DNA strand displacement

DNA reconfiguring itself without enzymes

slides © 2023, David Doty ECS 232: Theory of Molecular Computation, UC Davis

DNA strands with "long" and "short" (toehold) binding domains

DNA strand displacement

https://www.microsoft.com/en-us/research/video/dna-strand-displacement/

DNA strand displacement model

3 rules:

- 1. bind
- 2. release
- 3. displace

Bind rule

single-stranded complementary domains can bind

Release rule

double-stranded complementary domains can unbind IF they are toehold-length (short, < 8 nt)

Displace rule

A domain (<u>invader</u>) can displace an identical domain (<u>incumbent</u>) of another strand, **IF** neighboring domains are already bound

Readout

How do we read a "signal" in a DNA strand displacement system?

Fluorophores, when "excited" by light at one wavelength, emit light at a longer wavelength.

Reporter complexes

How do we read a "signal"?

"signal" = single strand is freed from a double-stranded complex.

Reporter complex depiction

Boolean logic with DNA strand displacement

release Z if and only if X and Y are present

release Z if and only if X and Y are present

Composing AND gates

Translator gate ("wire") input X

> We need a "wire" to translate the signal: X → Y (with <u>no shared DNA sequences</u> between X and Y)

.....

Translator gate (a "wire") input X Х V bind F₁

2 ∢.....

Translator gate (a "wire")

-2 ∢.....

Translator gate (a "wire")

An OR gate can be implemented by multiple translators:

$Z \leftarrow W \mathbf{OR} X \mathbf{OR} Y$

NOT gates are tricky with molecular circuits: How to make a molecule Y present if and only if X is not present?? Instead we use <u>dual-rail</u> logic, using de Morgan's Laws to push all the NOT gates to the input.

(Then we can "manually" specify FALSE input values by the presence of a "negated" strand.)

NOT gates are tricky with molecular circuits: How to make a molecule Y present if and only if X is not present??

NOT gates are tricky with molecular circuits: How to make a molecule Y present if and only if X is not present??

NOT gates are tricky with molecular circuits: How to make a molecule Y present if and only if X is not present??

NOT gates are tricky with molecular circuits: How to make a molecule Y present if and only if X is not present??

For each input X_i , there are two species X_i^T and X_i^F : Give species X_i^F to specify that Boolean input $X_i = False$ Give species X_i^T to specify that Boolean input $X_i = True$.

Dual-rail logic computing square root of 4-bit number

Implementing CRNs with DNA

"Compiling" arbitrary chemical reaction networks into DNA strands that implement the reactions using DNA strand displacement

DNA strand displacement can implement any CRN reaction $i: X_1 \xrightarrow{k_i} X_2 + X_3$ [1] \Downarrow implement $X_1 + G_i \xrightarrow{q_i} O_i$ [2] $O_i + T_i \xrightarrow{q_{\text{max}}} X_2 + X_3$ [3] unimolecular reaction $X_1 \rightarrow X_2 + X_3$ \Downarrow simplify species $X_1 \stackrel{q_i C_{\max}}{\longrightarrow} O_i$ + $\frac{2 3 10}{12 2^{*} 3^{*}}$ $\frac{q_{i}}{12 2^{*} 3^{*}}$ + $\frac{2 3 10 4 11 7}{2 3 10 4 11 7}$ identifier [4] $O_i \xrightarrow{q_{\max}C_{\max}} X_2 + X_3$ X_1 В species identifier 10 4 5 6 species identifier $\begin{array}{c} 2 & 3 & 10 & 4 & 11 & 7 \\ \hline & & & & \\ 3^{*} & 10^{*} & 4^{*} & 11^{*}7^{*} \end{array} \begin{array}{c} q_{max} \\ \hline & & & \\ 3^{*} & 10^{*} & 4^{*} & 11^{*}7^{*} \end{array} \begin{array}{c} 2 & 3 & 10 & 4 & 11 & 7 \\ \hline & & & \\ 3^{*} & 10^{*} & 4^{*} & 11^{*}7^{*} \end{array}$ + O_i X_2 X_3 waste

[DNA as a universal substrate for chemical kinetics, David Soloveichik, Georg Seelig, and Erik Winfree, PNAS 2010]

DNA strand displacement can implement any CRN

[DNA as a universal substrate for chemical kinetics, David Soloveichik, Georg Seelig, and Erik Winfree, PNAS 2010]

"Two-domain" scheme for compiling CRN to DSD

reaction A+B \rightarrow C

Andrew Phillips, Luca Cardelli, David Soloveichik, and Georg Seelig. *Nature Nanotechnology* 2013.]

Experimental implementations of CRN-to-DSD schemes

DSD computing approximate majority

Goal:

[Programmable chemical controllers made from DNA. Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik, and Georg Seelig. *Nature Nanotechnology* 2013.]

DSD implementing chemical "rock-paper-scissors" oscillator

[Enzyme-free nucleic acid dynamical systems. Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, David Soloveichik, Science 2017]