DNA sequence design

slides © 2021, David Doty
ECS 232: Theory of Molecular Computation, UC Davis

Two layers of abstraction in DNA nanotech

DNA strands with abstract
 "binding domains"

DNA sequences

ACATC CATTCTACCATACTCTTTCIT

Two layers of abstraction in DNA nanotech

DNA strands with abstract
 "binding domains"

This describes ideally how we want strands to bind.

DNA sequences

ACATC CATTCTACCATACTCTTTCTT

Two layers of abstraction in DNA nanotech

DNA strands with abstract
"binding domains"

DNA sequences

This describes ideally how we want strands to bind.

DNA sequence design

GGCCG GCCGGTTTTTCCGGCCGGCCAAT

DNA sequence design

bad choice of
DNA sequence

GGCCG GCCGGTTTTTCCGGCCGGCCAAT
most likely structure
CCGGCCGGCCAAT
GGCCGGCCGG

DNA sequence design

bad choice of
DNA sequence

GGCCG GCCGGTTTTTCCGGCCGGCCAAT most likely structure

CCGGCCGGCCAAT
GGCCGGCCGG

Why is this bad?
If we want the strand to bind to other strands, it first has to break up its own structure.
i.e., effective binding rate/strength is lowered

Common DNA sequence design goals: What to avoid

- Excessive secondary structure of strands

Common DNA sequence design goals: What to avoid

- Excessive secondary structure of strands
- Significant interaction between noncomplementary domains
domain d
AAAAAAAAAAAAAAAAAAAAA
TTTTTTTGTTTTTTTTATTTT domain f^{*}

TTTTTTTTTTTTTTTTTTTTT
domain d^{*}

Common DNA sequence design goals: What to avoid

- Excessive secondary structure of strands
- Significant interaction between noncomplementary domains

```
domain d
AAAAAAAAAAAAAAAAAAAAA
TTTTTTTGTTTTTTTTATTTT
    domain f*
    domain d*
```

- Certain string-based rules, e.g.
- some patterns such as GGGG (forms "G-tetraplex":
https://www.idtdna.com/pages/education/decoded/article/g-repeats-structural-challenges-for-oligo-design)
- $>70 \%$ or $<30 \%$ G/C content (G/C binds more strongly)
- domains ending in A / T (they "breathe" more)
- And often other constraints

DNA energy models

How do we predict what structures DNA strands are likely to form?

DNA duplex energy model (simple versions)

- How strongly does a DNA strand bind to its perfect complement?

DNA duplex energy model (simple versions)

- How strongly does a DNA strand bind to its perfect complement?
- $1^{\text {st }}$ approximation: proportional to length:
- $\Delta G\left(5^{\prime}-A A G G T T A C-3^{\prime}\right.$,
$3^{\prime}-$ TTCCAATG-5' $)=1+1+1+1+1+1+1+1=8$

DNA duplex energy model (simple versions)

- How strongly does a DNA strand bind to its perfect complement?
- $1^{\text {st }}$ approximation: proportional to length:
- $\Delta G\left(5^{\prime}-A A G G T T A C-3^{\prime}\right.$,
3^{\prime}-TTCCAATG-5' $)=1+1+1+1+1+1+1+1=8$
- $\underline{2}^{\text {nd }}$ approximation: depends on base pair:
- G/C about twice as strong as A/T
- $\Delta G\left(5^{\prime}-A A G G T T A C-3^{\prime}\right.$,
$3^{\prime}-$ TTCCAATG-5' $)=1+1+2+2+1+1+1+2=11$

DNA duplex energy model (simple versions)

- How strongly does a DNA strand bind to its perfect complement?
- ${ }^{\text {st }}$ approximation: proportional to length:
- $\Delta G\left(5^{\prime}-A A G G T T A C-3^{\prime}\right.$,

$$
\left.3^{\prime}-\text { TTCCAATG-5' }\right)=1+1+1+1+1+1+1+1=8
$$

- $2^{\text {nd }}$ approximation: depends on base pair:
- G/C about twice as strong as A/T
- $\Delta G\left(5^{\prime}-A A G G T T A C-3^{\prime}\right.$,
$3^{\prime}-$ TTCCAATG-5' $)=1+1+2+2+1+1+1+2=11$
- $3^{\text {rd }}$ approximation: nearest neighbor model (used in practice):
- depends on base pair, and on the neighboring base pairs

Why do the neighbors matter?

Much of DNA stability is not from base pair (formed by hydrogen bonds) but from "stacking" interactions between adjacent bases.

source: https://dna-robotics.eu/2019/11/29/simulating-dna/

Nearest neighbor energy model

| | Sequence |
| :--- | :---: | | Unified |
| :---: |
| (ref. 22) |$~$| 1.00 | |
| :--- | :---: |
| AA/TT | -0.88 |
| AT/TA | -0.58 |
| TA/AT | -1.45 |
| CA/GT | -1.44 |
| GT/CA | -1.28 |
| CT/GA | -1.30 |
| GA/CT | -2.17 |
| CG/GC | -2.24 |
| GC/CG | -1.84 |
| GG/CC | -1.42 |

[A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, John SantaLucia Jr., PNAS 1998]

Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary, but some bases match?

Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary, but some bases match?

```
Definition: A secondary structure of a set of DNA strands
is a set of base pairs among complementary bases.
Formally, it is a matching on the graph G=(V,E), where
V={ bases in each strand }
E={{u,v}|{u,v}={A,T} or {u,v}={G,C}}
```


Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary, but some bases match?

Definition: A secondary structure of a set of DNA strands is a set of base pairs among complementary bases.
Formally, it is a matching on the graph $G=(V, E)$, where $V=\{$ bases in each strand $\}$
$E=\{\{u, v\} \mid\{u, v\}=\{A, T\}$ or $\{u, v\}=\{G, C\}\}$

Definition: A secondary structure is unpseudoknotted (with respect to a particular circular ordering of the strands) if, drawing strands in 5'-3' order in a circle and connecting the base pairs by straight lines, no lines cross.

sometimes drawn with strands straight and base pairs as curved arcs:

Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary, but some bases match?

Definition: A secondary structure of a set of DNA strands is a set of base pairs among complementary bases.
Formally, it is a matching on the graph $G=(V, E)$, where $V=\{$ bases in each strand $\}$
$E=\{\{u, v\} \mid\{u, v\}=\{A, T\}$ or $\{u, v\}=\{G, C\}\}$
pseudoknots:
Definition: A secondary structure is unpseudoknotted (with respect to a particular circular ordering of the strands) if, drawing strands in 5'-3' order in a circle and connecting the base pairs by straight lines, no lines cross.
pseudoknots:

Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in $5^{\prime}-3^{\prime}$ order in a circle and connecting the base pairs by straight lines, no lines cross.

Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in $5^{\prime}-3^{\prime}$ order in a circle and connecting the base pairs by straight lines, no lines cross.

Definition 2: Base pair indices obey the nesting property: there are no base pairs $(a, b) \in \mathbb{N}^{2}$ and $(x, y) \in \mathbb{N}^{2}$ such that $a<x<b<y \quad$ (e.g., it can be $a<b<x<y$ or $a<x<y<b$)

Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in $5^{\prime}-3^{\prime}$ order in a circle and connecting the base pairs by straight lines, no lines cross.

Definition 3: Balanced parentheses describe base pairs in dot-parens (a.k.a., dot-bracket) notation.

$(((\ldots .)).) \ldots .(((\ldots .))).$.

Definition 2: Base pair indices obey the nesting property: there are no base pairs $(a, b) \in \mathbb{N}^{2}$ and $(x, y) \in \mathbb{N}^{2}$ such that $a<x<b<y \quad$ (e.g., it can be $a<b<x<y$ or $a<x<y<b$)

Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in $5^{\prime}-3^{\prime}$ order in a circle and connecting the base pairs by straight lines, no lines cross.

Definition 3: Balanced parentheses describe base pairs in dot-parens (a.k.a., dot-bracket) notation.

$(((\ldots .)).) \ldots(((\ldots .))$.$) .$

(((.....[[DD)))...]]]..

Definition 2: Base pair indices obey the nesting property: there are no base pairs $(a, b) \in \mathbb{N}^{2}$ and $(x, y) \in \mathbb{N}^{2}$ such that $a<x<b<y \quad$ (e.g., it can be $a<b<x<y$ or $a<x<y<b$)

Equivalent definitions of unpseudoknotted

Definition 1: Drawing strands in $5^{\prime}-3^{\prime}$ order in a circle and connecting the base pairs by straight lines, no lines cross.

Definition 3: Balanced parentheses describe base pairs in dot-parens (a.k.a., dot-bracket) notation.

$(((\ldots .)).) \ldots(((\ldots .))$.$) .$

(((.....[[D)))...]]]..

Definition 2: Base pair indices obey the nesting property: there are no base pairs $(a, b) \in \mathbb{N}^{2}$ and $(x, y) \in \mathbb{N}^{2}$ such that $a<x<b<y \quad$ (e.g., it can be $a<b<x<y$ or $a<x<y<b$)

Definition 4: The graph $G=(V, E)$ is outerplanar, where $V=\{$ bases in each strand $\}$
$E=\{\{u, v\} \mid \quad\{u, v\}$ are a paired base pair, or $\{u, v\}$ are adjacent $\}$
outerplanar = can be drawn with no edges crossing (planar), and all vertices incident to the outer face

Back to first approximation of energy model

- (For now, consider only one strand.)
- Given a DNA sequence S, what is the maximum number of base pairs that can be formed in any unpseudoknotted secondary structure?

Back to first approximation of energy model

- (For now, consider only one strand.)
- Given a DNA sequence S, what is the maximum number of base pairs that can be formed in any unpseudoknotted secondary structure?
- Without unpseudoknotted constraint, this is trivial: min(\#C,\#G) + min(\#A,\#T)

Back to first approximation of energy model

- (For now, consider only one strand.)
- Given a DNA sequence S, what is the maximum number of base pairs that can be formed in any unpseudoknotted secondary structure?
- Without unpseudoknotted constraint, this is trivial: $\min (\# C, \# G)+\min (\# A, \# T)$
- Can be taken as a rough approximation of the minimum free energy structure of S, i.e., the most probable structure "at thermodynamic equilibrium" (what you'd see if you heat it up and slowly cool it).

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let OPT $(i, j)=$ max base pairs possible using only bases i through j.

Computing maximally bound unpseudoknotted secondary structure in polynomial time

pair j with another base or not?

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\operatorname{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?

Computing maximally bound unpseudoknotted secondary structure in polynomial time

- $\operatorname{OPT}(i, j)=\operatorname{OPT}(i, j-1)$

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\operatorname{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots . k-1$] and any base in $[k+1, j-1]$

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\operatorname{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots . k-1$] and any base in $[k+1, j-1$]
- Recursively, optimal value depends on:
- OPT(i,k-1) and OPT $(k+1, j-1)$

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\operatorname{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots . k-1$] and any base in $[k+1, j-1$]
- Recursively, optimal value depends on:
- OPT $(i, k-1)$ and OPT $(k+1, j-1)$

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\mathrm{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and j-1 ?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots k-1$] and any base in $[k+1, j-1]$
- Recursively, optimal value depends on:
- OPT $(i, k-1)$ and OPT $(k+1, j-1)$

$$
\operatorname{OPT}(i, j)=\max \text { of: }
$$

$\operatorname{OPT}(i, j-1), \quad / /$ don't form base pair with j

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\mathrm{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and j-1 ?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots k-1$] and any base in $[k+1, j-1$]
- Recursively, optimal value depends on:
- OPT($i, k-1)$ and OPT $(k+1, j-1)$

Recursive algorithm (implement w/ dynamic programming):
OPT $(i, j)=$ max of:
OPT(i,j-1), // don't form base pair with j
$\max _{i \leq k<j} 1+\operatorname{OPT}(i, k-1)+\operatorname{OPT}(k+1, j-1) / /$ form k, j base pair

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\mathrm{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots . k-1$] and any base in $[k+1, j-1$]
- Recursively, optimal value depends on:
- OPT($i, k-1)$ and OPT $(k+1, j-1)$

Recursive algorithm (implement w/ dynamic programming): OPT $(i, j)=$ max of \quad only if k and j are complementary bases $\operatorname{OPT}(i, j-1), \quad / /$ don't form base pair with j $\max _{i \leq k \leq j} 1+\operatorname{OPT}(i, k-1)+\operatorname{OPT}(k+1, j-1) / /$ form k, j base pair

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\mathrm{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and j-1 ?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots k-1$] and any base in $[k+1, j-1]$
- Recursively, optimal value depends on:
- OPT($i, k-1)$ and OPT $(k+1, j-1)$

Recursive algorithm (implement w/ dynamic programming): OPT $(i, j)=$ max of only if k and j are complementary bases $\operatorname{OPT}(i, j-1), \quad / /$ don't form base pair with j $\max _{i \leq k \leq j} 1+\operatorname{OPT}(i, k-1)+\operatorname{OPT}(k+1, j-1) / /$ form k, j base pair base case: OPT $(i, i)=0$

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\mathrm{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and j-1 ?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots k-1$] and any base in $[k+1, j-1]$
- Recursively, optimal value depends on:
- OPT($i, k-1)$ and OPT $(k+1, j-1)$

Recursive algorithm (implement w/ dynamic programming): OPT $(i, j)=$ max of only if k and j are complementary bases $\operatorname{OPT}(i, j-1), \quad / /$ don't form base pair with j $\max _{i \leq k \leq j} 1+\operatorname{OPT}(i, k-1)+\operatorname{OPT}(k+1, j-1) / /$ form k, j base pair base case: OPT $(i, i)=0$ optimal value for whole strand $=\operatorname{OPT}(1, n)$

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\mathrm{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots k-1$] and any base in [$k+1, j-1$]
- Recursively, optimal value depends on:

Recursive algorithm (implement w/ dynamic programming):
OPT $(i, j)=$ max of only if k and j are complementary bases

$$
\operatorname{OPT}(i, j-1) \quad / / \text { don't form base pair with } j
$$

$\max _{i \leq \leq \leq j \leq 1} 1+\operatorname{OPT}(i, k-1)+\operatorname{OPT}(k+1, j-1) / /$ form k, j base pair base case: OPT $(i, i)=0$
optimal value for whole strand $=\operatorname{OPT}(1, n)$

Running time:

There are $O\left(n^{2}\right)$ subproblems: choices i, j with $1 \leq i<j \leq n$.

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\mathrm{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
- OPT $(i, j)=$ OPT $(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots k-1$] and any base in [$k+1, j-1$]
- Recursively, optimal value depends on:
- OPT($i, k-1)$ and OPT $(k+1, j-1)$

Recursive algorithm (implement w/ dynamic programming):
OPT $(i, j)=$ max of only if k and j are complementary bases
$\operatorname{OPT}(i, j-1)$, // don't form base pair with j
$\max _{i \leq k \leq j} 1+\operatorname{OPT}(i, k-1)+\operatorname{OPT}(k+1, j-1) / /$ form k, j base pair base case: OPT $(i, i)=0$
optimal value for whole strand $=\operatorname{OPT}(1, n)$

Running time:

There are $O\left(n^{2}\right)$ subproblems: choices i, j with $1 \leq i<j \leq n$.
Each takes time $O(n)$ to search all values of k, so $O\left(n^{3}\right)$ total.

Computing maximally bound unpseudoknotted secondary structure in polynomial time

Recursive solution:

- Strand length is n.
- For $1 \leq i \leq j \leq n$, let $\operatorname{OPT}(i, j)=$ max base pairs possible using only bases i through j.
- Question: do we pair base j with some other base between i and $j-1$?
- If not, recursively, the optimal value is:
- OPT $(i, j)=\mathrm{OPT}(i, j-1)$
- If we pair j with k, nesting property implies no base pair can form between any base in [$i, \ldots k-1$] and any base in $[k+1, j-1]$
- Recursively, optimal value depends on:
- OPT($i, k-1)$ and OPT $(k+1, j-1)$

This gives optimal value: how to find actual secondary structure?
pair j with another base or not?

Example of dynamic programming algorithm

strand sequence =
ATTGATC

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC
base cases

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC
base cases

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC
base cases

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC
base cases

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC
base cases

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC
base cases

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC
base cases

Example of dynamic programming algorithm
strand sequence $=$
ATTGATC
base cases

Example of dynamic programming algorithm
strand sequence $=$

ATTGATC

base cases

recursive cases with

 complementary basesExample of dynamic programming algorithm
strand sequence $=$

ATTGATC

base cases

recursive cases with

 complementary bases
Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

base cases
recursive cases with complementary bases

recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

base cases
recursive cases with complementary bases
recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

```
base cases
```

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

```
base cases
```

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic programming algorithm
strand sequence $=$

ATTGATC

base cases

recursive cases with

 complementary bases> recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$

ATTGATC

```
base cases
```

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic programming algorithm
strand sequence $=$

ATTGATC

```
base cases
```


recursive cases with

 complementary bases> recursive cases without complementary bases

Example of dynamic programming algorithm
strand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic programming algorithm
strand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic programming algorithm
strand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic

 programming algorithmstrand sequence $=$
ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic programming algorithm
strand sequence $=$

ATTGATC

base cases

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic programming algorithm

strand sequence $=$

ATTGATC

```
base cases
```

recursive cases with complementary bases

recursive cases without complementary bases

Example of dynamic programming algorithm

strand sequence $=$

ATTGATC

```
base cases
```

recursive cases with complementary bases

recursive cases without complementary bases

Example of dynamic programming algorithm

strand sequence $=$
ATTGATC

```
base cases
```

recursive cases with complementary bases

> recursive cases without complementary bases

Example of dynamic programming algorithm

strand sequence $=$
ATTGATC

```
base cases
```

recursive cases with complementary bases

> recursive cases without complementary bases

Extensions to more realistic energy models

- base pairs on one strand must be separated by at least 4 other bases

Extensions to more realistic energy models

- base pairs on one strand must be separated by at least 4 other bases
- base case switches from OPT $(i, i)=0$ to OPT $(i, j)=0$ if $j-i \leq 4$

Extensions to more realistic energy models

- base pairs on one strand must be separated by at least 4 other bases
- base case switches from $\operatorname{OPT}(i, i)=0$ to $\operatorname{OPT}(i, j)=0$ if $j-i \leq 4$
- G/C twice as strong as A / T ?

Extensions to more realistic energy models

- base pairs on one strand must be separated by at least 4 other bases
- base case switches from $\operatorname{OPT}(i, i)=0$ to $\operatorname{OPT}(i, j)=0$ if $j-i \leq 4$
- G/C twice as strong as A / T ?
- $\max _{i \leq k<j}(1$ if k, j is A / T base pair, else 2$)+\operatorname{OPT}(i, k-1)+\operatorname{OPT}(k+1, j-1)$

Extensions to more realistic energy models

- base pairs on one strand must be separated by at least 4 other bases
- base case switches from $\operatorname{OPT}(i, i)=0$ to $\operatorname{OPT}(i, j)=0$ if $j-i \leq 4$
- G/C twice as strong as A / T ?
- $\max _{i \leq k<j}(1$ if k, j is A / T base pair, else 2$)+\mathrm{OPT}(i, k-1)+\mathrm{OPT}(k+1, j-1)$
- nearest-neighbor interaction?
- $\max _{i \leq k<j}($ more complex lookup here $)+\mathrm{OPT}(i, k-1)+\mathrm{OPT}(k+1, j-1)$

Extensions to more realistic energy models

- base pairs on one strand must be separated by at least 4 other bases
- base case switches from $\operatorname{OPT}(i, i)=0$ to $\operatorname{OPT}(i, j)=0$ if $j-i \leq 4$
- G/C twice as strong as A / T ?
- $\max _{i \leq k<j}(1$ if k, j is A / T base pair, else 2$)+\mathrm{OPT}(i, k-1)+\mathrm{OPT}(k+1, j-1)$
- nearest-neighbor interaction?
- $\max _{i \leq k<j}($ more complex lookup here) $+\mathrm{OPT}(i, k-1)+\mathrm{OPT}(k+1, j-1)$
- multiple strands?
- a $\Delta G_{\text {assoc }}$ term for each strand beyond the first one

Extensions to more realistic energy models

- base pairs on one strand must be separated by at least 4 other bases
- base case switches from $\operatorname{OPT}(i, i)=0$ to $\operatorname{OPT}(i, j)=0$ if $j-i \leq 4$
- G/C twice as strong as A / T ?
- $\max _{i \leq k<j}(1$ if k, j is A/T base pair, else 2$)+\mathrm{OPT}(i, k-1)+\mathrm{OPT}(k+1, j-1)$
- nearest-neighbor interaction?
- $\max _{i \leq k<j}($ more complex lookup here) $+\mathrm{OPT}(i, k-1)+\mathrm{OPT}(k+1, j-1)$
- multiple strands?
- a $\Delta G_{\text {assoc }}$ term for each strand beyond the first one
- https://piercelab-caltech.github.io/nupack-docs/definitions/

Software to compute minimum free energy DNA structures
 MFE structure at 37.0 C

```
NUPACK
http://www.nupack.org/
```


$\stackrel{\bullet-}{\dashv-\circ}$

Free energy of secondary structure: $-8.78 \mathrm{kcal} / \mathrm{mol}$

What is "free energy"?

A way to express probability of seeing a structure, in units of energy ($\mathrm{kcal} / \mathrm{mol}$). Energy and probability are exponentially related.

What is "free energy"?

A way to express probability of seeing a structure, in units of energy ($\mathrm{kcal} / \mathrm{mol}$). Energy and probability are exponentially related.

- If S is a secondary structure, let $\operatorname{Pr}[S]$ denote probability of seeing it ("at equilibrium").

What is "free energy"?

A way to express probability of seeing a structure, in units of energy ($\mathrm{kcal} / \mathrm{mol}$). Energy and probability are exponentially related.

- If S is a secondary structure, let $\operatorname{Pr}[S]$ denote probability of seeing it ("at equilibrium").
- At fixed temperature, $\ln (\operatorname{Pr}[S]) \approx \Delta G(S) \quad$ (recall free energy $\Delta G(S)$ is negative)

What is "free energy"?

A way to express probability of seeing a structure, in units of energy ($\mathrm{kcal} / \mathrm{mol}$). Energy and probability are exponentially related.

- If S is a secondary structure, let $\operatorname{Pr}[S]$ denote probability of seeing it ("at equilibrium").
- At fixed temperature, $\ln (\operatorname{Pr}[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
- Some constants: $\ln (\operatorname{Pr}[S]) \approx \Delta G(S) /(R T)$, usually expressed as $\operatorname{Pr}[S] \propto \mathrm{e}^{-\Delta G(S) /(R T)}$
$T=$ temperature in K (Kelvin), $R=$ Boltzmann's constant $\approx 0.001987204 \mathrm{kcal} / \mathrm{mol} / \mathrm{K}$

What is "free energy"?

A way to express probability of seeing a structure, in units of energy ($\mathrm{kcal} / \mathrm{mol}$). Energy and probability are exponentially related.

- If S is a secondary structure, let $\operatorname{Pr}[S]$ denote probability of seeing it ("at equilibrium").
- At fixed temperature, $\ln (\operatorname{Pr}[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
- Some constants: $\ln (\operatorname{Pr}[S]) \approx \Delta G(S) /(R T)$, usually expressed as $\operatorname{Pr}[S] \propto \mathrm{e}^{-\Delta G(S) /(R T)}$
$T=$ temperature in K (Kelvin), $R=$ Boltzmann's constant $\approx 0.001987204 \mathrm{kcal} / \mathrm{mol} / \mathrm{K}$
- To convert $\mathrm{e}^{-\Delta G(S) /(R T)}$ to a probability, need to normalize so they sum to 1.

What is "free energy"?

A way to express probability of seeing a structure, in units of energy ($\mathrm{kcal} / \mathrm{mol}$). Energy and probability are exponentially related.

- If S is a secondary structure, let $\operatorname{Pr}[S]$ denote probability of seeing it ("at equilibrium").
- At fixed temperature, $\ln (\operatorname{Pr}[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
- Some constants: $\ln (\operatorname{Pr}[S]) \approx \Delta G(S) /(R T)$, usually expressed as $\operatorname{Pr}[S] \propto \mathrm{e}^{-\Delta G(S) /(R T)}$
$T=$ temperature in K (Kelvin), $R=$ Boltzmann's constant $\approx 0.001987204 \mathrm{kcal} / \mathrm{mol} / \mathrm{K}$
- To convert $\mathrm{e}^{-\Delta G(S) /(R T)}$ to a probability, need to normalize so they sum to 1.
- For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.

What is "free energy"?

A way to express probability of seeing a structure, in units of energy ($\mathrm{kcal} / \mathrm{mol}$). Energy and probability are exponentially related.

- If S is a secondary structure, let $\operatorname{Pr}[S]$ denote probability of seeing it ("at equilibrium").
- At fixed temperature, $\ln (\operatorname{Pr}[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
- Some constants: $\ln (\operatorname{Pr}[S]) \approx \Delta G(S) /(R T)$, usually expressed as $\operatorname{Pr}[S] \propto \mathrm{e}^{-\Delta G(S) /(R T)}$
$T=$ temperature in K (Kelvin), $R=$ Boltzmann's constant $\approx 0.001987204 \mathrm{kcal} / \mathrm{mol} / \mathrm{K}$
- To convert $\mathrm{e}^{-\Delta G(S) /(R T)}$ to a probability, need to normalize so they sum to 1.
- For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.

Definition: The partition function of Ω is $Q=\Sigma_{S \in \Omega} \mathrm{e}^{-\Delta G(S) /(R T)}$.

What is "free energy"?

A way to express probability of seeing a structure, in units of energy ($\mathrm{kcal} / \mathrm{mol}$). Energy and probability are exponentially related.

- If S is a secondary structure, let $\operatorname{Pr}[S]$ denote probability of seeing it ("at equilibrium").
- At fixed temperature, $\ln (\operatorname{Pr}[S]) \approx \Delta G(S)$ (recall free energy $\Delta G(S)$ is negative)
- Some constants: $\ln (\operatorname{Pr}[S]) \approx \Delta G(S) /(R T)$, usually expressed as $\operatorname{Pr}[S] \propto \mathrm{e}^{-\Delta G(S) /(R T)}$
$T=$ temperature in K (Kelvin), $R=$ Boltzmann's constant $\approx 0.001987204 \mathrm{kcal} / \mathrm{mol} / \mathrm{K}$
- To convert $\mathrm{e}^{-\Delta G(S) /(R T)}$ to a probability, need to normalize so they sum to 1.
- For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.

Definition: The partition function of Ω is $Q=\Sigma_{S \in \Omega} \mathrm{e}^{-\Delta G(S) /(R T)}$.

For any secondary structure S, $\operatorname{Pr}[S]=(1 / Q) \cdot e^{-\Delta G(S) /(R T)}$.

Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\operatorname{Pr}[S]=(1 / Q) \cdot \mathrm{e}^{-\Delta G(S) /(R T)}$

Minimum free energy structure S is the most likely structure.

Minimum free energy versus complex free energy

Recall: For any secondary structure S,
$\operatorname{Pr}[S]=(1 / Q) \cdot \mathrm{e}^{-\Delta G(S) /(R T)}$

Minimum free energy structure S is the most likely structure.

Problem: What if most likely structure S is not very likely?

$=\operatorname{Pr}\left[\begin{array}{l}0 \\ 0\end{array}\right]=0.199$

Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\operatorname{Pr}[S]=(1 / Q) \cdot \mathrm{e}^{-\Delta G(S) /(R T)}$

Minimum free energy structure S is the most likely structure.

Problem: What if most likely structure S is not very likely?
$\operatorname{Pr}\left[\cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }^{\circ}=0.2\right.$, but

$=\operatorname{Pr}\left[\begin{array}{l}{[} \\ ?\end{array}\right]=0.199$
This strand spends nearly 80% of its time bound.

Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\operatorname{Pr}[S]=(1 / Q) \cdot \mathrm{e}^{-\Delta G(S) /(R T)}$

Problem: What if most likely structure S is not very likely?
$\operatorname{Pr}\left[\cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }^{\circ}=0.2\right.$, but

$=\operatorname{Pr}\left[\begin{array}{l}{[} \\ 0\end{array}\right]=0.199$
This strand spends nearly
80% of its time bound.

Minimum free energy structure S is the most likely structure.

Solution: Consider energy of all secondary structures at once.

Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\operatorname{Pr}[S]=(1 / Q) \cdot \mathrm{e}^{-\Delta G(S) /(R T)}$

Problem: What if most likely structure S is not very likely?

$=\operatorname{Pr}\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=0.199$
This strand spends nearly 80% of its time bound.

Minimum free energy structure S is the most likely structure.

Solution: Consider energy of all secondary structures at once.

Definition: The complex free energy of Ω is $\Delta G=-R T \ln Q$.
Intuitively captures how much we expect strand to be bound/structured: higher (closer to 0) means more unstructured.

Minimum free energy versus complex free energy

Recall: For any secondary structure S, $\operatorname{Pr}[S]=(1 / Q) \cdot \mathrm{e}^{-\Delta G(S) /(R T)}$

Problem: What if most likely structure S is not very likely?

$=\operatorname{Pr}\left[\begin{array}{l}0 \\ 0\end{array}\right]=0.199$
This strand spends nearly 80% of its time bound.

Minimum free energy structure S is the most likely structure.

Solution: Consider energy of all secondary structures at once.

Definition: The complex free energy of Ω is $\Delta G=-R T \ln Q$.
Intuitively captures how much we expect strand to be bound/structured: higher (closer to 0) means more unstructured.

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

Abbreviated list of constraints similar to those used in [Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \forall strands $s, \Delta G(s) \geq-1.65 \mathrm{kcal} / \mathrm{mol}$

Abbreviated list of constraints similar to those used in [Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \forall strands $s, \Delta G(s) \geq-1.65 \mathrm{kcal} / \mathrm{mol}$

- \forall strand pairs $s, t, \Delta G(s, t) \geq-5.4 \mathrm{kcal} / \mathrm{mol}$ if no complementary domains, $\geq-7.4 \mathrm{kcal} / \mathrm{mol}$ otherwise

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \forall strands $s, \Delta G(s) \geq-1.65 \mathrm{kcal} / \mathrm{mol}$

- \forall strand pairs $s, t, \Delta G(s, t) \geq-5.4 \mathrm{kcal} / \mathrm{mol}$ if no complementary domains, $\geq-7.4 \mathrm{kcal} / \mathrm{mol}$ otherwise
- all domains end with A or T

Abbreviated list of constraints similar to those used in [Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \forall strands $s, \Delta G(s) \geq-1.65 \mathrm{kcal} / \mathrm{mol}$

- \forall strand pairs $s, t, \Delta G(s, t) \geq-5.4 \mathrm{kcal} / \mathrm{mol}$ if no complementary domains, $\geq-7.4 \mathrm{kcal} / \mathrm{mol}$ otherwise
- all domains end with A or T
- all domains have nearest-neighbor duplex energy between -9.2 and $-8.9 \mathrm{kcal} / \mathrm{mol}$

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \forall strands $s, \Delta G(s) \geq-1.65 \mathrm{kcal} / \mathrm{mol}$

- \forall strand pairs $s, t, \Delta G(s, t) \geq-5.4 \mathrm{kcal} / \mathrm{mol}$ if no complementary domains, $\geq-7.4 \mathrm{kcal} / \mathrm{mol}$ otherwise
- all domains end with A or T
- all domains have nearest-neighbor duplex energy between -9.2 and $-8.9 \mathrm{kcal} / \mathrm{mol}$
- tiles with even subscript domains on top have at most one G per domain (helps to satisfy first constraint)

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four domains each (lengths 10 and 11), assign DNA sequences to them satisfying:

- \forall strands $s, \Delta G(s) \geq-1.65 \mathrm{kcal} / \mathrm{mol}$

- \forall strand pairs $s, t, \Delta G(s, t) \geq-5.4 \mathrm{kcal} / \mathrm{mol}$ if no complementary domains, $\geq-7.4 \mathrm{kcal} / \mathrm{mol}$ otherwise
- all domains end with A or T
- all domains have nearest-neighbor duplex energy between -9.2 and $-8.9 \mathrm{kcal} / \mathrm{mol}$
- tiles with even subscript domains on top have at most one G per domain (helps to satisfy first constraint)
- pairs of domains d_{1}, d_{2} that could result in one-domain mismatches during tile binding have $\Delta G\left(d_{1}, d_{2}\right) \geq-1.6 \mathrm{kcal} / \mathrm{mol}$

Abbreviated list of constraints similar to those used in [Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,

DNA sequence design

- If we have DNA sequences, we can compute MFE/complex free energies of individual strands, pairs of strands, etc. in polynomial time.
- DNA sequence design problem: given abstract strands with abstract domains, assign concrete DNA sequences to the domains to satisfy a list of (experimentspecific) constraints.
- This is almost certainly NP-hard for any "reasonable" choice of constraints.

DNA sequences

ACATC CATTCTACCATACTCTTTCIT

Stochastic local search for finding DNA sequences

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

- For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

- For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we're done!

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

- For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we're done!
4. Otherwise, pick a domain d at random in proportion to total "score" of violations it caused.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

- For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we're done!
4. Otherwise, pick a domain d at random in proportion to total "score" of violations it caused.
5. Assign new random DNA sequence to d.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

- For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we're done!
4. Otherwise, pick a domain d at random in proportion to total "score" of violations it caused.
5. Assign new random DNA sequence to d.

- This change propagates through to all instances of d and d^{*} on all strands.

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

- For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we're done!
4. Otherwise, pick a domain d at random in proportion to total "score" of violations it caused.
5. Assign new random DNA sequence to d.

- This change propagates through to all instances of d and d^{*} on all strands.

6. Repeat step 2; if the new DNA sequence for d results in lower score of violations, keep it, otherwise, ignore it and pick a new random domain at step 4.
https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

- For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we're done!
4. Otherwise, pick a domain d at random in proportion to total "score" of violations it caused.
5. Assign new random DNA sequence to d.

- This change propagates through to all instances of d and d^{*} on all strands.

6. Repeat step 2; if the new DNA sequence for d results in lower score of violations, keep it, otherwise, ignore it and pick a new random domain at step 4.
7. Repeat until no constraints are violated.
https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

1. Assign DNA sequences randomly to domains.

- Each domain has a fixed length.
- Implicitly assign complement sequence to complement domains.
- "Easy" single-domain constraints such as [no GGGG] or [domains have A or T at each end] can be automatically satisfied at this step.

2. Check list of all constraints, tallying violations and "blaming" appropriate domains.

- For example, if a strand s has too low $\Delta G(s)$, all domains on strand are blamed.

3. If no constraints violated, we're done!
4. Otherwise, pick a domain d at random in proportion to total "score" of violations it caused.
5. Assign new random DNA sequence to d.

- This change propagates through to all instances of d and d^{*} on all strands.

6. Repeat step 2; if the new DNA sequence for d results in lower score of violations, keep it, otherwise, ignore it and pick a new random domain at step 4.
7. Repeat until no constraints are violated.

Slow and unclever, but it works for any set of constraints.

