need the following fact: if a reaction is applicable, then there is a positive probability it occurs.

\section*{Probability-1 correctness can be characterized} with only reachability

Definition: Let i be a configuration and \(Y\) be a set of configurations. Write \(\operatorname{Pr}[i \Rightarrow Y]\) to denote the probability of the random event that, starting in configuration \(i\), the CRN eventually reaches some configuration o \(\in Y\).

\section*{Probability-1 correctness can be characterized} with only reachability

To understand this slide, only need the following fact: if a reaction is applicable, then there is a positive probability it occurs.

Definition: Let i be a configuration and \(Y\) be a set of configurations. Write \(\operatorname{Pr}[i \Rightarrow Y]\) to denote the probability of the random event that, starting in configuration \(i\), the CRN eventually reaches some configuration o \(\in Y\).

Definition: For any configuration \(\mathbf{i}\), let Reach(\(\mathbf{i}\)) denote the set of configurations reachable from \(\mathbf{i}\).

\section*{Probability-1 correctness can be characterized} with only reachability

To understand this slide, only need the following fact: if a reaction is applicable, then there is a positive probability it occurs.

Definition: Let i be a configuration and \(Y\) be a set of configurations. Write \(\operatorname{Pr}[i \Rightarrow Y]\) to denote the probability of the random event that, starting in configuration \(i\), the CRN eventually reaches some configuration o \(\in Y\).

Definition: For any configuration \(\mathbf{i}\), let Reach(i) denote the set of configurations reachable from \(\mathbf{i}\).

Theorem: Let \(\mathbf{i}\) be a configuration where Reach \((\mathbf{i})\) is finite, and let \(Y\) be a set of configurations. Then \((\operatorname{Pr}[\mathbf{i} \Rightarrow Y]=1) \Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).

\section*{Probability-1 correctness can be characterized} with only reachability

Definition: Let \(\mathbf{i}\) be a configuration and \(Y\) be a set of configurations. Write \(\operatorname{Pr}[i \Rightarrow Y]\) to denote the probability of the random event that, starting in configuration \(i\), the CRN eventually reaches some configuration \(0 \in Y\).

Definition: For any configuration \(\mathbf{i}\), let Reach(\(\mathbf{i}\)) denote the set of configurations reachable from \(\mathbf{i}\).

Theorem: Let \(\mathbf{i}\) be a configuration where Reach \((\mathbf{i})\) is finite, and let \(Y\) be a set of configurations. Then \((\operatorname{Pr}[\mathbf{i} \Rightarrow Y]=1) \Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).

This theorem lets us use (often simpler) reachability arguments and avoid discussing probability, while still ensuring probability-1 correctness.

\section*{Probability-1 correctness can be characterized with only reachability \\ To understand this slide, only need the following fact: if a reaction is applicable, then there is a positive probability it occurs.}

Definition: Let \(\mathbf{i}\) be a configuration and \(Y\) be a set of configurations. Write \(\operatorname{Pr}[i \Rightarrow Y]\) to denote the probability of the random event that, starting in configuration \(i\), the CRN eventually reaches some configuration o \(\in Y\).

Definition: For any configuration \(\mathbf{i}\), let Reach(i) denote the set of configurations reachable from \(\mathbf{i}\).

Theorem: Let \(\mathbf{i}\) be a configuration where Reach(\(\mathbf{i}\)) is finite, and let \(Y\) be a set of configurations. Then \((\operatorname{Pr}[\mathbf{i} \Rightarrow Y]=1) \Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).

This theorem lets us use (often simpler) reachability arguments and avoid discussing probability, while still ensuring probability-1 correctness.

\section*{Proof:}
1. \((\Rightarrow)\) : Assume \((\exists \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\forall \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \notin Y\).
2. Since \(\operatorname{Pr}[\mathbf{i} \Rightarrow \mathbf{x}]>0\), which prevents ever reaching \(Y\), \(\operatorname{Pr}[i \Rightarrow Y<1\). (Note this didn't assume Reach(i) is finite.)
3. \((\Longleftarrow)\) : Assume \((\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
4. For each \(\mathbf{x} \in \operatorname{Reach}(\mathbf{i})\), let \(E_{\mathbf{x}}=(\mathbf{x}, \ldots, \mathbf{0})\) be any finite execution leading from \(\mathbf{x}\) to some \(\mathbf{o} \in Y\).
5. Let \(k=\max _{\mathbf{x} \in \operatorname{Reach(i)}}\left|E_{\mathbf{x}}\right|\) be the maximum length of any of these finite executions reaching 0 .
6. Let \(p_{\mathrm{x}}=\operatorname{Pr}\left[E_{\mathrm{x}}\right.\) occurs from \(\left.\mathbf{x}\right]>0\).
7. Let \(\varepsilon=\min _{\mathbf{x} \in \operatorname{Reach}(\mathbf{i})} p_{\mathrm{x}}\). Since Reach(i) is finite, \(\varepsilon>0\).
8. Then for each \(\mathbf{x} \in \operatorname{Reach}(\mathbf{i}), \operatorname{Pr}\left[E_{\mathrm{x}}\right.\) does not occur from \(\mathbf{x}\) after the next \(k\) steps \(] \leq 1-\varepsilon<1\).
9. So, breaking the infinite execution into segments of length \(k\), the probability \(E_{\mathrm{x}}\) is never followed within \(k\) steps after any visit to an \(\mathbf{x} \in \operatorname{Reach}(\mathbf{i})\) is at most \(\prod_{i=1}^{\infty}(1-\varepsilon)=0\). QED

\section*{Deterministic computation \(\neq\) all executions correct}

\section*{Deterministic computation \(\neq\) all executions correct}

False statement: If \(\operatorname{Pr}[\mathbf{i} \Rightarrow \gamma]=1\), then every sufficiently long execution starting at \(\mathbf{i}\) reaches to some \(\mathbf{c} \in Y\).

\section*{Deterministic computation \(\neq\) all executions correct}

False statement: If \(\operatorname{Pr}[\mathbf{i} \Longrightarrow Y]=1\), then every sufficiently long execution starting at \(\mathbf{i}\) reaches to some \(\mathbf{c} \in Y\).
- Counterexample??

\section*{Deterministic computation \(\neq\) all executions correct}

> False statement: If \(\operatorname{Pr}[\mathbf{i} \Longrightarrow Y]=1\), then every sufficiently long execution starting at \(\mathbf{i}\) reaches to some \(\mathbf{c} \in Y\).
- Counterexample??
- Suppose \(\mathbf{i}=\{A\}\), with reactions
- \(A \rightleftharpoons B\)
- \(B \rightarrow C\)

\section*{Deterministic computation \(\neq\) all executions correct}

False statement: If \(\operatorname{Pr}[i \Rightarrow Y]=1\), then every sufficiently long execution starting at \(\mathbf{i}\) reaches to some \(\mathbf{c} \in Y\).
- Counterexample??
- Suppose \(\mathbf{i}=\{A\}\), with reactions
- \(A \rightleftharpoons B\)
- \(B \rightarrow C\)
- Then \(\operatorname{Pr}[\{A\} \Longrightarrow\{C\}]=1\), but the execution \(\{A\} \Longrightarrow\{B\} \Longrightarrow\{A\} \Longrightarrow\{B\} \Longrightarrow\{A\} \Rightarrow \ldots\) avoids it forever.

\section*{Deterministic computation \(\neq\) all executions correct}

> False statement: If \(\operatorname{Pr}[\mathbf{i} \Longrightarrow Y]=1\), then every sufficiently long execution starting at \(\mathbf{i}\) reaches to some \(\mathbf{c} \in Y\).
- Counterexample??
- Suppose \(\mathbf{i}=\{A\}\), with reactions
- \(A \rightleftharpoons B\)
- \(B \rightarrow C\)
- Then \(\operatorname{Pr}[\{A\} \Rightarrow\{C\}]=1\), but the execution \(\{A\} \Rightarrow\{B\} \Rightarrow\{A\} \Rightarrow\{B\} \Rightarrow\{A\} \Rightarrow \ldots\) avoids it forever.
- Lesson: it is too strict to require all sufficiently long executions to reach \(Y\).

\section*{Fair executions: Alternative characterization of stable computation}

Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).

Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).

Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if \(\left(\forall 0 \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow \mathbf{o}\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\)

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if \(\left(\forall 0 \in \mathbb{N}^{\wedge}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow \mathbf{0}\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at i reaches some o \(\in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if \(\left(\forall 0 \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow 0\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Proof:}
1. \((\Rightarrow)\) : Suppose every fair execution from \(\mathbf{i}\) reaches \(Y\).

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
 \(\left(\forall 0 \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow 0\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Proof:}
1. \((\Rightarrow)\) : Suppose every fair execution from \(i\) reaches \(Y\).
2. Any finite execution can be extended to be fair. (why??)

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
 \(\left(\forall 0 \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow 0\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Proof:}
1. \((\Rightarrow)\) : Suppose every fair execution from \(\mathbf{i}\) reaches \(Y\).
2. Any finite execution can be extended to be fair. (why??)
3. Thus (\(\forall \mathbf{x} \in\) Reach(i)), i.e., for all \(\mathbf{x}\) reachable via some finite execution starting at \(\mathbf{i},(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y, Y\) is reachable from \(\mathbf{x}\) by extending with a fair execution.

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if \(\left(\forall 0 \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow 0\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Proof:}
1. \((\Rightarrow)\) : Suppose every fair execution from \(\mathbf{i}\) reaches \(Y\).
2. Any finite execution can be extended to be fair. (why??)
3. Thus (\(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i})\)), i.e., for all \(\mathbf{x}\) reachable via some finite execution starting at \(\mathbf{i},(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y, Y\) is reachable from \(\mathbf{x}\) by extending with a fair execution.
4. \((\Longleftarrow)\) : Suppose \((\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if \(\left(\forall 0 \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow 0\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Proof:}
1. \((\Rightarrow)\) : Suppose every fair execution from \(\mathbf{i}\) reaches \(Y\).
2. Any finite execution can be extended to be fair. (why??)
3. Thus (\(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i})\)), i.e., for all \(\mathbf{x}\) reachable via some finite execution starting at \(\mathbf{i},(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y, Y\) is reachable from \(\mathbf{x}\) by extending with a fair execution.
4. \((\Longleftarrow)\) : Suppose \((\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
5. Let \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) be a fair execution with \(\mathbf{i}=\mathbf{x}_{0}\).

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if \(\left(\forall \mathbf{0} \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow \mathbf{o}\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=\mathbf{0}\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Proof:}
1. \((\Rightarrow)\) : Suppose every fair execution from \(i\) reaches \(Y\).
2. Any finite execution can be extended to be fair. (why??)
3. Thus (\(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i})\)), i.e., for all \(\mathbf{x}\) reachable via some finite execution starting at \(\mathbf{i}\), \((\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y, Y\) is reachable from \(\mathbf{x}\) by extending with a fair execution.
4. \((\Longleftarrow)\) : Suppose \((\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
5. Let \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) be a fair execution with \(\mathbf{i}=\mathbf{x}_{0}\).
6. Since all \(\mathbf{x}_{j} \in \operatorname{Reach}(\mathbf{i})\), for each \(j\), by hypothesis \(\exists \mathbf{o}_{j} \in \operatorname{Reach}\left(\mathbf{x}_{j}\right) \mathbf{o}_{j} \in Y\).

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then
(every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if \(\left(\forall 0 \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow 0\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Proof:}
1. \((\Rightarrow)\) : Suppose every fair execution from i reaches \(Y\).
2. Any finite execution can be extended to be fair. (why??)
3. Thus (\(\forall \mathbf{x} \in\) Reach(i)), i.e., for all \(\mathbf{x}\) reachable via some finite execution starting at \(\mathbf{i},(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y, Y\) is reachable from \(\mathbf{x}\) by extending with a fair execution.
4. \((\Longleftarrow)\) : Suppose \((\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
5. Let \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) be a fair execution with \(\mathbf{i}=\mathbf{x}_{0}\).
6. Since all \(\mathbf{x}_{j} \in \operatorname{Reach}(\mathbf{i})\), for each \(j\), by hypothesis \(\exists \mathbf{o}_{j} \in \operatorname{Reach}\left(\mathbf{x}_{j}\right) \mathbf{o}_{j} \in Y\).
7. Since \(Y\) is finite, some \(\mathbf{o} \in Y\) is reachable from infinitely many \(\mathbf{x}_{j}\).

\section*{Fair executions: Alternative characterization of stable computation}

Goal of definition of fair is to make this theorem true:
Theorem: Let \(\mathbf{i}\) be a configuration, and let \(Y\) be a finite set of configurations. Then (every fair execution starting at \(\mathbf{i}\) reaches some \(\mathbf{o} \in Y\)) \(\Leftrightarrow(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
"there exist infinitely many"
Definition: An infinite execution \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair if \(\left(\forall 0 \in \mathbb{N}^{\Lambda}\right)\left[\left(\exists^{\infty} i \in \mathbb{N} \mathbf{x}_{i} \Rightarrow 0\right)\right.\) implies \(\left.\left(\exists^{\infty} k \in \mathbb{N} \mathbf{x}_{k}=0\right)\right]\) (every configuration infinitely often reachable is infinitely often reached)

\section*{Proof:}
1. \((\Rightarrow)\) : Suppose every fair execution from \(\mathbf{i}\) reaches \(Y\).
2. Any finite execution can be extended to be fair. (why??)
3. Thus (\(\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i})\)), i.e., for all \(\mathbf{x}\) reachable via some finite execution starting at \(\mathbf{i},(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y, Y\) is reachable from \(\mathbf{x}\) by extending with a fair execution.
4. \((\Longleftarrow)\) : Suppose \((\forall \mathbf{x} \in \operatorname{Reach}(\mathbf{i}))(\exists \mathbf{o} \in \operatorname{Reach}(\mathbf{x})) \mathbf{o} \in Y\).
5. Let \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) be a fair execution with \(\mathbf{i}=\mathbf{x}_{0}\).
6. Since all \(\mathbf{x}_{j} \in \operatorname{Reach}(\mathbf{i})\), for each \(j\), by hypothesis \(\exists \mathbf{o}_{j} \in \operatorname{Reach}\left(\mathbf{x}_{j}\right) \mathbf{o}_{j} \in Y\).
7. Since \(Y\) is finite, some \(\mathbf{o} \in Y\) is reachable from infinitely many \(\mathbf{x}_{j}\).
8. Since \(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots\) is fair and \(\mathbf{o}\) is infinitely often reachable, there is \(k\) such that \(\mathbf{x}_{k}=\mathbf{0} \in Y\), i.e., the fair execution reaches \(Y\). QED

\section*{Definition of function computation}
- goal: compute function \(f: \mathbb{N}^{k} \rightarrow \mathbb{N}\), e.g., \(f(a, b)=2 a+b / 2\)

\section*{Definition of function computation}
- goal: compute function \(f: \mathbb{N}^{k} \rightarrow \mathbb{N}\), e.g., \(f(a, b)=2 a+b / 2\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- valid initial configuration i: all molecules are from \(\Sigma\), e.g., \(\{100 a, 100 b\}\)

\section*{Definition of function computation}
- goal: compute function \(f: \mathbb{N}^{k} \rightarrow \mathbb{N}\), e.g., \(f(a, b)=2 a+b / 2\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- valid initial configuration i: all molecules are from \(\Sigma\), e.g., \(\{100 a, 100 b\}\)
- output specification: designate one species \(Y \in \Lambda\) whose count is the output

\section*{Definition of function computation}
- goal: compute function \(f: \mathbb{N}^{k} \rightarrow \mathbb{N}\), e.g., \(f(a, b)=2 a+b / 2\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- valid initial configuration i: all molecules are from \(\Sigma\), e.g., \(\{100 a, 100 b\}\)
- output specification: designate one species \(Y \in \Lambda\) whose count is the output
- \(\mathbf{o}\) is stable if, for all \(\mathbf{o}^{\prime}\) reachable from \(\mathbf{0}, \mathbf{o}(Y)=\mathbf{o}^{\prime}(Y)\)

\section*{Definition of function computation}
- goal: compute function \(f: \mathbb{N}^{k} \rightarrow \mathbb{N}\), e.g., \(f(a, b)=2 a+b / 2\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- valid initial configuration i: all molecules are from \(\Sigma\), e.g., \(\{100 a, 100 b\}\)
- output specification: designate one species \(Y \in \Lambda\) whose count is the output
- o is stable if, for all \(0^{\prime}\) reachable from \(\mathbf{0 , o}(Y)=0^{\prime}(Y)\)
- CRN stably computes \(f\) if, for all valid initial configurations \(\mathbf{i}\), and all \(\mathbf{x}\) reachable from \(\mathbf{i}\), there is a stable \(\mathbf{o}\) reachable from \(\mathbf{x}\) such that \(\mathbf{o}(Y)=f(\mathbf{i})\).

\section*{Definition of function computation}
- goal: compute function \(f: \mathbb{N}^{k} \rightarrow \mathbb{N}\), e.g., \(f(a, b)=2 a+b / 2\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- valid initial configuration i: all molecules are from \(\Sigma\), e.g., \(\{100 a, 100 b\}\)
- output specification: designate one species \(Y \in \Lambda\) whose count is the output
- \(\mathbf{o}\) is stable if, for all \(\mathbf{o}^{\prime}\) reachable from \(\mathbf{0}, \mathbf{o}(Y)=0^{\prime}(Y)\)
- CRN stably computes \(f\) if, for all valid initial configurations \(\mathbf{i}\), and all \(\mathbf{x}\) reachable from \(\mathbf{i}\), there is a stable \(\mathbf{o}\) reachable from \(\mathbf{x}\) such that \(\mathbf{o}(Y)=f(\mathbf{i})\).
- Recall: this is equivalent to saying that i reaches to a correct, stable o with probability 1 , and equivalent to saying that every fair execution from \(\mathbf{i}\) reaches to a correct, stable \(\mathbf{0}\).

\section*{Definition of predicate (decision problem) computation}
- goal: compute predicate \(\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}, \quad\) e.g., \(\quad \varphi(a, b)=\mathrm{Y} \Leftrightarrow a>b\)

\section*{Definition of predicate (decision problem) computation}
- goal: compute predicate \(\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}\), e.g., \(\varphi(a, b)=\mathrm{Y} \Leftrightarrow a>b\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- in valid initial configurations i all molecules are from \(\Sigma\), e.g., \(\{100 A, 55 B\}\)

\section*{Definition of predicate (decision problem) computation}
- goal: compute predicate \(\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}\), e.g., \(\varphi(a, b)=\mathrm{Y} \Leftrightarrow a>b\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- in valid initial configurations i all molecules are from \(\Sigma\), e.g., \(\{100 A, 55 B\}\)
- output specification: partition species \(\Lambda\) into "yes" voters \(\Lambda_{Y}\) and "no" voters \(\Lambda_{N}\)

\section*{Definition of predicate (decision problem) computation}
- goal: compute predicate \(\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}\), e.g., \(\varphi(a, b)=\mathrm{Y} \Leftrightarrow a>b\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- in valid initial configurations i all molecules are from \(\Sigma\), e.g., \(\{100 A, 55 B\}\)
- output specification: partition species \(\Lambda\) into "yes" voters \(\Lambda_{Y}\) and "no" voters \(\Lambda_{N}\)
- \(\psi(\mathbf{o})=Y\) (configuration o outputs "yes") if vote is unanimously yes: \(\quad \mathbf{o}(S)>0 \Rightarrow S \in \Lambda_{\mathrm{Y}}\)
- \(\Psi(\mathbf{o})=\mathrm{N}\) (configuration o outputs "no") if vote is unanimously no:
\(o(S)>0 \Rightarrow S \in \Lambda_{N}\)
- \(\psi(\mathbf{o})\) undefined otherwise: \(\left(\exists S \in \Lambda_{N}, S^{\prime} \in \Lambda_{\gamma}\right) \mathbf{o}(S)>0\) and \(\mathbf{o}\left(S^{\prime}\right)>0\)

\section*{Definition of predicate (decision problem) computation}
- goal: compute predicate \(\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}\), e.g., \(\varphi(a, b)=\mathrm{Y} \Leftrightarrow a>b\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- in valid initial configurations i all molecules are from \(\Sigma\), e.g., \(\{100 A, 55 B\}\)
- output specification: partition species \(\Lambda\) into "yes" voters \(\Lambda_{Y}\) and "no" voters \(\Lambda_{N}\)
- \(\psi(\mathbf{o})=Y\) (configuration o outputs "yes") if vote is unanimously yes: \(\quad \mathbf{o}(S)>0 \Rightarrow S \in \Lambda_{Y}\)
- \(\psi(\mathbf{o})=\mathrm{N}\) (configuration o outputs "no") if vote is unanimously no:
\(o(S)>0 \Rightarrow S \in \Lambda_{N}\)
- \(\psi(\mathbf{o})\) undefined otherwise: \(\left(\exists S \in \Lambda_{N^{\prime}} S^{\prime} \in \Lambda_{\gamma}\right) \mathbf{o}(S)>0\) and \(\mathbf{o}\left(S^{\prime}\right)>0\)
- \(\mathbf{o}\) is stable if \(\psi(\mathbf{0})=\psi\left(\mathbf{o}^{\prime}\right)\) (and is defined) for all \(\mathbf{o}^{\prime}\) reachable from \(\mathbf{0}\)

\section*{Definition of predicate (decision problem) computation}
- goal: compute predicate \(\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}\), e.g., \(\varphi(a, b)=\mathrm{Y} \Leftrightarrow a>b\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- in valid initial configurations i all molecules are from \(\Sigma\), e.g., \(\{100 A, 55 B\}\)
- output specification: partition species \(\Lambda\) into "yes" voters \(\Lambda_{Y}\) and "no" voters \(\Lambda_{N}\)
- \(\psi(0)=Y\) (configuration o outputs "yes") if vote is unanimously yes: \(\quad \mathbf{o}(S)>0 \Rightarrow S \in \Lambda_{Y}\)
- \(\psi(\mathbf{0})=\mathrm{N}\) (configuration o outputs "no") if vote is unanimously no:
\(\mathbf{o}(S)>0 \Rightarrow S \in \Lambda_{N}\)
- \(\psi(\mathbf{o})\) undefined otherwise: \(\quad\left(\exists S \in \Lambda_{N}, S^{\prime} \in \Lambda_{Y}\right) \mathbf{o}(S)>0\) and \(\mathbf{o}\left(S^{\prime}\right)>0\)
- \(\mathbf{o}\) is stable if \(\psi(\mathbf{0})=\psi\left(\mathbf{o}^{\prime}\right)\) (and is defined) for all \(0^{\prime}\) reachable from \(\mathbf{o}\)
- CRN stably computes \(\varphi\) if, for all valid initial configurations \(i\), and all \(\mathbf{x}\) reachable from \(i\), there is a stable \(\mathbf{o}\) reachable from \(\mathbf{x}\) such that \(\psi(0)=\varphi(i)\) (0 is correct).

\section*{Definition of predicate (decision problem) computation}
- goal: compute predicate \(\varphi: \mathbb{N}^{k} \rightarrow\{Y, N\}\), e.g., \(\varphi(a, b)=Y \Leftrightarrow a>b\)
- input specification: designate subset \(\Sigma \subseteq \Lambda\) as "input" species
- in valid initial configurations i all molecules are from \(\Sigma\), e.g., \(\{100 A, 55 B\}\)
- output specification: partition species \(\Lambda\) into "yes" voters \(\Lambda_{Y}\) and "no" voters \(\Lambda_{N}\)
- \(\psi(\mathbf{0})=Y\) (configuration o outputs "yes") if vote is unanimously yes: \(\quad \mathbf{o}(S)>0 \Rightarrow S \in \Lambda_{Y}\)
- \(\psi(0)=N\) (configuration o outputs "no") if vote is unanimously no:
\(\mathbf{o}(S)>0 \Rightarrow S \in \Lambda_{N}\)
- \(\psi(\mathbf{o})\) undefined otherwise: \(\quad\left(\exists S \in \Lambda_{N}, S^{\prime} \in \Lambda_{Y}\right) \mathbf{o}(S)>0\) and \(\mathbf{o}\left(S^{\prime}\right)>0\)
- \(\mathbf{o}\) is stable if \(\psi(\mathbf{0})=\psi\left(\mathbf{o}^{\prime}\right)\) (and is defined) for all \(0^{\prime}\) reachable from \(\mathbf{o}\)
- CRN stably computes \(\varphi\) if, for all valid initial configurations \(\mathbf{i}\), and all \(\mathbf{x}\) reachable from \(i\), there is a stable \(\mathbf{o}\) reachable from \(\mathbf{x}\) such that \(\psi(\mathbf{0})=\varphi(i)\) (\(\mathbf{o}\) is correct).
- We say the CRN stably decides the set \(\varphi^{-1}(Y)=\) set of inputs mapping to output \(Y\)

\section*{Feedforward CRNs}

\section*{A class of CRNs with a simpler definition/proofs for computation}

\section*{Stable versus terminal}

All CRNs we've seen so far obey a stronger condition than stabilizing (no reaction can change the output): they reach a configuration where no reaction can happen at all. Further, they all have the property that every sufficiently long execution reaches this configuration.

\section*{Stable versus terminal}

All CRNs we've seen so far obey a stronger condition than stabilizing (no reaction can change the output): they reach a configuration where no reaction can happen at all. Further, they all have the property that every sufficiently long execution reaches this configuration.

Definition: A configuration is terminal if no reaction is applicable to it.

\section*{Stable versus terminal}

All CRNs we've seen so far obey a stronger condition than stabilizing (no reaction can change the output): they reach a configuration where no reaction can happen at all. Further, they all have the property that every sufficiently long execution reaches this configuration.

\section*{Definition: A configuration is terminal if no reaction is applicable to it.}

Observation: Every terminal configuration is stable.

\section*{Stable versus terminal}

All CRNs we've seen so far obey a stronger condition than stabilizing (no reaction can change the output): they reach a configuration where no reaction can happen at all. Further, they all have the property that every sufficiently long execution reaches this configuration.

\section*{Definition: A configuration is terminal if no reaction is applicable to it.}

Observation: Every terminal configuration is stable.

Note: A configuration can be stable without being terminal. Example?

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (\(A\) doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \emptyset\)

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Example: The \(\max (A, B)\) CRN:
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (\(A\) doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \emptyset\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B)\) CRN:
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B)\) CRN:
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

\section*{Proof: \\ \[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]}
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B)\) CRN:
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B)\) CRN:
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)
5. So only \(r_{1} \ldots r_{k}\) can increase \#A, and only \(r_{k}\) can decrease \#A.

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B)\) CRN:
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)
5. So only \(r_{1} \ldots r_{k}\) can increase \#A, and only \(r_{k}\) can decrease \#A.
6. Let \(m=\#\left(r_{k}, P\right)\); Let \(Q^{\prime}\) be prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) by the \((m+1)\) 'st execution of reaction \(r_{k}\).

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)
5. So only \(r_{1} \ldots r_{k}\) can increase \#A, and only \(r_{k}\) can decrease \#A.
6. Let \(m=\#\left(r_{k}, P\right)\); Let \(Q^{\prime}\) be prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) by the \((m+1)\) 'st execution of reaction \(r_{k}\).
- \(\mathbf{x}_{p}\) is the config just before the first time that \(r_{k}\) happens more in \(Q\) than \(P\).

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)
5. So only \(r_{1} \ldots r_{k}\) can increase \#A, and only \(r_{k}\) can decrease \#A.
6. Let \(m=\#\left(r_{k}, P\right)\); Let \(Q^{\prime}\) be prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) by the \((m+1)\) 'st execution of reaction \(r_{k}\).
- \(\quad \mathbf{x}_{p}\) is the config just before the first time that \(r_{k}\) happens more in \(Q\) than \(P\).
7. Note \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q\). \(\left(\#\left(r_{i}, P\right) \geq \#\left(r_{i}, Q\right)\right.\) for \(i=1\) to \(\left.k-1\right)\)

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)
5. So only \(r_{1} \ldots r_{k}\) can increase \#A, and only \(r_{k}\) can decrease \#A.
6. Let \(m=\#\left(r_{k}, P\right)\); Let \(Q^{\prime}\) be prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) by the (\(m+1\))'st execution of reaction \(r_{k}\).
- \(\mathbf{x}_{p}\) is the config just before the first time that \(r_{k}\) happens more in \(Q\) than \(P\).
7. Note \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q\). \(\left(\#\left(r_{i}, P\right) \geq \#\left(r_{i}, Q\right)\right.\) for \(i=1\) to \(\left.k-1\right)\)
8. Thus \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q^{\prime}\). (since \(Q^{\prime}\) is prefix of \(Q\))

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)
5. So only \(r_{1} \ldots r_{k}\) can increase \#A, and only \(r_{k}\) can decrease \#A.
6. Let \(m=\#\left(r_{k}, P\right)\); Let \(Q^{\prime}\) be prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) by the (\(m+1\))'st execution of reaction \(r_{k}\).
- \(\mathbf{x}_{p}\) is the config just before the first time that \(r_{k}\) happens more in \(Q\) than \(P\).
7. Note \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q\). (\#(\(\left.r_{i}, P\right) \geq \#\left(r_{i}, Q\right)\) for \(i=1\) to \(\left.k-1\right)\)
8. Thus \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q^{\prime}\). (since \(Q^{\prime}\) is prefix of \(Q\))
9. Also, \#(\(\left.r_{k}, P\right)=\#\left(r_{k}, Q^{\prime}\right)\) by our choice of \(Q^{\prime}\).

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)
5. So only \(r_{1} \ldots r_{k}\) can increase \#A, and only \(r_{k}\) can decrease \#A.
6. Let \(m=\#\left(r_{k}, P\right)\); Let \(Q^{\prime}\) be prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) by the (\(m+1\))'st execution of reaction \(r_{k}\).
- \(\mathbf{x}_{p}\) is the config just before the first time that \(r_{k}\) happens more in \(Q\) than \(P\).
7. Note \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q\). \(\left(\#\left(r_{i}, P\right) \geq \#\left(r_{i}, Q\right)\right.\) for \(i=1\) to \(\left.k-1\right)\)
8. Thus \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q^{\prime}\). (since \(Q^{\prime}\) is prefix of \(Q\))
9. Also, \#(\(\left.r_{k}, P\right)=\#\left(r_{k}, Q^{\prime}\right)\) by our choice of \(Q^{\prime}\).
10. So \(A\) is present in \(\mathbf{c}\), i.e., \(\mathbf{c}(A)>0\).

\section*{Feed-forward CRNs}

Definition: A CRN is feed-forward if reactions can be ordered \(r_{1}, r_{2}, \ldots, r_{n}\) such that, for all \(k<\ell\), no reactant of \(r_{k}\) appears in \(r_{\ell}\) (as either reactant or product).

Lemma: Suppose in a feed-forward CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (A doesn't appear below)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) doesn't appear below)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) don't appear below)
4. \(K+Y \rightarrow \varnothing\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with feed-forward CRNs.

\section*{Proof:}
\[
\#\left(r_{k}, P\right)=\text { number of times } r_{k} \text { occurs in } P
\]
1. Let \(r_{k}\) be first reaction in feed-forward order such that \(\#\left(r_{k}, P\right)<\#\left(r_{k}, Q\right)\).
2. For ease of exposition, assume \(r_{k}\) has only one reactant \(A\).
3. \(r_{k+1} \ldots r_{n}\) do not change \#A, by the definition of feed-forward.
4. \(r_{1} \ldots r_{k-1}\) can produce but not consume \(A\). (why??)
5. So only \(r_{1} \ldots r_{k}\) can increase \#A, and only \(r_{k}\) can decrease \#A.
6. Let \(m=\#\left(r_{k}, P\right)\); Let \(Q^{\prime}\) be prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) by the \((m+1)\) 'st execution of reaction \(r_{k}\).
- \(\quad \mathbf{x}_{p}\) is the config just before the first time that \(r_{k}\) happens more in \(Q\) than \(P\).
7. Note \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q\). (\# \(\left(r_{i}, P\right) \geq \#\left(r_{i}, Q\right)\) for \(i=1\) to \(\left.k-1\right)\)
8. Thus \(r_{1} \ldots r_{k-1}\) occur least as much in \(P\) as in \(Q^{\prime}\). (since \(Q^{\prime}\) is prefix of \(Q\))
9. Also, \(\#\left(r_{k}, P\right)=\#\left(r_{k}, Q^{\prime}\right)\) by our choice of \(Q^{\prime}\).
10. So \(A\) is present in \(\mathbf{c}\), i.e., \(\mathbf{c}(A)>0\).
11. Thus \(r_{k}\) is applicable at \(\mathbf{c}\), so \(\mathbf{c}\) is not terminal. QED

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

\section*{Corollary 1: A feed-forward CRN has at most one terminal configuration reachable from any initial configuration.}

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary 1: A feed-forward CRN has at most one terminal configuration reachable from any initial configuration.

Corollary 2: If a feed-forward CRN has at least one terminal configuration reachable from any initial configuration (i.e., exactly one), then the CRN stably computes a function.

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary 1: A feed-forward CRN has at most one terminal configuration reachable from any initial configuration.

> Corollary 2: If a feed-forward CRN has at least one terminal configuration reachable from any initial configuration (i.e., exactly one), then the CRN stably computes a function.

Question: What's the function?

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary 1: A feed-forward CRN has at most one terminal configuration reachable from any initial configuration.

Corollary 2: If a feed-forward CRN has at least one terminal configuration reachable from any initial configuration (i.e., exactly one), then the CRN stably computes a function.

Question: What's the function?
Answer: Letting \(\mathbf{o}_{\mathbf{i}}=\) the unique terminal configuration reachable from \(\mathbf{i}\), it computes \(f(i)=\mathbf{o}_{\mathbf{i}}(Y)\).

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary 1: A feed-forward CRN has at most one terminal configuration reachable from any initial configuration.

Corollary 2: If a feed-forward CRN has at least one terminal configuration reachable from any initial configuration (i.e., exactly one), then the CRN stably computes a function.

Question: What's the function?
Answer: Letting \(\mathbf{o}_{\mathbf{i}}=\) the unique terminal configuration reachable from \(\mathbf{i}\), it computes \(f(i)=\mathbf{o}_{\mathbf{i}}(Y)\).

Corollary: The CRN:
1. \(A \rightarrow Y+A_{2}\)
2. \(B \rightarrow Y+B_{2}\)
3. \(A_{2}+B_{2} \rightarrow K\)
4. \(K+Y \rightarrow \emptyset\)
stably computes the function \(f(A, B)=\max (A, B)\).

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary 1: A feed-forward CRN has at most one terminal configuration reachable from any initial configuration.

Corollary 2: If a feed-forward CRN has at least one terminal configuration reachable from any initial configuration (i.e., exactly one), then the CRN stably computes a function.

Question: What's the function?
Answer: Letting \(\mathbf{o}_{\mathbf{i}}=\) the unique terminal configuration reachable from \(\mathbf{i}\), it computes \(f(i)=\mathbf{o}_{\mathbf{i}}(Y)\).

Corollary: The CRN:
1. \(A \rightarrow Y+A_{2}\)
2. \(B \rightarrow Y+B_{2}\)
3. \(A_{2}+B_{2} \rightarrow K\)
4. \(K+Y \rightarrow \emptyset\)
stably computes the function \(f(A, B)=\max (A, B)\).

\section*{Proof:}
1. Do the following reactions:
1. \#A times rxn 1
2. \#B times rxn 2
3. \(\min (\# A, \# B)\) times rxn 3
4. \(\min (\# A, \# B)\) times \(r \times n 4\)

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary 1: A feed-forward CRN has at most one terminal configuration reachable from any initial configuration.

Corollary 2: If a feed-forward CRN has at least one terminal configuration reachable from any initial configuration (i.e., exactly one), then the CRN stably computes a function.

Question: What's the function?
Answer: Letting \(\mathbf{o}_{\mathbf{i}}=\) the unique terminal configuration reachable from \(\mathbf{i}\), it computes \(f(i)=\mathbf{o}_{\mathbf{i}}(Y)\).

Corollary: The CRN:
1. \(A \rightarrow Y+A_{2}\)
2. \(B \rightarrow Y+B_{2}\)
3. \(A_{2}+B_{2} \rightarrow K\)
4. \(K+Y \rightarrow \emptyset\)
stably computes the function \(f(A, B)=\max (A, B)\).

\section*{Proof:}
1. Do the following reactions:
1. \#A times rxn 1
2. \#B times rxn 2
3. \(\min (\# A, \# B)\) times rxn 3
4. \(\min (\# A, \# B)\) times rxn 4
2. This removes all \(A, B\), (at least one of \(A_{2}\) or \(B_{2}\)), and \(K\), so this is terminal. By Corollary 2 it stably computes whatever \(\# Y\) is now, which is...

\section*{Stable function computation by feed-forward CRNs}

Lemma (restated): Suppose that in a feed-forward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary 1: A feed-forward CRN has at most one terminal configuration reachable from any initial configuration.

Corollary 2: If a feed-forward CRN has at least one terminal configuration reachable from any initial configuration (i.e., exactly one), then the CRN stably computes a function.

Question: What's the function?
Answer: Letting \(\mathbf{o}_{\mathbf{i}}=\) the unique terminal configuration reachable from \(\mathbf{i}\), it computes \(f(i)=\mathbf{o}_{\mathbf{i}}(Y)\).

Corollary: The CRN:
1. \(A \rightarrow Y+A_{2}\)
2. \(B \rightarrow Y+B_{2}\)
3. \(A_{2}+B_{2} \rightarrow K\)
4. \(K+Y \rightarrow \emptyset\)
stably computes the function \(f(A, B)=\max (A, B)\).

\section*{Proof:}
1. Do the following reactions:
1. \#A times rxn 1
2. \#B times rxn 2
3. \(\min (\# A, \# B)\) times \(r \times n 3\)
4. \(\quad \min (\# A, \# B)\) times rxn 4
2. This removes all \(A, B\), (at least one of \(A_{2}\) or \(B_{2}\)), and \(K\), so this is terminal. By Corollary 2 it stably computes whatever \(\# Y\) is now, which is...
3. CRN produces \#A+\#B count of \(Y\) by rxns 1 and 2 , and consumes min(\#A,\#B) \(Y^{\prime}\) s by rxn 4, so computes \(\# A+\# B-\min (\# A, \# B)=\max (\# A, \# B)\). QED

\section*{In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it}
```

Lemma (restated): Suppose that in a feed-
forward CRN, i}=>\mathbf{c}\mathrm{ by execution P, and i}=>\mathbf{d
by execution }Q\mathrm{ . If any reaction occurs less in P
than Q, then c is not terminal.

```

\section*{In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it}
```

Lemma (restated): Suppose that in a feed-
forward CRN, i}=>\mathbf{c}\mathrm{ by execution P, and i}=>\mathbf{d
by execution Q}Q\mathrm{ . If any reaction occurs less in P
than Q, then c is not terminal.

```

Corollary: In a feed-forward CRN, if there is a terminal configuration \(c_{i}\) reachable from initial configuration \(\mathbf{i}\), then \(\mathbf{c}_{\mathbf{i}}\) is reached by every sufficiently long execution from \(\mathbf{i}\).
Furthermore, all of these executions are permutations of the same number of each reaction type.

\section*{In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it}
```

Lemma (restated): Suppose that in a feedforward $C R N, \mathbf{i} \Rightarrow \mathbf{c}$ by execution $P$, and $\mathbf{i} \Rightarrow \mathbf{d}$ by execution $Q$. If any reaction occurs less in $P$ than $Q$, then $\mathbf{c}$ is not terminal.

```

Corollary: In a feed-forward CRN, if there is a terminal configuration \(c_{i}\) reachable from initial configuration \(\mathbf{i}\), then \(\mathbf{c}_{\mathbf{i}}\) is reached by every sufficiently long execution from \(\mathbf{i}\).
Furthermore, all of these executions are permutations of the same number of each reaction type.

\section*{Proof:}
1. Let \(P\) be the execution leading from \(\mathbf{i}\) to \(\mathbf{c}_{\mathbf{i}}\).

\section*{In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it}

Lemma (restated): Suppose that in a feedforward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary: In a feed-forward CRN, if there is a terminal configuration \(c_{i}\) reachable from initial configuration \(\mathbf{i}\), then \(\mathbf{c}_{\mathbf{i}}\) is reached by every sufficiently long execution from \(\mathbf{i}\).
Furthermore, all of these executions are permutations of the same number of each reaction type.

\section*{Proof:}
1. Let \(P\) be the execution leading from \(\mathbf{i}\) to \(\mathbf{c}_{\mathbf{i}}\).
2. Any execution \(Q\) with with \(|Q|>|P|\) must have more of some reaction \(r\) by the pigeonhole principle.

\section*{In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it}

Lemma (restated): Suppose that in a feedforward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary: In a feed-forward CRN, if there is a terminal configuration \(c_{i}\) reachable from initial configuration \(\mathbf{i}\), then \(\mathbf{c}_{\mathbf{i}}\) is reached by every sufficiently long execution from \(\mathbf{i}\).
Furthermore, all of these executions are permutations of the same number of each reaction type.

\section*{Proof:}
1. Let \(P\) be the execution leading from \(\mathbf{i}\) to \(\mathbf{c}_{\mathbf{i}}\).
2. Any execution \(Q\) with with \(|Q|>|P|\) must have more of some reaction \(r\) by the pigeonhole principle.
1. By the Lemma, \(\boldsymbol{c}_{\mathbf{i}}\) is not terminal, a contradiction.

\section*{In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it}

Lemma (restated): Suppose that in a feedforward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary: In a feed-forward CRN, if there is a terminal configuration \(\mathbf{c}_{\mathbf{i}}\) reachable from initial configuration \(\mathbf{i}\), then \(\mathbf{c}_{\mathbf{i}}\) is reached by every sufficiently long execution from \(\mathbf{i}\).
Furthermore, all of these executions are permutations of the same number of each reaction type.

\section*{Proof:}
1. Let \(P\) be the execution leading from \(\mathbf{i}\) to \(\mathbf{c}_{\mathbf{i}}\).
2. Any execution \(Q\) with with \(|Q|>|P|\) must have more of some reaction \(r\) by the pigeonhole principle.
1. By the Lemma, \(\mathrm{c}_{\mathrm{i}}\) is not terminal, a contradiction.
2. So no execution \(Q\) is longer than \(P\).

\section*{In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it}

Lemma (restated): Suppose that in a feedforward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary: In a feed-forward CRN, if there is a terminal configuration \(c_{i}\) reachable from initial configuration \(\mathbf{i}\), then \(\mathbf{c}_{\mathbf{i}}\) is reached by every sufficiently long execution from \(\mathbf{i}\).
Furthermore, all of these executions are permutations of the same number of each reaction type.

\section*{Proof:}
1. Let \(P\) be the execution leading from \(\mathbf{i}\) to \(\mathbf{c}_{\mathbf{i}}\).
2. Any execution \(Q\) with with \(|Q|>|P|\) must have more of some reaction \(r\) by the pigeonhole principle.
1. By the Lemma, \(\boldsymbol{c}_{\mathrm{i}}\) is not terminal, a contradiction.
2. So no execution \(Q\) is longer than \(P\).
3. Any execution \(Q\) with \(|Q|=|P|\) must be a permutation of \(P\), or else by pigeonhole \(Q\) would have more of some reaction, and this would again contradict the terminality of \(\mathbf{c}_{\mathbf{i}}\).

\section*{In feed-forward CRNs, if there is a terminal configuration, any long enough execution reaches it}

Lemma (restated): Suppose that in a feedforward CRN, \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Corollary: In a feed-forward CRN, if there is a terminal configuration \(c_{i}\) reachable from initial configuration \(\mathbf{i}\), then \(\mathbf{c}_{\mathbf{i}}\) is reached by every sufficiently long execution from \(\mathbf{i}\). Furthermore, all of these executions are permutations of the same number of each reaction type.

\section*{Proof:}
1. Let \(P\) be the execution leading from \(\mathbf{i}\) to \(\mathbf{c}_{\mathbf{i}}\).
2. Any execution \(Q\) with with \(|Q|>|P|\) must have more of some reaction \(r\) by the pigeonhole principle.
1. By the Lemma, \(\boldsymbol{c}_{\mathrm{i}}\) is not terminal, a contradiction.
2. So no execution \(Q\) is longer than \(P\).
3. Any execution \(Q\) with \(|Q|=|P|\) must be a permutation of \(P\), or else by pigeonhole \(Q\) would have more of some reaction, and this would again contradict the terminality of \(\mathbf{c}_{\mathbf{i}}\).
4. Finally, to rule out that we might have some shorter terminal execution, any execution \(Q\) with \(|Q|<|P|\) must have some reaction \(r\) occurring more in \(P\) than \(Q\), so by the Lemma, \(Q\) cannot reach a terminal configuration. QED

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species
\(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species
\(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Example: The max \((A, B)\) CRN:
1. \(A \rightarrow Y+A_{2} \quad\) (\(A\) isn't a reactant elsewhere)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) isn't a reactant elsewhere)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) aren't reactants elsewhere \()\)
4. \(K+Y \rightarrow \varnothing \quad(K, Y\) aren't reactants elsewhere)

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species
\(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Example: The \(\max (A, B)\) CRN:
1. \(A \rightarrow Y+A_{2} \quad\) (A isn't a reactant elsewhere)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) isn't a reactant elsewhere)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) aren't reactants elsewhere)
4. \(K+Y \rightarrow \varnothing \quad(K, Y\) aren't reactants elsewhere)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (\(A\) isn't a reactant elsewhere)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) isn't a reactant elsewhere)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) aren't reactants elsewhere)
4. \(K+Y \rightarrow \emptyset \quad(K, Y\) aren't reactants elsewhere)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Rightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (\(A\) isn't a reactant elsewhere)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) isn't a reactant elsewhere)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) aren't reactants elsewhere \()\)
4. \(K+Y \rightarrow \emptyset \quad(K, Y\) aren't reactants elsewhere)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (\(A\) isn't a reactant elsewhere)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) isn't a reactant elsewhere)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) aren't reactants elsewhere \()\)
4. \(K+Y \rightarrow \emptyset \quad(K, Y\) aren't reactants elsewhere)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
1. \(A \rightarrow Y+A_{2} \quad\) (\(A\) isn't a reactant elsewhere)
2. \(B \rightarrow Y+B_{2} \quad\) (\(B\) isn't a reactant elsewhere)
3. \(A_{2}+B_{2} \rightarrow K \quad\left(A_{2}, B_{2}\right.\) aren't reactants elsewhere \()\)
4. \(K+Y \rightarrow \emptyset \quad(K, Y\) aren't reactants elsewhere)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
\(\begin{array}{ll}\text { 1. } A \rightarrow Y+A_{2} & \text { (} A \text { isn't a reactant elsewhere) } \\ \text { 2. } B \rightarrow Y+B_{2} & \text { (} B \text { isn't a reactant elsewhere) } \\ \text { 3. } A_{2}+B_{2} \rightarrow K & \left(A_{2}, B_{2} \text { aren't reactants elsewhere) }\right. \\ \text { 4. } K+Y \rightarrow \varnothing & \text { (K,Y aren't reactants elsewhere) }\end{array}\)

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).
3. Note \(\#(r, P)=\#\left(r, Q^{\prime}\right)\) and \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\) for all other reactions \(t \neq r\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
\[
\begin{array}{ll}
\text { 1. } A \rightarrow Y+A_{2} & \text { (A isn't a reactant elsewhere) } \\
\text { 2. } B \rightarrow Y+B_{2} & \text { (B isn't a reactant elsewhere) } \\
\text { 3. } A_{2}+B_{2} \rightarrow K & \text { (A } A_{2}, B_{2} \text { aren't reactants elsewhere) } \\
\text { 4. } K+Y \rightarrow \emptyset & \text { (K,Y aren't reactants elsewhere) }
\end{array}
\]

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).
3. Note \(\#(r, P)=\#\left(r, Q^{\prime}\right)\) and \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\) for all other reactions \(t \neq r\).
4. Since CRN is non-competitive, no reactant \(A\) of \(r\) can be consumed in \(t \neq r\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
\[
\begin{array}{ll}
\text { 1. } A \rightarrow Y+A_{2} & \text { (A isn't a reactant elsewhere) } \\
\text { 2. } B \rightarrow Y+B_{2} & \text { (B isn't a reactant elsewhere) } \\
\text { 3. } A_{2}+B_{2} \rightarrow K & \text { (A } A_{2}, B_{2} \text { aren't reactants elsewhere) } \\
\text { 4. } K+Y \rightarrow \emptyset & \text { (K,Y aren't reactants elsewhere) }
\end{array}
\]

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).
3. Note \(\#(r, P)=\#\left(r, Q^{\prime}\right)\) and \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\) for all other reactions \(t \neq r\).
4. Since CRN is non-competitive, no reactant \(A\) of \(r\) can be consumed in \(t \neq r\).
1. Some other reactions \(t\) might produce \(A\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
\[
\begin{array}{ll}
\text { 1. } A \rightarrow Y+A_{2} & \text { (A isn't a reactant elsewhere) } \\
\text { 2. } B \rightarrow Y+B_{2} & \text { (B isn't a reactant elsewhere) } \\
\text { 3. } A_{2}+B_{2} \rightarrow K & \text { (A } A_{2}, B_{2} \text { aren't reactants elsewhere) } \\
\text { 4. } K+Y \rightarrow \emptyset & \text { (K,Y aren't reactants elsewhere) }
\end{array}
\]

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).
3. Note \(\#(r, P)=\#\left(r, Q^{\prime}\right)\) and \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\) for all other reactions \(t \neq r\).
4. Since CRN is non-competitive, no reactant \(A\) of \(r\) can be consumed in \(t \neq r\).
1. Some other reactions \(t\) might produce \(A\).
2. Since \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\), each \(t \neq r\) produces at least as much \(A\) in \(P\) has in \(Q^{\prime}\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
\[
\begin{array}{ll}
\text { 1. } A \rightarrow Y+A_{2} & \text { (A isn't a reactant elsewhere) } \\
\text { 2. } B \rightarrow Y+B_{2} & \text { (B isn't a reactant elsewhere) } \\
\text { 3. } A_{2}+B_{2} \rightarrow K & \text { (A } A_{2}, B_{2} \text { aren't reactants elsewhere) } \\
\text { 4. } K+Y \rightarrow \emptyset & \text { (K,Y aren't reactants elsewhere) }
\end{array}
\]

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).
3. Note \(\#(r, P)=\#\left(r, Q^{\prime}\right)\) and \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\) for all other reactions \(t \neq r\).
4. Since CRN is non-competitive, no reactant \(A\) of \(r\) can be consumed in \(t \neq r\).
1. Some other reactions \(t\) might produce \(A\).
2. Since \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\), each \(t \neq r\) produces at least as much \(A\) in \(P\) has in \(Q^{\prime}\).
3. Exactly as much \(A\) is consumed by \(r\) in \(P\) as in \(Q^{\prime}\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
\[
\begin{array}{ll}
\text { 1. } A \rightarrow Y+A_{2} & \text { (A isn't a reactant elsewhere) } \\
\text { 2. } B \rightarrow Y+B_{2} & \text { (B isn't a reactant elsewhere) } \\
\text { 3. } A_{2}+B_{2} \rightarrow K & \text { (A } A_{2}, B_{2} \text { aren't reactants elsewhere) } \\
\text { 4. } K+Y \rightarrow \emptyset & \text { (K,Y aren't reactants elsewhere) }
\end{array}
\]

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).
3. Note \(\#(r, P)=\#\left(r, Q^{\prime}\right)\) and \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\) for all other reactions \(t \neq r\).
4. Since CRN is non-competitive, no reactant \(A\) of \(r\) can be consumed in \(t \neq r\).
1. Some other reactions \(t\) might produce \(A\).
2. Since \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\), each \(t \neq r\) produces at least as much \(A\) in \(P\) has in \(Q^{\prime}\).
3. Exactly as much \(A\) is consumed by \(r\) in \(P\) as in \(Q^{\prime}\).
4. Thus \(\mathbf{x}_{p}(A) \leq \mathbf{c}(A)\) for all reactants \(A\) of \(r\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B) \mathrm{CRN}\) :
\[
\begin{array}{ll}
\text { 1. } A \rightarrow Y+A_{2} & \text { (A isn't a reactant elsewhere) } \\
\text { 2. } B \rightarrow Y+B_{2} & \text { (B isn't a reactant elsewhere) } \\
\text { 3. } A_{2}+B_{2} \rightarrow K & \text { (A2, } B_{2} \text { aren't reactants elsewhere) } \\
\text { 4. } K+Y \rightarrow \emptyset & \text { (K,Y aren't reactants elsewhere) }
\end{array}
\]

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).
3. Note \(\#(r, P)=\#\left(r, Q^{\prime}\right)\) and \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\) for all other reactions \(t \neq r\).
4. Since CRN is non-competitive, no reactant \(A\) of \(r\) can be consumed in \(t \neq r\).
1. Some other reactions \(t\) might produce \(A\).
2. Since \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\), each \(t \neq r\) produces at least as much \(A\) in \(P\) has in \(Q^{\prime}\).
3. Exactly as much \(A\) is consumed by \(r\) in \(P\) as in \(Q^{\prime}\).
4. Thus \(\mathbf{x}_{p}(A) \leq \mathbf{c}(A)\) for all reactants \(A\) of \(r\).
5. Since \(r\) is applicable to \(\mathbf{x}_{p}\), it is applicable to \(\mathbf{c}\).

\section*{Noncompetitive CRNs}

Definition: A CRN is non-competitive if, for every species \(R\), if \(R\) is net consumed in some reaction (e.g., \(R \rightarrow A\) or \(2 R \rightarrow R\)), then \(R\) is not a reactant in any other reaction. (\(R\) can be a non-consumed catalyst in any number of reactions, e.g., \(R \rightarrow 2 R\) or \(R+X \rightarrow R+Y\), but then no reaction can net consume it)

Lemma: Suppose in a non-competitive CRN that \(\mathbf{i} \Longrightarrow \mathbf{c}\) by execution \(P\), and \(\mathbf{i} \Rightarrow \mathbf{d}\) by execution \(Q\). If any reaction occurs less in \(P\) than \(Q\), then \(\mathbf{c}\) is not terminal.

Example: The \(\max (A, B)\) CRN:
\begin{tabular}{ll}
1. \(A \rightarrow Y+A_{2}\) & (\(A\) isn't a reactant elsewhere) \\
2. \(B \rightarrow Y+B_{2}\) & (\(B\) isn't a reactant elsewhere) \\
3. \(A_{2}+B_{2} \rightarrow K\) & \(\left(A_{2}, B_{2}\right.\) aren't reactants elsewhere) \\
4. \(K+Y \rightarrow \emptyset\) & (K,Y aren't reactants elsewhere)
\end{tabular}

We often convince ourselves a CRN works by examining just one execution that stabilizes to the correct output, and thinking, "The other executions probably/hopefully end up with the same output." This reasoning becomes sound with non-competitive CRNs.

\section*{Proof:}
\(\#(r, P)=\) number of times \(r\) occurs in \(P\)
1. \(Q^{\prime}=\) longest prefix \(\left(\mathbf{i}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\) of \(Q\) such that \(\#(r, P) \geq \#(r, Q)\) for all reactions \(r\).
- i.e., \(\mathbf{x}_{p+1}\) is the first time in \(Q\) that some reaction exceeds its count in \(P\).
2. Let \(r\) be the reaction such that \(\mathbf{x}_{p} \Rightarrow \mathbf{x}_{p+1}\) via \(r\).
3. Note \(\#(r, P)=\#\left(r, Q^{\prime}\right)\) and \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\) for all other reactions \(t \neq r\).
4. Since CRN is non-competitive, no reactant \(A\) of \(r\) can be consumed in \(t \neq r\).
1. Some other reactions \(t\) might produce \(A\).
2. Since \(\#(t, P) \geq \#\left(t, Q^{\prime}\right)\), each \(t \neq r\) produces at least as much \(A\) in \(P\) has in \(Q^{\prime}\).
3. Exactly as much \(A\) is consumed by \(r\) in \(P\) as in \(Q^{\prime}\).
4. Thus \(\mathbf{x}_{p}(A) \leq \mathbf{c}(A)\) for all reactants \(A\) of \(r\).
5. Since \(r\) is applicable to \(\mathbf{x}_{p}\), it is applicable to \(\mathbf{c}\).
6. So \(\mathbf{c}\) is not terminal. QED

\section*{Non-feedforward CRNs}
```

Example of a non-feedforward CRN that stably computes a function?

```

\section*{Non-feedforward CRNs}
```

Example of a non-feedforward CRN that stably computes a function?

```
\[
\begin{aligned}
& f(x)=x / 2 \\
& \text { 1. } x \rightleftharpoons Y+A \\
& \text { 2. } X+A \rightarrow \emptyset
\end{aligned}
\]

\section*{Non-feedforward CRNs}

\section*{Example of a non-feedforward CRN that stably computes a function?}
\[
\begin{aligned}
& f(x)=x / 2 \\
& \text { 1. } x \rightleftharpoons Y+A \\
& \text { 2. } X+A \rightarrow \emptyset
\end{aligned}
\]

\section*{Non-feedforward CRNs}

\section*{Example of a non-feedforward CRN that stably computes a function?}
\[
\begin{aligned}
& f(x)=x / 2 \\
& \text { 1. } x \rightleftharpoons Y+A
\end{aligned}
\]
2. \(X+A \rightarrow \varnothing\)

\section*{Non-feedforward CRNs}

\section*{Example of a non-feedforward CRN that stably computes a function?}
\[
\begin{aligned}
& f(x)=x / 2 \\
& \text { 1. } x \rightleftharpoons Y+A
\end{aligned}
\]
2. \(X+A \rightarrow \varnothing\)

\section*{Non-feedforward CRNs}
```

Example of a non-feedforward CRN that stably computes a function?

```
\[
\begin{aligned}
& f(x)=x / 2 \\
& \text { 1. } x \rightleftharpoons Y+A \\
& \text { 2. } X+A \rightarrow \emptyset
\end{aligned}
\]

It's even non-non-competitive!

\section*{Time complexity of CRNs}

\section*{What is probable:}

\section*{Stochastic kinetic model of chemical reaction networks}

Solution volume \(v\)
\[
\begin{array}{rll}
\text { reaction type } & \text { rate /propensity } \\
A \xrightarrow[\rightarrow]{k} \ldots & k \cdot \# A \\
A+B \xrightarrow{k} \ldots & k \cdot \# A \cdot \# B / v
\end{array}
\]

\section*{What is probable:}

\section*{Stochastic kinetic model of chemical reaction networks}

Solution volume \(v\)
\[
\begin{array}{rll}
\text { reaction type } & r a t e / p r o p e n s i t y ~ \\
A \xrightarrow{k} \ldots & k \cdot \# A \\
A+B \xrightarrow{k} \ldots & k \cdot \# A \cdot \# B / v
\end{array}
\]

System evolves via a continuous time Markov process:
1. Pr[next reaction is \(j^{\text {th }}\) one] \(=\) rate of \(j^{\text {th }}\) reaction / (sum of all reaction rates)

\section*{What is probable:}

\section*{Stochastic kinetic model of chemical reaction networks}

Solution volume \(v\)
\[
\begin{array}{rll}
\text { reaction type } & \text { rate /propensity } \\
A \xrightarrow{k} \ldots & k \cdot \# A \\
A+B \xrightarrow{k} \ldots & k \cdot \# A \cdot \# B / v
\end{array}
\]

System evolves via a continuous time Markov process:
\(\operatorname{Pr}\left[\right.\) next reaction is \(j^{\text {th }}\) one] \(=\) rate of \(j^{\text {th }}\) reaction \(/\) (sum of all reaction rates)
expected time until next reaction is 1 / (sum of all reaction rates)

\section*{Relationship to distributed computing}
population protocol \(=\) list of transitions such as
\(x, y \rightarrow x, x\)
\(a, b \rightarrow c, d\)
\(a, a \rightarrow a, a \quad\) (null transition)
- Repeatedly, two agents (molecules) are picked at random to interact (react) and change state (species).

\section*{Relationship to distributed computing}
population protocol \(=\) list of transitions such as
\[
x, y \rightarrow x, x \quad a, b \rightarrow c, d \quad a, a \rightarrow a, a \quad \text { (null transition) }
\]
- Repeatedly, two agents (molecules) are picked at random to interact (react) and change state (species).

A population protocol is a chemical reaction network with
- two reactants, two products per reaction

\section*{Relationship to distributed computing}
population protocol \(=\) list of transitions such as
\[
x, y \rightarrow x, x \quad a, b \rightarrow c, d \quad a, a \rightarrow a, a \quad \text { (null transition) }
\]
- Repeatedly, two agents (molecules) are picked at random to interact (react) and change state (species).

A population protocol is a chemical reaction network with
- two reactants, two products per reaction
- unit rate constants

\section*{Relationship to distributed computing}
population protocol \(=\) list of transitions such as
\[
x, y \rightarrow x, x \quad a, b \rightarrow c, d \quad a, a \rightarrow a, a \quad \text { (null transition) }
\]
- Repeatedly, two agents (molecules) are picked at random to interact (react) and change state (species).

A population protocol is a chemical reaction network with
- two reactants, two products per reaction
- unit rate constants
- volume \(=n=\) number of agents (never changes)

\section*{Relationship to distributed computing}
population protocol \(=\) list of transitions such as
\[
x, y \rightarrow x, x \quad a, b \rightarrow c, d \quad a, a \rightarrow a, a \quad \text { (null transition) }
\]
- Repeatedly, two agents (molecules) are picked at random to interact (react) and change state (species).
A population protocol is a chemical reaction network with
- two reactants, two products per reaction
- unit rate constants
- volume \(=n=\) number of agents (never changes)
population protocols \(\subsetneq\) chemical reactions, but "most" ideas that apply to one model also apply to the other

\section*{Time complexity in population protocols}
- pair of agents picked uniformly at random to interact (possibly null interaction)
- parallel time = number of interactions \(/ n\)
i.e., each agent has \(O(1)\) interactions per "unit time"

\section*{Speed of computation}

\section*{Speed of computation}

How to fairly assess speed?

Like any respectable computer scientist...

1) as a function of input size \(n\) (how required time grows with \(n\))
2) ignoring constant factors

\section*{Speed of computation}

How to fairly assess speed?

Like any respectable computer scientist...

1) as a function of input size \(n\) (how required time grows with \(n\))
2) ignoring constant factors
\(n=\) total molecular count
reasonable requirement on volume: \(v=O(n)\)
i.e., require bounded concentration (finite density constraint)

Full CRN time model (Gillespie kinetics)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)
- For this example reaction \(A+B \xrightarrow{k} C\), combining these we get \(\lambda=k \cdot \# A \cdot \# B / v\)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)
- For this example reaction \(A+B \xrightarrow{k} C\), combining these we get \(\lambda=k \cdot \# A \cdot \# B / v\)
- Other reaction types:
- \(A+A \xrightarrow{k} \ldots \quad \lambda=k \cdot \# A \cdot(\# A-1) / v \quad\) (symmetric bimolecular reaction)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)
- For this example reaction \(A+B \xrightarrow{k} C\), combining these we get \(\lambda=k \cdot \# A \cdot \# B / v\)
- Other reaction types:
- \(A+A \xrightarrow{k} \ldots \quad \lambda=k \cdot \# A \cdot(\# A-1) / v \quad\) (symmetric bimolecular reaction)
- \#A•(\#A-1)/2 = \# ways to pick two A's to react; factor \(1 / 2\) by convention is put into rate constant \(k\)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)
- For this example reaction \(A+B \xrightarrow{k} C\), combining these we get \(\lambda=k \cdot \# A \cdot \# B / v\)
- Other reaction types:
- \(A+A \xrightarrow{k} \ldots \quad \lambda=k \cdot \# A \cdot(\# A-1) / v \quad\) (symmetric bimolecular reaction)
- \#A•(\#A-1)/2 = \# ways to pick two A's to react; factor \(1 / 2\) by convention is put into rate constant \(k\)
- \(A \xrightarrow{k} \ldots \lambda=k \cdot \# A \quad\) (unimolecular reaction)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)
- For this example reaction \(A+B \xrightarrow{k} C\), combining these we get \(\lambda=k \cdot \# A \cdot \# B / v\)
- Other reaction types:
- \(A+A \xrightarrow{k} \ldots \quad \lambda=k \cdot \# A \cdot(\# A-1) / v \quad\) (symmetric bimolecular reaction)
- \#A•(\#A-1)/2 = \# ways to pick two A's to react; factor \(1 / 2\) by convention is put into rate constant \(k\)
- \(A \xrightarrow{k} \ldots \lambda=k \cdot \# A \quad\) (unimolecular reaction)
- no volume term since no collision required

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)
- For this example reaction \(A+B \xrightarrow{k} C\), combining these we get \(\lambda=k \cdot \# A \cdot \# B / v\)
- Other reaction types:
- \(A+A \xrightarrow{k} \ldots \quad \lambda=k \cdot \# A \cdot(\# A-1) / v \quad\) (symmetric bimolecular reaction)
- \#A•(\#A-1)/2 = \# ways to pick two A's to react; factor \(1 / 2\) by convention is put into rate constant \(k\)
- \(A \xrightarrow{k} \ldots \lambda=k \cdot \# A \quad\) (unimolecular reaction)
- no volume term since no collision required
- \(A+B+C \xrightarrow{k} \ldots \lambda=k \cdot \# A \cdot \# B \cdot \# C / v^{2} \quad\) (trimolecular reaction)

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)
- For this example reaction \(A+B \xrightarrow{k} C\), combining these we get \(\lambda=k \cdot \# A \cdot \# B / v\)
- Other reaction types:
- \(A+A \xrightarrow{k} \ldots \quad \lambda=k \cdot \# A \cdot(\# A-1) / v \quad\) (symmetric bimolecular reaction)
- \#A•(\#A-1)/2 = \# ways to pick two A's to react; factor \(1 / 2\) by convention is put into rate constant \(k\)
- \(A \xrightarrow{k}\)...
\[
\lambda=k \cdot \# A
\]
(unimolecular reaction)
- no volume term since no collision required
- \(A+B+C \xrightarrow{k} \ldots \lambda=k \cdot \# A \cdot \# B \cdot \# C / v^{2} \quad\) (trimolecular reaction)

- The volume term is squared because (roughly) if we define coordinate system so position of \(A\) is always at the origin, then \(B\) and \(C\) are randomly moving around through \(v\) volume "cells", and it takes \(v^{2}\) expected time for them both to occupy the origin, to cause a three-way \(A-B-C\) collision

\section*{Full CRN time model (Gillespie kinetics)}
- What should influence total rate \(\lambda\) (a.k.a., propensity) of bimolecular reaction \(A+B \xrightarrow{k} C\) ?
- molecular counts of reactants: \(\lambda \propto \# A \cdot \# B\) (the more there are, the faster collisions happen)
- volume \(v: \lambda \propto 1 / v\) (the bigger the volume, the slower collisions happen)
- rate constant \(k: \lambda \propto k\) (captures things not directly modeled, e.g., diffusion rates, probability that a collision results in a reaction)
- For this example reaction \(A+B \xrightarrow{k} C\), combining these we get \(\lambda=k \cdot \# A \cdot \# B / v\)
- Other reaction types:
- \(A+A \xrightarrow{k} \ldots \quad \lambda=k \cdot \# A \cdot(\# A-1) / v \quad\) (symmetric bimolecular reaction)
- \#A•(\#A-1)/2 = \# ways to pick two A's to react; factor \(1 / 2\) by convention is put into rate constant \(k\)
- \(A \xrightarrow{k}\)...
\[
\lambda=k \cdot \# A
\]
(unimolecular reaction)
- no volume term since no collision required
- \(A+B+C \xrightarrow{k} \ldots \lambda=k \cdot \# A \cdot \# B \cdot \# C / v^{2} \quad\) (trimolecular reaction)

- The volume term is squared because (roughly) if we define coordinate system so position of \(A\) is always at the origin, then \(B\) and \(C\) are randomly moving around through \(v\) volume "cells", and it takes \(v^{2}\) expected time for them both to occupy the origin, to cause a three-way \(A-B-C\) collision
- In general, with \(r\) reactants, propensity is number of ways to pick reactants, times \(k\), divided by \(v^{r-1}\)

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
both are memoryless: \(\forall s, r>0\) \(\operatorname{Pr}[\mathbf{T}>s+r \mid \mathbf{T}>s]=\operatorname{Pr}[\mathbf{T}>r]\)

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
both are memoryless: \(\forall s, r>0\) \(\operatorname{Pr}[\mathbf{T}>s+r \mid \underbrace{\mathbf{T}>s}]=\operatorname{Pr}[\mathbf{T}>r]\) no rxn in first \(s\) secs.

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
both are memoryless: \(\forall s, r>0\) \(\operatorname{Pr}[\underbrace{\mathbf{T}>s+r} \mid \underbrace{\mathbf{T}>s}]=\operatorname{Pr}[\mathbf{T}>r]\)
no rxn after \(r\) additional secs.
no rxn in first \(s\) secs.

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
both are memoryless: \(\forall s, r>0\) \(\operatorname{Pr}[\underbrace{\mathbf{T}>s+r}_{\text {no rxn after } r} \mid \underbrace{\mathbf{T}>s}_{\text {nor rxn in }}]=\operatorname{Pr}[\underbrace{\mathbf{T}>r}_{\text {no rxn in }}]\) additional secs. first \(s\) secs. first \(r\) secs.

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable \(\mathbf{T}\)
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\) \(\operatorname{Pr}[\underbrace{T>s+r}_{\text {no rxn after } r} \mid \underbrace{T>s}_{\text {no rxn in }}]=\operatorname{Pr}[\underbrace{T>r}_{\text {no rxn in }}]\) additional secs.
first \(s\) secs. first \(r\) secs.

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable \(\mathbf{T}\)
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\) \(\operatorname{Pr}[\underbrace{\mathbf{T}>s+r}_{\text {no rxn after } r} \mid \underbrace{\mathbf{T > s}}_{\text {norxn in }}]=\operatorname{Pr}[\underbrace{\mathbf{T}>r}_{\text {no rxn in }}]\) additional secs.
first \(s\) secs. first \(r\) secs.
- CRN model: time = sum of exponential random variables

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable \(\mathbf{T}\)
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\) \(\operatorname{Pr}[\underbrace{T>s+r}_{\text {no rxn after } r} \mid \underbrace{T>s}_{\text {no rxn in }}]=\operatorname{Pr}[\underbrace{T>r}_{\text {no rxn in }}]\) additional secs.
first \(s\) secs. first \(r\) secs
- CRN model: time = sum of exponential random variables
- define volume \(=n\), and rate of interaction \(a, b \rightarrow \ldots\) as \#a•\#b / n, i.e., expected time \(n /(\# a \cdot \# b)\)

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\) \(\operatorname{Pr}[\underbrace{\mathbf{T}>s+r}_{\text {no rxn after } r} \mid \underbrace{\mathbf{T}>s}_{\text {no rxn in }}]=\operatorname{Pr}[\underbrace{\mathbf{T}>r}_{\text {no rxn in }}]\) additional secs.
first \(s\) secs. first \(r\) secs.
- CRN model: time = sum of exponential random variables
- define volume \(=n\), and rate of interaction \(a, b \rightarrow \ldots\) as \#a \(\# b / n\), i.e., expected time \(n /(\# a \cdot \# b)\)
- PP model (time = \#interactions / \(n\))

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\)

no rxn after \(r\) additional secs.
no rxn in first \(s\) secs.
no rxn in first \(r\) secs.
- CRN model: time = sum of exponential random variables
- define volume \(=n\), and rate of interaction \(a, b \rightarrow \ldots\) as \#a \(\# b / n\), i.e., expected time \(n /(\# a \cdot \# b)\)
- PP model (time = \#interactions / \(n\))
- probability that next interaction is \(a, b \rightarrow \ldots\) is \#a•\#b / \((n\) choose 2\()=2 \cdot \# a \cdot \# b /(n(n-1))\)

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable \(\mathbf{T}\)
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\)

no rxn after \(r\)
no rxn in first \(s\) secs.
no rxn in additional secs. first \(r\) secs.
- CRN model: time = sum of exponential random variables
- define volume \(=n\), and rate of interaction \(a, b \rightarrow \ldots\) as \#a \(\# b / n\), i.e., expected time \(n /(\# a \cdot \# b)\)
- PP model (time = \#interactions / \(n\))
- probability that next interaction is \(a, b \rightarrow \ldots\) is \#a•\#b / (\(n\) choose 2\()=2 \cdot \# a \cdot \# b /(n(n-1))\)
- expected interactions until next \(a, b \rightarrow \ldots\) interaction \(=n(n-1) /(2 \cdot \# a \cdot \# b)\), i.e., time (\(n-1) /(2 \cdot \# a \cdot \# b)\)

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable \(\mathbf{T}\)
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\)

no rxn after \(r\)
no rxn in no rxn in additional secs. first \(s\) secs. first \(r\) secs.
- CRN model: time = sum of exponential random variables
- define volume \(=n\), and rate of interaction \(a, b \rightarrow \ldots\) as \(\# a \cdot \# b / n\), i.e., expected time \(n /(\# a \cdot \# b)\)
- PP model (time = \#interactions / \(n\))
- probability that next interaction is \(a, b \rightarrow \ldots\) is \#a•\#b / \((n\) choose 2\()=2 \cdot \# a \cdot \# b /(n(n-1))\)
- expected interactions until next \(a, b \rightarrow \ldots\) interaction \(=n(n-1) /(2 \cdot \# a \cdot \# b)\), i.e., time \((n-1) /(2 \cdot \# a \# b)\)
- If we treat interactions symmetrically, (i.e., \(a, b \rightarrow c, d\) is an interaction if and only if \(b, a \rightarrow d, c\) is an interaction), then we have twice the probability, i.e., expected time becomes (\(n-1\)) / \#a•\#b \(\sim n /(\# a \cdot \# b)\), essentially the same as the CRN model

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\)

no rxn after \(r\)
no rxn in no rxn in additional secs. first \(s\) secs. first \(r\) secs
- CRN model: time = sum of exponential random variables
- define volume \(=n\), and rate of interaction \(a, b \rightarrow \ldots\) as \(\# a \cdot \# b / n\), i.e., expected time \(n /(\# a \cdot \# b)\)
- PP model (time = \#interactions / \(n\))
- probability that next interaction is \(a, b \rightarrow \ldots\) is \#a•\#b / \((n\) choose 2\()=2 \cdot \# a \cdot \# b /(n(n-1))\)
- expected interactions until next \(a, b \rightarrow \ldots\) interaction \(=n(n-1) /(2 \cdot \# a \cdot \# b)\), i.e., time \((n-1) /(2 \cdot \# a \# b)\)
- If we treat interactions symmetrically, (i.e., \(a, b \rightarrow c, d\) is an interaction if and only if \(b, a \rightarrow d, c\) is an interaction), then we have twice the probability, i.e., expected time becomes (\(n-1\)) / \#a•\#b \(\sim n /(\# a \cdot \# b)\), essentially the same as the CRN model
- one possible convention to avoid symmetric interactions is simply define time \(=2 \cdot \#\) interactions \(/ n\)

\section*{Discrete versus continuous time}
- Time between interactions in CRN model is exponential random variable T
- Time between interactions in PP model is geometric random variable \(\mathbf{T}\)
- \(\mathbf{T}=\#\) of coin flips until a heads, with \(\operatorname{Pr}[\) heads \(]=p, \mathrm{E}[\) time \(]=1 / p\)
- (essentially the discrete version of an exponential random variable)
- in population protocol, heads event = non-null interaction
both are memoryless: \(\forall s, r>0\)

\(\begin{array}{lll}\text { no rxn after } r & \text { no rxn in } & \text { no } r x n \text { in } \\ \text { additional secs. } & \text { first } s \text { secs. } & \text { first } r \text { secs. }\end{array}\)
- CRN model: time = sum of exponential random variables
- define volume \(=n\), and rate of interaction \(a, b \rightarrow \ldots\) as \(\# a \cdot \# b / n\), i.e., expected time \(n /(\# a \cdot \# b)\)
- PP model (time = \#interactions / \(n\))
- probability that next interaction is \(a, b \rightarrow \ldots\) is \#a•\#b / \((n\) choose 2\()=2 \cdot \# a \cdot \# b /(n(n-1))\)
- expected interactions until next \(a, b \rightarrow \ldots\) interaction \(=n(n-1) /(2 \cdot \# a \cdot \# b)\), i.e., time \((n-1) /(2 \cdot \# a \# b)\)
- If we treat interactions symmetrically, (i.e., \(a, b \rightarrow c, d\) is an interaction if and only if \(b, a \rightarrow d, c\) is an interaction), then we have twice the probability, i.e., expected time becomes (\(n-1\)) / \#a•\#b \(\sim n /(\# a \cdot \# b)\), essentially the same as the CRN model
- one possible convention to avoid symmetric interactions is simply define time \(=2 \cdot \#\) interactions \(/ n\)

Can use Chernoff bounds to show it is very likely that they end up taking very close to the same amount of time for any event.

\section*{An exponential time difference}
\(n\) molecules
volume \(v=O(n)\)

\section*{An exponential time difference}
\(n\) molecules
volume \(v=O(n)\)

\[
A+B \rightarrow Y+B
\]
propensity: \#A•\#B / \(v=O(1 / n)\)
expected time to
produce \(Y\) :
\(O(n)\)

\section*{An exponential time difference}
\(n\) molecules volume \(v=O(n)\)

\[
\begin{gathered}
A+B \rightarrow Y+B \\
\text { propensity: } \# A \cdot \# B / v=O(1 / n)
\end{gathered}
\]

\section*{\(B+X \rightarrow B+B\) \(A+B \rightarrow Y+B\) \\ distributed computing terms: \\ - epidemic \\ - rumor/gossip spreading \\ chemical term: \\ - autocatalysis}
expected time to produce \(Y\) :
\(O(n)\)
\(O(\log n)\)

\section*{An exponential time difference}
\(n\) molecules volume \(v=O(n)\)

expected time to produce \(Y\) :
\(O(n)\)
\(O(\log n)\)

\section*{An exponential time difference}

\section*{Time complexity analysis (basic motifs)}
"direct communication"
```

A+B->Y+W \#A=\#B=1,\#X=n-2

```

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
population protocol time complexity:
time until non-null interaction is geometric random variable with success probability
\(p=1 /(n\) choose 2\()=2 /(n(n-1))\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
population protocol time complexity:
time until non-null interaction is geometric random variable with success probability
\(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
population protocol time complexity:
time until non-null interaction is geometric random variable with success probability
\(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
population protocol time complexity:
time until non-null interaction is geometric random variable with success probability
\(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
population protocol time complexity:
time until non-null interaction is geometric random variable with success probability \(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)
"epidemic", "gossip", "rumor spreading"
\[
B+X \rightarrow B+B
\]

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W
\]
\[
\# A=\# B=1, \quad \# X=n-2
\]
"epidemic", "gossip", "rumor spreading"
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability
\(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(E[\) time \(]=1 / \lambda=n\)
population protocol time complexity:

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
"epidemic", "gossip", "rumor spreading"
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability
\(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(E[\) time \(]=1 / \lambda=n\)

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \# X=n-2
\]
"epidemic", "gossip", "rumor spreading"
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)
\(\operatorname{Pr}[B+X \rightarrow B+B\) is next interaction |\#B=k]=k(n-k)/(n choose 2\()\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \# X=n-2
\]
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability
\(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)
\(\operatorname{Pr}[B+X \rightarrow B+B\) is next interaction \(\mid \# B=k]=k(n-k) /(n\) choose 2\()\)
\(=2 k(n-k) /((n(n-1))\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability \(p=1 /(n\) choose 2\()=2 /(n(n-1))\) \(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)
\(\operatorname{Pr}[B+X \rightarrow B+B\) is next interaction \(\mid \# B=k]=k(n-k) /(n\) choose 2\()\)
\(=2 k(n-k) /((n(n-1))\)
expected time until one \(X\) converted to \(B=1 /(n \cdot\) probability \()\)
\(=(n-1) /(2 k(n-k))\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability \(p=1 /(n\) choose 2\()=2 /(n(n-1))\) \(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(E[\) time \(]=1 / \lambda=n\)

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)
\(\operatorname{Pr}[B+X \rightarrow B+B\) is next interaction |\#B=k]=k(n-k)/(n choose 2)
\(=2 k(n-k) /((n(n-1))\)
expected time until one \(X\) converted to \(B=1 /(n\).probability)
\(=(n-1) /(2 k(n-k))\)
expected time until all \(X\) converted to \(B=\)

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \quad \# X=n-2
\]
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability \(p=1 /(n\) choose 2\()=2 /(n(n-1))\) \(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\) \(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)
\(\operatorname{Pr}[B+X \rightarrow B+B\) is next interaction |\#B=k]=k(n-k)/(n choose 2)
\(=2 k(n-k) /((n(n-1))\)
expected time until one \(X\) converted to \(B=1 /(n\).probability)
\(=(n-1) /(2 k(n-k))\)
expected time until all \(X\) converted to \(B=\)
\[
\frac{n-1}{2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)}
\]

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \# X=n-2
\]
"epidemic", "gossip", "rumor spreading"
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability \(p=1 /(n\) choose 2\()=2 /(n(n-1))\) \(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\) \(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)
\(\operatorname{Pr}[B+X \rightarrow B+B\) is next interaction \| \#B=k]=k(n-k)/(n choose 2)
\(=2 k(n-k) /((n(n-1))\)
expected time until one \(X\) converted to \(B=1 /(n\).probability)
\(=(n-1) /(2 k(n-k))\)
expected time until all \(X\) converted to \(B=\)
\[
\frac{n-1}{2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)}=\frac{n-1}{2} \sum_{k=1}^{n-1} \frac{1}{n}\left(\frac{1}{k}+\frac{1}{n-k}\right)
\]

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \# X=n-2
\]
"epidemic", "gossip", "rumor spreading"
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability \(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)
\(\operatorname{Pr}[B+X \rightarrow B+B\) is next interaction \| \#B=k]=k(n-k)/(n choose 2)
\(=2 k(n-k) /((n(n-1))\)
expected time until one \(X\) converted to \(B=1 /(n\).probability)
\(=(n-1) /(2 k(n-k))\)
expected time until all \(X\) converted to \(B=\)
\[
\begin{aligned}
& \frac{n-1}{2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)}=\frac{n-1}{2} \sum_{k=1}^{n-1} \frac{1}{n}\left(\frac{1}{k}+\frac{1}{n-k}\right) \\
\approx & \frac{1}{2}\left(\sum_{k=1}^{n} \frac{1}{k}+\sum_{k=n}^{1} \frac{1}{k}\right)=\sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
\]

\section*{Time complexity analysis (basic motifs)}
"direct communication"
\[
A+B \rightarrow Y+W \quad \# A=\# B=1, \# X=n-2
\]
"epidemic", "gossip", "rumor spreading"
\[
B+X \rightarrow B+B
\]

\section*{population protocol time complexity:}
time until non-null interaction is geometric random variable with success probability \(p=1 /(n\) choose 2\()=2 /(n(n-1))\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=(n(n-1)) / 2\)
\(\mathrm{E}[\) time \(]=\mathrm{E}[\#\) interactions \(] / n=(n-1) / 2=O(n)\)

\section*{CRN time complexity:}
time until reaction is exponential random variable with
rate \(\lambda=\# A \cdot \# B / n=1 / n\)
\(\mathrm{E}[\) time \(]=1 / \lambda=n\)

\section*{population protocol time complexity:}
when \(\# B=k\), we have \(\# X=n-k\)
\(\operatorname{Pr}[B+X \rightarrow B+B\) is next interaction \| \#B=k]=k(n-k)/(n choose 2)
\(=2 k(n-k) /((n(n-1))\)
expected time until one \(X\) converted to \(B=1 /(n\).probability)
\(=(n-1) /(2 k(n-k))\)
expected time until all \(X\) converted to \(B=\)
\[
\begin{aligned}
& \frac{n-1}{2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)}=\frac{n-1}{2} \sum_{k=1}^{n-1} \frac{1}{n}\left(\frac{1}{k}+\frac{1}{n-k}\right) \\
\approx & \frac{1}{2}\left(\sum_{k=1}^{n} \frac{1}{k}+\sum_{k=n}^{1} \frac{1}{k}\right)=\sum_{k=1}^{n} \frac{1}{k} \approx \ln n
\end{aligned}
\]

\section*{Time complexity analysis (basic motifs)}
"no communication"
? here means "every species" (including \(A\))
\[
A+? \rightarrow B+? \quad \# A=n, \# B=0
\]

\section*{Time complexity analysis (basic motifs)}
"no communication"
? here means "every species" (including \(A\))
\[
A+? \rightarrow B+? \quad \# A=n, \# B=0
\]

\section*{population protocol time complexity:}

When \#A=k, time until non-null interaction is
geometric random variable with success probability
\(p=k(n-1) /(n\) choose 2\()=k /(2 n)\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=n / k\)
\(\mathrm{E}[\) time until non-null interaction]
\(=\mathrm{E}[\#\) interactions \(] / n=1 / k\)
\(\mathrm{E}[\) time to convert all A\(]=\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \approx(1 / 2) \ln n\)

\section*{Time complexity analysis (basic motifs)}
"no communication"
? here means "every species" (including \(A\))
\[
A+? \rightarrow B+? \quad \# A=n, \# B=0
\]
"no communication/ unimolecular decay" (unimolecular CRN version)
\(A \rightarrow B\)
\(\# A=n, \# B=0\)

\section*{population protocol time complexity:}

When \#A=k, time until non-null interaction is
geometric random variable with success probability
\(p=k(n-1) /(n\) choose 2\()=k /(2 n)\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=n / k\)
E[time until non-null interaction]
\(=\mathrm{E}[\#\) interactions \(] / n=1 / k\)
\(\mathrm{E}[\) time to convert all A\(]=\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \approx(1 / 2) \ln n\)

\section*{Time complexity analysis (basic motifs)}
"no communication"
? here means "every species" (including \(A\))
\[
A+? \rightarrow B+? \quad \# A=n, \# B=0
\]

\section*{population protocol time complexity:}

When \#A=k, time until non-null interaction is geometric random variable with success probability \(p=k(n-1) /(n\) choose 2\()=k /(2 n)\)
\(\mathrm{E}[\#\) interactions] \(=1 / p=n / k\)
\(\mathrm{E}[\) time until non-null interaction]
\(=\mathrm{E}[\#\) interactions \(] / n=1 / k\)
\(\mathrm{E}[\) time to convert all A\(]=\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \approx(1 / 2) \ln n\)
"no communication/ unimolecular decay" (unimolecular CRN version)
\[
A \rightarrow B
\]
\[
\# A=n, \# B=0
\]

\section*{CRN time complexity:}

\section*{Time complexity analysis (basic motifs)}
"no communication"
? here means "every species" (including \(A\))
\[
A+? \rightarrow B+? \quad \# A=n, \# B=0
\]

\section*{population protocol time complexity:}

When \#A= \(k\), time until non-null interaction is geometric random variable with success probability \(p=k(n-1) /(n\) choose 2\()=k /(2 n)\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=n / k\)
\(\mathrm{E}[\) time until non-null interaction]
\(=\mathrm{E}\) [\# interactions] / \(n=1 / k\)
\(\mathrm{E}[\) time to convert all A\(]=\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \approx(1 / 2) \ln n\)
"no communication/ unimolecular decay" (unimolecular CRN version)
\[
A \rightarrow B
\]
\[
\# A=n, \# B=0
\]

\section*{CRN time complexity:}

When \#A=k, time until next reaction is exponential random variable with rate \(\lambda=k\)

\section*{Time complexity analysis (basic motifs)}
"no communication"
? here means "every species" (including \(A\))
\[
A+? \rightarrow B+? \quad \# A=n, \# B=0
\]

\section*{population protocol time complexity:}

When \#A=k, time until non-null interaction is geometric random variable with success probability \(p=k(n-1) /(n\) choose 2\()=k /(2 n)\)
\(\mathrm{E}[\#\) interactions] \(=1 / p=n / k\)
\(\mathrm{E}[\) time until non-null interaction]
\(=\mathrm{E}\) [\# interactions] / \(n=1 / k\)
\(\mathrm{E}[\) time to convert all A\(]=\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \approx(1 / 2) \ln n\)
"no communication/ unimolecular decay" (unimolecular CRN version)
\[
A \rightarrow B
\]
\[
\# A=n, \# B=0
\]

\section*{CRN time complexity:}

When \#A=k, time until next reaction is exponential random variable with rate \(\lambda=k\)
\(\mathrm{E}[\) time until next reaction \(]=1 / \lambda=1 / k\)

\section*{Time complexity analysis (basic motifs)}
"no communication"
? here means "every species" (including A)
\[
A+? \rightarrow B+? \quad \# A=n, \# B=0
\]

\section*{population protocol time complexity:}

When \#A= \(k\), time until non-null interaction is geometric random variable with success probability
\(p=k(n-1) /(n\) choose 2\()=k /(2 n)\)
\(\mathrm{E}[\#\) interactions \(]=1 / p=n / k\)
\(\mathrm{E}[\) time until non-null interaction]
\(=\mathrm{E}[\#\) interactions \(] / n=1 / k\)
\(\mathrm{E}[\) time to convert all A\(]=\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \approx(1 / 2) \ln n\)
"no communication/ unimolecular decay" (unimolecular CRN version)
\[
A \rightarrow B
\]
\[
\# A=n, \# B=0
\]

\section*{CRN time complexity:}

When \#A=k, time until next reaction is exponential random variable with rate \(\lambda=k\)
\(\mathrm{E}[\) time until next reaction \(]=1 / \lambda=1 / k\)
\(\mathrm{E}\left[\right.\) time for all \(n\) reactions] \(=\sum_{k=1}^{n} \frac{1}{k} \approx \ln n\)

\section*{Time complexity analysis (basic motifs)}
"pairing off"
\(A+B \rightarrow C \quad \# A=n, \# B=n\), total volume \(=O\) (total count) \(=n\)

\section*{Time complexity analysis (basic motifs)}
"pairing off"
\(A+B \rightarrow C \quad \# A=n, \# B=n\), total volume \(=O\) (total count \()=n\)

\section*{CRN time complexity:}

When \#A \(\# \# B=k\), next reaction has rate \(\lambda=k^{2} / n\)

\section*{Time complexity analysis (basic motifs)}
"pairing off"
\(A+B \rightarrow C \quad \# A=n, \# B=n\), total volume \(=O\) (total count \()=n\)
CRN time complexity:
When \#A=\#B=k, next reaction has rate \(\lambda=k^{2} / n\) \(\mathrm{E}[\) time until next reaction \(]=1 / \lambda=n / k^{2}\)

\section*{Time complexity analysis (basic motifs)}
"pairing off"
\(A+B \rightarrow C \quad \# A=n, \# B=n\), total volume \(=O\) (total count \()=n\)
CRN time complexity:
When \#A \(\# \# B=k\), next reaction has rate \(\lambda=k^{2} / n\)
\(\mathrm{E}[\) time until next reaction \(]=1 / \lambda=n / k^{2}\)
\(\mathrm{E}[\) time for all \(n\) reactions \(]=\sum_{k=1}^{n} \frac{n}{k^{2}}\)

\section*{Time complexity analysis (basic motifs)}
"pairing off"
\(A+B \rightarrow C \quad \# A=n, \# B=n\), total volume \(=O\) (total count \()=n\)
CRN time complexity:
When \#A \(\# \# B=k\), next reaction has rate \(\lambda=k^{2} / n\)
\(\mathrm{E}[\) time until next reaction \(]=1 / \lambda=n / k^{2}\)
\(\mathrm{E}[\) time for all \(n\) reactions \(]=\sum_{k=1}^{n} \frac{n}{k^{2}}\)
\(<n \sum_{k=1}^{\infty} \frac{1}{k^{2}}\)

\section*{Time complexity analysis (basic motifs)}
"pairing off"
\(A+B \rightarrow C \quad \# A=n, \# B=n\), total volume \(=O\) (total count \()=n\)
```

CRN time complexity:
When \#A=\#B=k, next reaction has rate }\lambda=\mp@subsup{k}{}{2}/
E[time until next reaction] = 1/\lambda=n/k

```

```

< n 渒=1 \frac{1}{\mp@subsup{k}{}{2}}
= n\cdot\mp@subsup{\pi}{}{2}/6=\Theta(n)

```

\section*{Time complexity analysis (basic motifs)}
"pairing off"
\[
A+B \rightarrow C \quad \# A=n, \# B=n, \text { total volume }=O(\text { total count })=n
\]
```

CRN time complexity:
When \#A=\#B=k, next reaction has rate }\lambda=\mp@subsup{k}{}{2}/
E[time until next reaction] = 1/\lambda=n/k

```

```

<n 渒=1 \frac{1}{\mp@subsup{k}{}{2}}
= n\cdot\pi}\mp@subsup{\pi}{}{2}/6=\Theta(n

```
```

"pairing off" (symmetric version)

```
\[
A+A \rightarrow C
\]
similar analysis

\section*{Time complexity analysis (basic motifs)}
"coupon collecting"
\[
L+A \rightarrow L+B \quad \# L=1, \# A=n, \# B=0, \text { total volume }=O(\text { total count })=n
\]

\section*{Time complexity analysis (basic motifs)}
"coupon collecting"
\[
L+A \rightarrow L+B \quad \# L=1, \# A=n, \# B=0, \text { total volume }=O(\text { total count })=n
\]
```

CRN time complexity:
When \#A=k, next reaction has rate }\lambda=k/
E[time until next reaction] = 1/\lambda=n/k
E[time for all n reactions] = \sum nk=1}\frac{n}{k
< n 涼的
=\Theta(n logn)

```

Time complexity analysis of stably computing CRNs

\section*{Time complexity analysis of stably computing CRNs}
multiplication by 2: \(f(a)=2 a\)
\(A \rightarrow 2 Y\)

\section*{Time complexity analysis of stably computing CRNs}
multiplication by 2: \(f(a)=2 a\)
\(A \rightarrow 2 Y\)
\(O(\log n)\) "unimolecular decay"

\section*{Time complexity analysis of stably computing CRNs}
```

multiplication by 2: f(a)=2a
A
$O(\log n)$ "unimolecular decay"
division by 2: $f(a)=a / 2$
$2 A \rightarrow Y$

```

\section*{Time complexity analysis of stably computing CRNs}
```

multiplication by 2: f(a)=2a
A
O(\operatorname{log}n) "unimolecular decay"
division by 2: f(a)=a/2
2A }->
O(n) "pairing off"

```

\section*{Time complexity analysis of stably computing CRNs}
```

multiplication by 2: f(a)=2a
A
O(\operatorname{log}n) "unimolecular decay"
division by 2: f(a)=a/2
2A }->
O(n) "pairing off"
addition: f(a,b)=a+b
A}->
B}->

```

\section*{Time complexity analysis of stably computing CRNs}
```

multiplication by 2: f(a)=2a
A
O(\operatorname{log}n) "unimolecular decay"
division by 2: f(a)=a/2
2A }->
O(n) "pairing off"

```
```

addition: f(a,b)=a+b

```
addition: f(a,b)=a+b
A}->
A}->
B->Y
B->Y
O(log n): same as unimolecular
O(log n): same as unimolecular
decay, just with two names for
decay, just with two names for
decaying species
```

decaying species

```

\section*{Time complexity analysis of stably computing CRNs}
```

multiplication by 2: f(a)=2a
A

```
\(O(\log n)\) "unimolecular decay"
division by 2: \(f(a)=a / 2\)
\(2 A \rightarrow Y\)
\(O(n)\) "pairing off"
```

addition: f(a,b)=a+b
A ->Y
B}->
$O(\log n)$ : same as unimolecular decay, just with two names for decaying species

```
```

minimum: f(a,b)=\operatorname{min}(a,b)
A+B->Y

```

\section*{Time complexity analysis of stably computing CRNs}
```

multiplication by 2: f(a)=2a
A
O(\operatorname{log}n) "unimolecular decay"
division by 2: f(a)=a/2
2A }->
O(n) "pairing off"

```
```

addition: f(a,b)=a+b

```
addition: f(a,b)=a+b
A}->
A}->
B->Y
B->Y
O(log n): same as unimolecular
O(log n): same as unimolecular
decay, just with two names for
decay, just with two names for
decaying species
```

decaying species

```
minimum: \(f(a, b)=\min (a, b)\)
\(A+B \rightarrow Y\)
\(O(n)\) : "pairing off"
... worst case if \(a=b\)

\section*{Time complexity analysis of stably computing CRNs}
minimum: f(a,b)=min}(a,b
minimum: f(a,b)=min}(a,b
\(A+B \rightarrow Y\)
\(O(n)\) : "pairing off"
 ... worst case if \(a=b\)
Suppose \(a>b\).

\section*{Time complexity analysis of stably computing CRNs}
minimum: f(a,b)=min}(a,b
minimum: f(a,b)=min}(a,b
\(A+B \rightarrow Y\)
\(O(n)\) : "pairing off"
... worst case if \(a=b\)
Suppose a>b}\mathrm{ .
Suppose a>b}\mathrm{ .
E[time] =
E[time] =
 \sum i=0 b-1 }\frac{n}{(a-i)(b-i)
 \sum i=0 b-1 }\frac{n}{(a-i)(b-i)
\(O(\log n)\) : same as unimolecular decay, just with two names for decaying species
```

addition: f(a,b)=a+b
addition: f(a,b)=a+b
A }
A }
B->Y
B->Y

## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
O(\operatorname{log}n) "unimolecular decay"
division by 2: f(a)=a/2
2A }->
O(n) "pairing off"
addition: f(a,b)=a+b
A ->Y
B->Y
\(O(\log n)\) : same as unimolecular decay, just with two names for decaying species
```


## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
O(\operatorname{log}n) "unimolecular decay"
division by 2: f(a)=a/2
2A }->
O(n) "pairing off"
addition: f(a,b)=a+b
A}->
B->Y
\(O(\log n)\) : same as unimolecular decay, just with two names for decaying species
```


## Time complexity analysis of stably computing CRNs

multiplication by 2：$f(a)=2 a$
$A \rightarrow 2 Y$
$O(\log n)$＂unimolecular decay＂
division by 2：$f(a)=a / 2$
$2 A \rightarrow Y$
$O(n)$＂pairing off＂

## addition：$f(a, b)=a+b$

$A \rightarrow Y$
$B \rightarrow Y$
$O(\log n)$ ：same as unimolecular decay，just with two names for decaying species
minimum：$f(a, b)=\min (a, b)$
$A+B \rightarrow Y$
$A+B \rightarrow Y$
$O(n)$ : "pairing off"
$O(n)$ : "pairing off"
... worst case if $a=b$
... worst case if $a=b$
Suppose a>b}\mathrm{ .
Suppose a>b}\mathrm{ .
Suppose a>b}\mathrm{ .
E[time] =
E[time] =
E[time] =
\sum 隹0
\sum 隹0
\sum 隹0



<n \mp@subsup{\sum}{i=0}{b-1}\frac{1}{(b-i\mp@subsup{)}{}{2}}
<n \mp@subsup{\sum}{i=0}{b-1}\frac{1}{(b-i\mp@subsup{)}{}{2}}
<n \mp@subsup{\sum}{i=0}{b-1}\frac{1}{(b-i\mp@subsup{)}{}{2}}




## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
O(\operatorname{log}n) "unimolecular decay"
division by 2: f(a)=a/2
2A ->Y
O(n) "pairing off"
addition: f(a,b)=a+b
A->Y
B->Y
\(O(\log n)\) : same as unimolecular decay, just with two names for decaying species
```


## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
O(\operatorname{log}n) "unimolecular decay"
division by 2: f(a)=a/2
2A }->
O(n) "pairing off"
addition: f(a,b)=a+b
A->Y
B->Y
\(O(\log n)\) : same as unimolecular decay, just with two names for decaying species
```

Suppose $a>2 b$, so $a>2 n / 3$.

## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
```

```
O(}\operatorname{log}n) "unimolecular decay"
```

```
O(}\operatorname{log}n) "unimolecular decay"
```

division by 2: $f(a)=a / 2$
$2 A \rightarrow Y$
$O(n)$ "pairing off"

```
A ->Y
B->Y
```

addition: $f(a, b)=a+b$
$O(\log n)$ : same as unimolecular decay, just with two names for decaying species

$$
\begin{aligned}
& \text { minimum: } f(a, b)=\min (a, b) \\
& A+B \rightarrow Y \\
& O(n): \text { "pairing off" } \\
& \text {... worst case if } a=b \\
& \text { Suppose } a>b \text {. } \\
& \text { E[time] }= \\
& \quad \sum_{i=0}^{b-1} \frac{n}{(a-i)(b-i)} \\
& =n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(b-i)^{2}} \\
& =n \sum_{i=1}^{b} \frac{1}{i^{2}} \\
& =O(n) \\
& \text { So it's no slower... can it be } \\
& \text { faster in some cases? }
\end{aligned}
$$

Suppose $a>2 b$, so $a>2 n / 3$. E[time] =

$$
n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)}
$$

## Time complexity analysis of stably computing CRNs

## multiplication by 2: $f(a)=2 a$ <br> $A \rightarrow 2 Y$

$O(\log n)$ "unimolecular decay"
division by 2: $f(a)=a / 2$
$2 A \rightarrow Y$
$O(n)$ "pairing off"

## $A \rightarrow Y$ <br> $B \rightarrow Y$

addition: $f(a, b)=a+b$
$O(\log n)$ : same as unimolecular decay, just with two names for decaying species

$$
\begin{aligned}
& \text { minimum: } f(a, b)=\min (a, b) \\
& A+B \rightarrow Y \\
& O(n): \text { "pairing off" } \\
& \text {... worst case if } a=b \\
& \text { Suppose } a>b \text {. } \\
& \text { E[time] = } \\
& \quad \sum_{i=0}^{b-1} \frac{n}{(a-i)(b-i)} \\
& =n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(b-i)^{2}} \\
& =n \sum_{i=1}^{b} \frac{1}{i^{2}} \\
& =O(n) \\
& \text { So it's no slower... can it be } \\
& \text { faster in some cases? }
\end{aligned}
$$

Suppose $a>2 b$, so $a>2 n / 3$. E[time] =
$n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)}$
$<n \sum_{i=0}^{b-1} \frac{1}{(a-b)(b-i)}$

## Time complexity analysis of stably computing CRNs

## multiplication by 2: $f(a)=2 a$ <br> $A \rightarrow 2 Y$

$O(\log n)$ "unimolecular decay"
division by 2: $f(a)=a / 2$
$2 A \rightarrow Y$
$O(n)$ "pairing off"

## $A \rightarrow Y$ <br> $B \rightarrow Y$

addition: $f(a, b)=a+b$
$O(\log n)$ : same as unimolecular decay, just with two names for decaying species

$$
\begin{aligned}
& \text { minimum: } f(a, b)=\min (a, b) \\
& A+B \rightarrow Y \\
& O(n): \text { "pairing off" } \\
& \text {... worst case if } a=b \\
& \text { Suppose } a>b \text {. } \\
& \text { E[time] = } \\
& \quad \sum_{i=0}^{b-1} \frac{n}{(a-i)(b-i)} \\
& =n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(b-i)^{2}} \\
& =n \sum_{i=1}^{b} \frac{1}{i^{2}} \\
& =O(n) \\
& \text { So it's no slower... can it be } \\
& \text { faster in some cases? }
\end{aligned}
$$

Suppose $a>2 b$, so $a>2 n / 3$.
E [time] =
$n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)}$
$<n \sum_{i=0}^{b-1} \frac{1}{(a-b)(b-i)}$
$<n \sum_{i=0}^{b-1} \frac{1}{(a / 2)(b-i)}$

## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
```

```
O(}\operatorname{log}n) "unimolecular decay"
```

```
O(}\operatorname{log}n) "unimolecular decay"
```

division by 2: $f(a)=a / 2$
$2 A \rightarrow Y$
$O(n)$ "pairing off"
addition: $f(a, b)=a+b$
$A \rightarrow Y$
$B \rightarrow Y$
$O(\log n)$ : same as unimolecular decay, just with two names for decaying species

$$
\begin{aligned}
& \text { minimum: } f(a, b)=\min (a, b) \\
& A+B \rightarrow Y \\
& O(n): \text { "pairing off" } \\
& \text {... worst case if } a=b \\
& \text { Suppose } a>b \text {. } \\
& \text { E[time] = } \\
& \quad \sum_{i=0}^{b-1} \frac{n}{(a-i)(b-i)} \\
& =n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(b-i)^{2}} \\
& =n \sum_{i=1}^{b} \frac{1}{i^{2}} \\
& =O(n) \\
& \text { So it's no slower... can it be } \\
& \text { faster in some cases? }
\end{aligned}
$$

Suppose $a>2 b$, so $a>2 n / 3$. E[time] =
$n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)}$
$<n \sum_{i=0}^{b-1} \frac{1}{(a-b)(b-i)}$
$<n \sum_{i=0}^{b-1} \frac{1}{(a / 2)(b-i)}$
$=\frac{2 n}{a} \sum_{i=0}^{b-1} \frac{1}{(b-i)}$

## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
O(\operatorname{log}n) "unimolecular decay"
```

division by 2: $f(a)=a / 2$
$2 A \rightarrow Y$
$O(n)$ "pairing off"
addition: $f(a, b)=a+b$
$A \rightarrow Y$
$B \rightarrow Y$
$O(\log n)$ : same as unimolecular decay, just with two names for decaying species

```
minimum: f(a,b)=\operatorname{min}(a,b)
A+B->Y
O(n): "pairing off"
 ... worst case if }a=
Suppose a>b.
E[time] =
 \sum i=0 b-1 }\frac{n}{(a-i)(b-i)
=n \sum i=0 b-1 }\frac{1}{(a-i)(b-i)
< n \mp@subsup{\sum}{i=0}{b-1}\frac{1}{(b-i\mp@subsup{)}{}{2}}
```



```
=O(n)
So it's no slower... can it be
faster in some cases?
```

Suppose $a>2 b$, so $a>2 n / 3$.
E [time] =
$n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)}$
$<n \sum_{i=0}^{b-1} \frac{1}{(a-b)(b-i)}$
$<n \sum_{i=0}^{b-1} \frac{1}{(a / 2)(b-i)}$
$=\frac{2 n}{a} \sum_{i=0}^{b-1} \frac{1}{(b-i)}$
$=\frac{2 n}{a} \sum_{i=1}^{b} \frac{1}{i} \approx \frac{2 n}{a} \ln b$

## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
O(\operatorname{log}n) "unimolecular decay"
```

division by 2: $f(a)=a / 2$
$2 A \rightarrow Y$
$O(n)$ "pairing off"
addition: $f(a, b)=a+b$
$A \rightarrow Y$
$B \rightarrow Y$
$O(\log n)$ : same as unimolecular decay, just with two names for decaying species

$$
\begin{aligned}
& \text { minimum: } f(a, b)=\min (a, b) \\
& A+B \rightarrow Y \\
& O(n): \text { "pairing off" } \\
& \text {... worst case if } a=b \\
& \text { Suppose } a>b \text {. } \\
& \text { E[time] = } \\
& \quad \sum_{i=0}^{b-1} \frac{n}{(a-i)(b-i)} \\
& =n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(b-i)^{2}} \\
& =n \sum_{i=1}^{b} \frac{1}{i^{2}} \\
& =O(n) \\
& \text { So it's no slower... can it be } \\
& \text { faster in some cases? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suppose } a>2 b \text {, so } a>2 n / 3 \text {. } \\
& \mathrm{E} \text { [time] = } \\
& n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(a-b)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(a / 2)(b-i)} \\
& =\frac{2 n}{a} \sum_{i=0}^{b-1} \frac{1}{(b-i)} \\
& =\frac{2 n}{a} \sum_{i=1}^{b} \frac{1}{i} \approx \frac{2 n}{a} \ln b \\
& \leq \frac{2 n}{\frac{2}{3} n} \ln b=3 \ln b
\end{aligned}
$$

## Time complexity analysis of stably computing CRNs

```
multiplication by 2: f(a)=2a
A }->2
```

```
O(}\operatorname{log}n) "unimolecular decay"
```

division by 2: $f(a)=a / 2$
$2 A \rightarrow Y$
$O(n)$ "pairing off"

```
\(A \rightarrow Y\)
\(B \rightarrow Y\)
```

addition: $f(a, b)=a+b$
$O(\log n)$ : same as unimolecular decay, just with two names for decaying species

$$
\begin{aligned}
& \text { minimum: } f(a, b)=\min (a, b) \\
& A+B \rightarrow Y \\
& O(n): \text { "pairing off" } \\
& \text {... worst case if } a=b \\
& \text { Suppose } a>b \text {. } \\
& \text { E[time] = } \\
& \quad \sum_{i=0}^{b-1} \frac{n}{(a-i)(b-i)} \\
& =n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(b-i)^{2}} \\
& =n \sum_{i=1}^{b} \frac{1}{i^{2}} \\
& =O(n) \\
& \text { So it's no slower... can it be } \\
& \text { faster in some cases? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suppose } a>2 b \text {, so } a>2 n / 3 . \\
& \mathrm{E} \text { [time] }= \\
& \quad n \sum_{i=0}^{b-1} \frac{1}{(a-i)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(a-b)(b-i)} \\
& <n \sum_{i=0}^{b-1} \frac{1}{(a / 2)(b-i)} \\
& =\frac{2 n}{a} \sum_{i=0}^{b-1} \frac{1}{(b-i)} \\
& =\frac{2 n}{a} \sum_{i=1}^{b} \frac{1}{i} \approx \frac{2 n}{a} \ln b \\
& \leq \frac{2 n}{\frac{2}{3} n} \ln b=3 \ln b
\end{aligned}
$$

Intuitively, there's always a large $\Omega(n)$ excess of $A$, so "acts like" unimolecular decay of $B$.

## Time complexity analysis of stably computing CRNs

```
subtraction: f(a,b)=a-b
A ->Y
B+Y}->
```


## Time complexity analysis of stably computing CRNs

```
subtraction: f(a,b)=a-b
A ->Y
B+Y}->
```

- Unlike addition, this is a nontrivial combination of reactions: rate of second reaction depends how many times first has happened.


## Time complexity analysis of stably computing CRNs

```
subtraction: f(a,b)=a-b
A ->Y
B+Y->\emptyset
```

- Unlike addition, this is a nontrivial combination of reactions: rate of second reaction depends how many times first has happened.
- To simplify, we assume second reaction cannot happen until first has finished.


## Time complexity analysis of stably computing CRNs

```
subtraction: f(a,b)=a-b
A ->Y
B+Y->\emptyset
```

- Unlike addition, this is a nontrivial combination of reactions: rate of second reaction depends how many times first has happened.
- To simplify, we assume second reaction cannot happen until first has finished.
- This simpler process "stochastically dominates" the real process: it takes even longer than the real process, so suffices to show a time upper bound.


## Time complexity analysis of stably computing CRNs

```
subtraction: f(a,b)=a-b
A ->Y
B+Y->\emptyset
```

- Unlike addition, this is a nontrivial combination of reactions: rate of second reaction depends how many times first has happened.
- To simplify, we assume second reaction cannot happen until first has finished.
- This simpler process "stochastically dominates" the real process: it takes even longer than the real process, so suffices to show a time upper bound. $E[$ time $]=E[$ time for first to finish] $+E[$ time for second to finish]


## Time complexity analysis of stably computing CRNs

```
subtraction: f(a,b)=a-b
A ->Y
B+Y->\emptyset
```

- Unlike addition, this is a nontrivial combination of reactions: rate of second reaction depends how many times first has happened.
- To simplify, we assume second reaction cannot happen until first has finished.
- This simpler process "stochastically dominates" the real process: it takes even longer than the real process, so suffices to show a time upper bound.
$E[$ time $]=E[$ time for first to finish] $+E[$ time for second to finish] $\mathrm{E}[$ time for first to finish] $=O(\log n)$ (unimolecular decay)


## Time complexity analysis of stably computing CRNs

```
subtraction: f(a,b)=a-b
A ->Y
B+Y->\emptyset
```

- Unlike addition, this is a nontrivial combination of reactions: rate of second reaction depends how many times first has happened.
- To simplify, we assume second reaction cannot happen until first has finished.
- This simpler process "stochastically dominates" the real process: it takes even longer than the real process, so suffices to show a time upper bound.
E [time] $=\mathrm{E}$ [time for first to finish] +E [time for second to finish]
$\mathrm{E}[$ time for first to finish] $=O(\log n)$ (unimolecular decay)
E[time for second to finish] $=O(n)$ in worst case: similar to minimum, worst case when $a=b$, but $O(\log n)$ time if $|a-b|=\Omega(n)$.


## Time complexity analysis of stably computing CRNs

```
subtraction: f(a,b)=a-b
A ->Y
B+Y->\emptyset
```

- Unlike addition, this is a nontrivial combination of reactions: rate of second reaction depends how many times first has happened.
- To simplify, we assume second reaction cannot happen until first has finished.
- This simpler process "stochastically dominates" the real process: it takes even longer than the real process, so suffices to show a time upper bound.
E [time] $=\mathrm{E}$ [time for first to finish] +E [time for second to finish]
$\mathrm{E}[$ time for first to finish] $=O(\log n)$ (unimolecular decay)
E[time for second to finish] $=O(n)$ in worst case: similar to minimum, worst case when $a=b$, but $O(\log n)$ time if $|a-b|=\Omega(n)$.
$\mathrm{E}[$ time $]=O(\log n)+O(n)=O(n)$


## Time complexity analysis of stably computing CRNs

```
maximum:}f(a,b)=\operatorname{max}(a,b
1. }A->Y+\mp@subsup{A}{2}{
2. }B->Y+\mp@subsup{B}{2}{
3. }\mp@subsup{A}{2}{}+\mp@subsup{B}{2}{}->
4. K+Y->\emptyset
```


## Time complexity analysis of stably computing CRNs

```
maximum: f(a,b)=max(a,b)
1. }A->Y+\mp@subsup{A}{2}{
2. }B->Y+\mp@subsup{B}{2}{
3. }\mp@subsup{A}{2}{}+\mp@subsup{B}{2}{}
4. }K+Y->
```

- Assume reaction 3 waits for reactions 1 and 2 before starting, and reaction 4 waits for reaction 3.


## Time complexity analysis of stably computing CRNs

```
maximum: f(a,b)=max(a,b)
1. }A->Y+\mp@subsup{A}{2}{
2. }B->Y+\mp@subsup{B}{2}{
3. }\mp@subsup{A}{2}{}+\mp@subsup{B}{2}{}
4. }K+Y->
```

- Assume reaction 3 waits for reactions 1 and 2 before starting, and reaction 4 waits for reaction 3.
- $E[$ time for 1 and 2$]=O(\log n)$


## Time complexity analysis of stably computing CRNs

```
maximum: f(a,b)= max(a,b)
1. }A->Y+\mp@subsup{A}{2}{
2. }B->Y+\mp@subsup{B}{2}{
3. }\mp@subsup{A}{2}{}+\mp@subsup{B}{2}{}->
4. }K+Y->
```

- Assume reaction 3 waits for reactions 1 and 2 before starting, and reaction 4 waits for reaction 3.
- $E[$ time for 1 and 2$]=O(\log n)$
- $E[$ time for 3$]=O(n)$


## Time complexity analysis of stably computing CRNs

```
maximum: f(a,b)=max(a,b)
1. }A->Y+\mp@subsup{A}{2}{
2. }B->Y+\mp@subsup{B}{2}{
3. }\mp@subsup{A}{2}{}+\mp@subsup{B}{2}{}->
4. }K+Y->
```

- Assume reaction 3 waits for reactions 1 and 2 before starting, and reaction 4 waits for reaction 3.
- $E[$ time for 1 and 2$]=O(\log n)$
- $E[$ time for 3$]=O(n)$
- $E[$ time for 4$]=O(n)$


## Time complexity analysis of stably computing CRNs

```
maximum: f(a,b)=max(a,b)
1. }A->Y+\mp@subsup{A}{2}{
2. }B->Y+\mp@subsup{B}{2}{
3. }\mp@subsup{A}{2}{}+\mp@subsup{B}{2}{}->
4. }K+Y->
```

- Assume reaction 3 waits for reactions 1 and 2 before starting, and reaction 4 waits for reaction 3.
- $E[$ time for 1 and 2$]=O(\log n)$
- $E[$ time for 3$]=O(n)$
- $E[$ time for 4$]=O(n)$
- So $\mathrm{E}[$ time $]=O(\log n)+O(n)+O(n)=O(n)$


# Possibilities of stable computation 

What can be stably computed?

## Summary: Possibilities and limits of stable computation

## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.


## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.
- semilinear = Boolean combination of threshold and mod predicates: take weighted sum $s=w_{1} \cdot a_{1}+\ldots w_{d} \cdot a_{d}$ of inputs and ask if
$s>t$ ?
(threshold)
$s \equiv c \bmod m ?$
(mod)


## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.
- semilinear = Boolean combination of threshold and mod predicates: take weighted sum $s=w_{1} \cdot \mathbf{a}_{1}+\ldots w_{d} \cdot \mathbf{a}_{d}$ of inputs and ask if
$s>t$ ?
(threshold)
$s \equiv c \bmod m$ ?
(mod)

```
a>b? a=b? a is odd? a>0? a>1?
```


## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.
- semilinear = Boolean combination of threshold and mod predicates: take weighted sum $s=w_{1} \cdot a_{1}+\ldots w_{d} \cdot a_{d}$ of inputs and ask if
$s>t$ ?
(threshold)
$s \equiv c \bmod m$ ?
(mod)

```
a>b? a=b? a is odd? a>0? a>1?
```

```
NOT a=\mp@subsup{b}{}{2}?\quada}\mathrm{ is a power of 2? a is prime?
```

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are

## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.
- semilinear = Boolean combination of threshold and mod predicates: take weighted sum $s=w_{1} \cdot \mathbf{a}_{1}+\ldots w_{d} \cdot \mathbf{a}_{d}$ of inputs and ask if
$s>t$ ?
(threshold)
$s \equiv c \bmod m$ ?
(mod)

```
a>b? a=b? a is odd? a>0? a>1?
```


## NOT $a=b^{2}$ ? $\quad a$ is a power of 2 ? $\quad a$ is prime?

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]
[Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

## Functions

- $f$ is stably computable if and only if $\operatorname{graph}(f)=\{(a, y) \mid f(a)=y\}$ is semilinear.
[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction networks, DNA 2013]


## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.
- semilinear = Boolean combination of threshold and mod predicates: take weighted sum $s=w_{1} \cdot \mathbf{a}_{1}+\ldots w_{d} \cdot \mathbf{a}_{d}$ of inputs and ask if

$$
\begin{array}{ll}
s>t ? & \text { (threshold) } \\
s \equiv c \bmod m ? & \text { (mod) }
\end{array}
$$

```
a>b? a=b? }\quada\mathrm{ is odd? }\quada>0? a>1?
```

```
NOT }a=\mp@subsup{b}{}{2}?\quada\mathrm{ is a power of 2? a is prime?
```

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

## Functions

- $f$ is stably computable if and only if $\operatorname{graph}(f)=\{(\boldsymbol{a}, \boldsymbol{y}) \mid f(\boldsymbol{a})=y\}$ is semilinear.
- piecewise affine, with semilinear predicate to determine which piece.
[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction networks, DNA 2013]


## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.
- semilinear = Boolean combination of threshold and mod predicates: take weighted sum $s=w_{1} \cdot \mathbf{a}_{1}+\ldots w_{d} \cdot \mathbf{a}_{d}$ of inputs and ask if

$$
\begin{array}{ll}
s>t ? & \text { (thresh } \\
s \equiv c \bmod m ? & \text { (mod) }
\end{array}
$$

```
a>b? a=b? a is odd? }\quada>0\mathrm{ ? . a>1?
```


## NOT $a=b^{2} ? \quad a$ is a power of 2? $\quad a$ is prime?

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

## Functions

- $f$ is stably computable if and only if $\operatorname{graph}(f)=\{(a, y) \mid f(a)=y\}$ is semilinear.
- piecewise affine, with semilinear predicate to determine which piece.

```
a+b a-b 2a a/2 min}(a,b)\quada+1 a-1
f(a)=2a-b/3 if a+b is odd, else f(a)=a/4+5b
```

[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction networks, DNA 2013]

## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.
- semilinear = Boolean combination of threshold and mod predicates: take weighted sum $s=w_{1} \cdot \mathbf{a}_{1}+\ldots w_{d} \cdot \mathbf{a}_{d}$ of inputs and ask if

$$
\begin{array}{ll}
s>t ? & \text { (thresł } \\
s \equiv c \bmod m ? & (\bmod )
\end{array}
$$

$a>b ? \quad a=b ? \quad a$ is odd? $\quad a>0$ ? $\quad a>1$ ?

## NOT $a=b^{2} ? \quad a$ is a power of 2? $\quad a$ is prime?

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

## Functions

- $f$ is stably computable if and only if $\operatorname{graph}(f)=\{(a, y) \mid f(a)=y\}$ is semilinear.
- piecewise affine, with semilinear predicate to determine which piece.

```
a+b a-b 2a a/2 min}(a,b)\quada+1 a-1
f(a)=2a-b/3 if a+b is odd, else f(a)=a/4+5b
```

NOT $\quad a^{2} \quad 2^{a} \quad 2 a$ if $a$ is prime, else $3 a$

[^1]
## Summary: Possibilities and limits of stable computation

## Predicates

- $\varphi$ is stably computable if and only if $\varphi$ is semilinear.
- semilinear = Boolean combination of threshold and mod predicates: take weighted sum $s=w_{1} \cdot \mathbf{a}_{1}+\ldots w_{d} \cdot \mathbf{a}_{d}$ of inputs and ask if

$$
\begin{array}{ll}
s>t ? & \text { (threst } \\
s \equiv c \bmod m ? & \text { (mod) }
\end{array}
$$

$a>b ? \quad a=b ? \quad a$ is odd? $\quad a>0$ ? $\quad a>1$ ?

[^2][Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] [Angluin, Aspnes, Eisenstat, Stably computable predicates are semilinear, PODC 2006]

## Functions

- $f$ is stably computable if and only if $\operatorname{graph}(f)=\{(\boldsymbol{a}, \boldsymbol{y}) \mid f(\boldsymbol{a})=y\}$ is semilinear.
- piecewise affine, with semilinear predicate to determine which piece.

$a+b$	$a-b$	$2 a$	$a / 2$	$\min (a, b) \quad a+1$	$a-1$
$f(a)=2 a-b / 3$	if $a+b$ is odd, else $f(a)=a / 4+5 b$				

NOT $\quad a^{2} \quad 2^{a} \quad 2 a$ if $a$ is prime, else $3 a$

All semilinear predicates/functions are known to be computable in $O(n)$ time.
[Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]
[Doty, Hajiaghayi, Leaderless deterministic chemical reaction networks, DNA 2013]

## Linear sets

$$
\begin{array}{ll}
\text { Definition: } A \text { set } X \subseteq \mathbb{N}^{d} \text { is linear if there are } & \text { multi-dimensional } \\
\text { vectors } \mathbf{b}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{p} \in \mathbb{N}^{d} \text { such that } & \text { generalization of } \\
X=\left\{\mathbf{b}+n_{1} \cdot \mathbf{u}_{1}+\ldots+n_{p} \cdot \mathbf{u}_{p} \mid n_{1}, \ldots, n_{p} \in \mathbb{N}\right\} & \text { eventually periodic }
\end{array}
$$

## Linear sets

Example in dimension $d=2$ :
$b=(2,1)$

$\mathbf{u}_{1}=(4,1)$


$$
\mathbf{u}_{2}=(2,2)
$$

$$
\begin{aligned}
& \text { Definition: } \mathrm{A} \text { set } X \subseteq \mathbb{N}^{d} \text { is linear if there are } \\
& \text { vectors } \mathbf{b}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{p} \in \mathbb{N}^{d} \text { such that } \\
& X=\left\{\boldsymbol{b}+n_{1} \cdot \mathbf{u}_{1}+\ldots+n_{p} \cdot \mathbf{u}_{p} \mid n_{1}, \ldots, n_{p} \in \mathbb{N}\right\}
\end{aligned}
$$

multi-dimensional generalization of eventually periodic

## Linear sets

## Example in dimension $d=\mathbf{2}$ :

$b=(2,1)$

$\mathbf{u}_{1}=(4,1)$

> Definition: A set $X \subseteq \mathbb{N}^{d}$ is linear if there are vectors $\mathbf{b}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{p} \in \mathbb{N}^{d}$ such that $X=\left\{\boldsymbol{b}+n_{1} \cdot \mathbf{u}_{1}+\ldots+n_{p} \cdot \mathbf{u}_{p} \mid n_{1}, \ldots, n_{p} \in \mathbb{N}\right\}$
multi-dimensional generalization of eventually periodic

$$
\begin{array}{lllllllllll}
\mathbf{u}_{\mathbf{1}}=(4,1) & 2 & & & & & \\
& 1 & & & & & & & \\
& 0 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$



## Linear sets

## Example in dimension $d=2$ :

b $=(2,1)$

$\mathbf{u}_{1}=(4,1)$

$u_{2}=(2,2)$


$$
\begin{aligned}
& \text { Definition: A set } X \subseteq \mathbb{N}^{d} \text { is linear if there are } \\
& \text { vectors } \mathbf{b}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{p} \in \mathbb{N}^{d} \text { such that } \\
& X=\left\{\mathbf{b}+n_{1} \cdot \mathbf{u}_{1}+\ldots+n_{p} \cdot \mathbf{u}_{p} \mid n_{1}, \ldots, n_{p} \in \mathbb{N}\right\}
\end{aligned}
$$

multi-dimensional generalization of eventually periodic


## Semilinear sets

Definition: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.


## Equivalent definitions of semilinear

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$ examples:

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

```
examples:
is }\mp@subsup{x}{1}{}>\mp@subsup{x}{2}{}\mathrm{ ?
```

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

```
examples:
is }\mp@subsup{x}{1}{}>\mp@subsup{x}{2}{}\mathrm{ ?
is }\mp@subsup{x}{1}{}-3\mp@subsup{x}{2}{}>\mp@subsup{x}{2}{}+5\mathrm{ ?
```

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

Definition $\mathbf{1 b}: X \subseteq \mathbb{N}^{d}$ is a mod set if there are integers $c, m$ and $w_{1} \ldots w_{k}$ such that
$X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$

$$
\begin{aligned}
& \text { examples: } \\
& \text { is } x_{1}>x_{2} \text { ? } \\
& \text { is } x_{1}-3 x_{2}>x_{2}+5 \text { ? }
\end{aligned}
$$

## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

$$
\begin{aligned}
& \text { examples: } \\
& \text { is } x_{1}>x_{2} \text { ? } \\
& \text { is } x_{1}-3 x_{2}>x_{2}+5 \text { ? }
\end{aligned}
$$

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

Definition 1b: $X \subseteq \mathbb{N}^{d}$ is a mod set if there are integers $c, m$ and $w_{1} \ldots w_{k}$ such that
$X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$

## examples:

## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

```
examples:
is }\mp@subsup{x}{1}{}>\mp@subsup{x}{2}{}\mathrm{ ?
is }\mp@subsup{x}{1}{}-3\mp@subsup{x}{2}{}>\mp@subsup{x}{2}{}+5\mathrm{ ?
```

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

Definition $\mathbf{1 b}: X \subseteq \mathbb{N}^{d}$ is a mod set if there are integers $c, m$ and $w_{1} \ldots w_{k}$ such that
$X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$

```
examples:
is \(x\) odd?
```


## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

$$
\begin{aligned}
& \text { examples: } \\
& \text { is } x_{1}>x_{2} \text { ? } \\
& \text { is } x_{1}-3 x_{2}>x_{2}+5 \text { ? }
\end{aligned}
$$

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

Definition 1b: $X \subseteq \mathbb{N}^{d}$ is a mod set if there are integers $c, m$ and $w_{1} \ldots w_{k}$ such that
$X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$

```
examples:
is x odd?
is x 2 more than a multiple of }3\mathrm{ ? }={2,5,8,11,14,\ldots
```


## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

```
examples:
is }\mp@subsup{x}{1}{}>\mp@subsup{x}{2}{}\mathrm{ ?
is }\mp@subsup{x}{1}{}-3\mp@subsup{x}{2}{}>\mp@subsup{x}{2}{}+5\mathrm{ ?
```

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

Definition 1b: $X \subseteq \mathbb{N}^{d}$ is a mod set if there are integers $c, m$ and $w_{1} \ldots w_{k}$ such that
$X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$

```
examples:
is x odd?
is x 2 more than a multiple of 3? ={2,5,8,11,14,\ldots}
is }\mp@subsup{x}{1}{}-3\mp@subsup{x}{2}{}\mathrm{ odd?
```


## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

```
examples:
is }\mp@subsup{x}{1}{}>\mp@subsup{x}{2}{}\mathrm{ ?
is }\mp@subsup{x}{1}{}-3\mp@subsup{x}{2}{}>\mp@subsup{x}{2}{}+5\mathrm{ ?
```

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

Definition $\mathbf{1 b}: X \subseteq \mathbb{N}^{d}$ is a mod set if there are integers $c, m$ and $w_{1} \ldots w_{k}$ such that
$X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$

```
examples:
is x odd?
is x 2 more than a multiple of 3? ={2,5,8,11,14,\ldots}
is }\mp@subsup{x}{1}{}-3\mp@subsup{x}{2}{}\mathrm{ odd?
```

```
example semilinear set:
is }\mp@subsup{x}{1}{}>\mp@subsup{x}{2}{}\mathrm{ and }\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{}\mathrm{ is odd?
```


## Equivalent definitions of semilinear

Definition 1: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is Boolean combination (through finite unions, intersections, and complements) of threshold and mod sets

Definition 1a: $X \subseteq \mathbb{N}^{d}$ is a threshold set if there are integers $t$ and $w_{1} \ldots w_{k}$ such that $X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$

```
examples:
is \(x_{1}>x_{2}\) ?
is \(x_{1}-3 x_{2}>x_{2}+5\) ?
```

Definition 2: A set $X \subseteq \mathbb{N}^{d}$ is semilinear if it is a finite union of linear sets.

Definition 1b: $X \subseteq \mathbb{N}^{d}$ is a mod set if there are integers $c, m$ and $w_{1} \ldots w_{k}$ such that
$X=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}^{d} \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$

```
examples:
is x odd?
is x 2 more than a multiple of 3? ={2,5,8,11,14,\ldots}
is }\mp@subsup{x}{1}{}-3\mp@subsup{x}{2}{}\mathrm{ odd?
```

```
example semilinear set:
is }\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{}\mathrm{ is not a multiple of 3?
```


## Equivalent definitions of semilinear

Definition 3: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is definable in the first-order theory of Presburger arithmetic. (original definition, hardest to understand; we won't use it.)

## Equivalent definitions of semilinear

Definition 3: $X \subseteq \mathbb{N}^{d}$ is semilinear if it is definable in the first-order theory of Presburger arithmetic. (original definition, hardest to understand; we won't use it.)

Other places semilinear sets show up in computer science:

- Sets decidable by reversal-bounded counter machines.
- In 2D, they are conjectured to be the sets weakly selfassembled by temperature $\tau=1$ tile systems.


## Limits of stable computation

Theorem 1: A set $X \subseteq \mathbb{N}^{d}$ is stably decided by some CRN if and only if it is semilinear.

## Limits of stable computation

Theorem 1: A set $X \subseteq \mathbb{N}^{d}$ is stably decided by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But we'll show:

1. All semilinear sets can be stably decided.
2. The non-semilinear "squaring" set $X=$
$\left\{(a, y) \in \mathbb{N}^{2} \mid a^{2}=y\right\}$ cannot be stably decided.

## Limits of stable computation

Theorem 1: A set $X \subseteq \mathbb{N}^{d}$ is stably decided by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But we'll show:

1. All semilinear sets can be stably decided.
2. The non-semilinear "squaring" set $X=$
$\left\{(a, y) \in \mathbb{N}^{2} \mid a^{2}=y\right\}$ cannot be stably decided.

Definition: A function $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is semilinear if $\operatorname{graph}(f)=\{(\boldsymbol{a}, y) \mid f(\boldsymbol{a})=y\}$ is a semilinear set.

## Limits of stable computation

Theorem 1: A set $X \subseteq \mathbb{N}^{d}$ is stably decided by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But we'll show:

1. All semilinear sets can be stably decided.
2. The non-semilinear "squaring" set $X=$
$\left\{(a, y) \in \mathbb{N}^{2} \mid a^{2}=y\right\}$ cannot be stably decided.

Definition: A function $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is semilinear if $\operatorname{graph}(f)=\{(\boldsymbol{a}, y) \mid f(\boldsymbol{a})=y\}$ is a semilinear set.

Example of function graph: The squaring set $X$ to the right is the graph of the function $f(a)=a^{2}$.


## Limits of stable computation

Theorem 1: A set $X \subseteq \mathbb{N}^{d}$ is stably decided by some CRN if and only if it is semilinear.

Full proof is too complex to do in this course. But we'll show:

1. All semilinear sets can be stably decided.
2. The non-semilinear "squaring" set $X=$
$\left\{(a, y) \in \mathbb{N}^{2} \mid a^{2}=y\right\}$ cannot be stably decided.

Definition: A function $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is semilinear if $\operatorname{graph}(f)=\{(\boldsymbol{a}, y) \mid f(\boldsymbol{a})=y\}$ is a semilinear set.

Example of function graph: The squaring set $X$ to the right is the graph of the function $f(a)=a^{2}$.

Theorem 2: A function $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is stably computed by some CRN if and only if it is semilinear.


# Possibilities of stable computation 

All semilinear functions/predicates can be stably computed by CRNs

## Stably decidable sets are closed under Boolean operations

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

Proof:

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.
3. Add the reaction $A \rightarrow A_{1}+A_{2}$ for each input species $A$, and let $A_{i}$ be the input species for $C_{i}$.

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.
3. Add the reaction $A \rightarrow A_{1}+A_{2}$ for each input species $A$, and let $A_{i}$ be the input species for $C_{i}$.
4. Add four new species $V_{N N}, V_{N Y}, V_{Y N}$, and $V_{Y Y}$.

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.
3. Add the reaction $A \rightarrow A_{1}+A_{2}$ for each input species $A$, and let $A_{i}$ be the input species for $C_{i}$.
4. Add four new species $V_{N N}, V_{N Y}, V_{Y N}$, and $V_{Y Y}$.
5. To "record" the votes of $C_{1}$ and $C_{2}$ :

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.
3. Add the reaction $A \rightarrow A_{1}+A_{2}$ for each input species $A$, and let $A_{i}$ be the input species for $C_{i}$.
4. Add four new species $V_{N N}, V_{N Y}, V_{Y N}$, and $V_{Y Y}$.
5. To "record" the votes of $C_{1}$ and $C_{2}$ :
6. If $S_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{1}$, add reaction $S_{b}+V_{\bar{b}}$ ? $\rightarrow S_{b}+V_{b}$ ? (i.e., $S_{b}$ changes the first vote of $V$ )

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.
3. Add the reaction $A \rightarrow A_{1}+A_{2}$ for each input species $A$, and let $A_{i}$ be the input species for $C_{i}$.
4. Add four new species $V_{N N}, V_{N Y}, V_{Y N}$, and $V_{Y Y}$.
5. To "record" the votes of $C_{1}$ and $C_{2}$ :
6. If $S_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{1}$, add reaction $S_{b}+V_{\bar{b}}$ ? $\rightarrow S_{b}+V_{b}$ ? (i.e., $S_{b}$ changes the first vote of $V$ )
7. If $T_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{2}$, add reaction $T_{b}+V_{? \bar{b}} \rightarrow T_{b}+V_{\text {? } b}$ (i.e., $T_{b}$ changes the second vote of $V$ )

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.
3. Add the reaction $A \rightarrow A_{1}+A_{2}$ for each input species $A$, and let $A_{i}$ be the input species for $C_{i}$.
4. Add four new species $V_{N N}, V_{N Y}, V_{Y N}$, and $V_{Y Y}$.
5. To "record" the votes of $C_{1}$ and $C_{2}$ :
6. If $S_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{1}$, add reaction $S_{b}+V_{\bar{b}}$ ? $\rightarrow S_{b}+V_{b}$ ? (i.e., $S_{b}$ changes the first vote of $V$ )
7. If $T_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{2}$, add reaction $T_{b}+V_{? \bar{b}} \rightarrow T_{b}+V_{\text {? } b}$ (i.e., $T_{b}$ changes the second vote of $V$ )
8. To stably decide $X_{1} \cup X_{2}$, let yes voters be $V_{N Y,} V_{Y N}, V_{Y Y}$

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.
3. Add the reaction $A \rightarrow A_{1}+A_{2}$ for each input species $A$, and let $A_{i}$ be the input species for $C_{i}$.
4. Add four new species $V_{N N}, V_{N Y}, V_{Y N}$, and $V_{Y Y}$.
5. To "record" the votes of $C_{1}$ and $C_{2}$ :
6. If $S_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{1}$, add reaction $S_{b}+V_{\bar{b}}$ ? $\rightarrow S_{b}+V_{b}$ ? (i.e., $S_{b}$ changes the first vote of $V$ )
7. If $T_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{2}$, add reaction $T_{b}+V_{? \bar{b}} \rightarrow T_{b}+V_{\text {? }}$ (i.e., $T_{b}$ changes the second vote of $V$ )
8. To stably decide $X_{1} \cup X_{2}$, let yes voters be $V_{N Y}, V_{Y N}, V_{Y Y}$
9. To stably decide $X_{1} \cap X_{2}$, let yes voter be $V_{Y Y}$

# Stably decidable sets are closed under Boolean operations 

For this proof, we assume that the voting species can be a strict subset of all species.

What if all species are required to vote??

Theorem: If sets $X_{1}, X_{2} \subseteq \mathbb{N}^{d}$ are stably decided by some CRN, then so are $X_{1} \cup X_{2}, X_{1} \cap X_{2}$, and $\overline{X_{1}}$.

## Proof:

1. To stably decide $\overline{X_{1}}$, swap the yes and no voters.
2. For $U$ and $\cap$, let $C_{1}$ and $C_{2}$ stably decide $X_{1}$ and $X_{2}$.
3. Add the reaction $A \rightarrow A_{1}+A_{2}$ for each input species $A$, and let $A_{i}$ be the input species for $C_{i}$.
4. Add four new species $V_{N N}, V_{N Y}, V_{Y N}$, and $V_{Y Y}$.
5. To "record" the votes of $C_{1}$ and $C_{2}$ :
6. If $S_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{1}$, add reaction $S_{b}+V_{\bar{b}}$ ? $\rightarrow S_{b}+V_{b}$ ? (i.e., $S_{b}$ changes the first vote of $V$ )
7. If $T_{b}$ votes $b \in\{\mathrm{~N}, \mathrm{Y}\}$ in $C_{2}$, add reaction $T_{b}+V_{? \bar{b}} \rightarrow T_{b}+V_{\text {? }}$ (i.e., $T_{b}$ changes the second vote of $V$ )
8. To stably decide $X_{1} \cup X_{2}$, let yes voters be $V_{N Y}, V_{Y N}, V_{Y Y}$
9. To stably decide $X_{1} \cap X_{2}$, let yes voter be $V_{Y Y}$

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$
is stably decidable by a CRN.

## Mod and threshold sets are stably decidable

```
Theorem: Every mod set
\(M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}\) is stably decidable by a CRN.
```


## Proof:

1. Start with $1 \mathrm{~L}_{0}$ leader.

The leader will "count the (weighted) input mod m."

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

## Proof:

1. Start with $1 \mathrm{~L}_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { w } i \bmod m}$

## Mod and threshold sets are stably decidable

## Theorem: Every mod set

$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

## Proof:

1. Start with $1 \mathrm{~L}_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wi mod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set
$T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$ is stably decidable by a CRN.

## Proof:

1. Start with $1 \mathrm{~L}_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wimod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set
$T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$ is stably decidable by a CRN.

## Proof:

1. Start with $1 \mathrm{~L}_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wi mod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

## Proof:

1. If $w_{i}>0$, add reaction $X_{i} \rightarrow w_{i} P$

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set
$T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$ is stably decidable by a CRN.

## Proof:

1. Start with $1 L_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wi mod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

## Proof:

1. If $w_{i}>0$, add reaction $\mathrm{X}_{i} \rightarrow w_{i} \mathrm{P}$
2. If $w_{i}<0$, add reaction $X_{i} \rightarrow\left(-w_{i}\right) N$

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set
$T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$ is stably decidable by a CRN.

## Proof:

1. Start with $1 L_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wi mod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

## Proof:

1. If $w_{i}>0$, add reaction $X_{i} \rightarrow w_{i} P$
2. If $w_{i}<0$, add reaction $X_{i} \rightarrow\left(-w_{i}\right) N$
3. Need to decide if (\#P produced) $>(\# N$ produced $)+t$

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set
$T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$ is stably decidable by a CRN.

## Proof:

1. Start with $1 L_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wi mod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

## Proof:

1. If $w_{i}>0$, add reaction $X_{i} \rightarrow w_{i} P$
2. If $w_{i}<0$, add reaction $X_{i} \rightarrow\left(-w_{i}\right) N$
3. $\quad$ Need to decide if (\#P produced) $>(\# N$ produced $)+t$
4. Start with $1 L_{N}$ leader and

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set
$T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}$ is stably decidable by a CRN.

## Proof:

1. Start with $1 \mathrm{~L}_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wi mod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

## Proof:

1. If $w_{i}>0$, add reaction $X_{i} \rightarrow w_{i} P$
2. If $w_{i}<0$, add reaction $X_{i} \rightarrow\left(-w_{i}\right) N$
3. $N$ Need to decide if (\#P produced) $>(\# N$ produced $)+t$
4. Start with $1 L_{N}$ leader and
5. $t \mathrm{~N}$ if $t>0$.
6. $(-t) \mathrm{P}$ if $t<0$.

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set

$$
T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}
$$ is stably decidable by a CRN.

## Proof:

1. If $w_{i}>0$, add reaction $X_{i} \rightarrow w_{i} P$
2. If $w_{i}<0$, add reaction $X_{i} \rightarrow\left(-w_{i}\right) N$
3. $\quad$ Need to decide if (\#P produced) $>(\# N$ produced $)+t$
4. Start with $1 \mathrm{~L}_{\mathrm{N}}$ leader and
5. $t \mathrm{~N}$ if $t>0$.
6. $(-t) \mathrm{P}$ if $t<0$.
7. Now need to decide if \#P > \#N (including those present initially)

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set

$$
T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\}
$$ is stably decidable by a CRN.

## Proof:

1. Start with $1 \mathrm{~L}_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wimod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

## Proof:

1. If $w_{i}>0$, add reaction $X_{i} \rightarrow w_{i} P$
2. If $w_{i}<0$, add reaction $X_{i} \rightarrow\left(-w_{i}\right) N$
3. $\quad$ Need to decide if (\#P produced) $>(\# N$ produced $)+t$
4. Start with $1 L_{N}$ leader and
5. $t \mathrm{~N}$ if $t>0$.
6. $(-t) \mathrm{P}$ if $t<0$.
7. Now need to decide if \#P > \#N (including those present initially)
8. Add reactions
9. $\quad L_{Y}+N \rightarrow L_{N}$
10. $L_{N}+P \rightarrow L_{V}$

## Mod and threshold sets are stably decidable

Theorem: Every mod set
$M=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d} \equiv c \bmod m\right\}$ is stably decidable by a CRN.

Theorem: Every threshold set

$$
\begin{aligned}
& T=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid w_{1} \cdot x_{1}+\ldots+w_{d} \cdot x_{d}>t\right\} \\
& \text { is stably decidable by a CRN. }
\end{aligned}
$$

## Proof:

1. Start with $1 L_{0}$ leader.

The leader will "count the (weighted) input mod m."
2. For each $1 \leq i \leq d$ and $0 \leq j<m$, add the reaction $\mathrm{X}_{i}+\mathrm{L}_{j} \rightarrow \mathrm{~L}_{j+\text { wimod } m}$
3. Let $L_{c}$ vote yes and all others vote no.

Corollary (since stably decidable sets are closed under Boolean combinations): Every semilinear set is stably decided by some CRN.

## Also true for leaderless CRNs.

## Proof:

1. If $w_{i}>0$, add reaction $X_{i} \rightarrow w_{i} P$
2. If $w_{i}<0$, add reaction $X_{i} \rightarrow\left(-w_{i}\right) N$
3. $\quad$ Need to decide if (\#P produced) $>(\# N$ produced) $+t$
4. Start with $1 \mathrm{~L}_{\mathrm{N}}$ leader and
5. $t \mathrm{~N}$ if $t>0$.
6. $(-t) \mathrm{P}$ if $t<0$.
7. Now need to decide if \#P > \#N (including those present initially)
8. Add reactions
$\begin{array}{ll}\text { 1. } & L_{Y}+N \rightarrow L_{N} \\ \text { 2. } & L_{N}+P \rightarrow L_{V}\end{array}$
9. $L_{N}+P \rightarrow L_{V}$

## Semilinear functions are stably computable

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Each $g_{i}$ is affine (linear with constant offsets): there are $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ such that each $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

We won't prove this; see [Chen, Doty, Soloveichik,
Deterministic function computation with chemical reaction
networks. DNA 2012]

## Semilinear functions are stably computable

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Each $g_{i}$ is affine (linear with constant offsets): there are $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ such that each $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

We won't prove this; see [Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks. DNA 2012]

$$
f(\mathrm{x})=\lfloor\mathrm{x} / 2\rfloor
$$

start with: (input) X
output: Y
$X+X \rightarrow Y$

$\left\{\mathrm{n}_{1} \cdot(2,1) \mid \mathrm{n}_{1} \in \mathbb{N}\right\} \cup$
$\left\{(1,0)+\mathrm{n}_{1} \cdot(2,1) \mid \mathrm{n}_{1} \in \mathbb{N}\right\}$

## Semilinear functions are stably computable

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Each $g_{i}$ is affine (linear with constant offsets): there are $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ such that each $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

We won't prove this; see [Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks. DNA 2012]

$$
f(\mathrm{x})=\lfloor\mathrm{x} / 2\rfloor
$$

start with: (input) X output: Y

$$
\begin{aligned}
& g_{1}(x)=1 / 2 \cdot x \\
& g_{2}(x)=1 / 2 \cdot(x-1)
\end{aligned}
$$

$$
\mathrm{X}+\mathrm{X} \rightarrow \mathrm{Y}
$$


$\left\{\mathrm{n}_{1} \cdot(2,1) \mid \mathrm{n}_{1} \in \mathbb{N}\right\} \cup$
$\left\{(1,0)+\mathrm{n}_{1} \cdot(2,1) \mid \mathrm{n}_{1} \in \mathbb{N}\right\}$

## Semilinear functions are stably computable

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Each $g_{i}$ is affine (linear with constant offsets): there are $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ such that each $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

We won't prove this; see [Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks. DNA 2012]

$$
f(\mathrm{x})=\lfloor\mathrm{x} / 2\rfloor
$$

start with: (input) X output: Y

$$
\begin{aligned}
& g_{1}(x)=1 / 2 \cdot x \\
& g_{2}(x)=1 / 2 \cdot(x-1)
\end{aligned}
$$

$X+X \rightarrow Y$

$$
\begin{aligned}
& \operatorname{dom} g_{1}=\{x \equiv 0 \bmod 2\} \\
& \operatorname{dom} g_{2}=\{x \equiv 1 \bmod 2\}
\end{aligned}
$$


$\left\{\mathrm{n}_{1} \cdot(2,1) \mid \mathrm{n}_{1} \in \mathbb{N}\right\} \cup$
$\left\{(1,0)+n_{1} \cdot(2,1) \mid n_{1} \in \mathbb{N}\right\}$

## Semilinear function examples

b) $\quad f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)= \begin{cases}\mathrm{x}_{2} & \text { if } \mathrm{x}_{1}>\mathrm{x}_{2} \\ 0 & \text { otherwise }\end{cases}$ start with: (input) $\mathrm{X}_{1}, \mathrm{X}_{2}$ output: Y
$\mathrm{X}_{1}+\mathrm{X}_{2} \rightarrow \mathrm{~B}$
$\mathrm{X}_{1}+\mathrm{B} \rightarrow \mathrm{X}_{1}+\mathrm{Y}$ $\mathrm{B}+\mathrm{Y} \rightarrow \mathrm{B}+\mathrm{B}$
$g_{1}(x)=x_{2}$
$g_{2}(x)=0$
dom $g_{1}=\left\{x_{1}>x_{2}\right\}$

$\left\{\mathrm{n}_{1} \cdot(1,1,0)+\mathrm{n}_{2} \cdot(0,1,0) \mid \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathbb{N}\right\} \cup$
$\left\{(1,0,0)+\mathrm{n}_{1} \cdot(1,1,1)+\mathrm{n}_{2} \cdot(1,0,0) \mid \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathbb{N}\right\}$
C) $\quad f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\max \left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ start with: (input) $\mathrm{X}_{1}, \mathrm{X}_{2}$

$$
\begin{aligned}
& g_{1}(x)=x_{1} \\
& g_{2}(x)=x_{2} \\
& \operatorname{dom} g_{1}=\left\{x_{1}>x_{2}\right\}
\end{aligned}
$$



$\left\{\mathrm{n}_{1} \cdot(1,1,1)+\mathrm{n}_{2} \cdot(1,0,1) \mid \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathbb{N}\right\}$

## Computing affine functions (by example)

$$
\begin{aligned}
& \text { General form: } w_{1} \ldots w_{d} \in \mathbb{Q} \text { and } b, c_{1}, \ldots, c_{d} \in \mathbb{N} \\
& g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b .
\end{aligned}
$$

## Computing affine functions (by example)

## linear: <br> $f(a, b, c)=2 a+(4 / 3) b-(5 / 6) c$

$$
\begin{aligned}
& \text { General form: } w_{1} \ldots w_{d} \in \mathbb{Q} \text { and } b, c_{1}, \ldots, c_{d} \in \mathbb{N} \\
& g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b .
\end{aligned}
$$

## Computing affine functions (by example)

```
linear:
f(a,b,c)=2a+(4/3)b-(5/6)c
 A->2Y
```

```
General form: }\mp@subsup{w}{1}{}\ldots..\mp@subsup{w}{d}{}\in\mathbb{Q}\mathrm{ and }b,\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{d}{}\in\mathbb{N
gi}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{d}{})=\mp@subsup{w}{1}{}\cdot(\mp@subsup{x}{1}{}-\mp@subsup{c}{1}{})+\ldots+\mp@subsup{w}{d}{}\cdot(\mp@subsup{x}{d}{}-\mp@subsup{c}{d}{})+b
```


## Computing affine functions (by example)

```
linear:
f(a,b,c)=2a+(4/3)b-(5/6)c
 A->2Y
 3B->4Y
```

```
General form: }\mp@subsup{w}{1}{}\ldots..\mp@subsup{w}{d}{}\in\mathbb{Q}\mathrm{ and }b,\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{d}{}\in\mathbb{N
gi}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{d}{})=\mp@subsup{w}{1}{}\cdot(\mp@subsup{x}{1}{}-\mp@subsup{c}{1}{})+\ldots+\mp@subsup{w}{d}{\prime}\cdot(\mp@subsup{x}{d}{}-\mp@subsup{c}{d}{})+b
```


## Computing affine functions (by example)

```
linear:
f(a,b,c)=2a+(4/3)b-(5/6)c
 A->2Y
 3B->4Y
 6C+5Y }->
```

```
General form: }\mp@subsup{w}{1}{}\ldots..\mp@subsup{w}{d}{}\in\mathbb{Q}\mathrm{ and }b,\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{d}{}\in\mathbb{N
gi}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{d}{})=\mp@subsup{w}{1}{}\cdot(\mp@subsup{x}{1}{}-\mp@subsup{c}{1}{})+\ldots+\mp@subsup{w}{d}{\prime}\cdot(\mp@subsup{x}{d}{}-\mp@subsup{c}{d}{})+b
```


## Computing affine functions (by example)

linear:

$$
\begin{gathered}
\overline{f(a, b, c)}=2 a+(4 / 3) b-(5 / 6) c \\
A \rightarrow 2 Y \\
3 B \rightarrow 4 Y \\
6 C+5 Y \rightarrow \varnothing
\end{gathered}
$$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.
add constant offset:
start with $1 L, a A^{\prime} s, b B^{\prime}$ s
$f(a, b)=2 a+3 b+4$

## Computing affine functions (by example)

linear:

$$
\begin{gathered}
\overline{f(a, b, c)}=2 a+(4 / 3) b-(5 / 6) c \\
A \rightarrow 2 Y \\
3 B \rightarrow 4 Y \\
6 C+5 Y \rightarrow \emptyset
\end{gathered}
$$

add constant offset:
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2 a+3 b+4$
$L \rightarrow 4 Y$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.

## Computing affine functions (by example)

```
linear:
f(a,b,c)=2a+(4/3)b-(5/6)c
 A->2Y
 3B->4Y
 6C+5Y }->
```

```
General form: }\mp@subsup{w}{1}{}\ldots..\mp@subsup{w}{d}{}\in\mathbb{Q}\mathrm{ and }b,\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{d}{}\in\mathbb{N
gi}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{d}{})=\mp@subsup{w}{1}{}\cdot(\mp@subsup{x}{1}{}-\mp@subsup{c}{1}{})+\ldots+\mp@subsup{w}{d}{\prime}\cdot(\mp@subsup{x}{d}{}-\mp@subsup{c}{d}{})+b
```

```
add constant offset:
start with 1L, a A's, b B's
f(a,b)=2a+3b+4
 L->4Y
 A->2Y
```


## Computing affine functions (by example)

```
linear:
f(a,b,c)=2a+(4/3)b-(5/6)c
 A->2Y
 3B->4Y
 6C+5Y }->
```

```
General form: }\mp@subsup{w}{1}{}\ldots..\mp@subsup{w}{d}{}\in\mathbb{Q}\mathrm{ and }b,\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{d}{}\in\mathbb{N
gi}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{d}{})=\mp@subsup{w}{1}{}\cdot(\mp@subsup{x}{1}{}-\mp@subsup{c}{1}{})+\ldots+\mp@subsup{w}{d}{\prime}\cdot(\mp@subsup{x}{d}{}-\mp@subsup{c}{d}{})+b
```

```
add constant offset:
start with 1L, a A's, b B's
f(a,b)=2a+3b+4
 L->4Y
 A->2Y
 B->3Y
```


## Computing affine functions (by example)

```
linear:
\(f(a, b, c)=2 a+(4 / 3) b-(5 / 6) c\)
 \(A \rightarrow 2 Y\)
 \(3 B \rightarrow 4 Y\)
 \(6 C+5 Y \rightarrow \varnothing\)
```

add constant offset:
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2 a+3 b+4$
$L \rightarrow 4 Y$
$A \rightarrow 2 Y$
$B \rightarrow 3 Y$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.
subtract constant offset $c_{i}$ from input $x_{i}$ :
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2(a-3)-(5 / 4)(b-1)+6$

## Computing affine functions (by example)

```
linear:
\(f(a, b, c)=2 a+(4 / 3) b-(5 / 6) c\)
 \(A \rightarrow 2 Y\)
 \(3 B \rightarrow 4 Y\)
 \(6 C+5 Y \rightarrow \varnothing\)
```

add constant offset:
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2 a+3 b+4$
$L \rightarrow 4 Y$
$A \rightarrow 2 Y$
$B \rightarrow 3 Y$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.
subtract constant offset $c_{i}$ from input $x_{i}$ :
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2(a-3)-(5 / 4)(b-1)+6$
$L \rightarrow 6 Y+L_{a 0}+L_{b 0} \quad$ create $d$ offset, and one leader for each input

## Computing affine functions (by example)

```
linear:
\(f(a, b, c)=2 a+(4 / 3) b-(5 / 6) c\)
 \(A \rightarrow 2 Y\)
 \(3 B \rightarrow 4 Y\)
 \(6 C+5 Y \rightarrow \varnothing\)
```

add constant offset:
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2 a+3 b+4$
$L \rightarrow 4 Y$
$A \rightarrow 2 Y$
$B \rightarrow 3 Y$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.
subtract constant offset $c_{i}$ from input $x_{i}$ :
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2(a-3)-(5 / 4)(b-1)+6$
$L \rightarrow 6 Y+L_{a 0}+L_{b 0} \quad$ create $d$ offset, and one leader for each input
$L_{a 0}+A \rightarrow L_{a 1}$ remove 3 copies of $A$
$L_{a 1}+A \rightarrow L_{a 2}$
$L_{a 2}+A \rightarrow L_{a 3}$

## Computing affine functions (by example)

```
linear:
\(f(a, b, c)=2 a+(4 / 3) b-(5 / 6) c\)
 \(A \rightarrow 2 Y\)
 \(3 B \rightarrow 4 Y\)
 \(6 C+5 Y \rightarrow \emptyset\)
```

add constant offset:
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2 a+3 b+4$
$L \rightarrow 4 Y$
$A \rightarrow 2 Y$
$B \rightarrow 3 Y$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.

```
subtract constant offset \mp@subsup{c}{i}{}}\mathrm{ from input }\mp@subsup{x}{i}{}\mathrm{ :
start with 1L, a A's, b B's
f(a,b)=2(a-3)-(5/4)(b-1)+6
L->6Y+\mp@subsup{L}{a0}{}+\mp@subsup{L}{b0}{}}\mathrm{ create d offset, and one leader for each input
La0}+A->\mp@subsup{L}{a1}{}\quad\mathrm{ remove 3 copies of A
L
La2}+A->\mp@subsup{L}{a3}{
La3}+A->\mp@subsup{L}{a3}{}+\mp@subsup{A}{}{\prime}\quad\mathrm{ convert remaining A to A'
```


## Computing affine functions (by example)

```
linear:
\(f(a, b, c)=2 a+(4 / 3) b-(5 / 6) c\)
 \(A \rightarrow 2 Y\)
 \(3 B \rightarrow 4 Y\)
 \(6 C+5 Y \rightarrow \emptyset\)
```

add constant offset:
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2 a+3 b+4$
$L \rightarrow 4 Y$
$A \rightarrow 2 Y$
$B \rightarrow 3 Y$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.

```
subtract constant offset \mp@subsup{c}{i}{}}\mathrm{ from input }\mp@subsup{x}{i}{}\mathrm{ :
start with 1L, a A's, b B's
f(a,b)=2(a-3) - (5/4)(b-1)+6
L->6Y+\mp@subsup{L}{a0}{}+\mp@subsup{L}{b0}{}}\mathrm{ create d offset, and one leader for each input
La0}+A->\mp@subsup{L}{a1}{}\quad\mathrm{ remove 3 copies of A
L
La2}+A->\mp@subsup{L}{a3}{
La3}+A->\mp@subsup{L}{a3}{}+\mp@subsup{A}{}{\prime}\quad\mathrm{ convert remaining A to A}\mp@subsup{A}{}{\prime
A'}->2Y\quadcompute 2(a-3) by doubling A'
```


## Computing affine functions (by example)

```
linear:
\(f(a, b, c)=2 a+(4 / 3) b-(5 / 6) c\)
 \(A \rightarrow 2 Y\)
 \(3 B \rightarrow 4 Y\)
 \(6 C+5 Y \rightarrow \emptyset\)
```

add constant offset:
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2 a+3 b+4$
$L \rightarrow 4 Y$

$$
\begin{array}{r}
A \rightarrow 2 Y \\
B \rightarrow 3 Y
\end{array}
$$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.
subtract constant offset $c_{i}$ from input $x_{i}$ :
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2(a-3)-(5 / 4)(b-1)+6$
$L \rightarrow 6 Y+L_{a 0}+L_{b 0} \quad$ create $d$ offset, and one leader for each input
$L_{a 0}+A \rightarrow L_{a 1} \quad$ remove 3 copies of $A$
$L_{a 1}+A \rightarrow L_{a 2}$
$L_{a 2}+A \rightarrow L_{a 3}$
$L_{a 3}+A \rightarrow L_{a 3}+A^{\prime} \quad$ convert remaining $A$ to $A^{\prime}$
$A^{\prime} \rightarrow 2 Y \quad$ compute 2(a-3) by doubling $A^{\prime}$
$L_{b 0}+B \rightarrow L_{b 1} \quad$ remove 1 copy of $B$
$L_{b 1}+B \rightarrow L_{b 1}+B^{\prime} \quad$ convert remaining $B$ to $B^{\prime}$

## Computing affine functions (by example)

```
linear:
\(f(a, b, c)=2 a+(4 / 3) b-(5 / 6) c\)
 \(A \rightarrow 2 Y\)
 \(3 B \rightarrow 4 Y\)
 \(6 C+5 Y \rightarrow \varnothing\)
```

add constant offset:
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2 a+3 b+4$
$L \rightarrow 4 Y$

$$
\begin{array}{r}
A \rightarrow 2 Y \\
B \rightarrow 3 Y
\end{array}
$$

General form: $w_{1} \ldots w_{d} \in \mathbb{Q}$ and $b, c_{1}, \ldots, c_{d} \in \mathbb{N}$ $g_{i}\left(x_{1}, \ldots, x_{d}\right)=w_{1} \cdot\left(x_{1}-c_{1}\right)+\ldots+w_{d} \cdot\left(x_{d}-c_{d}\right)+b$.
subtract constant offset $c_{i}$ from input $x_{i}$ :
start with $1 L$, $a$ A's, $b$ B's
$f(a, b)=2(a-3)-(5 / 4)(b-1)+6$
$L \rightarrow 6 Y+L_{a 0}+L_{b 0} \quad$ create $d$ offset, and one leader for each input
$L_{a 0}+A \rightarrow L_{a 1} \quad$ remove 3 copies of $A$
$L_{a 1}+A \rightarrow L_{a 2}$
$L_{a 2}+A \rightarrow L_{a 3}$
$L_{a 3}+A \rightarrow L_{a 3}+A^{\prime} \quad$ convert remaining $A$ to $A^{\prime}$
$A^{\prime} \rightarrow 2 Y \quad$ compute 2(a-3) by doubling $A^{\prime}$
$L_{b 0}+B \rightarrow L_{b 1} \quad$ remove 1 copy of $B$
$L_{b 1}+B \rightarrow L_{b 1}+B^{\prime} \quad$ convert remaining $B$ to $B^{\prime}$
$4 B^{\prime}+5 Y \rightarrow \emptyset \quad$ compute $(-5 / 4)(b-1)$ on $B^{\prime}$

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

- in parallel means: split each input species $A$ via reaction $A \rightarrow A_{1}+A_{2}+\ldots$, where $A_{i}$ is used as input for computing $g_{i}$.


## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

- in parallel means: split each input species $A$ via reaction $A \rightarrow A_{1}+A_{2}+\ldots$, where $A_{i}$ is used as input for computing $g_{i}$.

2. Also in parallel, for each domain dom $g_{i}$, compute the predicate $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?].

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

- in parallel means: split each input species $A$ via reaction $A \rightarrow A_{1}+A_{2}+\ldots$, where $A_{i}$ is used as input for computing $g_{i}$.

2. Also in parallel, for each domain dom $g_{i}$, compute the predicate $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?].
3. Yes-voters $T_{i}$ and no-voters $F_{i}$ for $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?] do:

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

- in parallel means: split each input species $A$ via reaction $A \rightarrow A_{1}+A_{2}+\ldots$, where $A_{i}$ is used as input for computing $g_{i}$.

2. Also in parallel, for each domain dom $g_{i}$, compute the predicate $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?].
3. Yes-voters $T_{i}$ and no-voters $F_{i}$ for $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?] do:
4. $T_{i}+Y_{i} \rightarrow T_{i}+Y+\hat{Y}_{i}$
convert $g_{i}$ 's output $Y_{i}$ to "global" output $Y$

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

- in parallel means: split each input species $A$ via reaction $A \rightarrow A_{1}+A_{2}+\ldots$, where $A_{i}$ is used as input for computing $g_{i}$.

2. Also in parallel, for each domain dom $g_{i}$, compute the predicate $\left[\mathbf{x} \in\right.$ dom $g_{i}$ ?].
3. Yes-voters $T_{i}$ and no-voters $F_{i}$ for $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?] do:
4. $T_{i}+Y_{i} \rightarrow T_{i}+Y+\hat{Y}_{i}$
convert $g_{i}$ 's output $Y_{i}$ to "global" output $Y$
5. $F_{i}+Y+\hat{Y}_{i} \rightarrow F_{i}+Y_{i}$
convert back

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

Question 1: what's the point of species $\hat{Y}_{i}$ ?

- in parallel means: split each input species $A$ via reaction $A \rightarrow A_{1}+A_{2}+\ldots$, where $A_{i}$ is used as input for computing $g_{i}$.

2. Also in parallel, for each domain dom $g_{i}$, compute the predicate $\left[\mathbf{x} \in\right.$ dom $g_{i}$ ?].
3. Yes-voters $T_{i}$ and no-voters $F_{i}$ for $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?] do:
4. $T_{i}+Y_{i} \rightarrow T_{i}+Y+\hat{Y}_{i}$
convert $g_{i}$ 's output $Y_{i}$ to "global" output $Y$
5. $F_{i}+Y+\hat{Y}_{i} \rightarrow F_{i}+Y_{i}$
convert back

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

- in parallel means: split each input species $A$ via reaction $A \rightarrow A_{1}+A_{2}+\ldots$, where $A_{i}$ is used as input for computing $g_{i}$.

2. Also in parallel, for each domain dom $g_{i}$, compute the predicate $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?].
3. Yes-voters $T_{i}$ and no-voters $F_{i}$ for $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?] do:
4. $T_{i}+Y_{i} \rightarrow T_{i}+Y+\hat{Y}_{i}$
convert $g_{i}$ 's output $Y_{i}$ to "global" output $Y$
5. $F_{i}+Y+\hat{Y}_{i} \rightarrow F_{i}+Y_{i}$ convert back

Question 1: what's the point of species $\hat{Y}_{i}$ ?

Question 2: Something else doesn't work as described... what is it?

## Combining all affine function computations

Theorem: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then some CRN stably computes $f$.

Lemma: If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is a semilinear function, then it is piecewise affine: a finite union of partial affine functions $g_{i}: \mathbb{N}^{d} \rightarrow \mathbb{N}$.

Furthermore, each "piece" dom $g_{i}$ is a linear set.

## Proof sketch:

1. To compute whole semilinear function $f$, compute all these affine functions $g_{i}$ in parallel, storing output of $g_{i}$ in species $Y_{i}$.

- in parallel means: split each input species $A$ via reaction $A \rightarrow A_{1}+A_{2}+\ldots$, where $A_{i}$ is used as input for computing $g_{i}$.

2. Also in parallel, for each domain dom $g_{i}$, compute the predicate $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?].
3. Yes-voters $T_{i}$ and no-voters $F_{i}$ for $\left[\mathbf{x} \in \operatorname{dom} g_{i}\right.$ ?] do:
4. $T_{i}+Y_{i} \rightarrow T_{i}+Y+\hat{Y}_{i}$
convert $g_{i}$ 's output $Y_{i}$ to "global" output $Y$
5. $F_{i}+Y+\hat{Y}_{i} \rightarrow F_{i}+Y_{i}$
convert back

Question 1: what's the point of species $\hat{Y}_{i}$ ?

Question 2: Something else doesn't work as described... what is it?

Answer 2: Consuming $Y_{i}$ can disrupt computation of $g_{i}$.
Can be solved using dual-rail encoding. (not shown)

# Limits of stable computation 

Non-semilinear functions/predicates cannot be stably computed by CRNs

## Impossibility of stably deciding nonsemilinear sets

Theorem: Every stably decidable set $X \subseteq \mathbb{N}^{d}$ is semilinear.

## Impossibility of stably deciding nonsemilinear sets

Theorem: Every stably decidable set $X \subseteq \mathbb{N}^{d}$ is semilinear.

We won't prove this in full generality, but we will prove the simpler corollary that the "squaring set" $X=\left\{(a, b) \in \mathbb{N}^{2} \mid a^{2}=b\right\}$ is not stably decidable.

To start, we use the above theorem to prove the following:

## Impossibility of stably deciding nonsemilinear sets

Theorem: Every stably decidable set $X \subseteq \mathbb{N}^{d}$ is semilinear.

We won't prove this in full generality, but we will prove the simpler corollary that the "squaring set" $X=\left\{(a, b) \in \mathbb{N}^{2} \mid a^{2}=b\right\}$ is not stably decidable.

To start, we use the above theorem to prove the following:

Theorem: Every stably computable function $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is semilinear.

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to D's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to D's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.
5. Solution: we introduce two new species $Y_{p}$ and $Y_{C}$ representing $\# Y$ that are only produced by $C$, never consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: $\# Y=\# Y_{P}-\# Y_{C}$

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to $D$ 's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.
5. Solution: we introduce two new species $Y_{P}$ and $Y_{C}$ representing $\# Y$ that are only produced by $C$, never consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: $\# Y=\# Y_{P}-\# Y_{C}$
6. For each reaction in $C$ changing the count of output $Y$, add $Y_{p}$ or $Y_{C}$ as products to track the change:

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to D's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.
5. Solution: we introduce two new species $Y_{p}$ and $Y_{C}$ representing $\# Y$ that are only produced by $C$, never consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: $\# Y=\# Y_{P}-\# Y_{C}$
6. For each reaction in $C$ changing the count of output $Y$, add $Y_{p}$ or $Y_{C}$ as products to track the change:

- $X \rightarrow Z+2 Y$ becomes $X \rightarrow Z+2 Y+2 Y_{p} \quad$ since there are net $2 Y$ 's produced


## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to D's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.
5. Solution: we introduce two new species $Y_{P}$ and $Y_{C}$ representing $\# Y$ that are only produced by $C$, never consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: $\# Y=\# Y_{P}-\# Y_{C}$
6. For each reaction in $C$ changing the count of output $Y$, add $Y_{p}$ or $Y_{C}$ as products to track the change:

- $X \rightarrow Z+2 Y$ becomes $X \rightarrow Z+2 Y+2 Y_{p} \quad$ since there are net $2 Y$ 's produced
- $X+6 Y \rightarrow 2 Y$ becomes $X+6 Y \rightarrow 2 Y+4 Y_{C} \quad$ since there are net $4 Y^{\prime}$ s consumed


## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to D's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.
5. Solution: we introduce two new species $Y_{p}$ and $Y_{C}$ representing $\# Y$ that are only produced by $C$, never consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: \#Y=\#Y$Y_{p}-\# Y_{C}$
6. For each reaction in $C$ changing the count of output $Y$, add $Y_{p}$ or $Y_{C}$ as products to track the change:

- $X \rightarrow Z+2 Y$ becomes $X \rightarrow Z+2 Y+2 Y_{p} \quad$ since there are net $2 Y$ 's produced
- $X+6 Y \rightarrow 2 Y$ becomes $X+6 Y \rightarrow 2 Y+4 Y_{c} \quad$ since there are net $4 Y$ 's consumed

5. For concreteness, assume $k=1$.

- CRN $D$ deciding $\operatorname{graph}(f)$ has 2 input species. The first is $A$. Let the second input species be $Y_{c}$.


## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to D's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.
5. Solution: we introduce two new species $Y_{P}$ and $Y_{C}$ representing $\# Y$ that are only produced by $C$, never consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: \#Y=\#Y$Y_{p}-\# Y_{C}$
6. For each reaction in $C$ changing the count of output $Y$, add $Y_{p}$ or $Y_{C}$ as products to track the change:

- $X \rightarrow Z+2 Y$ becomes $X \rightarrow Z+2 Y+2 Y_{p} \quad$ since there are net $2 Y$ 's produced
- $X+6 Y \rightarrow 2 Y \quad$ becomes $\quad X+6 Y \rightarrow 2 Y+4 Y_{C} \quad$ since there are net $4 Y$ 's consumed

5. For concreteness, assume $k=1$.

- CRN $D$ deciding graph $(f)$ has 2 input species. The first is $A$. Let the second input species be $Y_{c}$.

6. Since $C$ stably computes $f$, eventually $f$ (initial \#A) more $Y_{p}$ are produced than $Y_{C}$.

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to D's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.
5. Solution: we introduce two new species $Y_{p}$ and $Y_{C}$ representing $\# Y$ that are only produced by $C$, never consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: $\# Y=\# Y_{P}-\# Y_{C}$
6. For each reaction in $C$ changing the count of output $Y$, add $Y_{p}$ or $Y_{C}$ as products to track the change:

- $X \rightarrow Z+2 Y$ becomes $X \rightarrow Z+2 Y+2 Y_{p} \quad$ since there are net $2 Y$ 's produced
- $X+6 Y \rightarrow 2 Y$ becomes $X+6 Y \rightarrow 2 Y+4 Y_{c} \quad$ since there are net $4 Y$ 's consumed

5. For concreteness, assume $k=1$.

- CRN $D$ deciding graph $(f)$ has 2 input species. The first is $A$. Let the second input species be $Y_{C}$.

6. Since $C$ stably computes $f$, eventually $f$ (initial \#A) more $Y_{p}$ are produced than $Y_{c}$.
7. If and only if initially $f(\# A)=\# Y_{c}$, then eventually $\# Y_{p}=\# Y_{c}$.

## Impossibility of stably computing non-semilinear functions

Theorem: Every stably computable function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is semilinear.

## Proof:

1. Let $C$ be a CRN stably computing $f$.
2. We convert $C$ to a CRN $D$ stably deciding $\operatorname{graph}(f)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}, y\right) \in \mathbb{N}^{k+1} \mid f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=y\right\}$.
3. Then $\operatorname{graph}(f)$ must be semilinear, since a CRN stably decides it. (By first theorem on previous slide.)
4. Key challenge: $D$ will run $C$ with $D$ 's first $k$ inputs. But $D$ has to test the count of $C$ 's output $Y$ to compare it to D's last input, without consuming $Y$, since consuming $Y$ could disrupt the correctness of $C$.
5. Solution: we introduce two new species $Y_{p}$ and $Y_{C}$ representing $\# Y$ that are only produced by $C$, never consumed, so we are free to add reactions consuming them. This is called dual-rail encoding: $\# Y=\# Y_{P}-\# Y_{C}$
6. For each reaction in $C$ changing the count of output $Y$, add $Y_{p}$ or $Y_{C}$ as products to track the change:

- $X \rightarrow Z+2 Y$ becomes $X \rightarrow Z+2 Y+2 Y_{p} \quad$ since there are net $2 Y$ 's produced
- $X+6 Y \rightarrow 2 Y$ becomes $X+6 Y \rightarrow 2 Y+4 Y_{C} \quad$ since there are net $4 Y^{\prime}$ s consumed

5. For concreteness, assume $k=1$.

- CRN $D$ deciding graph $(f)$ has 2 input species. The first is $A$. Let the second input species be $Y_{c}$.

6. Since $C$ stably computes $f$, eventually $f$ (initial \#A) more $Y_{p}$ are produced than $Y_{c}$.
7. If and only if initially $f(\# A)=\# Y_{c}$, then eventually $\# Y_{p}=\# Y_{c}$.
8. Add reactions to test for equality between $\# Y_{p}$ and $\# Y_{C}$. (not shown, but easy)

## Impossibility of stably deciding a non-semilinear set

## goal:

Theorem: The "squaring set" $S=\left\{(x, y) \in \mathbb{N}^{2} \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Additivity, nondecreasing sequences, minimal elements

Observation: Reachability is additive: if $\mathbf{c} \Rightarrow \mathbf{d}$, then for all $\mathbf{e} \in \mathbb{N}^{d}, \mathbf{c}+\mathbf{e} \Rightarrow \mathbf{d}+\mathbf{e}$, i.e., the presence of extra molecules e cannot prevent reactions from being applicable.

## Additivity, nondecreasing sequences, minimal elements

Observation: Reachability is additive: if $\mathbf{c} \Rightarrow \mathbf{d}$, then for all $\mathbf{e} \in \mathbb{N}^{d}, \mathbf{c}+\mathbf{e} \Rightarrow \mathbf{d}+\mathbf{e}$, i.e., the presence of extra molecules e cannot prevent reactions from being applicable.

Definition: An infinite sequence of vectors $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots$ is nondecreasing if $\mathbf{c}_{i} \leq \mathbf{c}_{i+1}$ for all $i .\left(\mathbf{c}_{i} \leq \mathbf{c}_{i+1}\right.$ means $\mathbf{c}_{i}(S) \leq \mathbf{c}_{i+1}(S)$ for all species $\left.S\right)$

## Additivity, nondecreasing sequences, minimal elements

Observation: Reachability is additive: if $\mathbf{c} \Rightarrow \mathbf{d}$, then for all $\mathbf{e} \in \mathbb{N}^{d}, \mathbf{c}+\mathbf{e} \Rightarrow d+\mathbf{e}$, i.e., the presence of extra molecules e cannot prevent reactions from being applicable.

Definition: An infinite sequence of vectors $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots$ is nondecreasing if $\mathbf{c}_{i} \leq \mathbf{c}_{i+1}$ for all $i$. $\mathbf{c}_{i} \leq \mathbf{c}_{i+1}$ means $\mathrm{c}_{i}(S) \leq \mathrm{c}_{i+1}(S)$ for all species $\left.S\right)$

Definition: Given $A \subseteq \mathbb{N}^{d}$, we say $\mathbf{y} \in A$ is minimal if, for all $\mathbf{x} \in A, \mathbf{x} \leq \mathbf{y}$ implies $\mathbf{x}=\mathbf{y}$, i.e., nothing in $A$ is strictly smaller than $\mathbf{y}$. Let $\min (A)=$ minimal elements of $A$.


## All vectors have a minimal vector under them

Observation: For all $\mathbf{x} \in A$, there is a minimal vector $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.

## All vectors have a minimal vector under them

Observation: For all $\mathbf{x} \in A$, there is a minimal vector $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.

## Proof:

1. If $\mathbf{x} \in \min (A)$ then we're done.

## All vectors have a minimal vector under them

Observation: For all $\mathbf{x} \in A$, there is a minimal vector $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.

## Proof:

1. If $\mathbf{x} \in \min (A)$ then we're done.
2. Otherwise, since $\mathbf{x} \notin \min (A)$, there is $\mathbf{x}_{1} \in A$ such that $\mathbf{x}_{1}<\mathbf{x}$.

## All vectors have a minimal vector under them

Observation: For all $\mathbf{x} \in A$, there is a minimal vector $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.

## Proof:

1. If $\mathbf{x} \in \min (A)$ then we're done.
2. Otherwise, since $\mathbf{x} \notin \min (A)$, there is $\mathbf{x}_{1} \in A$ such that $\mathbf{x}_{1}<\mathbf{x}$.
3. If $\mathbf{x}_{1} \in \min (A)$ then we're done since $\mathbf{x}_{1} \leq \mathbf{x}$.

## All vectors have a minimal vector under them

Observation: For all $\mathbf{x} \in A$, there is a minimal vector $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.

## Proof:

1. If $\mathbf{x} \in \min (A)$ then we're done.
2. Otherwise, since $\mathbf{x} \notin \min (A)$, there is $\mathbf{x}_{1} \in A$ such that $\mathbf{x}_{1}<\mathbf{x}$.
3. If $\mathbf{x}_{1} \in \min (A)$ then we're done since $\mathbf{x}_{1} \leq \mathbf{x}$.
4. Otherwise, since $\mathbf{x}_{1} \notin \min (A)$, there is $x_{2} \in A$ such that $\mathbf{x}_{2}<\mathbf{x}_{1}$.

## All vectors have a minimal vector under them

Observation: For all $\mathbf{x} \in A$, there is a minimal vector $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.

## Proof:

1. If $\mathbf{x} \in \min (A)$ then we're done.
2. Otherwise, since $\mathbf{x} \notin \min (A)$, there is $\mathbf{x}_{1} \in A$ such that $\mathbf{x}_{1}<\mathbf{x}$.
3. If $\mathbf{x}_{1} \in \min (A)$ then we're done since $\mathbf{x}_{1} \leq \mathbf{x}$.
4. Otherwise, since $\mathbf{x}_{1} \notin \min (A)$, there is $x_{2} \in A$ such that $\mathbf{x}_{2}<\mathbf{x}_{1}$.
5. ...
6. Since there are only a finite number of $\mathbf{y}$ in $\mathbb{N}^{d}$ such that $\mathbf{y}<\mathbf{x}$, this process must terminate with a minimal vector $\boldsymbol{m} \in \min (A)$. QED

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

Proof:

1. We'll show condition (1) by induction on $d$.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.
5. First element of subsequence is $y_{0}=x_{0}$.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.
5. First element of subsequence is $y_{0}=x_{0}$.
6. Assuming we have finite increasing subsequence $y_{0}<y_{1}<\ldots<y_{k-1}$, let $x_{j}$ be last occurrence of any integer $\leq y_{k-1}$ in original sequence $x_{0}, x_{1}, \ldots$, and let $y_{k}=x_{j+1}$, e.g., $2,1,0,3,2,1,4,3,2,5,4,3,6,5,4,7,6,5,8,7,6,9,8,7,10,9,8,11,10,9 \ldots$

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.
5. First element of subsequence is $y_{0}=x_{0}$.
6. Assuming we have finite increasing subsequence $y_{0}<y_{1}<\ldots<y_{k-1}$, let $x_{j}$ be last occurrence of any integer $\leq y_{k-1}$ in original sequence $x_{0}, x_{1}, \ldots$, and let $y_{k}=x_{j+1}$, e.g., $2,1,0,3,2,1,4,3,2,5,4,3,6,5,4,7,6,5,8,7,6,9,8,7,10,9,8,11,10,9 \ldots$
7. Inductive case $d>1$ :

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.
5. First element of subsequence is $y_{0}=x_{0}$.
6. Assuming we have finite increasing subsequence $y_{0}<y_{1}<\ldots<y_{k-1}$, let $x_{j}$ be last occurrence of any integer $\leq y_{k-1}$ in original sequence $x_{0}, x_{1}, \ldots$, and let $y_{k}=x_{j+1}$, e.g., $2,1,0,3,2,1,4,3,2,5,4,3,6,5,4,7,6,5,8,7,6,9,8,7,10,9,8,11,10,9 \ldots$
7. Inductive case $d>1$ :
8. Inductively pick infinite subsequence $X^{\prime}$ such that the length-( $d-1$ ) prefix vectors are nondecreasing.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.
5. First element of subsequence is $y_{0}=x_{0}$.
6. Assuming we have finite increasing subsequence $y_{0}<y_{1}<\ldots<y_{k-1}$, let $x_{j}$ be last occurrence of any integer $\leq y_{k-1}$ in original sequence $x_{0}, x_{1}, \ldots$, and let $y_{k}=x_{j+1}$, e.g., $2,1,0,3,2,1,4,3,2,5,4,3,6,5,4,7,6,5,8,7,6,9,8,7,10,9,8,11,10,9 \ldots$
7. Inductive case $d>1$ :
8. Inductively pick infinite subsequence $X^{\prime}$ such that the length-( $d-1$ ) prefix vectors are nondecreasing.
9. Pick an infinite subsequence of $X^{\prime}$ such that the $d^{\prime}$ th elements are also nondecreasing, as in base case.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.
5. First element of subsequence is $y_{0}=x_{0}$.
6. Assuming we have finite increasing subsequence $y_{0}<y_{1}<\ldots<y_{k-1}$, let $x_{j}$ be last occurrence of any integer $\leq y_{k-1}$ in original sequence $x_{0}, x_{1}, \ldots$, and let $y_{k}=x_{j+1}$, e.g., $2,1,0,3,2,1,4,3,2,5,4,3,6,5,4,7,6,5,8,7,6,9,8,7,10,9,8,11,10,9 \ldots$
7. Inductive case $d>1$ :
8. Inductively pick infinite subsequence $X^{\prime}$ such that the length-( $d-1$ ) prefix vectors are nondecreasing.
9. Pick an infinite subsequence of $X^{\prime}$ such that the $d^{\prime}$ th elements are also nondecreasing, as in base case.
10. For condition (2), suppose that $\min (A)$ is infinite; put them in any order to make an infinite sequence.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.
5. First element of subsequence is $y_{0}=x_{0}$.
6. Assuming we have finite increasing subsequence $y_{0}<y_{1}<\ldots<y_{k-1}$, let $x_{j}$ be last occurrence of any integer $\leq y_{k-1}$ in original sequence $x_{0}, x_{1}, \ldots$, and let $y_{k}=x_{j+1}$, e.g., $2,1,0,3,2,1,4,3,2,5,4,3,6,5,4,7,6,5,8,7,6,9,8,7,10,9,8,11,10,9 \ldots$
7. Inductive case $d>1$ :
8. Inductively pick infinite subsequence $X^{\prime}$ such that the length-( $d-1$ ) prefix vectors are nondecreasing.
9. Pick an infinite subsequence of $X^{\prime}$ such that the $d^{\prime}$ th elements are also nondecreasing, as in base case.
10. For condition (2), suppose that $\min (A)$ is infinite; put them in any order to make an infinite sequence.
11. By first condition, there's an infinite nondecreasing subsequence $\boldsymbol{m}_{1} \leq \mathrm{m}_{2} \leq \ldots$ of distinct vectors in $\min (A)$.

## Dickson's Lemma: Nondecreasing subsequences

Dickson's Lemma: (1) Every infinite sequence ( $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ ) of vectors in $\mathbb{N}^{d}$ has an infinite nondecreasing subsequence, and (2) every set $A \subseteq \mathbb{N}^{d}$ has a finite number of minimal elements.

## Proof:

1. We'll show condition (1) by induction on $d$.
2. Base case $d=1$ : Let $X=x_{0}, x_{1}, \ldots$ be an infinite sequence of nonnegative integers.
3. case 1 : some $x \in \mathbb{N}$ appears infinitely often. Let the subsequence be ( $x, x, \ldots$ ), e.g. $1,1,5,3,4,3,4,3,4,3,4,3,4,3,4,3,4, \ldots$
4. case 2 : every $x \in \mathbb{N}$ appears finitely many times.
5. First element of subsequence is $y_{0}=x_{0}$.
6. Assuming we have finite increasing subsequence $y_{0}<y_{1}<\ldots<y_{k-1}$, let $x_{j}$ be last occurrence of any integer $\leq y_{k-1}$ in original sequence $x_{0}, x_{1}, \ldots$, and let $y_{k}=x_{j+1}$, e.g., $2,1,0,3,2,1,4,3,2,5,4,3,6,5,4,7,6,5,8,7,6,9,8,7,10,9,8,11,10,9 \ldots$
7. Inductive case $d>1$ :
8. Inductively pick infinite subsequence $X^{\prime}$ such that the length-( $d-1$ ) prefix vectors are nondecreasing.
9. Pick an infinite subsequence of $X^{\prime}$ such that the $d^{\prime}$ th elements are also nondecreasing, as in base case.
10. For condition (2), suppose that $\min (A)$ is infinite; put them in any order to make an infinite sequence.
11. By first condition, there's an infinite nondecreasing subsequence $m_{1} \leq m_{2} \leq \ldots$ of distinct vectors in $\min (A)$.
12. Since they are distinct, $\mathbf{m}_{1}<\mathbf{m}_{2}<\ldots$, but $\mathbf{m}_{1}<\mathbf{m}_{2}$ contradicts the minimality of $\boldsymbol{m}_{2}$. QED

## Properties of stable configurations

- For convenience, assume every species votes.


## Properties of stable configurations

- For convenience, assume every species votes.
- Thus a stable YES-output configuration o with output $\varphi(0)=$ YES is one in which, for all $\mathbf{o}^{\prime} \in \operatorname{Reach}(\mathbf{0})$, all NO voters are absent from $\mathbf{o}^{\prime}$. (Similarly for stable NO-output.)


## Properties of stable configurations

- For convenience, assume every species votes.
- Thus a stable YES-output configuration o with output $\varphi(0)=$ YES is one in which, for all $\mathbf{o}^{\prime} \in \operatorname{Reach}(\mathbf{0})$, all NO voters are absent from $\mathbf{o}^{\prime}$. (Similarly for stable NO-output.)
- Conversely, an unstable configuration $\mathbf{c}$ is one in which at least one of the following holds:


## Properties of stable configurations

- For convenience, assume every species votes.
- Thus a stable YES-output configuration o with output $\varphi(0)=$ YES is one in which, for all $\mathbf{o}^{\prime} \in$ Reach $(\mathbf{0})$, all NO voters are absent from $\mathbf{o}^{\prime}$. (Similarly for stable NO-output.)
- Conversely, an unstable configuration $\mathbf{c}$ is one in which at least one of the following holds:
- YES and NO voters both exist already in c (output undefined)


## Properties of stable configurations

- For convenience, assume every species votes.
- Thus a stable YES-output configuration o with output $\varphi(0)=$ YES is one in which, for all $\mathbf{o}^{\prime} \in$ Reach $(0)$, all NO voters are absent from $\mathbf{o}^{\prime}$. (Similarly for stable NO-output.)
- Conversely, an unstable configuration $\mathbf{c}$ is one in which at least one of the following holds:
- YES and NO voters both exist already in c (output undefined)
- Only YES voters exist, but a NO voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.


## Properties of stable configurations

- For convenience, assume every species votes.
- Thus a stable YES-output configuration $\mathbf{o}$ with output $\varphi(\mathbf{0})=$ YES is one in which, for all $\mathbf{o}^{\prime} \in \operatorname{Reach}(\mathbf{o})$, all NO voters are absent from o'. (Similarly for stable NO-output.)
- Conversely, an unstable configuration $\mathbf{c}$ is one in which at least one of the following holds:
- YES and NO voters both exist already in c (output undefined)
- Only YES voters exist, but a NO voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.
- Only NO voters exist, but a YES voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.


## Properties of stable configurations

- For convenience, assume every species votes.
- Thus a stable YES-output configuration $\mathbf{o}$ with output $\varphi(\mathbf{0})=$ YES is one in which, for all $\mathbf{o}^{\prime} \in \operatorname{Reach}(\mathbf{o})$, all NO voters are absent from o'. (Similarly for stable NO-output.)
- Conversely, an unstable configuration $\mathbf{c}$ is one in which at least one of the following holds:
- YES and NO voters both exist already in c (output undefined)
- Only YES voters exist, but a NO voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.
- Only NO voters exist, but a YES voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.
- By additivity, for all $\boldsymbol{\delta} \in \mathbb{N}^{d}, \mathbf{c}+\boldsymbol{\delta}$ is unstable as well, since $\mathbf{c}^{\prime}+\boldsymbol{\delta} \in \operatorname{Reach}(\mathbf{c}+\boldsymbol{\delta})$ (since $\boldsymbol{c}^{\prime}$ has the contradictory voter, so does $\left.\boldsymbol{c}^{\prime}+\boldsymbol{\delta}\right)$, leading to the following observation:


## Properties of stable configurations

- For convenience, assume every species votes.
- Thus a stable YES-output configuration $\mathbf{o}$ with output $\varphi(\mathbf{0})=$ YES is one in which, for all $\mathbf{o}^{\prime} \in \operatorname{Reach}(\mathbf{0})$, all NO voters are absent from $\mathbf{o}^{\prime}$. (Similarly for stable NO-output.)
- Conversely, an unstable configuration $\mathbf{c}$ is one in which at least one of the following holds:
- YES and NO voters both exist already in c (output undefined)
- Only YES voters exist, but a NO voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.
- Only NO voters exist, but a YES voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.
- By additivity, for all $\boldsymbol{\delta} \in \mathbb{N}^{d}, \mathbf{c}+\boldsymbol{\delta}$ is unstable as well, since $\mathbf{c}^{\prime}+\boldsymbol{\delta} \in \operatorname{Reach}(\mathbf{c}+\boldsymbol{\delta})$ (since $\boldsymbol{c}^{\prime}$ has the contradictory voter, so does $\left.\boldsymbol{c}^{\prime}+\boldsymbol{\delta}\right)$, leading to the following observation:

Observation: The unstable configurations are closed upwards: for all unstable $\mathbf{c}$ and all $\mathbf{d} \geq \mathbf{c}, \mathbf{d}$ is also unstable.

## Properties of stable configurations

- For convenience, assume every species votes.
- Thus a stable YES-output configuration $\mathbf{o}$ with output $\varphi(\mathbf{0})=$ YES is one in which, for all $\mathbf{o}^{\prime} \in \operatorname{Reach}(\mathbf{0})$, all NO voters are absent from $\mathbf{o}^{\prime}$. (Similarly for stable NO-output.)
- Conversely, an unstable configuration $\mathbf{c}$ is one in which at least one of the following holds:
- YES and NO voters both exist already in c (output undefined)
- Only YES voters exist, but a NO voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.
- Only NO voters exist, but a YES voter is producible in some $\mathbf{c}^{\prime} \in \operatorname{Reach}(\mathbf{c})$.
- By additivity, for all $\boldsymbol{\delta} \in \mathbb{N}^{d}, \mathbf{c}+\boldsymbol{\delta}$ is unstable as well, since $\mathbf{c}^{\prime}+\boldsymbol{\delta} \in \operatorname{Reach}(\mathbf{c}+\boldsymbol{\delta})$ (since $\boldsymbol{c}^{\prime}$ has the contradictory voter, so does $\left.\boldsymbol{c}^{\prime}+\boldsymbol{\delta}\right)$, leading to the following observation:

Observation: The unstable configurations are closed upwards: for all unstable $\mathbf{c}$ and all $\mathbf{d} \geq \mathbf{c}, \mathbf{d}$ is also unstable.

Corollary: The stable configurations are closed downwards:
for all stable $\mathbf{c}$ and all $\mathbf{b} \leq \mathbf{c}, \boldsymbol{b}$ is also stable.

## Upper cones

Definition: For all $\mathbf{c} \in \mathbb{N}^{d}$, let $\nabla(\mathbf{c})=\left\{\mathbf{d} \in \mathbb{N}^{d} \mid \mathbf{c} \leq \mathbf{d}\right\}$ denote the upper cone of $\mathbf{c}$.

## Upper cones

Definition: For all $\mathbf{c} \in \mathbb{N}^{d}$, let $\nabla(\mathbf{c})=\left\{\mathbf{d} \in \mathbb{N}^{d} \mid \mathbf{c} \leq \mathbf{d}\right\}$ denote the upper cone of $\mathbf{c}$.


Observation (reworded from previous slide): For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, d is also unstable.

## Set of unstable configurations is finite union of cones

## Recall: <br> Observation 1: Unstable configs are closed upwards: For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, $\mathbf{d}$ is also unstable.

Observation 2: For all $x \in A$, there is a minimal $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.

## Set of unstable configurations is finite union of cones

## Recall: <br> Observation 1: Unstable configs are closed upwards: For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, $\mathbf{d}$ is also unstable.

Lemma: Let $U$ be the set of unstable configurations. Then $U=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. ( $U$ is a finite union of cones.)

Observation 2: For all $x \in A$, there is a minimal $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.


## Set of unstable configurations is finite union of cones

## Recall:

Observation 1: Unstable configs are closed upwards: For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, $\mathbf{d}$ is also unstable.

Lemma: Let $U$ be the set of unstable configurations. Then $U=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. ( $U$ is a finite union of cones.)

## Proof:

1. Let $C=\bigcup_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. Need to show $C=U$.

Observation 2: For all $\mathbf{x} \in A$, there is a minimal $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.


## Set of unstable configurations is finite union of cones

Recall:
Observation 1: Unstable configs are closed upwards:
For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, $\mathbf{d}$ is also unstable.

Lemma: Let $U$ be the set of unstable configurations. Then $U=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. ( $U$ is a finite union of cones.)

## Proof:

1. Let $C=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. Need to show $C=U$.
2. To see that $C \subseteq U$, let $\mathbf{x} \in C$, i.e., $\mathbf{x} \in \nabla(\mathbf{m})$ for some $\mathbf{m} \in \min (U)$.

Observation 2: For all $\mathbf{x} \in A$, there is a minimal $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.

## Set of unstable configurations is finite union of cones

Recall:
Observation 1: Unstable configs are closed upwards:
For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, $\mathbf{d}$ is also unstable.

Lemma: Let $U$ be the set of unstable configurations. Then $U=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. ( $U$ is a finite union of cones.)

## Proof:

1. Let $C=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. Need to show $C=U$.
2. To see that $C \subseteq U$, let $\mathbf{x} \in C$, i.e., $\mathbf{x} \in \nabla(\mathbf{m})$ for some $\mathbf{m} \in \min (U)$.
3. By Observation 1 , since $m \in U$, also $\mathbf{x} \in U$, so $C \subseteq U$.

Observation 2: For all $\mathbf{x} \in A$, there is a minimal $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.


## Set of unstable configurations is finite union of cones

Recall:
Observation 1: Unstable configs are closed upwards:
For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, $\mathbf{d}$ is also unstable.

Lemma: Let $U$ be the set of unstable configurations. Then $U=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. ( $U$ is a finite union of cones.)

## Proof:

1. Let $C=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. Need to show $C=U$.
2. To see that $C \subseteq U$, let $\mathbf{x} \in C$, i.e., $\mathbf{x} \in \nabla(\mathbf{m})$ for some $\mathbf{m} \in \min (U)$.
3. By Observation 1 , since $m \in U$, also $\mathbf{x} \in U$, so $C \subseteq U$.
4. To see that $U \subseteq C$, let $\mathbf{x} \in U$.

Observation 2: For all $\mathbf{x} \in A$, there is a minimal $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.


## Set of unstable configurations is finite union of cones

Recall:
Observation 1: Unstable configs are closed upwards:
For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, $\mathbf{d}$ is also unstable.

Lemma: Let $U$ be the set of unstable configurations. Then $U=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. ( $U$ is a finite union of cones.)

## Proof:

1. Let $C=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. Need to show $C=U$.
2. To see that $C \subseteq U$, let $\mathbf{x} \in C$, i.e., $\mathbf{x} \in \nabla(\mathbf{m})$ for some $\mathbf{m} \in \min (U)$.
3. By Observation 1 , since $\mathbf{m} \in U$, also $\mathbf{x} \in U$, so $C \subseteq U$.
4. To see that $U \subseteq C$, let $\mathbf{x} \in U$.
5. By Observation 2 , for some $\mathbf{m} \in \min (U), \mathbf{m} \leq \mathbf{x}$.

Observation 2: For all $\mathbf{x} \in A$, there is a minimal $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.


## Set of unstable configurations is finite union of cones

Recall:
Observation 1: Unstable configs are closed upwards:
For all unstable $\mathbf{c}$ and all $\mathbf{d} \in \nabla(\mathbf{c})$, $\mathbf{d}$ is also unstable.

Lemma: Let $U$ be the set of unstable configurations. Then $U=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. ( $U$ is a finite union of cones.)

## Proof:

1. Let $C=U_{\mathbf{m} \in \min (U)} \nabla(\mathbf{m})$. Need to show $C=U$.
2. To see that $C \subseteq U$, let $\mathbf{x} \in C$, i.e., $\mathbf{x} \in \nabla(\mathbf{m})$ for some $\mathbf{m} \in \min (U)$.
3. By Observation 1 , since $\mathbf{m} \in U$, also $\mathbf{x} \in U$, so $C \subseteq U$.
4. To see that $U \subseteq C$, let $\mathbf{x} \in U$.
5. By Observation 2 , for some $\mathbf{m} \in \min (U), \mathbf{m} \leq \mathbf{x}$.
6. Thus $x \in \nabla(m) \subseteq C$, so $U \subseteq C$. QED

Observation 2: For all $\mathbf{x} \in A$, there is a minimal $\mathbf{m} \in \min (A)$ such that $\mathbf{m} \leq \mathbf{x}$.


## Stable configurations are closed upwards for species that are already "large"

Recall stable configs are closed downward. They are also closed upward for "already large" species.

## Stable configurations are closed upwards for species that are already "large"

Recall stable configs are closed downward. They are also closed upward for "already large" species.

Definition: Let $\tau=\max \{\mathbf{m}(S) \mid \mathbf{m} \in \min (U), S \in \Lambda\}$. The hypercube with corner $(\tau, \tau, \ldots, \tau) \in \mathbb{N}^{d}$ (and other corner at origin) contains every minimal $m$ defining $U$.

## Stable configurations are closed upwards for species that are already "large"

Recall stable configs are closed downward. They are also closed upward for "already large" species.

Definition: Let $\tau=\max \{\mathbf{m}(S) \mid \mathbf{m} \in \min (U), S \in \Lambda\}$. The hypercube with corner $(\tau, \tau, \ldots, \tau) \in \mathbb{N}^{d}$ (and other corner at origin) contains every minimal $\mathbf{m}$ defining $U$.

Lemma: Let $\mathbf{c}$ be stable such that for some species $S \in \Lambda, \mathbf{c}(S) \geq \tau$. Let $\mathbf{d}=\mathbf{c}+\{$ any amount of $S\}$.
Then $\mathbf{d}$ is also stable.

## Stable configurations are closed upwards for species that are already "large"

Recall stable configs are closed downward. They are also closed upward for "already large" species.

Definition: Let $\tau=\max \{\mathbf{m}(S) \mid \mathbf{m} \in \min (U), S \in \Lambda\}$. The hypercube with corner $(\tau, \tau, \ldots, \tau) \in \mathbb{N}^{d}$ (and other corner at origin) contains every minimal $\mathbf{m}$ defining $U$.

Lemma: Let $\mathbf{c}$ be stable such that for some species $S \in \Lambda, \mathbf{c}(S) \geq \tau$. Let $\mathbf{d}=\mathbf{c}+\{$ any amount of $S\}$. Then $\mathbf{d}$ is also stable.

Proof: By picture. $\tau=6, c(S)=6, d(S)=8$. If $\mathbf{c}$ is not already in a cone $\nabla(\mathbf{m})$ defining the unstable configurations $U$, we cannot enter any cone by adding more $S$.


## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.

## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.

## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.


## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.


## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.

$$
c_{3}=
$$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.
4. Inductive case: By additivity $\mathbf{c}_{i+1}=\mathbf{c}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}} \Rightarrow \mathbf{o}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}}$.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.
4. Inductive case: By additivity $\mathbf{c}_{i+1}=\mathbf{c}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+\boldsymbol{\delta}_{\boldsymbol{i}}$.
5. By correctness $\mathbf{o}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}} \Rightarrow \mathbf{o}_{\boldsymbol{i}+1}$ for some stable $\mathbf{o}_{i+1}$.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.
4. Inductive case: By additivity $\mathbf{c}_{i+1}=\mathbf{c}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+\boldsymbol{\delta}_{\boldsymbol{i}}$.
5. By correctness $\mathbf{o}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}} \Rightarrow \mathbf{o}_{i+1}$ for some stable $\mathbf{o}_{i+1}$.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.
4. Inductive case: By additivity $\mathbf{c}_{i+1}=\mathbf{c}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+\boldsymbol{\delta}_{\boldsymbol{i}}$.
5. By correctness $\mathbf{o}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}} \Rightarrow \mathbf{o}_{\boldsymbol{i}+1}$ for some stable $\mathbf{o}_{i+1}$.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.
4. Inductive case: By additivity $\mathbf{c}_{i+1}=\mathbf{c}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+\boldsymbol{\delta}_{i}$.
5. By correctness $\mathbf{o}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}} \Rightarrow \mathbf{o}_{i+1}$ for some stable $\mathbf{o}_{i+1}$.
6. By Dickson's Lemma pick infinite nondecreasing subsequence $\mathbf{o}_{0}{ }_{0} \leq \mathbf{o}^{\prime}{ }_{1} \leq \ldots$ of $\mathbf{o}_{i}^{\prime}$ s. For the sake of readability let's assume this is just the original sequence $\mathbf{o}_{0} \leq \mathbf{o}_{1} \leq \ldots$.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.
4. Inductive case: By additivity $\mathbf{c}_{i+1}=\mathbf{c}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+\boldsymbol{\delta}_{i}$.
5. By correctness $\mathbf{o}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}} \Rightarrow \mathbf{o}_{i+1}$ for some stable $\mathbf{o}_{i+1}$.
6. By Dickson's Lemma pick infinite nondecreasing subsequence $\mathbf{o}_{0}^{\prime} \leq \mathbf{o}_{1}^{\prime} \leq \ldots$ of $\mathbf{o}_{i}^{\prime}$ s. For the sake of readability let's assume this is just the original sequence $\mathbf{o}_{0} \leq \mathbf{o}_{1} \leq \ldots$.
7. Let $\Gamma=\left\{S \mid \lim _{i \rightarrow \infty} \mathbf{o}_{i}(S)=\infty\right\}$ (species with unbounded counts).

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.
4. Inductive case: By additivity $\mathbf{c}_{i+1}=\mathbf{c}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+\boldsymbol{\delta}_{i}$.
5. By correctness $\mathbf{o}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}} \Rightarrow \mathbf{o}_{i+1}$ for some stable $\mathbf{o}_{i+1}$.
6. By Dickson's Lemma pick infinite nondecreasing subsequence $\mathbf{o}_{0}{ }_{0} \leq \mathbf{o}^{\prime}{ }_{1} \leq \ldots$ of $\mathbf{o}_{i}^{\prime}$ s. For the sake of readability let's assume this is just the original sequence $\mathbf{o}_{0} \leq \mathbf{o}_{1} \leq \ldots$.
7. Let $\Gamma=\left\{S \mid \lim _{i \rightarrow \infty} \mathbf{o}_{i}(S)=\infty\right\}$ (species with unbounded counts).
8. For large enough $i$, if $S \in \Gamma$, then $\mathbf{o}_{i}(S) \geq \tau$, and if $S \notin \Gamma$, then $\mathbf{o}_{i}(S)=c_{S}$ where $c_{S}$ is the largest $S$ ever gets in the $\mathbf{o}_{i}$ 's.

## $\mathrm{C}_{3}=$



## A pumping lemma

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$. Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

## Proof:

1. By Dickson's Lemma there is infinite nondecreasing subsequence $\mathbf{c}_{0} \leq \mathbf{c}_{1} \leq \ldots$, each $\mathbf{c}_{i} \in A$. Let $\boldsymbol{\delta}_{i}=\mathbf{c}_{i+1}-\mathbf{c}_{i}$.
2. Define sequence of stable $\mathbf{o}_{0}, \mathbf{o}_{1}, \ldots$ inductively as follows.
3. Base case: $\mathbf{c}_{0} \Rightarrow \mathbf{o}_{0}$ for some stable $\mathbf{o}_{0}$.
4. Inductive case: By additivity $\mathbf{c}_{i+1}=\mathbf{c}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+\boldsymbol{\delta}_{i}$.
5. By correctness $\mathbf{o}_{\boldsymbol{i}}+\boldsymbol{\delta}_{\boldsymbol{i}} \Rightarrow \mathbf{o}_{i+1}$ for some stable $\mathbf{o}_{i+1}$.
6. By Dickson's Lemma pick infinite nondecreasing subsequence $\mathbf{o}_{0}{ }_{0} \leq \mathbf{o}^{\prime}{ }_{1} \leq \ldots$ of $\mathbf{o}_{i}^{\prime}$ s. For the sake of readability let's assume this is just the original sequence $\mathbf{o}_{0} \leq \mathbf{o}_{1} \leq \ldots$.
7. Let $\Gamma=\left\{S \mid \lim _{i \rightarrow \infty} \mathbf{o}_{i}(S)=\infty\right\}$ (species with unbounded counts).
8. For large enough $i$, if $S \in \Gamma$, then $\mathbf{o}_{i}(S) \geq \tau$, and if $S \notin \Gamma$, then $\mathbf{o}_{i}(S)=c_{S}$ where $c_{S}$ is the largest $S$ ever gets in the $\mathbf{o}_{i}$ 's.
9. Then $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.

## $\mathrm{C}_{3}=$



## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.


## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.
5. Apply the same execution to $n$ copies of $\boldsymbol{\delta}_{i}: \quad \mathbf{o}_{i}+n \boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+n \boldsymbol{\varepsilon}$.

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.
5. Apply the same execution to $n$ copies of $\boldsymbol{\delta}_{i}: \quad \mathbf{o}_{i}+n \boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+n \boldsymbol{\varepsilon}$.

$\mathbf{o}_{\boldsymbol{i}}$	
$\boldsymbol{\delta}_{\boldsymbol{i}}$	
$\boldsymbol{\delta}_{\boldsymbol{i}}$	
$\boldsymbol{\delta}_{\boldsymbol{i}}$	
$\mathbf{o}_{i}$	

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.
5. Apply the same execution to $n$ copies of $\boldsymbol{\delta}_{i}: \quad \mathbf{o}_{i}+n \boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+n \boldsymbol{\varepsilon}$.

$\mathbf{o}_{i}$		$\mathbf{o}_{i}$
$\boldsymbol{\delta}_{i}$	$\Rightarrow$	$\boldsymbol{\varepsilon}$
$\boldsymbol{\delta}_{i}$	$\Rightarrow$	$\boldsymbol{\varepsilon}$
$\boldsymbol{\delta}_{i}$	$\Rightarrow$	$\boldsymbol{\varepsilon}$

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.
5. Apply the same execution to $n$ copies of $\boldsymbol{\delta}_{i}: \quad \mathbf{o}_{i}+n \boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+n \boldsymbol{\varepsilon}$.
6. $\mathbf{o}_{i}+n \boldsymbol{\varepsilon}$ is larger than $\mathbf{o}_{i}$ only on species $S$ with count $\mathbf{o}_{i}(S) \geq \tau$.

$\mathbf{o}_{i}$		$\mathbf{o}_{i}$
$\boldsymbol{\delta}_{i}$	$\Rightarrow$	$\boldsymbol{\varepsilon}$
$\boldsymbol{\delta}_{i}$	$\Rightarrow$	$\boldsymbol{\varepsilon}$
$\boldsymbol{\delta}_{i}$	$\Rightarrow$	$\boldsymbol{\varepsilon}$

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.
5. Apply the same execution to $n$ copies of $\boldsymbol{\delta}_{i}: \quad \mathbf{o}_{i}+n \boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+n \boldsymbol{\varepsilon}$.
6. $\mathbf{o}_{i}+n \boldsymbol{\varepsilon}$ is larger than $\mathbf{o}_{i}$ only on species $S$ with count $\mathbf{o}_{i}(S) \geq \tau$.
7. By closure of stable configurations upwards for "already large" species, since $\mathbf{o}_{i}$ is stable, $\mathbf{o}_{i}+n \boldsymbol{\varepsilon}$ is also stable, with the same output YES, since they have the same species present.


## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.
5. Apply the same execution to $n$ copies of $\boldsymbol{\delta}_{i}: \quad \mathbf{o}_{i}+n \boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+n \boldsymbol{\varepsilon}$.
6. $\mathbf{o}_{i}+n \boldsymbol{\varepsilon}$ is larger than $\mathbf{o}_{i}$ only on species $S$ with count $\mathbf{o}_{i}(S) \geq \tau$.
7. By closure of stable configurations upwards for "already large" species, since $\mathbf{o}_{i}$ is stable, $\mathbf{o}_{\boldsymbol{i}}+n \boldsymbol{\varepsilon}$ is also stable, with the same output YES, since they have the same species present.
8. In other words, we can reach from $\mathbf{c}_{i}+n \boldsymbol{\delta}_{i}$ to a stable YES configuration, so $\mathbf{c}_{i}+n \boldsymbol{\delta}_{i} \in A$ for all $n \in \mathbb{N}$.

## A pumping lemma (proof continued)

Pumping Lemma: Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.

Proof: (continued)

1. Fix large enough $i$ that $\mathbf{o}_{i+1}(S)=\mathbf{o}_{i}(S)$ if $S \notin \Gamma$ and $\mathbf{o}_{i}(S) \geq \tau$ otherwise.
2. Write $\boldsymbol{\varepsilon}=\mathbf{o}_{i+1}-\mathbf{o}_{i}$.
3. Note that $\boldsymbol{\varepsilon}(S)>0$ implies $\mathbf{o}_{i}(S) \geq \tau$.
4. Then $\mathbf{o}_{i}+\boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i+1}=\mathbf{o}_{i}+\boldsymbol{\varepsilon}$, i.e., $\mathbf{o}_{i}$ is like a "catalyst" that transforms $\boldsymbol{\delta}_{i}$ into $\varepsilon$.
5. Apply the same execution to $n$ copies of $\boldsymbol{\delta}_{i}: \quad \mathbf{o}_{i}+n \boldsymbol{\delta}_{i} \Rightarrow \mathbf{o}_{i}+n \boldsymbol{\varepsilon}$.
6. $\mathbf{o}_{i}+n \boldsymbol{\varepsilon}$ is larger than $\mathbf{o}_{i}$ only on species $S$ with count $\mathbf{o}_{i}(S) \geq \tau$.
7. By closure of stable configurations upwards for "already large" species, since $\mathbf{o}_{i}$ is stable, $\mathbf{o}_{\boldsymbol{i}}+n \boldsymbol{\varepsilon}$ is also stable, with the same output YES, since they have the same species present.
8. In other words, we can reach from $\mathbf{c}_{i}+n \boldsymbol{\delta}_{i}$ to a stable YES configuration, so $\mathrm{c}_{i}+n \boldsymbol{\delta}_{i} \in A$ for all $n \in \mathbb{N}$.
9. Let $\mathbf{c}=\mathbf{c}_{\boldsymbol{i}}$ and $\mathbf{d}=\mathbf{c}_{i+1}$, with $\boldsymbol{\delta}=\boldsymbol{\delta}_{\boldsymbol{i}}$. QED

## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.

## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.

## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)
4. Formally, suppose otherwise: $c+2 \delta=\left(2 z-x, 2 z^{2}-x^{2}\right) \in S$.


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)
4. Formally, suppose otherwise: $c+2 \delta=\left(2 z-x, 2 z^{2}-x^{2}\right) \in S$.
5. Then $(2 z-x)^{2}=\left(2 z^{2}-x^{2}\right)$, so


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)
4. Formally, suppose otherwise: $c+2 \delta=\left(2 z-x, 2 z^{2}-x^{2}\right) \in S$.
5. Then $(2 z-x)^{2}=\left(2 z^{2}-x^{2}\right)$, so
$0=(2 z-x)^{2}-\left(2 z^{2}-x^{2}\right)$


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)
4. Formally, suppose otherwise: $c+2 \delta=\left(2 z-x, 2 z^{2}-x^{2}\right) \in S$.
5. Then $(2 z-x)^{2}=\left(2 z^{2}-x^{2}\right)$, so
$0=(2 z-x)^{2}-\left(2 z^{2}-x^{2}\right)$
$=\left(4 z^{2}-4 x z+x^{2}\right)-\left(2 z^{2}-x^{2}\right)$


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)
4. Formally, suppose otherwise: $c+2 \delta=\left(2 z-x, 2 z^{2}-x^{2}\right) \in S$.
5. Then $(2 z-x)^{2}=\left(2 z^{2}-x^{2}\right)$, so
$0=(2 z-x)^{2}-\left(2 z^{2}-x^{2}\right)$
$=\left(4 z^{2}-4 x z+x^{2}\right)-\left(2 z^{2}-x^{2}\right)$
$=2 z^{2}-4 x z+2 x^{2}$


## Impossibility of stably deciding squaring set

Pumping Lemma : Suppose a CRN stably decides infinite set $A \subseteq \mathbb{N}^{d}$.
Then there are $\mathbf{c}<\mathbf{d}$ such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in A$.
Theorem: The "squaring set" $S=\left\{(x, y) \mid x^{2}=y\right\}$ is not stably decidable by any CRN.

## Proof:

1. By our Pumping Lemma, there are points $\mathbf{c}=\left(x, x^{2}\right)$ and $\mathbf{d}=\left(z, z^{2}\right), x<z$, such that, letting $\boldsymbol{\delta}=\mathbf{d}-\mathbf{c}$, for all $n \in \mathbb{N}, \mathbf{c}+n \boldsymbol{\delta} \in S$.
2. Claim: the point $\mathbf{c}+2 \delta \notin S$, contradicting our Pumping Lemma.
3. Proof: by picture. (straight line intersects a parabola at $\leq 2$ points)
4. Formally, suppose otherwise: $c+2 \delta=\left(2 z-x, 2 z^{2}-x^{2}\right) \in S$.
5. Then $(2 z-x)^{2}=\left(2 z^{2}-x^{2}\right)$, so
$0=(2 z-x)^{2}-\left(2 z^{2}-x^{2}\right)$
$=\left(4 z^{2}-4 x z+x^{2}\right)-\left(2 z^{2}-x^{2}\right)$
$=2 z^{2}-4 x z+2 x^{2}$
$=2(z-x)^{2}$, which contradicts $x \neq z$. QED

# Limits of efficient stable computation 

What is known to be computable in less than time $O(n)$ ?

## What is known to be computable in less than time $O(n)$ ?

## Predicates

Boolean combination of detection predicates
"detection" means $\varphi(a)=[a>0$ ? $]$

## What is known to be computable in less than time $O(n)$ ?

## Predicates

Boolean combination of detection predicates
"detection" means $\varphi(a)=[a>0$ ?]
$\varphi(a, b, c)=a>0$ OR ( $b>0$ AND $c=0$ )
i.e., constant except when a variable
changes from 0 to positive

## What is known to be computable in less than time $O(n)$ ?

## Predicates

Boolean combination of detection predicates
"detection" means $\varphi(a)=[a>0$ ?]
$\varphi(a, b, c)=a>0$ OR ( $b>0$ AND $c=0$ )
i.e., constant except when a variable
changes from 0 to positive

## Functions

$\mathbb{N}$-linear functions (coefficients are nonnegative integers)

## What is known to be computable in less than time $O(n)$ ?

## Predicates

Boolean combination of detection predicates
"detection" means $\varphi(a)=[a>0$ ?]
$\varphi(a, b, c)=a>0$ OR ( $b>0$ AND $c=0$ )

## Functions

$\mathbb{N}$-linear functions (coefficients are nonnegative integers)

$$
\begin{aligned}
& \text { e.g., } f(a, b)=2 a+3 b \\
& a \rightarrow y+y \\
& b \rightarrow y+y+y
\end{aligned}
$$

i.e., constant except when a variable changes from 0 to positive

Both computable in $O(\log n)$ time

## Known time lower bounds: leader election/majority

## Leader election

Leader election (computing the constant function $f(a)=1$ ) requires $\Omega(n)$ time

## Majority (and other "explicit" predicates)

Majority (and many other "explicit" predicates such as equality) require $\Omega$ ( $n$ / polylog $n$ ) time, even with up to $1 / 2 \log \log n$ states.*

If the protocol satisfies a technical condition called "output dominance", then even with up to $\log n$ states, $\Omega\left(n^{0.999}\right)$ time is required.**
*[Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest, SODA 2017]
**[Alistarh, Aspnes, Gelashvili, SODA 2018]: "output dominance"
= changing positive counts of states in a stable configuration
leaves it able to reach a stable configuration with the same output

## Known time lower bounds: "most" predicates/functions

- Informal: "most" semilinear predicates and functions not known to be computable in $o(n)$ time, actually require at least $\Omega(n)$ time to compute


## Known time lower bounds: "most" predicates/functions

- Informal: "most" semilinear predicates and functions not known to be computable in $o(n)$ time, actually require at least $\Omega(n)$ time to compute
- Definition: $\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}$ is eventually constant if there is $m \in \mathbb{N}$ so that $\varphi(\boldsymbol{a})=\varphi(\boldsymbol{b})$ for all $\boldsymbol{a}, \boldsymbol{b}$ with all components $\geq m$


## Known time lower bounds: "most" predicates/functions

- Informal: "most" semilinear predicates and functions not known to be computable in $o(n)$ time, actually require at least $\Omega(n)$ time to compute
- Definition: $\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}$ is eventually constant if there is $m \in \mathbb{N}$ so that $\varphi(\boldsymbol{a})=\varphi(\boldsymbol{b})$ for all $\boldsymbol{a}, \boldsymbol{b}$ with all components $\geq m$
- Definition: $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is eventually $\mathbb{N}$-linear if there is $m \in \mathbb{N}$ so that $f(\boldsymbol{a})$ is $\mathbb{N}$-linear for all $\boldsymbol{a}$ with all components $\geq m$
- Both definitions allow exceptions "near a face of $\mathbb{N}^{k}$ "


## Known time lower bounds: "most" predicates/functions

- Informal: "most" semilinear predicates and functions not known to be computable in $o(n)$ time, actually require at least $\Omega(n)$ time to compute
- Definition: $\varphi: \mathbb{N}^{k} \rightarrow\{\mathrm{Y}, \mathrm{N}\}$ is eventually constant if there is $m \in \mathbb{N}$ so that $\varphi(\boldsymbol{a})=\varphi(\boldsymbol{b})$ for all $\boldsymbol{a}, \boldsymbol{b}$ with all components $\geq m$
- Definition: $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is eventually $\mathbb{N}$-linear if there is $m \in \mathbb{N}$ so that $f(\boldsymbol{a})$ is $\mathbb{N}$-linear for all $\boldsymbol{a}$ with all components $\geq m$
- Both definitions allow exceptions "near a face of $\mathbb{N}^{k}$ "
- Formal theorem: Every predicate that is not eventually constant, and every function that is not eventually $\mathbb{N}$-linear, requires at least time $\Omega(n)$ to compute.
- They're all computable in at most $O(n)$ time, so this settles their time complexity.


## What is currently known/unknown

	Predicates	Functions
computable in $O(\log n)$ time	detection (constant unless changing between 0 and positive) $a>0$ AND ( $b>0$ OR $c=0$ )	$\frac{\mathbb{N} \text {-linear }}{3 a+b+2 c}$
not computable in less than $\Omega(n)$ time	non-eventually constant $a>b$ ? $\quad a=b$ ? $\quad a$ is odd?	non-eventually $\mathbb{N}$-linear$a / 2 \quad a-b \quad a+1 \quad a-1$$\quad 1$$\min (a, b) \quad \max (a, b)$$\max (a, \min (b+3,2 c))-c-1$
unknown (best known protocol is $O(n)$ time)	eventually constant but not constant on all positive values $a>1$ ?	eventually $\mathbb{N}$-linear but not $\mathbb{N}$-linear $f(a)=\left\{\begin{array}{l} a \text { if } a>1, \\ 0 \text { otherwise } \end{array}\right.$

## What is currently known/unknown

	Predicates	Functions
computable in $O(\log n)$ time	detection (constant unless changing between 0 and positive) $a>0$ AND ( $b>0$ OR $c=0$ )	$\frac{\text { N-linear }}{3 a+b+2 c}$
not computable in less than $\Omega(n)$ time	non-eventually constant $a>b$ ? $\quad a=b$ ? $\quad a$ is odd?	non-eventually $\mathbb{N}$-linear$a / 2 \quad a-b \quad a+1 \quad a-1$$\quad 1$$\min (a, b) \quad \max (a, b)$$\max (a, \min (b+3,2 c))-c-1$
unknown (best known protocol is $O(n)$ time)	eventually constant but not constant on all positive values $a>1$ ?	eventually $\mathbb{N}$-linear but not $\mathbb{N}$-linear $f(a)=\left\{\begin{array}{l} a \text { if } a>1, \\ 0 \text { otherwise } \end{array}\right.$

## What is currently known/unknown

	Predicates	Functions
computable in $O(\log n)$ time	detection (constant unless changing between 0 and positive) $a>0$ AND ( $b>0$ OR $c=0$ )	$\frac{\mathbb{N} \text {-linear }}{3 a+b+2 c}$
not computable in less than $\Omega(n)$ time	non-eventually constant   $a>b$ ? $\quad a=b$ ? $\quad a$ is odd?	non-eventually $\mathbb{N}$-linear$a / 2 \quad a-b \quad a+1 \quad a-1$$\quad 1$$\min (a, b) \quad \max (a, b)$$\max (a, \min (b+3,2 c))-c-1$
unknown (best known protocol is $O(n)$ time)	eventually constant but not constant on all positive values $a>1$ ?	eventually $\mathbb{N}$-linear but not $\mathbb{N}$-linear $f(a)=\left\{\begin{array}{l} a \text { if } a>1, \\ 0 \text { otherwise } \end{array}\right.$

## What is currently known/unknown

	Predicates	Functions
computable in $O(\log n)$ time	detection (constant unless changing between 0 and positive) $a>0$ AND ( $b>0$ OR $c=0$ )	$\frac{\mathbb{N} \text {-linear }}{3 a+b+2 c}$
not computable in less than $\Omega(n)$ time	$\frac{\text { non-eventually constant }}{a>b \text { ? } \quad a=b \text { ? } \quad a \text { is odd? }}$	non-eventually $\mathbb{N}$-linear$a / 2 \quad a-b \quad a+1 \quad a-1 \quad 1$   $\min (a, b) \quad \max (a, b)$   $\max (a, \min (b+3,2 c))-c-1$
unknown (best known protocol is $O(n)$ time)	eventually constant but not constant on all positive values $a>1$ ?	eventually $\mathbb{N}$-linear but not $\mathbb{N}$-linear $f(a)=\left\{\begin{array}{l} a \text { if } a>1, \\ 0 \text { otherwise } \end{array}\right.$

## Other modeling choices?

## Modeling choices in formalizing "Computing with chemistry"

integer counts ("stochastic") or real concentrations ("mass-action")?

- what is the object being "computed"?
- yes/no decision problem?
"number of A's > number of B's?"


## first part of slides

- numerical function? "make $Y$ become double the amount of $X$ "
guaranteed to get correct answer' or allow small probability of error?
- if $\operatorname{Pr}[$ error $]=0$, system works no matter the reaction rates
- to represent an input $n_{1}, \ldots, n_{k}$, what is the initial configuration?
- only input species present
- auxiliary species can be present?
- when is the computation finished? when...
- the output stops changing? (convergence)
- the output becomes unable to change? (stabilization)
- a certain species $T$ is first produced? (termination)
- require exact numerical answer or allow an approximation?


## Modeling choices in formalizing "Computing with chemistry"

- integer counts ("stochastic") or real concentrations ("mass-action")?
- what is the object being "computed"?
- yes/no decision problem? "number of A's > number of B's?"
- numerical function? "make $Y$ become double the amount of $X$ "
- guaranteed to get correct answer? or allowsmall probability of error
- if $\operatorname{Pr}[$ error $]=0$, system works no matter the reaction rates
- to represent an input $n_{1}, \ldots, n_{k}$, what is the initial configuration?
- only input species present?
- auxiliary species can be present
- when is the computation finished? when...
- the output stops changing? (convergence)
- the output becomes unable to change? (stabilization)
- a certain species $T$ is first produced? (termination)
- require exact numerical answer? or allow an approximation


## summarized in next few slides

Auxiliary species present initially ~"initial leader" Instead of starting with $\{100$ A \} to represent input value 100, start with $\{1 L, 100$ A \}

## Auxiliary species present initially $\approx$ "initial leader"

 Instead of starting with $\{100 A\}$ to represent input value 100, start with $\{1 L, 100$ A $\}$some predicates/functions get "easier" (i.e., it's easy to think of the reactions)

## Auxiliary species present initially $\approx$ "initial leader"

 Instead of starting with $\{100 A\}$ to represent input value 100, start with $\{1 L, 100 A\}$some predicates/functions get "easier" (i.e., it's easy to think of the reactions) parity: $\varphi(a)=$ " $a$ is odd"

$$
\begin{array}{ll}
\underline{\text { without }} & A_{\mathrm{o}}+A_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \\
& A_{\mathrm{e}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \\
& A_{\mathrm{o}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}} \\
& A_{\mathrm{o}}+a_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}} \\
& A_{\mathrm{e}}+a_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}}
\end{array}
$$

## Auxiliary species present initially $\approx$ "initial leader"

 Instead of starting with $\{100$ A \} to represent input value 100, start with $\{1 L, 100 A\}$some predicates/functions get "easier" (i.e., it's easy to think of the reactions) parity: $\varphi(a)=$ " $a$ is odd"

$$
\begin{array}{ll}
\underline{\text { without }} & A_{\mathrm{o}}+A_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \\
& A_{\mathrm{e}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \\
& A_{\mathrm{o}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}} \\
& A_{\mathrm{o}}+a_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}} \\
& A_{\mathrm{e}}+a_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}}
\end{array}
$$

## Auxiliary species present initially $\approx$ "initial leader"

Instead of starting with $\{100 A\}$ to represent input value 100, start with $\{1 L, 100$ A \}
some predicates/functions get "easier" (i.e., it's easy to think of the reactions) parity: $\varphi(a)=$ " $a$ is odd"

$$
\begin{array}{ll}
\frac{\text { without }}{\text { a leader }} & A_{\mathrm{o}}+A_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \\
& A_{\mathrm{e}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}} \\
& A_{\mathrm{o}}+A_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}} \\
& A_{\mathrm{o}}+a_{\mathrm{e}} \rightarrow A_{\mathrm{o}}+a_{\mathrm{o}} \\
& A_{\mathrm{e}}+a_{\mathrm{o}} \rightarrow A_{\mathrm{e}}+a_{\mathrm{e}}
\end{array}
$$

$$
\begin{array}{ll}
\text { with a } & L_{\mathrm{e}}+A \rightarrow L_{0} \\
\text { leader } L_{\mathrm{e}} & L_{0}+A \rightarrow L_{\mathrm{e}}
\end{array}
$$

But fundamental computability doesn't change: exactly the semilinear predicates/functions can be computed (same as without a leader).

## Convergence vs stabilization and leader vs anarchy

## Convergence vs stabilization and leader vs anarchy

## Convergence vs stabilization and leader vs anarchy



## Convergence vs stabilization and leader vs anarchy



## Convergence vs stabilization and leader vs anarchy



Theorem: Without a leader, all non-eventually constant predicates and non-eventually-$\mathbb{N}$-linear functions require at least $\Omega(n)$ stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

## Convergence vs stabilization and leader vs anarchy



Theorem: Without a leader, all non-eventually constant predicates and non-eventually-$\mathbb{N}$-linear functions require at least $\Omega(n)$ stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]

Previous work: With a leader, all semilinear predicates/functions can be computed in at most $O\left(\log ^{5} n\right)$ convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

## Convergence vs stabilization and leader vs anarchy



Theorem: Without a leader, all non-eventually constant predicates and non-eventually-$\mathbb{N}$-linear functions require at least $\Omega(n)$ stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]
Previous work: With a leader, all semilinear predicates/functions can be computed in at most $O\left(\log ^{5} n\right)$ convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

Conjecture: With a leader, all non-detection predicates and non-N-linear functions require at least $\Omega(n)$ stabilization time.

## Convergence vs stabilization and leader vs anarchy



Theorem: Without a leader, all non-eventually constant predicates and non-eventually-$\mathbb{N}$-linear functions require at least $\Omega(n)$ stabilization time. [Belleville, Doty, Soloveichik, ICALP 2017]
Previous work: With a leader, all semilinear predicates/functions can be computed in at most $O\left(\log ^{5} n\right)$ convergence time. [Angluin, Aspnes, Eisenstat, DISC 2006]

Conjecture: With a leader, all non-detection predicates and non-N-linear functions require at least $\Omega(n)$ stabilization time.

False conjecture: Without a leader, all non-detection predicates and non-N-linear functions require at least $\Omega(n)$ convergence time.

## What if we use real-valued concentrations?

Theorem: A function is stably computable by an integer-valued chemical reaction network if and only if it is semilinear.

## What if we use real-valued concentrations?

Theorem: A function is stably computable by an integer-valued chemical reaction network if and only if it is semilinear.

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

## What if we use real-valued concentrations?

Theorem: A function is stably computable by an integer-valued chemical reaction network if and only if it is semilinear.

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

## What if we use real-valued concentrations?

Theorem: A function is stably computable by an integer-valued chemical reaction network if and only if it is semilinear.

[Angluin, Aspnes, Eisenstat, PODC 2006]
[Chen, Doty, Soloveichik, DNA 2012]

Theorem: A function is stably computable by a real-valued chemical reaction network if and only if it is continuous and piecewise linear.
continuous piecewise linear example

[Chen, Doty, Reeves, Soloveichik, JACM 2023]

## What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)

Theorem: A function is computable with probability of error < $1 \%$ by an integer-valued chemical reaction network if and only if it is computable by any algorithm whatsoever...
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

## What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)

Theorem: A function is computable with probability of error < $1 \%$ by an integer-valued chemical reaction network if and only if it is computable by any algorithm whatsoever...
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]


## What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)

Theorem: A function is computable with probability of error < $1 \%$ by an integer-valued chemical reaction network if and only if it is computable by any algorithm whatsoever...
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]
... "efficiently" (polynomial-time slowdown) ...


## What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)

Theorem: A function is computable with probability of error < $1 \%$ by an integer-valued chemical reaction network if and only if it is computable by any algorithm whatsoever...
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]


## What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)

Theorem: A function is computable with probability of error $<1 \%$ by an integer-valued chemical reaction network if and only if it is computable by any algorithm whatsoever...
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

... "efficiently" (polynomial-time slowdown) ...
... if we have an initial leader.

Furthermore, computation doesn't merely converge to the correct answer eventually, but can be made "terminating": producing a molecule $T$ signaling when the computation is done. (provably impossible when $\operatorname{Pr}[$ error $]=0$ )

## What if we allow a small probability of error? (i.e., allow reaction rates to influence outcome)

Theorem: A function is computable with probability of error $<1 \%$ by an integer-valued chemical reaction network if and only if it is computable by any algorithm whatsoever...
[Soloveichik, Cook, Bruck, Winfree, Natural Computing 2008]

... "efficiently" (polynomial-time slowdown) ...
... if we have an initial leader.
Furthermore, computation doesn't merely converge to the correct answer eventually, but can be made "terminating": producing a molecule $T$ signaling when the computation is done.
(provably impossible when $\operatorname{Pr}[$ error $]=0$ )
Conjecture: Even without a leader, any computable function can be efficiently computed with high probability.

## What if we use real-valued concentrations... and allow reaction rates to influence outcome??

Theorem: A function is computable by a real-valued chemical reaction network using mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. Computational Methods in Systems Biology - CMSB 2017]

## What if we use real-valued concentrations... and allow reaction rates to influence outcome??

Theorem: A function is computable by a real-valued chemical reaction network using mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. Computational Methods in Systems Biology - CMSB 2017]
mass-action kinetics:

$$
[\dot{X}]=-k_{1}[X]+k_{2}[Y][Z]
$$

$$
\begin{array}{rlr}
X \xrightarrow{k_{1}} Y+Y & {[\dot{Y}]=2 k_{1}[X]-k_{2}[Y][Z]} \\
Y+Z \xrightarrow{k_{2}} X & {[\dot{Z}]=} & -k_{2}[Y][Z]
\end{array}
$$

## What if we use real-valued concentrations... and allow reaction rates to influence outcome??

Theorem: A function is computable by a real-valued chemical reaction network using mass-action kinetics if and only if it is computable by any algorithm whatsoever.
[Fages, Le Guludec, Bournez, Pouly. Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. Computational Methods in Systems Biology - CMSB 2017]
mass-action kinetics:

$$
[\dot{X}]=-k_{1}[X]+k_{2}[Y][Z]
$$

$$
\begin{array}{cl}
X \xrightarrow{k_{马}^{k_{3}} Y+Y} & {[\dot{Y}]=2 k_{1}[X]-k_{2}[Y][Z]} \\
Y+Z \xrightarrow{k_{2}} X & {[\dot{Z}]=-} \\
-k_{2}[Y][Z]
\end{array}
$$

... with only a polynomial-time slowdown.
[Bournez, Graça, Pouly. Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length. Journal of the ACM 2017]

## Fast approximate division by 2

initial configuration:
$\{n X, \varepsilon n A, \varepsilon n B\}$

$$
\begin{aligned}
& X+A \rightarrow B+Y \\
& X+B \rightarrow A
\end{aligned}
$$

guaranteed to get
$Y=n / 2 \pm \varepsilon n$
$\mathrm{E}[$ time $]=\mathrm{O}(\log n) / \varepsilon$
[Belleville, Doty, Soloveichik, Hardness of computing and approximating

## Fast approximate division by 2

$$
n=100 \quad \varepsilon=0.1
$$

initial configuration:
$\{n X, \varepsilon n A, \varepsilon n B$ \}

$$
\begin{aligned}
& X+A \rightarrow B+Y \\
& X+B \rightarrow A
\end{aligned}
$$

guaranteed to get
$Y=n / 2 \pm \varepsilon n$
$\mathrm{E}[$ time $]=\mathrm{O}(\log n) / \varepsilon$

# CRN computation with a small chance of error 

Counter (register) machine

Counter (register) machine


Counter (register) machine


## Counter (register) machine

1) dec $r$
2) inc s
3) inc s
4) inc s
5) dect
6) inc s

## Counter (register) machine

1) dec $r$
2) inc $s$
3) inc $s$
4) inc s
5) dect
6) inc s

## Counter (register) machine

1) dec $r$
2) inc $s$
3) inc $s$
4) inc $s$
5) dect
6) inc s

## Counter (register) machine

1) dec $r$
2) inc $s$
3) inc s
4) inc s
5) dec $t$
6) inc s

## Counter (register) machine

1) dec $r$
2) inc $s$
3) inc s
4) inc s
5) dec $t$
6) inc s

## Counter (register) machine

1) dec $r$
2) incs
3) inc $s$
4) inc s
5) dect
6) inc s

## Counter (register) machine

1) dec $r$
2) inc $s$
3) inc $s$
4) inc s
5) dect
6) inc s

## Counter (register) machine

1) dec $r$
2) incs
3) inc $s$
4) inc s
5) dect
6) inc s

## Counter (register) machine

1) dec $r$
2) inc $s$
3) inc s
4) inc s
5) dec $t$
6) inc s

## Counter (register) machine

1) dec $r$
2) inc s
3) inc s
4) inc s
5) dec $t$
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dect if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dect if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dect if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dect if empty goto 1
6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1

6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1

6) inc s

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1

6) inc s
HALT

## Counter (register) machine

1) dec $r$ if empty goto 6
2) inc $s$
3) inc s
4) inc s
5) dec $t$ if empty goto 1
6) inc s
 HALT

## Counter machines

- Finite state machine with a fixed number of counters $c_{1}, c_{2}, \ldots, c_{k}$, each holding a nonnegative integer.


## Counter machines

- Finite state machine with a fixed number of counters $c_{1}, c_{2}, \ldots, c_{k}$, each holding a nonnegative integer.
- Start with inputs $n_{1}, n_{2}, \ldots, n_{l} \in \mathbb{N}$ as values of $c_{1}, c_{2}, \ldots, c_{l}$, and $c_{l+1}, \ldots, c_{k}$ start 0 .


## Counter machines

- Finite state machine with a fixed number of counters $c_{1}, c_{2}, \ldots, c_{k}$, each holding a nonnegative integer.
- Start with inputs $n_{1}, n_{2}, \ldots, n_{l} \in \mathbb{N}$ as values of $c_{1}, c_{2}, \ldots, c_{l}$, and $c_{l+1}, \ldots, c_{k}$ start 0 .
- Finite-state machine, where each state is one of:


## Counter machines

- Finite state machine with a fixed number of counters $c_{1}, c_{2}, \ldots, c_{k}$, each holding a nonnegative integer.
- Start with inputs $n_{1}, n_{2}, \ldots, n_{1} \in \mathbb{N}$ as values of $c_{1}, c_{2}, \ldots, c_{l}$, and $c_{l+1}, \ldots, c_{k}$ start 0 .
- Finite-state machine, where each state is one of:
- inc c: increment counter $c$


## Counter machines

- Finite state machine with a fixed number of counters $c_{1}, c_{2}, \ldots, c_{k}$, each holding a nonnegative integer.
- Start with inputs $n_{1}, n_{2}, \ldots, n_{l} \in \mathbb{N}$ as values of $c_{1}, c_{2}, \ldots, c_{l}$, and $c_{l+1}, \ldots, c_{k}$ start 0 .
- Finite-state machine, where each state is one of:
- inc c: increment counter $c$
- dec c:
decrement counter $c$; no effect if $c=0$


## Counter machines

- Finite state machine with a fixed number of counters $c_{1}, c_{2}, \ldots, c_{k}$, each holding a nonnegative integer.
- Start with inputs $n_{1}, n_{2}, \ldots, n_{1} \in \mathbb{N}$ as values of $c_{1}, c_{2}, \ldots, c_{l}$, and $c_{l+1}, \ldots, c_{k}$ start 0 .
- Finite-state machine, where each state is one of:
- inc c: increment counter $c$
- dec c :
decrement counter $c$; no effect if $c=0$
- if $c=0$ goto i: if counter $c$ is 0 , then jump to state $i$


## Counter machines

- Finite state machine with a fixed number of counters $c_{1}, c_{2}, \ldots, c_{k}$, each holding a nonnegative integer.
- Start with inputs $n_{1}, n_{2}, \ldots, n_{1} \in \mathbb{N}$ as values of $c_{1}, c_{2}, \ldots, c_{l}$, and $c_{l+1}, \ldots, c_{k}$ start 0 .
- Finite-state machine, where each state is one of:
- inc c:
- dec c:
increment counter $c$
- if c=0 goto i:
decrement counter $c$; no effect if $c=0$
- goto i
if counter $c$ is 0 , then jump to state $i$
(can be shorthand for if $\mathrm{c}=0$ goto i for unused c )


## Counter machines

- Finite state machine with a fixed number of counters $c_{1}, c_{2}, \ldots, c_{k}$, each holding a nonnegative integer.
- Start with inputs $n_{1}, n_{2}, \ldots, n_{l} \in \mathbb{N}$ as values of $c_{1}, c_{2}, \ldots, c_{l}$, and $c_{l+1}, \ldots, c_{k}$ start 0 .
- Finite-state machine, where each state is one of:
- inc c:
increment counter $c$
- dec c: decrement counter $c$; no effect if $c=0$
- if $c=0$ goto i: if counter $c$ is 0 , then jump to state $i$
- goto i (can be shorthand for if $\mathrm{c}=0$ goto i for unused c )
- may also have accept/reject semantics, or interpret the final value of some counter as the output


## Example counter machines

input a

1. if $a=0$ goto 6
2. dec $a$
3. inc $b$
4. inc $b$
5. goto 1
6. end

## Example counter machines

input a $\quad f(a)=2 a$

1. if $a=0$ goto 6
2. dec a
3. inc $b$
4. inc $b$
5. goto 1

6 . end

## Example counter machines

```
input a }f(a)=2
1. if a=0 goto }
2. dec a
3. inc b
4. inc b
5. goto 1
6. end
```

1. while a>0:
2. <instruction>
3. <instruction>
i. ...
is a shorthand for
4. if $a=0$ goto $i$
5. 〈instruction>
6. 〈instruction>
i-1. goto 1

## Example counter machines

```
input a
\[
f(a)=2 a
\]
1. if \(a=0\) goto 6
2. dec a
3. inc \(b\)
4. inc \(b\)
5. goto 1
6. end
```

1. while a>0:
2. <instruction>
3. <instruction>
i. ...
is a shorthand for
4. if $a=0$ goto $i$
5. 〈instruction>
6. 〈instruction>
i-1. goto 1
i. ..
7. 
8. while $a>0$ :
9. dec $a$
10. dec a
11. inc b

## Example counter machines

input $\mathrm{a} \quad f(a)=$

1. if $\mathrm{a}=0$ goto 6
2. dec a
3. inc b
4. inc b
5. goto 1
6. end
input a $\quad f(a)=\lfloor a / 2\rfloor$
7. while a>0:
8. dec $a$
9. dec a
10. inc b
11. while a>0:
12. <instruction>
13. <instruction>
i. ...
is a shorthand for
14. if $a=0$ goto $i$
15. 〈instruction>
16. 〈instruction>
i-1. goto 1

## Example counter machines

input a $\quad f(a)=$

1. if $a=0$ goto 6
2. dec a
3. inc $b$
4. inc $b$
5. goto 1
6. end
input a
7. if $\mathrm{a}=0$ goto 7
8. dec a
9. if $a=0$ goto 6
10. dec a
11. goto 1
12. accept
13. reject
14. while a>0:
15. <instruction>
16. <instruction>
i. ...
is a shorthand for
17. if $a=0$ goto $i$
18. 〈instruction>
19. 〈instruction>
i-1. goto 1

## Example counter machines

input a $\quad f(a)=$

1. if $a=0$ goto 6
2. dec a
3. inc $b$
4. inc $b$
5. goto 1
6. end
input a $\varphi(a)=$ " $a$ is odd"
7. if $a=0$ goto 7
8. dec a
9. if $a=0$ goto 6
10. dec a
11. goto 1
12. accept
13. reject
14. while a>0:
15. <instruction>
16. <instruction>
i. ...
is a shorthand for
17. if $a=0$ goto $i$
18. 〈instruction>
19. 〈instruction>
i-1. goto 1

## Example counter machines

## input a

$$
f(a)=2 a
$$

1. if $a=0$ goto 6
2. dec a
3. inc $b$
4. inc $b$
5. goto 1

6 . end

1. while a>0:
2. <instruction>
3. <instruction>
i. ...
is a shorthand for
4. if $a=0$ goto $i$
5. 〈instruction>
6. 〈instruction>
i-1. goto 1
inputs $\mathrm{a}, \mathrm{b}$
7. while a>0:
8. dec a
9. while $b>0$ :
10. dec $b$
11. inc $c$
12. inc d
13. while c>0:
14. dec c
15. inc b
input a $\quad \varphi(a)=" a$ is odd"
16. if $a=0$ goto 7
17. dec a
18. if $a=0$ goto 6
19. dec a
20. goto 1
21. accept
22. reject
$-$

## Example counter machines

## input a

$f(a)=2 a$

1. if $a=0$ goto 6
2. dec a
3. inc $b$
4. inc $b$
5. goto 1
6. end
7. while a>0:
8. <instruction>
9. <instruction>
i. ...
is a shorthand for
10. if $a=0$ goto $i$
11. 〈instruction>
12. 〈instruction>
i-1. goto 1
input a $\quad f(a)=\lfloor a / 2\rfloor$
13. while $a>0$ :
14. dec a
15. dec a
16. inc $b$
input a $\quad \varphi(a)=" a$ is odd"
17. if $\mathrm{a}=0$ goto 7
18. dec a
19. if $a=0$ goto 6
20. dec a
21. goto 1
22. accept
23. reject
inputs $a, b \quad f(a, b)=a b$
24. while $a>0$ :
25. dec a
26. while $b>0$ :
27. dec $b$
28. inc $c$
29. inc d
30. while c>0:
31. dec $c$
32. inc b

## Example counter machines

## input a

$$
f(a)=2 a
$$

input a $\quad f(a)=\lfloor a / 2\rfloor$

1. if $a=0$ goto 6
2. dec a
3. inc $b$
4. inc $b$
5. goto 1
6. end
7. while a>0:
8. <instruction>
9. <instruction>
i. ...
is a shorthand for
10. if $a=0$ goto $i$
11. 〈instruction>
12. 〈instruction>
i-1. goto 1
input a $\quad \varphi(a)=" a$ is odd"
13. if $a=0$ goto 7
14. dec a
15. if $a=0$ goto 6
16. dec a
17. goto 1
18. accept
19. reject
input a
20. inc $b$
21. while $a>0$ :
22. dec a
23. while $b>0$ :
24. dec $b$
25. inc $c$
26. inc $c$
27. while $c>0$ :
28. dec $c$
29. inc $b$

## Example counter machines

## input a

$$
f(a)=2 a
$$

input a $\quad f(a)=\lfloor a / 2\rfloor$

1. if $a=0$ goto 6
2. dec $a$
3. inc $b$
4. inc $b$
5. goto 1
6. end
7. while a>0:
8. <instruction>
9. <instruction>
i. ...
is a shorthand for
10. if $a=0$ goto $i$
11. 〈instruction>
12. 〈instruction>
i-1. goto 1
i.
inputs $\mathrm{a}, \mathrm{b} \quad f(a, b)=a b$
13. while $a>0$ :
14. dec a
15. while $b>0$ :
16. dec $b$
17. inc $c$
18. inc d
19. while $c>0$ :
20. dec $c$
21. inc b
input a $\quad \varphi(a)=" a$ is odd"
22. if $a=0$ goto 7
23. dec a
24. if $a=0$ goto 6
25. dec a
26. goto 1
27. accept
28. reject
input a $\quad f(a)=2^{a}$
29. inc $b$
30. while $a>0$ :
31. dec a
32. while $b>0$ :
33. dec $b$
34. inc $c$
35. inc $c$
36. while $c>0$ :
37. dec $c$
38. inc $b$

## 3-counter machines are Turing universal

## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right



## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right


Interpret tape on each side of tape head as binary number; append new leading 1 to make this mapping 1-1, in case the binary string has no leading 1 already, since $00111_{2}, 0111_{2}$, and $111_{2}$ are all considered the number 7 .

## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right


Interpret tape on each side of tape head as binary number; append new leading 1 to make this mapping 1-1, in case the binary string has no leading 1 already, since $00111_{2}, 0111_{2}$, and $111_{2}$ are all considered the number 7 .

## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right


Need a third "work" counter $c$ to help do the following operations on counters $a$ and $b$ :

Turing machine operation	Counter machine implementation
read bit under tape head	
change bit under tape head	
move tape head right	
move tape head left	
test if tape head is on blank   and if so, change it to 1	

Interpret tape on each side of tape head as binary number; append new leading 1 to make this mapping 1-1, in case the binary string has no leading 1 already, since $00111_{2}, 0111_{2}$, and $111_{2}$ are all considered the number 7 .

## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right


Need a third "work" counter $c$ to help do the following operations on counters $\boldsymbol{a}$ and $\boldsymbol{b}$ :

Turing machine operation	Counter machine implementation
read bit under tape head	is $\boldsymbol{a}$ odd?
change bit under tape head	
move tape head right	
move tape head left	
test if tape head is on blank   and if so, change it to 1	

Interpret tape on each side of tape head as binary number; append new leading 1 to make this mapping 1-1, in case the binary string has no leading 1 already, since $00111_{2}, 0111_{2}$, and $111_{2}$ are all considered the number 7 .

## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right


Need a third "work" counter $c$ to help do the following operations on counters $\boldsymbol{a}$ and $\boldsymbol{b}$ :

Turing machine operation	Counter machine implementation
read bit under tape head	is $\boldsymbol{a}$ odd?
change bit under tape head	$\mathrm{inc} / \mathrm{dec} \boldsymbol{a}$
move tape head right	
move tape head left	
test if tape head is on blank   and if so, change it to 1	

Interpret tape on each side of tape head as binary number; append new leading 1 to make this mapping 1-1, in case the binary string has no leading 1 already, since $00111_{2}, 0111_{2}$, and $111_{2}$ are all considered the number 7 .

## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right


Need a third "work" counter $c$ to help do the following operations on counters $\boldsymbol{a}$ and $\boldsymbol{b}$ :

Turing machine operation	Counter machine implementation
read bit under tape head	is $\boldsymbol{a}$ odd?
change bit under tape head	inc/dec $\boldsymbol{a}$
move tape head right	set $\boldsymbol{a}=2 \boldsymbol{a}(+1)$; set $\boldsymbol{b}=\lfloor\boldsymbol{b} / 2\rfloor$
move tape head left	
test if tape head is on blank   and if so, change it to 1	

Interpret tape on each side of tape head as binary number; append new leading 1 to make this mapping 1-1, in case the binary string has no leading 1 already, since $00111_{2}, 0111_{2}$, and $111_{2}$ are all considered the number 7 .

## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right


Need a third "work" counter $c$ to help do the following operations on counters $\boldsymbol{a}$ and $\boldsymbol{b}$ :

Turing machine operation	Counter machine implementation
read bit under tape head	is $\boldsymbol{a}$ odd?
change bit under tape head	inc/dec $\boldsymbol{a}$
move tape head right	set $\boldsymbol{a}=2 \boldsymbol{a}(+1)$; set $\boldsymbol{b}=\lfloor\boldsymbol{b} / 2\rfloor$
move tape head left	set $\boldsymbol{b}=2 \boldsymbol{b}(+1)$; set $\boldsymbol{a}=\lfloor\boldsymbol{a} / 2\rfloor$
test if tape head is on blank   and if so, change it to 1	

Interpret tape on each side of tape head as binary number; append new leading 1 to make this mapping 1-1, in case the binary string has no leading 1 already, since $00111_{2}, 0111_{2}$, and $111_{2}$ are all considered the number 7 .

## 3-counter machines are Turing universal

Assume Turing machine

- has a single blank on rightmost cell
- if rightmost blank overwritten, it grows a new blank cell to right


Need a third "work" counter $c$ to help do the following operations on counters $\boldsymbol{a}$ and $b$ :

Turing machine operation	Counter machine implementation
read bit under tape head	is $\boldsymbol{a}$ odd?
change bit under tape head	inc/dec $\boldsymbol{a}$
move tape head right	set $\boldsymbol{a}=2 \boldsymbol{a}(+1)$; set $\boldsymbol{b}=\lfloor\boldsymbol{b} / 2\rfloor$
move tape head left	set $\boldsymbol{b}=2 \boldsymbol{b}(+1)$; set $\boldsymbol{a}=\lfloor\boldsymbol{a} / 2\rfloor$
test if tape head is on blank   and if so, change it to $\mathbf{1}$	if $\boldsymbol{b}=1$ then   set $\boldsymbol{a}=2 \boldsymbol{a}+1$

Interpret tape on each side of tape head as binary number; append new leading 1 to make this mapping 1-1, in case the binary string has no leading 1 already, since $00111_{2}, 0111_{2}$, and $111_{2}$ are all considered the number 7 .

1-counter machines are not Turing-universal... why?

## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} 5^{c}$ and $y=0$.


## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} \cdot 5^{c}$ and $y=0$.
- To increment $b$, set $x=3 x$. (using $y$ as a work counter)


## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} \cdot 5^{c}$ and $y=0$.
- To increment $b$, set $x=3 x$.
(using $y$ as a work counter)
- To decrement $a$, set $x=\lfloor x / 2\rfloor$.


## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} \cdot 5^{c}$ and $y=0$.
- To increment $b$, set $x=3 x$.
(using $y$ as a work counter)
- To decrement $a$, set $x=\lfloor x / 2\rfloor$.
- To test if $c=0$, test if $x \equiv 0 \bmod 5$.


## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} \cdot 5^{c}$ and $y=0$.
- To increment $b$, set $x=3 x$.
(using $y$ as a work counter)
- To decrement $a$, set $x=\lfloor x / 2\rfloor$.
- To test if $c=0$, test if $x \equiv 0 \bmod 5$.
- To start with $a=n$ and $b=c=0$, start with $x=2^{n} \cdot 3^{0} \cdot 5^{0}=2^{n}$.


## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} \cdot 5^{c}$ and $y=0$.
- To increment $b$, set $x=3 x$.
(using $y$ as a work counter)
- To decrement $a$, set $x=\lfloor x / 2\rfloor$.
- To test if $c=0$, test if $x \equiv 0 \bmod 5$.
- To start with $a=n$ and $b=c=0$, start with $x=2^{n} \cdot 3^{0} \cdot 5^{0}=2^{n}$.
- If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any computable function, this machine can start with $x=2^{n}$ and halt with $x=2^{f(n)}$.


## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} \cdot 5^{c}$ and $y=0$.
- To increment $b$, set $x=3 x$.
(using $y$ as a work counter)
- To decrement $a$, set $x=\lfloor x / 2\rfloor$.
- To test if $c=0$, test if $x \equiv 0 \bmod 5$.
- To start with $a=n$ and $b=c=0$, start with $x=2^{n} \cdot 3^{0} \cdot 5^{0}=2^{n}$.
- If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any computable function, this machine can start with $x=2^{n}$ and halt with $x=2^{f(n)}$.
- Caveat about encoding: there is no 2-counter machine that starts with $x=n$ and halts with $x=2^{n}$.

```
[Schroeppel 1972, A Two Counter Machine Cannot Calculate 2N]
"Theorem: Any counter machine can be simulated by a 2-counter machine,
provided an obscure coding is accepted for the input and output."
```


## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} \cdot 5^{c}$ and $y=0$.
- To increment $b$, set $x=3 x$.
(using $y$ as a work counter)
- To decrement $a$, set $x=\lfloor x / 2\rfloor$.
- To test if $c=0$, test if $x \equiv 0 \bmod 5$.
- To start with $a=n$ and $b=c=0$, start with $x=2^{n} \cdot 3^{0} \cdot 5^{0}=2^{n}$.
- If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any computable function, this machine can start with $x=2^{n}$ and halt with $x=2^{f(n)}$.
- Caveat about encoding: there is no 2-counter machine that starts with $x=n$ and halts with $x=2^{n}$.
[Schroeppel 1972, A Two Counter Machine Cannot Calculate $2^{N}$ ]
"Theorem: Any counter machine can be simulated by a 2-counter machine, provided an obscure coding is accepted for the input and output."
- 2-counter machines can do universal computation on encoded inputs ( $n$ encoded as $2^{n}$ ), but they cannot compute the encoding/decoding themselves.


## 2-counter machines are (sort of) Turing universal

[Minsky 1967, Computation: Finite and Infinite Machines]

- To represent counter values ( $a, b, c$ ) in a single counter $x$, let $x=2^{a} \cdot 3^{b} \cdot 5^{c}$ and $y=0$.
- To increment $b$, set $x=3 x$.
(using $y$ as a work counter)
- To decrement $a$, set $x=\lfloor x / 2\rfloor$.
- To test if $c=0$, test if $x \equiv 0 \bmod 5$.
- To start with $a=n$ and $b=c=0$, start with $x=2^{n} \cdot 3^{0} \cdot 5^{0}=2^{n}$.
- If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any computable function, this machine can start with $x=2^{n}$ and halt with $x=2^{f(n)}$.
- Caveat about encoding: there is no 2-counter machine that starts with $x=n$ and halts with $x=2^{n}$.
[Schroeppel 1972, A Two Counter Machine Cannot Calculate $2^{N}$ ]
"Theorem: Any counter machine can be simulated by a 2-counter machine, provided an obscure coding is accepted for the input and output."
- 2-counter machines can do universal computation on encoded inputs ( $n$ encoded as $2^{n}$ ), but they cannot compute the encoding/decoding themselves.
- However, the fact that 2-counter machines can simulate arbitrary 3-counter machines implies that the Halting Problem for 2-counter machines is undecidable.


## 2-counter machines: Finite automata robots on the plane



Finite automaton occupying a point $(x, y) \in \mathbb{N}^{2}$.
It cannot write anything, or see anything.
It can sense if it is touching the southern wall, or western wall (or both).

It can move north, south, east, or west based on its current state and 2 "wall bits", and of course change state:
$\delta: S \times\{\text { wall, no wall }\}^{2} \rightarrow S \times\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$

## 2-counter machines: Finite automata robots on the plane



Finite automaton occupying a point $(x, y) \in \mathbb{N}^{2}$.
It cannot write anything, or see anything.
It can sense if it is touching the southern wall, or western wall (or both).

It can move north, south, east, or west based on its current state and 2 "wall bits", and of course change state:
$\delta: S \times\{\text { wall, no wall }\}^{2} \rightarrow S \times\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$
There is an automaton $A$ so that this problem is undecidable: given $(x, y) \in \mathbb{N}^{2}$, if started at $(x, y)$, will $A$ ever visit the lower-left corner?

## CRNs can simulate counter machines with probability < 1

# CRNs can simulate counter machines with probability < 1 

## Counter machine:

## $r=$ input $n$, start line 1

## CRNs can simulate counter machines with probability < 1

## Counter machine: $r=$ input $n$, start line 1

 CRN:initial state $\left\{n R, 1 L_{1}\right\}$

## CRNs can simulate counter machines with probability < 1

Counter machine:
$r=$ input $n$, start line 1

1) inc $r$
2) dec $r$ if zero goto 1
3) inc s
4) dec $s$ if zero goto 2

CRN:
initial state $\left\{n R, 1 L_{1}\right\}$

## CRNs can simulate counter machines with probability < 1

## Counter machine:

$r=$ input $n$, start line 1

1) inc $r$
2) dec $r$ if zero goto 1
3) inc s
4) dec $s$ if zero goto 2

## CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

1) $L_{1} \rightarrow L_{2}+R$

## CRNs can simulate counter machines with probability < 1

## Counter machine:

$r=$ input $n$, start line 1

1) inc $r$
2) dec $r$ if zero goto 1
3) inc $s$
4) dec $s$ if zero goto 2

## CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

1) $L_{1} \rightarrow L_{2}+R$
2) $L_{2}+R \rightarrow L_{3}$

## CRNs can simulate counter machines with probability < 1

## Counter machine: <br> $r=$ input $n$, start line 1 <br> 1) inc $r$ <br> 2) dec $r$ if zero goto 1 <br> 3) inc s <br> 4) dec $s$ if zero goto 2

## CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

1) $L_{1} \rightarrow L_{2}+R$
2) $L_{2}+R \rightarrow L_{3}$

## CRNs can simulate counter machines with probability < 1

## Counter machine:

$r=$ input $n$, start line 1

1) inc $r$
2) dec $r$ if zero goto 1
3) inc $s$
4) dec $s$ if zero goto 2

## CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

1) $L_{1} \rightarrow L_{2}+R$
2) $L_{2}+R \rightarrow L_{3} ; L_{2} \rightarrow L_{1}$

## CRNs can simulate counter machines with probability < 1

## Counter machine:

$r=$ input $n$, start line 1

1) inc $r$
2) dec $r$ if zero goto 1
3) inc $s$
4) dec $s$ if zero goto 2

## CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

1) $L_{1} \rightarrow L_{2}+R$
2) $L_{2}+R \rightarrow L_{3} ; L_{2} \rightarrow L_{1}$
3) $L_{3} \rightarrow L_{4}+S$
4) $L_{4}+S \rightarrow L_{5} ; L_{4} \rightarrow L_{2}$

## CRNs can simulate counter machines with probability < 1

## Counter machine:

$r=$ input $n$, start line 1

1) inc $r$
2) dec $r$ if zero goto 1
3) inc $s$
4) dec $s$ if zero goto 2

## CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

1) $L_{1} \rightarrow L_{2}+R$
2) $L_{2}+R \rightarrow L_{3} ; L_{2} \rightarrow L_{1}$
3) $L_{3} \rightarrow L_{4}+S$
4) $L_{4}+S \rightarrow L_{5} ; L_{4} \rightarrow L_{2}$

Error occurs when $R$ is present, but reaction $L_{2} \rightarrow L_{1}$ occurs instead of $L_{2}+R \rightarrow L_{3}$. Semantic effect on register machine: when $r>0$, it may jump from line 2 to 1 without decrementing. There's a positive probability of error; how to reduce it? Need to slow down $L_{2} \rightarrow L_{1}$.

## CRNs can simulate counter machines with probability < 1

## Counter machine:

$r=$ input $n$, start line 1

1) inc $r$
2) dec $r$ if zero goto 1
3) inc $s$
4) dec $s$ if zero goto 2

## CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

1) $L_{1} \rightarrow L_{2}+R$
2) $L_{2}+R \rightarrow L_{3} ; L_{2} \rightarrow L_{1}$
3) $L_{3} \rightarrow L_{4}+S$ Need to be
4) $L_{4}+S \rightarrow L_{5} ; L_{4} \rightarrow L_{2}$

Error occurs when $R$ is present, but reaction $L_{2} \rightarrow L_{1}$ occurs instead of $L_{2}+R \rightarrow L_{3}$. Semantic effect on register machine: when $r>0$, it may jump from line 2 to 1 without decrementing. There's a positive probability of error; how to reduce it? Need to slow down $L_{2} \rightarrow L_{1}$.

## Problem with adjusting rate constant to slow down reactions for achieving Turing-universal computation

## Could make rate constant $\boldsymbol{k}$ very small

- If correct reaction $r_{\mathrm{c}}: L_{2}+R \rightarrow L_{3}$ has rate constant 1 , how small should $k$ be to achieve $\operatorname{Pr}\left[r_{i}\right.$ occurs instead of $\left.r_{\mathrm{c}}\right]=\operatorname{Pr}[$ error $]=\varepsilon$ ?
- rate of $r_{\mathrm{c}}=\lambda_{\mathrm{c}}=\# L_{2} \cdot \# R / v=\# R / v \geq 1 / v$
- rate of $r_{\mathrm{i}}=\lambda_{\mathrm{i}}=k \cdot \# L_{2}=k$
- $\operatorname{Pr}[$ error $]=\lambda_{\mathrm{i}} /\left(\lambda_{\mathrm{i}}+\lambda_{\mathrm{c}}\right) \leq k /(k+1 / v)$
- For $\operatorname{Pr}[\operatorname{error}]=\varepsilon$, set $k=\varepsilon /(v-v \varepsilon) \approx \varepsilon / v$


## Problems with simulation scheme so far

## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.


## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.


## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.


## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say Pr[error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.

3. Reducing error slows down the computation "significantly".

## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.

3. Reducing error slows down the computation "significantly".

- halving rate constant k decreases $\operatorname{Pr}[$ error] by half, but doubles expected running time of all jump steps


## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.

3. Reducing error slows down the computation "significantly".

- halving rate constant k decreases $\operatorname{Pr}[$ error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.

## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.

3. Reducing error slows down the computation "significantly".

- halving rate constant k decreases $\operatorname{Pr}[$ error] by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.
5. To store $b$ bits, we need $\Omega\left(2^{b}\right)$ molecules.

## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.

3. Reducing error slows down the computation "significantly".

- halving rate constant $k$ decreases $\operatorname{Pr}[e r r o r]$ by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.
5. To store $b$ bits, we need $\Omega\left(2^{b}\right)$ molecules.

- Problem 5 is fundamental in CRNs: they necessarily store a "unary" encoding of any integer.


## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.

3. Reducing error slows down the computation "significantly".

- halving rate constant $k$ decreases $\operatorname{Pr}[e r r o r]$ by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.
5. To store $b$ bits, we need $\Omega\left(2^{b}\right)$ molecules.

- Problem 5 is fundamental in CRNs: they necessarily store a "unary" encoding of any integer.
- Theorem(ish): There is a CRN solving problems 1-4.


## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta /$ t, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.

3. Reducing error slows down the computation "significantly".

- halving rate constant $k$ decreases $\operatorname{Pr}[e r r o r]$ by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.
5. To store $b$ bits, we need $\Omega\left(2^{b}\right)$ molecules.

- Problem 5 is fundamental in CRNs: they necessarily store a "unary" encoding of any integer.
- Theorem(ish): There is a CRN solving problems 1-4.
- We'll see how to solve problems 1-3 by simulating a register machine more efficiently.


## Problems with simulation scheme so far

1. Adjusting rate constants means designing new chemicals.

- Easier to adjust counts of existing molecules than to design new ones.

2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.

- By union bound we can only say $\operatorname{Pr}[$ error in any time step] $\leq \varepsilon \cdot t$ ( $t=$ running time), so to achieve total error probability $\leq \delta$ over all the computation requires setting $\varepsilon \leq \delta / \mathrm{t}$, i.e., $k \leq \delta /(t \cdot v)$.
- Universal computation requires that we can simulate a program without knowing in advance how many steps it will take.

3. Reducing error slows down the computation "significantly".

- halving rate constant $k$ decreases $\operatorname{Pr}[e r r o r]$ by half, but doubles expected running time of all jump steps

4. Register machines are exponentially slower than Turing machines.
5. To store $b$ bits, we need $\Omega\left(2^{b}\right)$ molecules.

- Problem 5 is fundamental in CRNs: they necessarily store a "unary" encoding of any integer.
- Theorem(ish): There is a CRN solving problems 1-4.
- We'll see how to solve problems 1-3 by simulating a register machine more efficiently.
- To handle Problem 4, see [Soloveichik, Cook, Winfree, Bruck, Computation with Finite Stochastic Chemical Reaction Networks, NaCo 2008]

How to slow down reaction $L_{2} \rightarrow L_{1}$ ?

How to slow down reaction $L_{2} \rightarrow L_{1}$ ?
Use a clock:
$1 C_{1}, 1 F, n B$

How to slow down reaction $L_{2} \rightarrow L_{1}$ ?
Use a clock:
$1 C_{1}, 1 F, n B$

$$
\begin{aligned}
& F+C_{1} \rightarrow F+C_{2} \\
& F+C_{2} \rightarrow F+C_{3}
\end{aligned}
$$

$$
\begin{aligned}
& B+C_{2} \rightarrow B+C_{1} \\
& B+C_{3} \rightarrow B+C_{2}
\end{aligned}
$$

## How to slow down reaction $L_{2} \rightarrow L_{1}$ ?

Use a clock:
$1 C_{1}, 1 F, n B$

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$


reverse-biased random walk

## How to slow down reaction $L_{2} \rightarrow L_{1}$ ?

Use a clock:
$1 C_{1}, 1 F, n B$

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$


$C_{k}$ appears after expected time $\approx n^{k-1}$
reverse-biased random walk

## How to slow down reaction $L_{2} \rightarrow L_{1}$ ?

Use a clock:
$1 C_{1}, 1 F, n B$

$$
\begin{aligned}
& F+C_{1} \rightarrow F+C_{2} \\
& F+C_{2} \rightarrow F+C_{3}
\end{aligned}
$$

$$
C_{k}+L_{2} \rightarrow C_{1}+L_{1}
$$

$$
\begin{aligned}
& B+C_{2} \rightarrow B+C_{1} \\
& B+C_{3} \rightarrow B+C_{2}
\end{aligned}
$$

$$
\vdots
$$


$C_{k}$ appears after expected time $\approx n^{k-1}$
reverse-biased random walk

## How to slow down reaction $L_{2} \rightarrow L_{1}$ ?

Use a clock:
$1 C_{1}, 1 F, n B$

$$
\begin{aligned}
& F+C_{1} \rightarrow F+C_{2} \\
& F+C_{2} \rightarrow F+C_{3}
\end{aligned}
$$

$$
C_{k}+L_{2} \rightarrow C_{1}+L_{1}
$$

$$
\begin{aligned}
& B+C_{2} \rightarrow B+C_{1} \\
& B+C_{3} \rightarrow B+C_{2}
\end{aligned}
$$


reverse-biased random walk
$C_{k}$ appears after expected time $\approx n^{k-1}$
$\mathrm{E}\left[\right.$ time for $\left.L_{2}+R \rightarrow L_{3}\right] \leq n$

## How to handle the three problems

Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.
2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

## How to handle the three problems

Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.
2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 1: Now all rate constants = 1.

## How to handle the three problems

Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.
2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 2: How to make $\operatorname{Pr}[$ error in any time step] $<\varepsilon$, no matter how long the computation goes?

Problem 1: Now all rate constants $=1$.

## How to handle the three problems

## Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.

Problem 1: Now all rate constants $=1$.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 2: How to make $\operatorname{Pr}[$ error in any time step] < $\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{c}: L_{2}+R \rightarrow L_{3}$

## How to handle the three problems

## Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.

Problem 1: Now all rate constants $=1$.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 2: How to make $\operatorname{Pr}[$ error in any time step] < $\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{c}: L_{2}+R \rightarrow L_{3}$
If both possible, worst case is $\# R=1$, whereas $\# C_{k}=0$ or 1 .

## How to handle the three problems

## Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.

Problem 1: Now all rate constants $=1$.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 2: How to make $\operatorname{Pr}[$ error in any time step] < $\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{c}: L_{2}+R \rightarrow L_{3}$
If both possible, worst case is $\# R=1$, whereas $\# C_{k}=0$ or 1 .
$\operatorname{Pr}\left[r_{i}\right]=\operatorname{Pr}\left[\# C_{k}=1\right] \leq 1 / n^{k}$, where $n=\# B$.

## How to handle the three problems

## Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.

Problem 1: Now all rate constants $=1$.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 2: How to make Pr[error in any time step] $<\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{\mathrm{c}}: L_{2}+R \rightarrow L_{3}$
If both possible, worst case is $\# R=1$, whereas $\# C_{k}=0$ or 1 .
$\operatorname{Pr}\left[r_{i}\right]=\operatorname{Pr}\left[\# C_{k}=1\right] \leq 1 / n^{k}$, where $n=\# B$.
Setting $k=2, \operatorname{Pr}\left[r_{i}\right] \leq 1 / n^{2}$.

## How to handle the three problems

## Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.

Problem 1: Now all rate constants $=1$.
2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 2: How to make $\operatorname{Pr}[$ error in any time step] < $\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{c}: L_{2}+R \rightarrow L_{3}$
If both possible, worst case is $\# R=1$, whereas $\# C_{k}=0$ or 1 .
$\operatorname{Pr}\left[r_{i}\right]=\operatorname{Pr}\left[\# C_{k}=1\right] \leq 1 / n^{k}$, where $n=\# B$.
Setting $k=2, \operatorname{Pr}\left[r_{i}\right] \leq 1 / n^{2}$.

Solution: increase $B$ after every decrement and jump:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}+B$
$r_{c}: L_{2}+R \rightarrow L_{3}+B$

## How to handle the three problems

## Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.

Problem 1: Now all rate constants $=1$.
2. $\operatorname{Pr}[$ error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 2: How to make $\operatorname{Pr}[$ error in any time step] < $\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{c}: L_{2}+R \rightarrow L_{3}$
If both possible, worst case is $\# R=1$, whereas $\# C_{k}=0$ or 1 .
$\operatorname{Pr}\left[r_{i}\right]=\operatorname{Pr}\left[\# C_{k}=1\right] \leq 1 / n^{k}$, where $n=\# B$.
Setting $k=2, \operatorname{Pr}\left[r_{i}\right] \leq 1 / n^{2}$.

Solution: increase $B$ after every decrement and jump:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}+B$
$r_{c}: L_{2}+R \rightarrow L_{3}+B$
So $\operatorname{Pr}\left[r_{\mathrm{i}}\right.$ ever occurs when it shouldn't $] \leq \sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.

## How to handle the three problems

Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 1: Now all rate constants $=1$.

Problem 2: How to make Pr[error in any time step] $<\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Solution: increase $B$ after every decrement and jump:
$r_{\mathrm{i}}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}+B$
$r_{c}: L_{2}+R \rightarrow L_{3}+B$
So $\operatorname{Pr}\left[r_{i}\right.$ ever occurs when it shouldn't $] \leq \sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.
Still not a great probability bound, but we can scale that to any constant error probability $\varepsilon$ by setting starting value of $B$ :

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{c}: L_{2}+R \rightarrow L_{3}$
If both possible, worst case is \#R=1, whereas $\# C_{k}=0$ or 1 .
$\operatorname{Pr}\left[r_{i}\right]=\operatorname{Pr}\left[\# C_{k}=1\right] \leq 1 / n^{k}$, where $\mathrm{n}=\# B$.
Setting $k=2, \operatorname{Pr}\left[r_{\mathrm{i}}\right] \leq 1 / n^{2}$.

## How to handle the three problems

Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 1: Now all rate constants $=1$.

Problem 2: How to make Pr[error in any time step] $<\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{\mathrm{c}}: L_{2}+R \rightarrow L_{3}$
If both possible, worst case is $\# R=1$, whereas $\# C_{k}=0$ or 1 .
$\operatorname{Pr}\left[r_{i}\right]=\operatorname{Pr}\left[\# C_{k}=1\right] \leq 1 / n^{k}$, where $n=\# B$.
Setting $k=2, \operatorname{Pr}\left[r_{\mathrm{i}}\right] \leq 1 / n^{2}$.

Solution: increase $B$ after every decrement and jump:
$r_{\mathrm{i}}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}+B$
$r_{c}: L_{2}+R \rightarrow L_{3}+B$
So $\operatorname{Pr}\left[r_{i}\right.$ ever occurs when it shouldn't $] \leq \sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.
Still not a great probability bound, but we can scale that to any constant error probability $\varepsilon$ by setting starting value of $B$ : For $\varepsilon=1 / 100$, set initial \#B $=102$, since $\sum_{n=102}^{\infty} 1 / n^{2}<0.01$.

## How to handle the three problems

Recall three problems we claimed we would solve:

1. Adjusting rate constants means designing new chemicals.
2. Pr[error in any time step] increases for longer computations.
3. Reducing error slows down the computation "significantly".

Problem 1: Now all rate constants $=1$.

Problem 2: How to make Pr[error in any time step] < $\varepsilon$, no matter how long the computation goes?

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

Two competing reactions, $r_{\mathrm{i}}$ incorrect, and $r_{\mathrm{c}}$ correct:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}$
$r_{\mathrm{c}}: L_{2}+R \rightarrow L_{3}$
If both possible, worst case is $\# R=1$, whereas $\# C_{k}=0$ or 1 . $\operatorname{Pr}\left[r_{i}\right]=\operatorname{Pr}\left[\# C_{k}=1\right] \leq 1 / n^{k}$, where $n=\# B$.
Setting $k=2, \operatorname{Pr}\left[r_{i}\right] \leq 1 / n^{2}$.

Solution: increase $B$ after every decrement and jump:
$r_{i}: C_{k}+L_{2} \rightarrow C_{1}+L_{1}+B$
$r_{c}: L_{2}+R \rightarrow L_{3}+B$
So $\operatorname{Pr}\left[r_{i}\right.$ ever occurs when it shouldn't $] \leq \sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.
Still not a great probability bound, but we can scale that to any constant error probability $\varepsilon$ by setting starting value of $B$ : For $\varepsilon=1 / 100$, set initial $\# B=102$, since $\sum_{n=102}^{\infty} 1 / n^{2}<0.01$.

Problem 3: Also solved! i.e., halving error probability no longer doubles computation time (derivation not shown)


[^0]:    [Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

[^1]:    [Chen, Doty, Soloveichik, Deterministic function computation with chemical reaction networks, DNA 2012]
    [Doty, Hajiaghayi, Leaderless deterministic chemical reaction networks, DNA 2013]

[^2]:    NOT $a=b^{2} ? \quad a$ is a power of 2? $\quad a$ is prime?

