Computation with chemistry

slides © 2021, David Doty
ECS 232: Theory of Molecular Computation, UC Davis

Chemical reaction networks L

aTAM self-assembly describes stateless molecules that collide and stick together.

—

- -

Chemical reaction networks

aTAM self-assembly describes stateless molecules that collide and stick together.
Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision. ‘
A~) @ E>

_ -
Chemical reaction networks % = L]

aTAM self-assembly describes stateless molecules that collide and stick together.
Chemical reaction network model describes stateful molecules that collide and

N\
bounce apart, but that might change state as a result of the collision. ‘ @
Allow more general reactions that produce/consume molecules. @,’ IZ> @ IZ>

_ -
Chemical reaction networks % = L]

aTAM self-assembly describes stateless molecules that collide and stick together.
Chemical reaction network model describes stateful molecules that collide and

~
bounce apart, but that might change state as a result of the collision. ‘ @
Allow more general reactions that produce/consume molecules. @,’ IZ> @ E> I
N
reactant(s) R - P1+P2 product(s)

- -

Chemical reaction networks

aTAM self-assembly describes stateless molecules that collide and stick together.
Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision. ‘
Allow more general reactions that produce/consume molecules. @,’ |:> @ IZ>
reactant(s) R - P1+P2 product(s)

monomers I\/]1+I\/I2 D dimer

e |

©
D)

N

- -

Chemical reaction networks

aTAM self-assembly describes stateless molecules that collide and stick together.
Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision. ‘
Allow more general reactions that produce/consume molecules. @,’ |:> @ IZ>
reactant(s) R - P1+P2 product(s)

monomers I\/]1+I\/I2 D dimer

catalyst C+X - C+Y

e |

©
D)

N

= -

Chemical reaction networks

aTAM self-assembly describes stateless molecules that collide and stick together.
Chemical reaction network model describes stateful molecules that collide and

bounce apart, but that might change state as a result of the collision.
Allow more general reactions that produce/consume molecules. @," E> @ E>

reactant(s) R - P1+P2 product(s)
monomers I\/]1+I\/I2 D dimer
catalyst C+X - C+Y

Traditionally a descriptive modeling language...
Let’s instead use it as a prescriptive programming language

©
D)

N

What behavior is possible for chemistry in principle?

inspiration

What behavior is possible for chemistry in principle?

what we’ll study

inspiration

What behavior is possible for chemistry in principle?

what we’ll study

ultimate interest

inspiration

Computation with chemical reaction networks

* Key ideas setting chemical computation apart from others:
* cannot control order in which molecules collide
e can control how they react when they collide

Computation with chemical reaction networks

* Key ideas setting chemical computation apart from others:
* cannot control order in which molecules collide
e can control how they react when they collide

e Related model of distributed computing called population protocols

 originally motivated by mobile wireless sensor networks, e.g., attached to a
birds in a flock S ok S5

[Computation in networks of passively mobile finite-state
sensors, Angluin, Aspnes, Diamadi, Fischer, Peralta. PODC 2004]

Example: Chemical caucusing

opposite X+ N +

opinions cancel

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

Example: Chemical caucusing

opposite X+ N U+U

opinions cancel

both opinions X+U —> X+X

influence the

unopinionated _|_U S Y+

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

Example: Chemical caucusing

100
Y
opposite X+ U+U 801
opinions cancel — 60|
c
S 40/
both opinions X+U — X+X
influence the 201
unopinionated _|_U S Y+ o

00 05 10 15 20 25 3.0
time

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

Example: Chemical caucusing

100 -

— X
Y
opposite 801
opinions cancel X+ — + A & 60|
X — — %
— - O 40
both opinions X+ —> X+X |_ ? ?
influence the 201
unopinionated + S Y+ o

00 05 10 15 20 25 3.0
time

distributed algorithm for “approximate majority”:
initial majority (X or Y) quickly overtakes whole population
(with high probability)

[Angluin, Aspnes, Eisenstat, A simple population protocol for fast robust approximate majority, DISC 2007]

Does chemistry compute?

<
L 4
=
O
Il

ISy
[T

Silenced o ’\ /‘_ -
/

L ar i ir)
Active - —@\ l T p —8)

/ \

2 2 2 ¢ @ o o ¥ o o o
IS8V 4!
[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

Does chemistry compute?

unreplicated
DNA

Active - -
S 2 o b

[Dodd, Micheelsen, Sneppen, Thon. Theoretical analysis of
epigenetic cell memory by nucleosome modification, Cell 2007]

[Cardelli, Csikasz-Nagy. The cell cycle switch computes
approximate majority. Nature Scientific Reports 2012]
[Cardelli, Morphisms of reaction networks that couple
structure to function, BMC Systems Biology 2014]

Why compute
with chemistry?

Versus

Why compute
with chemistry?

Versus

speed?

Why compute
with chemistry?

Versus

Why compute
with chemistry?

Versus

component size?

Why compute
with chemistry?

Versus

sw? fast

= 10-100 nm compopRnt size? = 10-100 nm

Why compute
with chemistry?

Versus

SW? fast

= 10-100 nm compopRnt size? = 10-100 nm

yes / compatible with not easily
“wet environments”?

Why compute
with chemistry?

cells

o SW? fast
" ___ smartdrug

T/

=l ..
. ﬁ ®e " released only in
Z@ | certain cellul
| certain cellular

SoP Ny =~ 10-100 nm compo@gRnt size? =~ 10-100 nm

conditions

Versus

yes compatible with not easily
“wet environments”?

in-place computation
replacing expensive
read/write lab steps

chemical controller to
optimize yield of
metabolically produced
biofuels/drugs/etc.

Can we compute with chemistry?

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Can we compute with chemistry?

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

Can we compute with chemistry?

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X+X, = X5

Can we compute with chemistry?

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X+X, = X5

species

idenpﬂer
T 1T 2 3

X

species
identifier
7 4 5 6

— 1 —

X3

Species
|deqﬁﬁr
127 8 o

X3

Can we compute with chemistry?

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X+X, = X5

.3|:rec.ifes 74 , {2 Lo
identifier 4 12" 21 2 3 5 6 '
_ denfller 2 34 5 6 2 3 5 2 34
—_ 23 i n/ \‘J‘J 1 m"'/
ﬁf' 2k TEAR GH G lg. 2 3®4® 5% f 5
P I .
X L; H; i
.3?8@}&5 7 0 5
identifier 9 172" w1 24 5 6 5 6 12 7
7 4 5 6 N2y S 6 S \‘._-i-: VVICRTICNNi? e
_ W Ok AEAE RE I'"'* lﬁ.l' 2% 3HgE 5% g%
lg, 2% 3745 5% 6 ! waste 0Oi
X7 H;
: £
_ R 12 7 ’ J g 12 7 identifier
BN R o Ji TN 7 27§ 9
'EE']* |2-C';|'* (—_,* |E"?* — 1 i 1
0; T; waste

X3

Can we compute with chemistry?

“Not every chemical reaction network describes real chemicals!”, i.e. “where’s the compiler?”

Response: [Soloveichik, Seelig, Winfree, PNAS 2010] showed how to physically
implement any chemical reaction network using DNA strand displacement

X+X, = X5

é species)
identifier 12 12
,_,[_\ 2 < 1 2 5 6 / 7 34
T T 3 3 / \1] =
e aa o ymmimmm oy '
B.
\ i L i r)
s . N
Species 7 ?
identifier 9 12 " N2 ‘405 6 5 6 12 7
. Aﬁ 1 2 3 5 6 - > b= !
2000 N, mm” — i A !
0w 3EAE GE G lg; = o
Ig; 5 Y waste !
k Xg H; J
7)
- ¥
5.6 127 + 12 7’/" \j?.mlfuﬁ.?) i
0; n waste X
3
\ . J

DNA strand displacement implementing A+B - C

P
-—
”-———

- e

video: Microsoft Research Cambridge

Experimental implementations of synthetic
chemical reaction networks with DNA

/Analog majority computation Xo=07,Y,=03

X Y
(majority) (minority)
—_ —> e e
Voo
Consensus 3\/ 0.0 +
network "E : |
! a o0 5 10
X (majority) >_> > s % ><O =03, YO =0.7

g
S 1.0 O
et e

X+Y > B+ S e

054
X+5 — X+X
I

ViB _, Y4V o 5 10

time (hours)

[Programmable chemical controllers made from DNA. Chen, Dalchau, Srinivas,
\ Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013.]

~

J

-~

Chemical oscillator

' Bh React & Backward Helpers ﬁ:lts:gy:slc Thresholds t =-1.5h
100nM 100 nM 75 nM 25nM 10nM

-

P

L)
. Signal species addded
in varying amounts to
kickstart oscillations

roduce
100 nM

t=0

—_—

Rock-paper-scissors oscillator: = + A ﬁ» 2-,C+ ﬁ, 2C,A+C &b oA

—

~

A+B - B+B §
B+C - C+C %

C+A 5 A+A

[Enzyme-free nucleic acid dynamical systems. Srinivas,
\ Parkin, Seelig, Winfree, Soloveichik, Science 2017.]

15

30
time (hours)

45

60

J

10

What behavior is possible for chemistry in principle?

What behavior is possible for chemistry in principle?

What computation is possible and what is not?
(Computability theory)

i ok
e

I‘rﬁ,

Vi

12

What computations necessarily take a

What computation is possible and what is not? long time and what can be done quickly?
(Computability theory) (Computational complexity theory)

12

Chemical Reaction Networks (formal definition)

® finite set of d species A={A,B,C,D, ...}

® finite set of reactions: e.g. A+B 5% A+C
CL A+A
C+2B5 C

Chemical Reaction Networks (formal definition)

® finite set of d species A={A,B,C,D, ... }

® finite set of reactions: e.g. A+B % A+C

k
k,, k,, k5 are called rate constants; C — A+A
if not specified, assume = 1.
C+2B 5 C

Chemical Reaction Networks (formal definition)

® finite set of d species A={A,B,C,D, ...}

® finite set of reactions: e.g. A+B 5% A+C

k
k,, k,, k5 are called rate constants; C — A+A
if not specified, assume = 1.
C+2B 5 C

® configuration x€ENY: molecular counts of each species

Chemical Reaction Networks (formal definition)

® finite set of d species A={A,B,C,D, ...}

® finite set of reactions: e.g. A+B 5% A+C

k
k,, k,, k5 are called rate constants; C — A+A
if not specified, assume = 1.
C+2B 5 C

® configuration x€ENY: molecular counts of each species

® reaction is applicable to x if x has enough of each reactant.

What is possible:
Example reaction sequence (a.k.a. execution)

a: A+B - A+C A B C
B: C-A+A x=(2, 2, 0) aapplicable but notf

14

What is possible:
Example reaction sequence (a.k.a. execution)

a: A+Bj- A+C A B C
B: C-A+A x=(2, 2, 0) aapplicable but notf

14

What is possible:
Example reaction sequence (a.k.a. execution)

a: A+B A B C
B: C-A+A x=(2, 2, 0) aapplicable but notf

a |

(2, 1, 1) a,Bbothapplicable

14

What is possible:
Example reaction sequence (a.k.a. execution)

a: A+B A+C A B C
B: A+A x=(2, 2, 0) aapplicable but notf
a |

‘ ‘ (2, 1, 1) o,Bbothapplicable

14

What is possible:
Example reaction sequence (a.k.a. execution)

ok A+B - A+C A B C
B: C—> x=(2, 2, 0) oaapplicable butnotf
a |
(2, 1, 1) o,Bbothapplicable
B |

14

What is possible:
Example reaction sequence (a.k.a. execution)

a: A+B - A+C A B C
B: C - A+A x=(2, 2, 0) aapplicable butnotp
a |
‘ ‘ (2, 1, 1) o,Bbothapplicable
B U \\ @ (another possibility)

(4, 1, 0) (2, 0, 2)

14

What is possible:
Example reaction sequence (a.k.a. execution)

ok A+B|- A+C A B C
B: C-A+A x=(2, 2, 0) aapplicable but notf
a |

, 1) o, bothapplicable
\\ Ol (another possibility)

“ 2, 1
g
‘ I (4, 1, 0) (2, 0, 2)

14

What is possible:
Example reaction sequence (a.k.a. execution)

o A+B
B: C- A+A

A B C
x=(2, 2, 0) oaapplicable butnotf
a |
(2, 1, 1) a,Bbothapplicable
B U \\, QL (another possibility)
(4, 1, 0) (2, 0, 2)
a |

(4, 0, 1)

14

What is possible:
Example reaction sequence (a.k.a. execution)

a: A+B

B: C—)A+A

Formally, an execution is a
sequence of configurations x,,
X,, ... such that each x, = x.,, by
a single reaction.

If initial configuration x is
understood, the sequence of
reactions is sometimes called
the execution.

A B C

x=(2, 2, 0) aapplicable but notf

a |

(2, 1, 1) a,Bbothapplicable
B U N\ @ (another possibility)

(4, 1, 0) (2, 0, 2)

o |

(4, 0, 1)

14

Some simple reactions
X

start with n copies of molecule X

Some simple reactions
X
start with n copies of molecule X

= n/2 expected at equilibrium

100 - #x
#Y
80+ - E[#Y]
w 601
g - ﬁmﬂ_\f\:’_\d
S 401
20 -
O_
0 1 2 3 4

Some simple reactions

1
X — Count of Y. |
| 1 never stabilizes

start with n copies of molecule X

= n/2 expected at equilibrium

100 -

—— #X
#Y
80+ - E[#Y]
0 601
g meﬂm
S 40-
20
O_

time

15

Some simple reactions

1
X N Count of ¥ —
i never stabilizes 1
—>

start with n copies of molecule X

= n/2 expected at equilibrium

100 -

— #X
#Y
801 ---- E[#Y]
0 601
g - ﬁmﬂ_\f\:’_\d
S 40-
20
O_

time

15

Some simple reactions

1
X — Count of Y. |
| 1 never stabilizes

start with n copies of molecule X

= n/2 expected at equilibrium

100 -

— #X
#Y
801 ---- E[#Y]
0 601
g - ﬁmﬂ_\f\:’_\d
S 40-
20
O_

time

counts

100

80 -

60 -

401

20

stabilizes, with expected value n/2

— #X
#Y
---- E[#Y]

15

Some simple reactions

1 ofe
X 1 Count of Y . Count of Ystabl!lz-esf but
NET never stabilizes . not to a deterministic value
— based on initial count of X
start with n copies of molecule X
= n/2 expected at equilibrium stabilizes, with expected value n/2
100 - X 100+ — #X
#Y #Y
801 ---- E[#Y] 80+ - E[#Y]
g W £
= L v Y, A S | N\
S 40/ WVWW S 40
1 2 ¥
0- 0]
0 1 3 3 4 0 1 2 3 4 5 6

time time
15

Some simple reactions

1
X — Count of Y. |
| 4 never stabilizes

start with n copies of molecule X

n/3
=12 expected at equilibrium

Worse yet, both depend
crucially on rate constants.

X 1 Count of Y stabilizes, but
not to a deterministic value
%2 "
X — based on initial count of X
n/3

stabilizes, with expected value#/2

Some simple reactions

counts

1
— Count of Y
E 4 never stabilizes

start with n copies of molecule X

n/3
=12 expected at equilibrium

1001 #x
#Y
801 ---- E[#Y]
60 -
40 -
20
O_

counts

Worse yet, both depend
crucially on rate constants.

X 1 Count of Y stabilizes, but
not to a deterministic value
%2 s
X — based on initial count of X
n/3
stabilizes, with expected value#/2
100 - E——
#Y
801 ———— E[#Y]
60
40 {
"~ —meHmLﬂxﬁ_—u—;ﬂu__
O_
0 1 2 3 4

15

Examples of stable (rate-
independent) CRN computation

Examples of function computation

division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

17

Examples of function computation

division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

2A Y

17

Examples of function computation

division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

2A Y

3 oo

17

Examples of function computation

division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

2A Y

17

Examples of function computation
division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

2A Y

* oo

17

Examples of function computation

division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

2A Y

17

Examples of function computation

division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

2A Y

© ”\00

17

Examples of function computation
division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

2A Y

17

Examples of function computation

?7?
division by 2: f(a) = a/2
goal: end up with a/2 copies of Y

2A Y

17

Examples of function computation

division by 2: f(a) =|a/2|
goal: end up with a/2 copies of Y

2A Y

17

Examples of function computation

division by 2: f(a) =|a/2| multiplication by 2: f(a) = 2a
goal: end up with a/2 copies of Y

2A Y

17

Examples of function computation

division by 2: f(a) =|a/2| multiplication by 2: f(a) = 2a
goal: end up with a/2 copies of Y
A-2Y
20 Y

17

Examples of function computation

division by 2: f(a) =|a/2| multiplication by 2: f(a) = 2a
goal: end up with a/2 copies of Y
A-2Y
20 Y

17

Examples of function computation

division by 2: f(a) =|a/2| multiplication by 2: f(a) = 2a
goal: end up with a/2 copies of Y
A-2Y
2A Y

17

Examples of function computation

division by 2: f(a) =|a/2| multiplication by 2: f(a) = 2a
goal: end up with a/2 copies of Y
A-2Y
2A Y

17

Examples of function computation

multiplication by 3: f(a) = 3a

18

Examples of function computation

multiplication by 3: f(a) = 3a

A-3Y

18

Examples of function computation

multiplication by 3: f(a) = 3a

A-3Y

18

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = |a/3]
A 3Y
A
o ©O
00 o 20

18

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = |a/3]
A 3Y 3A-Y
A
o 0 ©
00 o 20

18

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = |a/3]

A-3Y 3A-Y

18

Examples of function computation

multiplication by 3: f(a) = 3a division by 3: f(a) = |a/3]
A 3Y 3A-Y

18

Examples of function computation

f(a) = 3a using (< 2)-product reactions

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions

A Y+Y’
Y’ - 2Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions

A= v+Y7]
Y L 2Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions

A Y+Y’
Y’ - 2Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions

A= Y+Y’
v/ =2y |

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions

A Y+Y’
Y’ - 2Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions

A Y+Y’
Y’ - 2Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions

A Y+Y’
Y’ - 2Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’
Y’ - 2Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

O O o
O o o
(A
o (A
(A

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

O O ho O
o g o
o

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

O O Logb 09

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

O O “Lz 0

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

) LotA =Ly
L+A L,
L+A - L+Y

O O “Lz\@

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y

v o2y LotA—L,
L+A L,
L+A - L+Y

O O ¢ v
O

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y

v o2y LotA—L,
L+A L,
L+A - L+Y

O O ? v
O

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y

v o2y LotA—L,
L+A L,
L+A - L+Y

O O : ©
O

19

Examples of function computation

f(a) = 3a using (< 2)-product reactions fla) = |a/3] using bimolecular ((< 2)-reactant)
reactions, startingin config{1 L, a A }
(a.k.a., leader-driven)

A Y+Y’

Y 5 2Y L0+A - Ll ends with 1 copy
L1+A —>I_2 of L;fori="7???
L+A - L+Y

O O : ©
O

19

Examples of function computation

fla) = |a/3] using bimolecular (< 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

Examples of function computation

fla) = |a/3] using bimolecular (< 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A - A,
A+A Y

Examples of function computation

fla) = |a/3] using bimolecular (< 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A - A,
A+A Y

A,+A, - A+Y

Examples of function computation

fla) = |a/3] using bimolecular (< 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A - A, Calling A =A,, in general to divide by constant c:
A2tAY ArA A, ifitj<c,wherek=i+j
A+A, 5 A+Y A+A - A+Y ifi+j>c, wherek=i+j—c

AI-+AJ-—>Y |f i+j=C

Examples of function computation

fla) = |a/3] using bimolecular (< 2-reactant)
reactions, starting in config {a A} (a.k.a., leaderless)

A+A - A, Calling A =A,, in general to divide by constant c:
A+A Y A+A A, ifitj<c,wherek=i+j
A+A, 5 A+Y A+A - A+Y ifi+j>c, wherek=i+j—c

AFA Y ifitj=c
i.e., A’s start with 1 “ball” and pass balls to each other;
whenever someone gets > ¢ balls,
throw away c balls and produce a Y

Examples of function computation

addition: f(a,b) = a+b

21

Examples of function computation

addition: f(a,b) = a+b

A-Y
B-Y

A O
A

21

Examples of function computation

addition: f(a,b) = a+b

A-Y
B-Y

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a-b

A-Y
B-Y

0 0 000000
0 o ©

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a-b
A-Y A-Y

0 0 000000
0 o ©

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a—-b
A-Y A-Y

00000
O O

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a—-b
A-Y A-Y

o 030300

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a—-b
A-Y A-Y

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a—-b
A-Y A=Y
@ ®
o ® O 060
B O 06006060

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a—-b
A-Y A-Y

0 6 & 830

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(a,b) = a—-b
A-Y A-Y

21

Examples of function computation

277
addition: f(o,b) = a+b subtraction: f(a,b) = <

A=Y A=Y
B-Y B+Y > @

21

Examples of function computation

addition: f(a,b) = a+b subtraction: f(g,b) = > max(0, a-b)
A-Y A-Y
B-Y B+Y - @

21

Examples of function computation

composition: f(a,b) = 30-b

Examples of function computation

composition: f(a,b) = 30-b

A 3Y
B+Y - @

Examples of function computation

composition: f(a,b) = 3»< ???
A3y 3a(bh2)

B+Y - @

Examples of function computation

composition: f(a,b) = 3»< ???
A3y 3a(bh2)

2B+Y S @

Examples of function computation

composition: f(a,b) = 3»< ???
A3y 3a(bh2)

2B+Y S @

only linear functions computable?

Examples of function computation

composition: f(a,b) = 3»< ???
A3y 3a(bh2)

2B+Y S @

only linear functions computable?

minimum: f(a,b) = min(a,b)

Examples of function computation

composition: f(a,b) = 3»< ???
A3y 3a(bh2)

2B+Y S @

only linear functions computable?

minimum: f(a,b) = min(a,b)

A+B Y

Examples of function computation

composition: f(a,b) = 3<f ??? maximum: f(a,b) = max(a,b)
A3y 3a(bh2)
2B+Y > @

only linear functions computable?

minimum: f(a,b) = min(a,b)

A+B Y

Examples of function computation

composition: f(a,b) = 3<f ??? maximum: f(a,b) = max(a,b) = a+b—min(a,b)
A3y 3a(bh2)
2B+Y > @

only linear functions computable?

minimum: f(a,b) = min(a,b)

A+B Y

22

Examples of function computation

composition: f(a,b) = 3<f ??? maximum: f(a,b) = max(a,b) =|a+b+min(a,b)
3a—(b/2) r
S A=A gdition
28+Y - BoY+B, 0

only linear functions computable? }

minimum: f(a,b) = min(a,b)

A+B Y

22

Examples of function computation

composition: f(a,b) = 3<f ??? maximum: f(a,b) = max(a,b) = a+btmin(a,b)
3a—(b/2) r
noy A= T, ddition
28+Y - Boy+B, N0

A,+B, - K minimum

[only linear functions computable? }

minimum: f(a,b) = min(a,b)

A+B Y

22

Examples of function computation

composition: f(a,b) = 3»< ???
A3y 3a(bh2)

2B+Y S @

[only linear functions computable? }

minimum: f(a,b) = min(a,b)

A+B Y

in(a,b)

maximum: f(a,b) = max(a,b) = a+t
A~ VA, addition
B - Y+B,
A,+B, - K minimum
K+Y->Q subtraction

22

Examples of function computation

constant: f(a) =1

Examples of function computation

constant: f(a) =1

A=Y a.k.a. “leader election”
2Y Y

Examples of function computation

constant: f(a) =1

A=Y a.k.a. “leader election”
2Y Y

subtract constant: f(a) = 0—1

Examples of function computation

constant: f(a) =1

A=Y a.k.a. “leader election”
2Y Y

subtract constant: f(a) = 0—1

2A > A+Y

Examples of predicate computation

Detection: (a,b) =yes & b >0

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

OO0 O

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

an::

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

OO0 O

2 o
99

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

of{:

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A — 2B

A votes no; B votes yes

OO0 ¢

© o
90

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A - 2B

A votes no; B votes yes

00 ¢©O
B

© o
99

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A - 2B

A votes no; B votes yes

00 ¢©O
B

© o
99

Counting: ¢(a,b) =yes & b >1

24

Examples of predicate computation

Detection: (a,b) =yes & b >0

B+A - 2B

A votes no; B votes yes

00 ¢©O
B

© o
99

Counting: ¢(a,b) =yes & b >1
2B - 2Y

24

Examples of predicate computation

Detection: (a,b) =yes & b >0 Counting: ¢(a,b) =yes & b >1
B+A _ 2B 2B 2Y
Y+B - 2Y
A votes no; B votes yes
Y+A - 2Y
e e e e A,B vote no; Y votes yes

© o
99

5

24

Examples of predicate computation

Majority: @(ao,b) =yes & a>b

Examples of predicate computation

Majority: ¢(a,b) =yes & a=b
A+B - A+B; (both become “followers” but preserve difference between A’s and B’s)

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087-1109, 2012]

[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

25

Examples of predicate computation

Majority: ¢(a,b) =yes & a=b

A+B - AA+B; (both become “followers” but preserve difference between A’s and B’s)

A+B; — A+A; (leader changes vote of follower)

B+A; — B+B; (leader changes vote of follower)

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087-1109, 2012]

[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

25

Examples of predicate computation

Majority: ¢(a,b) =yes & a=b
A+B - AA+B; (both become “followers” but preserve difference between A’s and B’s)

A+B; — A+A; (leader changes vote of follower)
B+A; — B+B; (leader changes vote of follower)

AAB: - A+A; (tiebreaker if no leaders left when a=b)

[Draief, Vojnovic. Convergence speed of binary interval consensus. SIAM Journal on Control and Optimization,
50(3):1087-1109, 2012]

[Mertzios, Nikoletseas, Raptopoulos, Spirakis, Determining Majority in Networks with Local Interactions and
very Small Local Memory, Distributed Computing 2015]

25

Examples of predicate computation

Parity: ¢(a)=Y © ais odd

Examples of predicate computation

Parity: ¢(a)=Y © ais odd

a= AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

Examples of predicate computation

Parity: ¢(a)=Y © a is odd
a= AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

é)
A0+Ao - Ae+ae
A+A, - A +a, two leaders XOR their parity,
and one becomes follower
LA0+Ae - Ao+ao

J

Examples of predicate computation

Parity: ¢(a)=Y © ais odd

a= AO (subscript o/e means ODD/EVEN, and capital A means it is leader)

r N
A0+Ao - Ae+ae

A+A, - A +a, two leaders XOR their parity,
and one becomes follower
LA0+Ae - Ao+ao

Ao+ae - Ao+ao leader overwrites
Ae+c7O N Ae+(Je bit of follower

\ v

Formal definition of CRN
computation

Modeling choices in formalizing “Computing with chemistry”

Modeling choices in formalizing “Computing with chemistry”

* integer counts (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

Lwe’ll start with these choices}

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?
* yes/no decision problem? “#A’s > #B’s?”

* numerical function? “set #Y = #X/2”

Lwe’ll start with these choices}

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?

| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”

[we’ll start with these choices}

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?

| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”

e guaranteed to get correct answer? or allow small probability of error?
e if Pr[error] = 0, system works no matter the reaction rates

[we’ll start with these choices}

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?
| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”

el guaranteed to get correct answer} or allow small probability of error?

e if Pr[error] = 0, system works no matter the reaction rates

[we’ll start with these choices}

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?
| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”
el guaranteed to get correct answer} or allow small probability of error?

e if Pr[error] = 0, system works no matter the reaction rates

* to represent input a,,...,a,, what is the initial configuration?
* only input species A,, ..., A, present?
* auxiliary species can be present?

[we’ll start with these choices}

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?
| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”

el guaranteed to get correct answer} or allow small probability of error?

e if Pr[error] = 0, system works no matter the reaction rates

* torepresent input a,,...,a,, what is the initial configuration?
* fonly input species A,, ..., A, present

* auxiliary species can be present?
[we’ll start with these choices}

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?
| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”
el guaranteed to get correct answer} or allow small probability of error?

e if Pr[error] = 0, system works no matter the reaction rates

* torepresent input a,,...,a,, what is the initial configuration?
* fonly input species A,, ..., A, present

* auxiliary species can be present?

* when is the computation finished? when... [WE'” start with these ChOiceS}

* the output stops changing? (convergence)
* the output becomes unable to change? (stabilization)
* acertain species T is first produced? (termination)

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?
| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”
el guaranteed to get correct answer} or allow small probability of error?

e if Pr[error] = 0, system works no matter the reaction rates

* torepresent input a,,...,a,, what is the initial configuration?
* fonly input species A,, ..., A, present

* auxiliary species can be present?

* when is the computation finished? when... EWE'” start with these choices}

* the output stops changing? (convergence)
* | the output becomes unable to change? (stabilization)
* acertain species T is first produced? (termination)

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?
| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”
el guaranteed to get correct answer} or allow small probability of error?

e if Pr[error] = 0, system works no matter the reaction rates

* torepresent input a,,...,a,, what is the initial configuration?
* fonly input species A,, ..., A, present
* auxiliary species can be present?

* when is the computation finished? when... EWE'” start with these choices}

* the output stops changing? (convergence)
* | the output becomes unable to change? (stabilization)
* acertain species T is first produced? (termination)

* require exact numerical answer? or allow an approximation?

28

Modeling choices in formalizing “Computing with chemistry”

| integer counts| (“stochastic”) or real concentrations (“mass-action”/“deterministic”)?

* what is the object being “computed”?

| yes/no decision problem?} “#A’s > #B’s?”
L humerical function? “set #Y = #X/2”
el guaranteed to get correct answer} or allow small probability of error?

e if Pr[error] = 0, system works no matter the reaction rates

* torepresent input a,,...,a,, what is the initial configuration?

* fonly input species A,, ..., A, present

* auxiliary species can be present?

* when is the computation finished? when... Ewe’” start with these ChOiCES}

* the output stops changing? (convergence)

* | the output becomes unable to change? (stabilization)

* acertain species T is first produced? (termination)

* requirelexact numerical answer} or allow an approximation?

28

Defining stable computation

Defining stable computation

|
initial
configuration

Defining stable computation

v
i m=mm) X

initial any reachable
configuration configuration

29

Defining stable computation

i) x EEmEp o
initial any reachable correct
configuration configuration output

29

Defining stable computation

o is stable

i mmm) x EEmm) o EmEm) o

initial any reachable correct correct
configuration configuration
() ® Py ® . °
P o) [] ° Y o .
® e, : e o * o ° : ° .: oo ®
o ¢ o, e ® o o .. o ¢ o,
oo.o o ¢ o o° ece’e o0 °
° o ° °. e® ©® o e ©° % °
°t e 00, ce, ° e®% o ®e,’ °
.00.’. .o e * oo. ..
(]

29

Defining stable computation

o is stable

i Erm) x EEE) o Emm) o

initial any reachable correct correct
configuration configuration
() ® Py ® . °
e ¢ o ¢ ° °))
® e, : e o * o ° : ° .: oo ®
o ¢ o, e ® o o .' o ¢ o,
oo.o o ¢ o 0% o ce’e o0 °
PS o © e © .. o ® ® o o © e © o
°t e 00, ce, ° e®% o ®e,’ °
.00.0. .o e * oo. ..
(]

(assuming finite set of reachable configurations) equivalent to:
The system will reach a correct stable configuration with probability 1.

29

Probability-1 correctness can be characterized
with only reachability

Probability-1 correctness can be characterized
Wlt h on |y reac h 3 b | | Ity To understand this slide, only need the following fact: if a reaction

is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized

with only reachability

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i = Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o €Y.

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized

with only reachability

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i = Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some

configuration o €Y.

Definition: For any configuration i, let Reach(i)

denote the set of configurations reachable from i.

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized

with only reachability

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i = Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some

configuration o €Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

Theorem: Let i be a configuration where Reach(i) is
finite, and let Y be a set of configurations. Then
(Pr[i= Y] =1) © (Vx€Reach(i)) (3o€EReach(x)) o €Y.

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized

with only reachability

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i = Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o €Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

Theorem: Let i be a configuration where Reach(i) is
finite, and let Y be a set of configurations. Then
(Pr[i= Y] =1) © (Vx€Reach(i)) (3o€EReach(x)) o €Y.

This theorem lets us use (often simpler) reachability
arguments and avoid discussing probability, while
still ensuring probability-1 correctness.

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

Probability-1 correctness can be characterized

To understand this slide, only need the following fact: if a reaction
is applicable, then there is a positive probability it occurs.

with only reachability

Definition: Let i be a configuration and Y be a set
of configurations. Write Pr[i = Y] to denote the
probability of the random event that, starting in
configuration i, the CRN eventually reaches some
configuration o €Y.

Definition: For any configuration i, let Reach(i)
denote the set of configurations reachable from i.

Theorem: Let i be a configuration where Reach(i) is
finite, and let Y be a set of configurations. Then
(Pr[i= Y] =1) © (Vx€Reach(i)) (3o€EReach(x)) o €Y.

This theorem lets us use (often simpler) reachability
arguments and avoid discussing probability, while
still ensuring probability-1 correctness.

Proof:

1. (=): Assume (IxEReach(i)) (VoEReach(x)) o € Y.

2. Since Pr[i = x] > 0, which prevents ever reaching Y,
Pr[i = Y] < 1. (Note this didn’t assume Reach(i) is finite.)

3. («): Assume (VxEReach(i)) (3o€Reach(x)) o € Y.

4. For each x € Reach(i), let E, = (x,...,0) be any finite
execution leading from x to some o €Y.

5. Let k= maXx, ¢ geacnii) | Ex| b€ the maximum length of any
of these finite executions reaching o.

6. Letp, = Pr[E, occurs from x] > O.

7. Let & =min, ¢ peachii) Px- Since Reach(i) is finite, € > 0.

8. Then for each x € Reach(i), Pr[E, does not occur from x
after the next ksteps] <1—-e< 1.

9. So, breaking the infinite execution into segments of

length k, the probability E, is never followed within k
steps after any visit to an x € Reach(i) is at most

[[;2,(1 —&)=0.QED

Deterministic computation # all executions correct

Deterministic computation # all executions correct

False statement: If Pr[i = Y] = 1, then every sufficiently
long execution starting at i reaches to some c €Y.

Deterministic computation # all executions correct

False statement: If Pr[i = Y] = 1, then every sufficiently
long execution starting at i reaches to some c €Y.

* Counterexample??

Deterministic computation # all executions correct

False statement: If Pr[i = Y] = 1, then every sufficiently
long execution starting at i reaches to some c €Y.

* Counterexample??

e Suppose i = {A}, with reactions
cA=B
e B-C

Deterministic computation # all executions correct

False statement: If Pr[i = Y] = 1, then every sufficiently
long execution starting at i reaches to some c €Y.

* Counterexample??

e Suppose i = {A}, with reactions
*A=8B
* B C

e Then Pr[{A} = {C}] = 1, but the execution {A} = {B} = {A} = {B} = {A} = ...
avoids it forever.

Deterministic computation # all executions correct

False statement: If Pr[i = Y] = 1, then every sufficiently
long execution starting at i reaches to some c €Y.

* Counterexample??

e Suppose i = {A}, with reactions
e A=B
e BLC
e Then Pr[{A} = {C}] = 1, but the execution {A} = {B} = {A} = {B} = {A} = ...
avoids it forever.

* Lesson: it is too strict to require all sufficiently long executions to reach Y.

Fair executions: Alternative characterization of stable computation

32

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true:

32

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true:

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then

(every fair execution starting at i reaches some o € Y)
< (VxEReach(i)) (3oEReach(x)) o € Y.

Definition: An infinite execution x,, x,, ... is fair if
(VoeN?) [(3~ieN x, = o) implies (3°kEN x, = o)]

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then

(every fair execution starting at i reaches some o € Y)
< (VxEReach(i)) (3oEReach(x)) o € Y.

Definition:|An infinite execution xogxl, .. is fair if
(VoeN?) [(3~ieN x, = o) implies (3°kEN x, = 0)]

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true:

Theorem: Let i be a configuration, and let Y be a
finite set of configurations. Then

(every fair execution starting at i reaches some o € Y)
< (VxEReach(i)) (3oEReach(x)) o € Y.

“there exist infinitely many”

Definition:|An infinite execution xogxl, .. is fair if
(VoeN?) [(3~ieN x, = o) implies (3°kEN x, = 0)]
(every configuration infinitely often reachable is
infinitely often reached)

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”

Theorem: Let i be a configuration, and let Y be a Definition:|An infinite execution Xo&"lr .. is fair if
finite set of configurations. Then (VoeN?) [(3~ieEN x, = o) implies (3°kEN x, = 0)]
(every fair execution starting at i reaches some o € Y) (every configuration infinitely often reachable is
< (VxEReach(i)) (3oEReach(x)) o € Y. infinitely often reached)

Proof:
1. (=): Suppose every fair execution from i reaches Y.

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”

Theorem: Let i be a configuration, and let Y be a Definition:|An infinite execution Xo&"lr .. is fair if
finite set of configurations. Then (VoeN?) [(3~ieEN x, = o) implies (3°kEN x, = 0)]
(every fair execution starting at i reaches some o € Y) (every configuration infinitely often reachable is
< (VxEReach(i)) (3oEReach(x)) o € Y. infinitely often reached)

Proof:

1. (=): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”
Theorem: Let i be a configuration, and let Y be a Definition:|An infinite execution Xo&"lr .. is fair if
finite set of configurations. Then (VoeN?) [(3~ieEN x, = o) implies (3°kEN x, = 0)]
(every fair execution starting at i reaches some o € Y) (every configuration infinitely often reachable is
< (Vx€EReach(i)) (3o€Reach(x)) o €Y. infinitely often reached)

Proof:

1. (=): Suppose every fair execution from i reaches Y.

2. Any finite execution can be extended to be fair. (why??)

3. Thus (VxEReach(i)), i.e., for all x reachable via some finite

execution starting at i, (3o€Reach(x)) o € Y, Y is reachable from x
by extending with a fair execution.

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”
Theorem: Let i be a configuration, and let Y be a Definition:|An infinite execution Xo&"lr .. is fair if
finite set of configurations. Then (VoeN?) [(3~ieEN x, = o) implies (3°kEN x, = 0)]
(every fair execution starting at i reaches some o € Y) (every configuration infinitely often reachable is
< (Vx€EReach(i)) (3o€Reach(x)) o €Y. infinitely often reached)

Proof:

1. (=): Suppose every fair execution from i reaches Y.

2. Any finite execution can be extended to be fair. (why??)

3. Thus (VxEReach(i)), i.e., for all x reachable via some finite
execution starting at i, (3o€Reach(x)) o € Y, Y is reachable from x
by extending with a fair execution.

4. (<): Suppose (VxEReach(i)) (3o€EReach(x)) o €Y.

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”

Theorem: Let i be a configuration, and let Y be a Definition:|An infinite execution Xo&"lr .. is fair if
finite set of configurations. Then (VoeN?) [(3~ieEN x, = o) implies (3°kEN x, = 0)]
(every fair execution starting at i reaches some o € Y) (every configuration infinitely often reachable is
< (VxEReach(i)) (3oEReach(x)) o € Y. infinitely often reached)

Proof:

1.
2.
3.

(=): Suppose every fair execution from i reaches Y.

Any finite execution can be extended to be fair. (why??)

Thus (VxEReach(i)), i.e., for all x reachable via some finite
execution starting at i, (3o€Reach(x)) o € Y, Y is reachable from x
by extending with a fair execution.

(<): Suppose (VxEReach(i)) (3oEReach(x)) o €Y.

Let x,, X;, ... be a fair execution with i=x,.

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”
Theorem: Let i be a configuration, and let Y be a Definition:|An infinite execution Xo&"lr .. is fair if
finite set of configurations. Then (VoeN?) [(3~ieEN x, = o) implies (3°kEN x, = 0)]
(every fair execution starting at i reaches some o € Y) (every configuration infinitely often reachable is
< (Vx€EReach(i)) (3o€Reach(x)) o €Y. infinitely often reached)
Proof:
1. (=): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (VxEReach(i)), i.e., for all x reachable via some finite
execution starting at i, (3o€Reach(x)) o € Y, Y is reachable from x
by extending with a fair execution.
4. (<): Suppose (VxEReach(i)) (3o€EReach(x)) o €Y.
5. Letx,, x,, ... be a fair execution with i=x,.
6.

Since all x,€Reach(i), for each j, by hypothesis 3o0,€Reach(x) o, € Y.

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”
Theorem: Let i be a configuration, and let Y be a Definition:|An infinite execution Xo&"lr .. is fair if
finite set of configurations. Then (VoeN?) [(3~ieEN x, = o) implies (3°kEN x, = 0)]
(every fair execution starting at i reaches some o € Y) (every configuration infinitely often reachable is
< (Vx€EReach(i)) (3o€Reach(x)) o €Y. infinitely often reached)
Proof:
1. (=): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (VxEReach(i)), i.e., for all x reachable via some finite
execution starting at i, (3o€Reach(x)) o € Y, Y is reachable from x
by extending with a fair execution.
4. (<): Suppose (VxEReach(i)) (3o€EReach(x)) o €Y.
5. Letx,, x,, ... be a fair execution with i=x,.
6. Since all x;,€Reach(i), for each j, by hypothesis 30,€Reach(x;) o, € Y.
7. Since Yis finite, some o € Y is reachable from infinitely many x.

Fair executions: Alternative characterization of stable computation

Goal of definition of fair is to make this theorem true: “there exist infinitely many”
Theorem: Let i be a configuration, and let Y be a Definition:|An infinite execution Xo&"lr .. is fair if
finite set of configurations. Then (VoeN?) [(3~ieEN x, = o) implies (3°kEN x, = 0)]
(every fair execution starting at i reaches some o € Y) (every configuration infinitely often reachable is
< (Vx€EReach(i)) (3o€Reach(x)) o €Y. infinitely often reached)
Proof:
1. (=): Suppose every fair execution from i reaches Y.
2. Any finite execution can be extended to be fair. (why??)
3. Thus (VxEReach(i)), i.e., for all x reachable via some finite
execution starting at i, (3o€Reach(x)) o € Y, Y is reachable from x
by extending with a fair execution.
4. (<): Suppose (VxEReach(i)) (3o€EReach(x)) o €Y.
5. Letx,, x,, ... be a fair execution with i=x,.
6. Since all x;,€Reach(i), for each j, by hypothesis 30,€Reach(x;) o, € Y.
7. Since Yis finite, some o € Y is reachable from infinitely many x.
8. Since x,, X, ... is fair and o is infinitely often reachable, there is k

such that x, = 0 €Y, i.e., the fair execution reaches Y. QED

Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

* input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}

Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

* input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}

e output specification: designate one species YEA whose count is the output

Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

* input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}

e output specification: designate one species YEA whose count is the output

o is stable if, for all o’ reachable from o, o(Y) = 0’(Y)

Definition of function computation

e goal: compute function f: N*- N, e.g., fla,b) = 2a + b/2

* input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}

e output specification: designate one species YEA whose count is the output
o is stable if, for all o’ reachable from o, o(Y) = 0’(Y)

CRN stably computes f if, for all valid initial configurations i, and all x
reachable from i, there is a stable o reachable from x such that o(Y) = f{i).

Definition of function computation

goal: compute function f: N* - N, e.g., fla,b) =2a + b/2
input specification: designate subset X € A as “input” species
 valid initial configuration i: all molecules are from %, e.g., {100 a, 100 b}
output specification: designate one species YEA whose count is the output
o is stable if, for all o’ reachable from o, o(Y) = 0’(Y)

CRN stably computes f if, for all valid initial configurations i, and all x
reachable from i, there is a stable o reachable from x such that o(Y) = f{i).

* Recall: this is equivalent to saying that i reaches to a correct, stable o with probability 1, and
equivalent to saying that every fair execution from i reaches to a correct, stable o.

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: N L {Y,N}, e.g., @(a,b)=Y & a>b

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] »

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: N L {Y,N}, e.g., @(a,b)=Y & a>b

* input specification: designate subset 2 € A as “input” species
* in valid initial configurations i all molecules are from %, e.g., {100 A, 55 B}

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] .

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: N L {Y,N}, e.g., @(a,b)=Y & a>b

* input specification: designate subset 2 € A as “input” species
* in valid initial configurations i all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] »

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: N L {Y,N}, e.g., @(a,b)=Y & a>b
* input specification: designate subset 2 € A as “input” species

* in valid initial configurations i all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
e (0) =Y (configuration o outputs “yes”) if vote is unanimously yes: 0(5)>0 = SEA,

* (0) = N (configuration o outputs “no”) if vote is unanimously no: 0(S)>0 = SEA,
* (o) undefined otherwise: (3 SEA,, S'€A,) o(S)>0 and o(5")>0

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] »

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: N L {Y,N}, e.g., @(a,b)=Y & a>b
* input specification: designate subset 2 € A as “input” species

* in valid initial configurations i all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
e (0) =Y (configuration o outputs “yes”) if vote is unanimously yes: 0(5)>0 = SEA,

* (0) = N (configuration o outputs “no”) if vote is unanimously no: 0(S)>0 = SEA,
* (o) undefined otherwise: (3 SEA,, S'€A,) o(S)>0 and o(5")>0

e ois stable if (o) = P(0’) (and is defined) for all o’ reachable from o

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] »

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: N L {Y,N}, e.g., @(a,b)=Y & a>b
* input specification: designate subset 2 € A as “input” species

* in valid initial configurations i all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
e (0) =Y (configuration o outputs “yes”) if vote is unanimously yes: 0(5)>0 = SEA,

* (0) = N (configuration o outputs “no”) if vote is unanimously no: 0(S)>0 = SEA,
* (o) undefined otherwise: (3 SEA,, S'€A,) o(S)>0 and o(5")>0

e ois stable if (o) = P(0’) (and is defined) for all o’ reachable from o

* CRN stably computes @ if, for all valid initial configurations i, and all x reachable
from i, there is a stable o reachable from x such that (o) = (i) (o is correct).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] »

Definition of predicate (decision problem) computation

 goal: compute predicate ¢: N L {Y,N}, e.g., @(a,b)=Y & a>b
* input specification: designate subset 2 € A as “input” species

* in valid initial configurations i all molecules are from %, e.g., {100 A, 55 B}

* output specification: partition species A into “yes” voters A, and “no” voters A
e (0) =Y (configuration o outputs “yes”) if vote is unanimously yes: 0(5)>0 = SEA,

* (0) = N (configuration o outputs “no”) if vote is unanimously no: 0(S)>0 = SEA,
* (o) undefined otherwise: (3 SEA,, S'€A,) o(S)>0 and o(5")>0

e ois stable if (o) = P(0’) (and is defined) for all o’ reachable from o

* CRN stably computes @ if, for all valid initial configurations i, and all x reachable
from i, there is a stable o reachable from x such that (o) = (i) (o is correct).
* We say the CRN stably decides the set ¢~1(Y) = set of inputs mapping to output Y

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004] »

Feedforward CRNs

A class of CRNs with a simpler definition/proofs for computation

35

Stable versus terminal

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Stable versus terminal

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Definition: A configuration is terminal
if no reaction is applicable to it.

Stable versus terminal

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Definition: A configuration is terminal Observation: Every terminal
if no reaction is applicable to it. configuration is stable.

Stable versus terminal

All CRNs we’ve seen so far obey a stronger condition than stabilizing
(no reaction can change the output): they reach a configuration where
no reaction can happen at all. Further, they all have the property that
every sufficiently long execution reaches this configuration.

Definition: A configuration is terminal Observation: Every terminal
if no reaction is applicable to it. configuration is stable.

Note: A configuration can be stable
without being terminal. Example?

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be
ordered ry, r,, ..., I, such that, for all k < €, no reactant
of r, appears in r, (as either reactant or product).

Ideas taken from [M. Vasi¢, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

37

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be
ordered ry, r,, ..., I, such that, for all k < €, no reactant
of r, appears in r, (as either reactant or product).

Example: The max(A,B) CRN:

1. A- Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, - (A,,B, don’t appear below)
4. +Y Q@

Ideas taken from [M. Vasi¢, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

37

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be
ordered ry, r,, ..., I, such that, for all k < €, no reactant
of r, appears in r, (as either reactant or product).

Example: The max(A,B) CRN:

1. A- Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, > (A,,B, don’t appear below)
4. ‘+Y>Q

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Ideas taken from [M. Vasic, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-
independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be
ordered ry, r,, ..., I, such that, for all k < €, no reactant
of r, appears in r, (as either reactant or product).

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, > (A,,B, don’t appear below)
4. ‘+Y>Q

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Ideas taken from [M. Vasic, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-

Lemma: Suppose in a feed-forward CRN that i = c by
execution P, and i = d by execution Q. If any reaction
occurs less in P than Q, then c is not terminal.

37

independent chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof: #(r,,P) = number of times r, occurs in P

1. Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof: #(r,,P) = number of times r, occurs in P

1. Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).
2. For ease of exposition, assume r, has only one reactant A.

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof: #(r,,P) = number of times r, occurs in P

1. Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).
2. For ease of exposition, assume r, has only one reactant A.
3. Tl - r,do not change #A, by the definition of feed-forward.

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof:
1.

2.
3.
4

#(r,,P) = number of times r, occurs in P

Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).
For ease of exposition, assume r, has only one reactant A.

re. - I, do not change #A, by the definition of feed-forward.

ry ... r; can produce but not consume A. (why??)

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof:

#(r,,P) = number of times r, occurs in P

Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).
For ease of exposition, assume r, has only one reactant A.

re. - I, do not change #A, by the definition of feed-forward.

ry ... r; can produce but not consume A. (why??)

Soonly ry ... r,can increase #A, and only r, can decrease #A.

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:
1. A-Y+A, (A doesn’t appear below)

Proof: #(r,,P) = number of times r, occurs in P

1. Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).
2.B-Y+B, (Bdoesn’t appear below) 2. For ease of exposition, assume r, has only one reactant A.
3.A,+B, » (A,,B, don’t appear below) 3. Tl - r,do not change #A, by the definition of feed-forward.
4. ‘+Y->Q 4. ry..re,can produce but not consume A. (why??)

5. Soonlyr;..r,canincrease #A, and only r, can decrease #A.

6

. Let m = #(r,,P); Let Q’ be prefix (i, x, ..., xp) of Q such that X, = Xp11 by the
We often convince ourselves a CRN (m+1)'st execution of reaction r,.

works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:
1. A-Y+A, (A doesn’t appear below)

Proof: #(r,,P) = number of times r, occurs in P

1. Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).
2.B-Y+B, (Bdoesn’t appear below) 2. For ease of exposition, assume r, has only one reactant A.
3.A,+B, » (A,,B, don’t appear below) 3. Tl - r,do not change #A, by the definition of feed-forward.
4. '+Y - 0Q 4. ry..r.,can produce but not consume A. (why??)

5. Soonlyr;..r,canincrease #A, and only r, can decrease #A.

6. Let m =#(r,,P); Let Q" be prefix (i, x, ..., xp) of Q such that X, = Xp11 by the

We often convi.n§e o.urselves a CRN' (m+1)'st execution of reaction r,.
works by examining just one execution * X, is the config just before the first time that r, happens more in Q than P.

that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof:

#(r,,P) = number of times r, occurs in P

Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).

For ease of exposition, assume r, has only one reactant A.

re. - I, do not change #A, by the definition of feed-forward.

ry ... r; can produce but not consume A. (why??)

Soonly ry ... r,can increase #A, and only r, can decrease #A.

Let m = #(r,,P); Let Q" be prefix (i, x,, ..., x,) of Q such that x, = x,,, by the
(m+1)’st execution of reaction r,.

* X, is the config just before the first time that r, happens more in Q than P.

Note r, ... r,_; occur least as much in P as in Q. (#(r;,P) = #(r;,Q) for i=1 to k-1)

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof:

#(r,,P) = number of times r, occurs in P

Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).

For ease of exposition, assume r, has only one reactant A.

re. - I, do not change #A, by the definition of feed-forward.

ry ... r; can produce but not consume A. (why??)

Soonly ry ... r,can increase #A, and only r, can decrease #A.

Let m = #(r,,P); Let Q" be prefix (i, x,, ..., x,) of Q such that x, = x,,, by the
(m+1)’st execution of reaction r,.

* X, is the config just before the first time that r, happens more in Q than P.

Note r, ... r,_; occur least as much in P as in Q. (#(r;,P) = #(r;,Q) for i=1 to k-1)
Thus r, ... r,_, occur least as much in Pas in Q’. (since Q” is prefix of Q)

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be Lemma: Suppose in a feed-forward CRN that i = c by
ordered ry, r,, ..., r, such that, for all k < €, no reactant execution P, and i = d by execution Q. If any reaction
of r, appears in r, (as either reactant or product). occurs less in P than Q, then c is not terminal.

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof:

#(r,,P) = number of times r, occurs in P

Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).

For ease of exposition, assume r, has only one reactant A.

re. - I, do not change #A, by the definition of feed-forward.

ry ... r; can produce but not consume A. (why??)

Soonly ry ... r,can increase #A, and only r, can decrease #A.

Let m = #(r,,P); Let Q" be prefix (i, x,, ..., x,) of Q such that x, = x,,, by the
(m+1)’st execution of reaction r,.

* X, is the config just before the first time that r, happens more in Q than P.

Note r, ... r,_; occur least as much in P as in Q. (#(r;,P) = #(r;,Q) for i=1 to k-1)
Thus r, ... r,_, occur least as much in Pas in Q’. (since Q” is prefix of Q)
Also, #(r,,P) = #(r,,Q’) by our choice of Q.

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be
r, such that, for all k < €, no reactant
of r, appears in r, (as either reactant or product).

ordered ry, r,, ...,

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof:

9.

Lemma: Suppose in a feed-forward CRN that i = c by
execution P, and i = d by execution Q. If any reaction
occurs less in P than Q, then cis not terminal.

#(r,,P) = number of times r, occurs in P

Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).

For ease of exposition, assume r, has only one reactant A.

re. - I, do not change #A, by the definition of feed-forward.

ry ... r; can produce but not consume A. (why??)

Soonly ry ... r,can increase #A, and only r, can decrease #A.

Let m = #(r,,P); Let Q" be prefix (i, x,, ..., x,) of Q such that x, = x,,, by the
(m+1)’st execution of reaction r,.

* X, is the config just before the first time that r, happens more in Q than P.

Note r, ... r,_; occur least as much in P as in Q. (#(r;,P) = #(r;,Q) for i=1 to k-1)
Thus r, ... r,_, occur least as much in Pas in Q’. (since Q” is prefix of Q)
Also, #(r,,P) = #(r,,Q’) by our choice of Q.

10. So Ais presentinc, i.e., c(A) > 0.

Feed-forward CRNs

Definition: A CRN is feed-forward if reactions can be
r, such that, for all k < €, no reactant
of r, appears in r, (as either reactant or product).

ordered ry, r,, ...,

Example: The max(A,B) CRN:

1. A-Y+A, (A doesn’t appear below)
2.B-Y+B, (B doesn’t appear below)
3.A,+B, » (A,,B, don’t appear below)
4. ‘+Y Q@

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with feed-forward CRNs.

Proof:

9.

Lemma: Suppose in a feed-forward CRN that i = c by
execution P, and i = d by execution Q. If any reaction
occurs less in P than Q, then cis not terminal.

#(r,,P) = number of times r, occurs in P

Let r, be first reaction in feed-forward order such that #(r,,P) < #(r,,Q).

For ease of exposition, assume r, has only one reactant A.

re. - I, do not change #A, by the definition of feed-forward.

ry ... r; can produce but not consume A. (why??)

Soonly ry ... r,can increase #A, and only r, can decrease #A.

Let m = #(r,,P); Let Q" be prefix (i, x,, ..., x,) of Q such that x, = x,,, by the
(m+1)’st execution of reaction r,.

* X, is the config just before the first time that r, happens more in Q than P.

Note r, ... r,_; occur least as much in P as in Q. (#(r;,P) = #(r;,Q) for i=1 to k-1)
Thus r, ... r,_, occur least as much in Pas in Q’. (since Q” is prefix of Q)
Also, #(r,,P) = #(r,,Q’) by our choice of Q.

10. So Ais presentinc, i.e., c(A) > 0.
11. Thus r, is applicable at ¢, so cis not terminal. QED

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN,
i = c by execution P, and i = d by execution Q. If any
reaction occurs less in P than Q, then cis not terminal.

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN,
i = c by execution P, and i = d by execution Q. If any
reaction occurs less in P than Q, then cis not terminal.

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN,
i = c by execution P, and i = d by execution Q. If any
reaction occurs less in P than Q, then cis not terminal.

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN,
i = c by execution P, and i = d by execution Q. If any
reaction occurs less in P than Q, then cis not terminal.

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN,
i = c by execution P, and i = d by execution Q. If any
reaction occurs less in P than Q, then cis not terminal.

Corollary 1: A feed-forward CRN has at most one
terminal configuration reachable from any initial
configuration.

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Answer: Letting o, = the unique terminal
configuration reachable from i, it computes

Ali) = o;(Y).

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN, Corollary: The CRN:
i = c by execution P, and i = d by execution Q. If any 1. Ao Y+A,
reaction occurs less in P than Q, then c is not terminal. 2. B Y+B,
3.A,+B, -
Corollary 1: A feed-forward CRN has at most one 4. +Y > @
terminal configuration reachable from any initial stably computes the function f(A,B) = max(A,B).

configuration.

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Answer: Letting o, = the unique terminal
configuration reachable from i, it computes

Ali) = o;(Y).

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN, Corollary: The CRN:

i = c by execution P, and i = d by execution Q. If any 1. Ao Y+A,
reaction occurs less in P than Q, then c is not terminal. 2. B Y+B,
3.A,+B, -
Corollary 1: A feed-forward CRN has at most one 4. ‘+Y->Q
terminal configuration reachable from any initial stably computes the function f(A,B) = max(A,B).

configuration.
Proof:

1. Do the following reactions:
1. #Atimesrxnl
2. #Btimesrxn 2
3. min(#A,#B) times rxn 3
4. min(#A,#B) times rxn 4

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Answer: Letting o, = the unique terminal
configuration reachable from i, it computes

Ali) = o;(Y).

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN, Corollary: The CRN:

i = c by execution P, and i = d by execution Q. If any 1. Ao Y+A,
reaction occurs less in P than Q, then c is not terminal. 2. B Y+B,
3.A,+B, -
Corollary 1: A feed-forward CRN has at most one 4. ‘+Y->Q
terminal configuration reachable from any initial stably computes the function f(A,B) = max(A,B).

configuration.
Proof:

1. Do the following reactions:
1. #Atimesrxnl
2. #Btimesrxn 2
3. min(#A,#B) times rxn 3
4. min(#A,#B) times rxn 4
2. This removes all A, B, (at least one of A, or B,),
and , so this is terminal. By Corollary 2 it stably
computes whatever #Y is now, which is...

Corollary 2: If a feed-forward CRN has at least one
terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

Answer: Letting o, = the unique terminal
configuration reachable from i, it computes

Ali) = o;(Y).

Stable function computation by feed-forward CRNs

Lemma (restated): Suppose that in a feed-forward CRN, Corollary: The CRN:

i = c by execution P, and i = d by execution Q. If any 1. Ao Y+A,
reaction occurs less in P than Q, then cis not terminal. 2. B Y+B,
3.A,+B, -
Corollary 1: A feed-forward CRN has at most one 4. ‘+Y->Q
terminal configuration reachable from any initial stably computes the function f(A,B) = max(A,B).
configuration.
Proof:
Corollary 2: If a feed-forward CRN has at least one 1. Do the following reactions:

1. #Atimesrxnl

2. #Btimesrxn 2

3. min(#A,#B) times rxn 3

4. min(#A,#B) times rxn 4
2. Thisremoves all A, B, (at least one of A, or B,),

and , so this is terminal. By Corollary 2 it stably

Answer: Letting o, = the unique terminal computes whatever #Y is now, which is...
configuration reachable from i, it computes 3. CRN produces #4+#5 count of ¥ by rxns 1 and 2,
fli) = o(Y). and consumes min(#A,#B) Y’s by rxn 4, so
computes #A+#B—min(#A,#B) = max(#A,#B). QED

terminal configuration reachable from any initial
configuration (i.e., exactly one), then the CRN
stably computes a function.

Question: What’s the function?

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed-
forward CRN, i = c by execution P, andi=d
by execution Q. If any reaction occurs less in P
than Q, then cis not terminal.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed-
forward CRN, i = c by execution P, andi=d
by execution Q. If any reaction occurs less in P
than Q, then cis not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ¢, reachable from initial
configuration i, then ¢, is reached by every
sufficiently long execution from i.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed- Proof:

forward CRN, i = c by execution P, andi=d 1. Let P be the execution leading from i to c,.
by execution Q. If any reaction occurs less in P

than Q, then cis not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ¢, reachable from initial
configuration i, then ¢; is reached by every
sufficiently long execution fromi.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed-
forward CRN, i = c by execution P, and i = d
by execution Q. If any reaction occurs less in P
than Q, then cis not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ¢, reachable from initial
configuration i, then ¢; is reached by every
sufficiently long execution fromi.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:

1. Let P be the execution leading from i to c,.

2. Any execution Q with with |Q| > | P| must have more of some
reaction r by the pigeonhole principle.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed- Proof:

forward CRN, i = c by execution P, andi=d 1. Let P be the execution leading from i to c,.

by execution Q. If any reaction occurs less in P 2. Any execution Q with with |Q| > | P| must have more of some
than Q, then cis not terminal. reaction r by the pigeonhole principle.

1. Bythe Lemma, ¢;is not terminal, a contradiction.

Corollary: In a feed-forward CRN, if there is a
terminal configuration ¢, reachable from initial
configuration i, then ¢; is reached by every
sufficiently long execution fromi.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed- Proof:

forward CRN, i = c by execution P, andi=d 1. Let P be the execution leading from i to c,.

by execution Q. If any reaction occurs less in P 2. Any execution Q with with |Q| > | P| must have more of some
than Q, then cis not terminal. reaction r by the pigeonhole principle.

1. Bythe Lemma, ¢;is not terminal, a contradiction.

2. So no execution Q is longer than P.
Corollary: In a feed-forward CRN, if there is a

terminal configuration ¢, reachable from initial
configuration i, then ¢; is reached by every
sufficiently long execution fromi.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed- Proof:

forward CRN, i = c by execution P, andi=d 1. Let P be the execution leading from i to c,.

by execution Q. If any reaction occurs less in P 2. Any execution Q with with |Q| > | P| must have more of some
than Q, then cis not terminal. reaction r by the pigeonhole principle.

1. Bythe Lemma, ¢;is not terminal, a contradiction.
2. So no execution Q is longer than P.

. Any execution Q with |Q| = | P| must be a permutation of P, or
else by pigeonhole Q would have more of some reaction, and this
would again contradict the terminality of c,.

Corollary: In a feed-forward CRN, if there is a 3
terminal configuration ¢, reachable from initial
configuration i, then ¢; is reached by every
sufficiently long execution fromi.

Furthermore, all of these executions are
permutations of the same number of each

reaction type.

In feed-forward CRNs, if there is a terminal
configuration, any long enough execution reaches it

Lemma (restated): Suppose that in a feed-
forward CRN, i = c by execution P, and i = d
by execution Q. If any reaction occurs less in P
than Q, then cis not terminal.

Corollary: In a feed-forward CRN, if there is a
terminal configuration c; reachable from initial
configuration i, then ¢; is reached by every
sufficiently long execution fromi.
Furthermore, all of these executions are
permutations of the same number of each
reaction type.

Proof:

1. Let P be the execution leading from i to c,.

2. Any execution Q with with |Q| > | P| must have more of some
reaction r by the pigeonhole principle.

1. Bythe Lemma, ¢;is not terminal, a contradiction.
2. So no execution Q is longer than P.

3. Any execution Q with |Q]| = | P| must be a permutation of P, or
else by pigeonhole Q would have more of some reaction, and this
would again contradict the terminality of c,.

4. Finally, to rule out that we might have some shorter terminal

execution, any execution Q with |Q| < | P| must have some
reaction r occurring more in P than Q, so by the Lemma, Q cannot
reach a terminal configuration. QED

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R—A or

2R > R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.q.,
~R—2Ror R+X - R+Y, but then no reaction can net consume it)

[M. Vasi¢, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

40

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R—A or

2R - R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.q.,
~R—2Ror R+X - R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:

1. A-Y+A, (A isn’t a reactant elsewhere)
2.B-Y+B, (B isn’t a reactant elsewhere)
3.A,+B, > (A,,B, aren’t reactants elsewhere)
4. ‘+Y (@ (7, Y aren't reactants elsewhere)

[M. Vasi¢, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

40

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R—A or

2R - R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:

1. A-Y+A, (Aisn’t a reactant elsewhere)
2.B-Y+B, (B isn’t a reactant elsewhere)
3.A,+B, > (A,,B, aren’t reactants elsewhere)
4. ‘+Y - 0Q (, Y aren’t reactants elsewhere)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

[M. Vasi¢, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species
R, if R is net consumed in some reaction (e.g., R—A or

2R - R), then R is not a reactant in any other reaction. (R
can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN:

1. A-Y+A, (Aisn’t a reactant elsewhere)
2.B-Y+B, (B isn’t a reactant elsewhere)
3.A+B, - (A,,B, aren’t reactants elsewhere)
4. ‘+Y - 0Q (, Y aren’t reactants elsewhere)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

Lemma: Suppose in a non-competitive CRN thati = ¢
by execution P, and i = d by execution Q. If any
reaction occurs less in P than Q, then c is not terminal.

[M. Vasi¢, C. Chalk, A. Luchsinger, S. Khurshid, and D. Soloveichik. Programming and training rate-independent
chemical reaction networks. Proceedings of the National Academy of Sciences, 119(24):e2111552119, 2022.]

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(4,8) CRN: Proof: #(r,P) = number of times r occurs in P

1.A—Y+A, (Aisn’tareactant elsewhere) 1. Q’=longest prefix (i, x,, ..., x,) of Q such that #(r,P) > #(r,Q) for all reactions r.

2.B- Y+B2 (B isn’t a reactant elsewhere)
3.A,+B, » (A,,B, aren’t reactants elsewhere)
4. ‘+Y @ (, Y aren’t reactants elsewhere)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

#(r,P) = number of times r occurs in P

Example: The max(A,B) CRN: Proof:
1.A—Y+A, (Aisn’tareactant elsewhere) 1. Q’=longest prefix (i, x,, ..., x,) of Q such that #(r,P) > #(r,Q) for all reactions r.
2 B_ Y+B 15 el @ s elserd e * i.e., X, is the first time in Q that some reaction exceeds its count in P,
. — 2
3.A,+B, » (A,,B, aren’t reactants elsewhere)
4. ‘+Y @ (, Y aren’t reactants elsewhere)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(4,8) CRN: Proof: #(r,P) = number of times r occurs in P

1. A= Y+A, (Aisn'tareactant elsewhere) 1. Q= Igngest pt.'efix (i,.xl, or X) of Q such that #(r,P? > #(r,Q) for.all reacti'ons r.
* i.e., X,, isthe first time in Q that some reaction exceeds its count in P.

2.B- Y+B2 (B isn’t a reactant elsewhere) Pt))

, 2. Letrbe the reaction such that x, = x,,,; viar.
3.A,+B, » (A,,B, aren’t reactants elsewhere)
4. ‘+Y @ (, Y aren’t reactants elsewhere)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(4,8) CRN: Proof: #(r,P) = number of times r occurs in P

1.A—Y+A, (Aisn’tareactant elsewhere) 1. Q’=longest prefix (i, x,, ..., x,) of Q such that #(r,P) > #(r,Q) for all reactions r.
2 B_ Y+B 15 el @ s elserd e * i.e., X, is the first time in Q that some reaction exceeds its count in P,
' ‘ 2. Letrbe the reaction such that x, = x,,,; viar.

SEAPALE (42,8, aren’t reactants elsewhere) 3. Note #(r,P) = #(r,Q’) and #(t,P) = #(t,Q’) for all other reactions t # r.

4. ‘+Y @ (, Y aren’t reactants elsewhere)

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN: Proof:
1. A-Y+A, (Aisn’t a reactant elsewhere) 1.
2.B-Y+B, (B isn’t a reactant elsewhere) .
3.A,+B, » (A,,B, aren’t reactants elsewhere) 3:
4. ‘+Y Q@ (7, Y aren't reactants elsewhere) 4.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

#(r,P) = number of times r occurs in P

Q’ = longest prefix (i, x,, ..., X,) of Q such that #(r,P) > #(r,Q) for all reactions r.
* i.e., X, is the first time in Q that some reaction exceeds its count in P,

Let r be the reaction such that x, = x,,,; via r.

Note #(r,P) = #(r,Q’) and #(t,P) > #(t,Q’) for all other reactions t # r.

Since CRN is non-competitive, no reactant A of r can be consumed int #r.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN: Proof:
1. A-Y+A, (Aisn’t a reactant elsewhere) 1.
2.B-Y+B, (B isn’t a reactant elsewhere) .
3.A,+B, » (A,,B, aren’t reactants elsewhere) 3:
4. ‘+Y Q@ (7, Y aren't reactants elsewhere) 4.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

#(r,P) = number of times r occurs in P

Q’ = longest prefix (i, x,, ..., X,) of Q such that #(r,P) > #(r,Q) for all reactions r.
* i.e., X, is the first time in Q that some reaction exceeds its count in P,

Let r be the reaction such that x, = x,,,; via r.

Note #(r,P) = #(r,Q’) and #(t,P) > #(t,Q’) for all other reactions t # r.

Since CRN is non-competitive, no reactant A of r can be consumed int #r.

1. Some other reactions t might produce A.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN: Proof:
1. A-Y+A, (Aisn’t a reactant elsewhere) 1.
2.B-Y+B, (B isn’t a reactant elsewhere) .
3.A,+B, » (A,,B, aren’t reactants elsewhere) 3:
4. ‘+Y Q@ (7, Y aren't reactants elsewhere) 4.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

#(r,P) = number of times r occurs in P

Q’ = longest prefix (i, x,, ..., X,) of Q such that #(r,P) > #(r,Q) for all reactions r.
* i.e., X, is the first time in Q that some reaction exceeds its count in P,
Let r be the reaction such that x, = x,,,; via r.
Note #(r,P) = #(r,Q’) and #(t,P) > #(t,Q’) for all other reactions t # r.
Since CRN is non-competitive, no reactant A of r can be consumed int #r.
1. Some other reactions t might produce A.

2. Since #(t,P) =2 #(t,Q’), each t # r produces at least as much Ain P hasin Q’.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

Example: The max(A,B) CRN: Proof:
1. A-Y+A, (Aisn’t a reactant elsewhere) 1.
2.B-Y+B, (B isn’t a reactant elsewhere) .
3.A,+B, » (A,,B, aren’t reactants elsewhere) 3:
4. ‘+Y Q@ (7, Y aren't reactants elsewhere) 4.

We often convince ourselves a CRN
works by examining just one execution
that stabilizes to the correct output, and
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

#(r,P) = number of times r occurs in P

Q’ = longest prefix (i, x,, ..., X,) of Q such that #(r,P) > #(r,Q) for all reactions r.
* i.e., X, is the first time in Q that some reaction exceeds its count in P,
Let r be the reaction such that x, = x,,,; via r.
Note #(r,P) = #(r,Q’) and #(t,P) > #(t,Q’) for all other reactions t # r.
Since CRN is non-competitive, no reactant A of r can be consumed int #r.
1. Some other reactions t might produce A.
2. Since #(t,P) =2 #(t,Q’), each t # r produces at least as much Ain P hasin Q’.

3. Exactly as much A is consumed by rin Pasin Q’.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

#(r,P) = number of times r occurs in P

Example: The max(A,B) CRN: Proof:
1. AL Y+A, (A isn’t a reactant elsewhere) 1. Q' =longest prefix (i, x, ..., X,) of Q such that #(r,P) > #(r,Q) for all reactions r.
2. B Y+B, 15 it & eacEt cbeare] * e, Xpi1 is the first time in Q that some reaction exceeds its count in P.
3.A.+B, - Vi 7 e reeeEs csewher) 2. Letrbe the reaction such that x, = x,,,; viar.

T2 T2 o 3. Note #(r,P) = #(r,Q’) and #(t,P) = #(t,Q’) for all other reactions t # r.

4.4V -0 (K, ¥ aren’t reactants elsewhere) 4. Since CRN is non-competitive, no reactant A of r can be consumed in t # r.
1. Some other reactions t might produce A.
We often convince ourselves a CRN 2. Since #(t,P) > #(t,Q’), each t # r produces at least as much A in P has in Q".
works by examining just one execution 3. Exactly as much A is consumed by rin Pasin Q’.
that stabilizes to the correct output, and 4. Thus x,(A) < c(A) for all reactants A of .
thinking, “The other executions
probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

#(r,P) = number of times r occurs in P

Example: The max(A,B) CRN: Proof:
1. Ao Y+A, (A isn’t a reactant elsewhere) 1. Q'= Igngest pt.'efix (i,.xl, o X) of Q such that #(r,P? > #(r,Q) for.all reacti'ons r.
2. B V+B, (Bisn't a reactant elsewhere) © Qe Xy, s the first time in Q that some reaction exceeds its count in P.
3 A 4B L (A, B, aren't reactants elsewhere) 2. Letrbe the reaction such that x, = x,,,; viar. .

2" 72 272 3. Note #(r,P) = #(r,Q’) and #(t,P) = #(t,Q’) for all other reactions t # r.
4.4V -0 (K, ¥ aren’t reactants elsewhere) 4. Since CRN is non-competitive, no reactant A of r can be consumed in t # r.

1. Some other reactions t might produce A.

We often convince ourselves a CRN 2. Since #(t,P) > #(t,Q’), each t # r produces at least as much A in P has in Q".
works by examining just one execution 3. Exactly as much A is consumed by rin Pasin Q’.
that stabilizes to the correct output, and 4. Thus x,(A) < c(A) for all reactants A of .
thinking, “The other executions 5. Since ris applicable to x,, it is applicable to c.

probably/hopefully end up with the
same output.” This reasoning becomes
sound with non-competitive CRNs.

Noncompetitive CRNs

Definition: A CRN is non-competitive if, for every species Lemma: Suppose in a non-competitive CRN thati = ¢
R, if R is net consumed in some reaction (e.g., R—A or by execution P, and i = d by execution Q. If any
2R - R), then R is not a reactant in any other reaction. (R reaction occurs less in P than Q, then c is not terminal.

can be a non-consumed catalyst in any number of reactions, e.g.,
R - 2R or R+X - R+Y, but then no reaction can net consume it)

#(r,P) = number of times r occurs in P

Example: The max(A,B) CRN: Proof:
1. Ao Y+A, (A isn’t a reactant elsewhere) 1. Q'= Igngest pt.'efix (i,.xl, o X) of Q such that #(r,P? > #(r,Q) for.all reacti'ons r.
2. B V+B, (Bisn't a reactant elsewhere) © Qe Xy, s the first time in Q that some reaction exceeds its count in P.
3 A 4B L (A, B, aren't reactants elsewhere) 2. Letrbe the reaction such that x, = x,,,; viar. .

2" 72 272 3. Note #(r,P) = #(r,Q’) and #(t,P) = #(t,Q’) for all other reactions t # r.
4.4V -0 (K, ¥ aren’t reactants elsewhere) 4. Since CRN is non-competitive, no reactant A of r can be consumed in t # r.

1. Some other reactions t might produce A.

We often convince ourselves a CRN 2. Since #(t,P) > #(t,Q’), each t # r produces at least as much A in P has in Q".
works by examining just one execution 3. Exactly as much A is consumed by rin Pasin Q’.
that stabilizes to the correct output, and 4. Thus x,(A) < c(A) for all reactants A of .
thinking, “The other executions 5. Since ris applicable to x,, it is applicable to c.
probably/hopefully end up with the 6. So cis not terminal. QED

same output.” This reasoning becomes
sound with non-competitive CRNs.

Non-feedforward CRNs

Example of a non-feedforward CRN that
stably computes a function?

Non-feedforward CRNs

Example of a non-feedforward CRN that
stably computes a function?

fix) = x/2
1. X = Y+A

Non-feedforward CRNs

Example of a non-feedforward CRN that
stably computes a function?

10 £—f
=24 o | 2 Not a plot of f!
ASSSSSSASTS, ot a plot of f!
— [‘* . ~ ; ~ NS - 1
1. X+=Y+A fmali TS NN It's the space of
configtly] T ANENE N reachable states
2. X + A . ® 4 F SS: %‘Q\{Y‘\r ‘*“--;Q;\L .
2 = . \L \‘\ 810
0 3 246 A
v Z - B 8 0

initial config

41

Non-feedforward CRNs

Example of a non-feedforward CRN that
stably computes a function?

fix) =x/2

1. X+ Y+A A "

2. X+A—> 0) %Wf{? e initial config
final ; ® g;ﬁ ?

41

Non-feedforward CRNs

Example of a non-feedforward CRN that
stably computes a function?

fix) = x/2

1. X = Y+A
2. X+tA —> (Z)

initial config

41

Non-feedforward CRNs

Example of a non-feedforward CRN that
stably computes a function?

p 9
fx) = x/2 5
v
1.XT V+A <D
2. X+A — @ : \ initial config

It’s even non-non-competitive!

41

Time complexity of CRNs

What is probable:
Stochastic kinetic model of chemical reaction networks

Solution volume v

reaction type rate / propensity
Ak k- #A
A+B X .. K-#A-#B /v

[McQuarrie 1967, van Kampen, Gillespie 1977]
43

What is probable:
Stochastic kinetic model of chemical reaction networks

Solution volume v

reaction type rate / propensity
Ak k- #A
A+B X .. K-#A-#B /v

System evolves via a continuous time Markov process:

0 Pr[next reaction is j" one] = rate of ji" reaction / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]
43

What is probable:
Stochastic kinetic model of chemical reaction networks

Solution volume v

reaction type rate / propensity
Ak k- #A
A+B X .. K-#A-#B /v

System evolves via a continuous time Markov process:
0 Pr[next reaction is j" one] = rate of ji" reaction / (sum of all reaction rates)

@ expected time until next reaction is 1 / (sum of all reaction rates)

[McQuarrie 1967, van Kampen, Gillespie 1977]
43

Relationship to distributed computing

population protocol = list of transitions such as

X,y — X,X a,b-cd a,a —»a,a (null transition)

* Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/ 4

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Relationship to distributed computing

population protocol = list of transitions such as

X,y — X,X a,b-cd a,a —»a,a (null transition)
* Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).
A population protocol is a chemical reaction network with
* two reactants, two products per reaction

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/ 4

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Relationship to distributed computing

population protocol = list of transitions such as

X,y — X,X a,b-cd a,a —»a,a (null transition)
* Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).
A population protocol is a chemical reaction network with

e two reactants, two products per reaction
* unit rate constants

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Relationship to distributed computing

population protocol = list of transitions such as

X,y — X,X a,b-cd a,a —»a,a (null transition)

* Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
e two reactants, two products per reaction

* unit rate constants
* volume = n = number of agents (never changes)

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Relationship to distributed computing

population protocol = list of transitions such as

X,y — X,X a,b-cd a,a —»a,a (null transition)

* Repeatedly, two agents (molecules) are picked at random to interact
(react) and change state (species).

A population protocol is a chemical reaction network with
e two reactants, two products per reaction

* unit rate constants
* volume = n = number of agents (never changes)

population protocols & chemical reactions, but “most” ideas that
apply to one model also apply to the other

[Angluin, Aspnes, Diamadi, Fischer, Peralta, Computation in networks of passively mobile finite-state sensors, PODC 2004]:
Winner of 2020 Dijkstra Prize in Distributed Computing: https://www.podc.org/dijkstra/2020-dijkstra-prize/

https://www.podc.org/dijkstra/2020-dijkstra-prize/

Time complexity in population protocols

e pair of agents picked uniformly at random to interact
(possibly null interaction)

 parallel time = number of interactions / n
i.e., each agent has O(1) interactions per “unit time”

Speed of computation

Speed of computation

How to fairly assess speed?

Like any respectable computer scientist...
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors

46

Speed of computation

How to fairly assess speed?

Like any respectable computer scientist...
1) as a function of input size n (how required time grows with n)
2) ignoring constant factors

n = total molecular count
reasonable requirement on volume: v = O(n)
i.e., require bounded concentration (finite density constraint)

46

Full CRN time model (Gillespie kinetics)

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)
» volume v: A « 1/v (the bigger the volume, the slower collisions happen)

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)
» volume v: A « 1/v (the bigger the volume, the slower collisions happen)

* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)

» volume v: A « 1/v (the bigger the volume, the slower collisions happen)
* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)

« For this example reaction A+B X C, combining these we get A = k-HA-#B / v

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)

» volume v: A « 1/v (the bigger the volume, the slower collisions happen)
* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)

« For this example reaction A+B X C, combining these we get A = k-HA-#B / v

e Other reaction types:
. AtAK .. A= k-#A-(#A-1) /v (symmetric bimolecular reaction)

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)
» volume v: A « 1/v (the bigger the volume, the slower collisions happen)
* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)
« For this example reaction A+B X C, combining these we get A = k-HA-#B / v

e Other reaction types:

. AtAK .. A= k-#A-(#A-1) /v (symmetric bimolecular reaction)
« #A-(#A-1)/2 = # ways to pick two A’s to react; factor ¥ by convention is put into rate constant k

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of reactants: A « #A-#B (the more there are, the faster collisions happen)
» volume v: A « 1/v (the bigger the volume, the slower collisions happen)
* rate constant k: A « k (captures things not directly modeled, e.q., diffusion rates, probability that a
collision results in a reaction)
« For this example reaction A+B X C, combining these we get A = k-HA-#B / v

e Other reaction types:
. AtAK .. A= k-#A-(#A-1) /v (symmetric bimolecular reaction)
« #A-(#A-1)/2 = # ways to pick two A’s to react; factor ¥ by convention is put into rate constant k
. Ak .. A= k-#A (unimolecular reaction)

Full CRN time model (Gillespie kinetics)

« What should influence total rate A (a.k.a., propensity) of bimolecular reaction A+B X C?
* molecular counts of rea