DNA strand displacement
 DNA reconfiguring itself without enzymes

slides © 2023, David Doty
ECS 232: Theory of Molecular Computation, UC Davis

DNA strands with "long" and "short" (toehold) binding domains

DNA strand displacement example

$\frac{x^{*}}{x^{*}} \underset{t^{*}}{x} \stackrel{\square}{x^{*}}$

DNA strand displacement example

DNA strand displacement example

"breathing"/ "fraying"

DNA strand displacement example

DNA strand displacement example

DNA strand displacement example

branch
migration

DNA strand displacement example

DNA strand displacement example

§ irreversible

branch
migration

DNA strand displacement

https://www.microsoft.com/en-us/research/video/dna-strand-displacement/

DNA strand displacement

DNA strand displacement model

3 rules:

1. bind
2. release
3. displace

Bind rule

single-stranded complementary domains can bind

bind

Release rule

double-stranded complementary domains can unbind IF they are toehold-length (short, < 8 nt)

Displace rule

A domain (invader) can displace an identical domain (incumbent) of another strand, IF neighboring domains are already bound

Displace rule

A domain (invader) can displace an identical domain (incumbent) of another strand, IF neighboring domains are already bound

Readout

How do we read a "signal" in a DNA strand displacement system?

Fluorophores, when "excited" by light at one wavelength, emit light at a longer wavelength.

Fluorophores, when "excited" by light at one wavelength, emit light at a longer wavelength.

Reporter complexes

How do we read a "signal"?
"signal" = single strand is freed from a double-stranded complex.

Reporter complex depiction

Boolean logic with DNA strand displacement

AND gate

voltages

release Z if and only if X and Y are present
strands

Strand displacement cascade example: AND gate

$\frac{0}{} \quad 10 \frac{3}{\text { input } X}$
release Z if and only if X and Y are present

AND gate

Strand displacement cascade example: AND gate

Strand displacement cascade example: AND gate

release Z if and only if X and Y are present

Strand displacement cascade example: AND gate

release Z if and only if X and Y are present

Strand displacement cascade example: AND gate

release Z if and only if X and Y are present

Strand displacement cascade example: AND gate

release Z if and only if X and Y are present

Strand displacement cascade example: AND gate

release Z if and only if X and Y are present

Strand displacement cascade example: AND gate

Strand displacement cascade example: AND gate

$2 \quad 35$
waste
release Z if and only if X and Y are present

Strand displacement cascade example: AND gate

$2 \quad 35$
waste
release Z if and only
if X and Y are present

Strand displacement cascade example: AND gate

235
waste
release Z if and only
if X and Y are present

Strand displacement cascade example: AND gate

$2 \quad 35$
waste
release Z if and only if X and Y are present

Strand displacement cascade example: AND gate

Composing AND gates

Translator gate ("wire") input X

> We need a "wire" to translate the signal: $X \rightarrow Y$
> (with no shared DNA sequences between X and Y)

Translator gate (a "wire")

 input X
F_{2}

Translator gate（a＂wire＂）

Translator gate (a "wire")

outputY

Strand displacement cascade example: OR gate

An OR gate can be implemented by multiple translators:

$Z \leftarrow W$ OR X OR Y

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present
if and only if X is not present??

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use dual-rail logic, using de Morgan's Laws to push all the NOT gates to the input.
(Then we can "manually" specify FALSE input values by the presence of a "negated" strand.)

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use dual-rail logic, using de Morgan's Laws to push all the NOT gates to the input.
(Then we can "manually" specify FALSE input values by the presence of a "negated" strand.)

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use dual-rail logic, using de Morgan's Laws to push all the NOT gates to the input.
(Then we can "manually" specify FALSE input values by the presence of a "negated" strand.)

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present?

Instead we use "dual-rail" logic, using de Morgan's Laws to push all the NOT gates to the input, so we can "manually" specify FALSE input values.

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use "dual-rail" logic, using de Morgan's Laws to push all the NOT gates to the input, so we can "manually" specify FALSE input values.

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use "dual-rail" logic, using de Morgan's Laws to push all the NOT gates to the input, so we can "manually" specify FALSE input values.

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use "dual-rail" logic, using de Morgan's Laws to push all the NOT gates to the input, so we can "manually" specify FALSE input values.

X_{3}

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use "dual-rail" logic, using de Morgan's Laws to push all the NOT gates to the input, so we can "manually" specify FALSE input values.

X_{3}

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use "dual-rail" logic, using de Morgan's Laws to push all the NOT gates to the input, so we can "manually" specify FALSE input values.

X_{3}

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use "dual-rail" logic, using de Morgan's Laws to push all the NOT gates to the input, so we can "manually" specify FALSE input values.

X_{3}

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

NOT gates are tricky with molecular circuits:
How to make a molecule Y present if and only if X is not present??

Instead we use "dual-rail" logic, using de Morgan's Laws to push all the NOT gates to the input, so we can "manually" specify FALSE input values.

X_{3}

Strand displacement cascade example: Avoiding

 the need for NOT gates using dual-rail logicFor each input X_{i}, there are two species X_{i}^{\top} and $X_{i}{ }^{F}$:
Give species $X_{i}{ }^{F}$ to specify that Boolean input $X_{i}=$ False Give species X_{i}^{\top} to specify that Boolean input $X_{i}=$ True.

Strand displacement cascade example: Avoiding

 the need for NOT gates using dual-rail logicFor each input X_{i}, there are two species X_{i}^{\top} and $X_{i}{ }^{F}$:
Give species $X_{i}{ }^{F}$ to specify that Boolean input $X_{i}=$ False
Give species X_{i}^{\top} to specify that Boolean input $X_{i}=$ True.

Strand displacement cascade example: Avoiding the need for NOT gates using dual-rail logic

For each input X_{i}, there are two species X_{i}^{\top} and $X_{i}{ }^{F}$:
Give species $X_{i}{ }^{F}$ to specify that Boolean input $X_{i}=$ False
Give species X_{i}^{\top} to specify that Boolean input $X_{i}=$ True.

Dual-rail logic computing square root of 4-bit number

Implementing CRNs with DNA

"Compiling" arbitrary chemical reaction networks into DNA strands that implement the reactions using DNA strand displacement

DNA strand displacement can implement any CRN

unimolecular reaction $X_{1} \rightarrow X_{2}+X_{3}$

DNA strand displacement can implement any CRN

bimolecular reaction $X_{1}+X_{2} \rightarrow X_{3}$

"Two-domain" scheme for compiling CRN to DSD

Experimental implementations of CRN-to-DSD schemes

DSD computing approximate majority

Goal:

DSD computing approximate majority

Goal:

$$
X+Y \rightarrow 2 B
$$

CRN: $\quad X+B \rightarrow 2 X$

$$
\mathrm{Y}+\mathrm{B} \rightarrow 2 \mathrm{Y}
$$

DSD computing approximate majority

Goal:

$\begin{array}{ll} & X+Y \rightarrow 2 B \\ \text { CRN: } & X+B \rightarrow 2 X \\ & Y+B \rightarrow 2 Y\end{array}$

DSD implementing chemical "rock-paper-scissors" oscillator

A
Desired dynamics

Time

Molecular program
A, B, C $B+A \xrightarrow{k} 2 B$
$C+B \xrightarrow{k} 2 C$
$A+C \xrightarrow{k} 2 A$

DNA architecture

DNA dynamics

