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Two layers of abstraction in DNA nanotech

d

d*t*

dt

DNA strands with abstract 
“binding domains”

ACATC

DNA sequences

CATTCTACCATACTCTTTCTT

CATTCTACCATACTCTTTCTT

TGTAG GTAAGATGGTATGAGAAAGAA

This describes ideally how we want strands to bind.

How to design DNA 
sequences to achieve 
“ideal” binding?
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DNA sequence design

dt

bad choice of 
DNA sequence

GGCCG GCCGGTTTTTCCGGCCGGCCAAT most likely structure
CCGGCCGGCCAAT

GGCCGGCCGG

Why is this bad?
If we want the strand to bind to other strands, 
it first has to break up its own structure.
i.e., effective binding rate/strength is lowered
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Common DNA sequence design goals: What to avoid

• Excessive secondary structure of strands
CCGGCCGGCCAAT

GGCCGGCCGG
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• Certain string-based rules, e.g.

• some patterns such as GGGG (forms “G-tetraplex”: 

https://www.idtdna.com/pages/education/decoded/article/g-repeats-structural-challenges-for-oligo-design)

• > 70 % or < 30% G/C content (G/C binds more strongly)
• domains ending in A/T (they “breathe” more)

• And often other constraints
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DNA energy models
How do we predict what structures DNA strands are likely to form?
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DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

6



DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

• 1st approximation: proportional to length:
• ΔG( 5’-AAGGTTAC-3’  , 

3’-TTCCAATG-5’ ) = 1+1+1+1+1+1+1+1 = 8

6



DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

• 1st approximation: proportional to length:
• ΔG( 5’-AAGGTTAC-3’  , 

3’-TTCCAATG-5’ ) = 1+1+1+1+1+1+1+1 = 8

• 2nd approximation: depends on base pair:
• G/C about twice as strong as A/T

• ΔG( 5’-AAGGTTAC-3’  , 

3’-TTCCAATG-5’ ) = 1+1+2+2+1+1+1+2 = 11

6



DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

• 1st approximation: proportional to length:
• ΔG( 5’-AAGGTTAC-3’  , 

3’-TTCCAATG-5’ ) = 1+1+1+1+1+1+1+1 = 8

• 2nd approximation: depends on base pair:
• G/C about twice as strong as A/T

• ΔG( 5’-AAGGTTAC-3’  , 

3’-TTCCAATG-5’ ) = 1+1+2+2+1+1+1+2 = 11

• 3rd approximation: nearest neighbor model (used in practice):
• depends on base pair, and on the neighboring base pairs
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Why do the neighbors matter?

Much of DNA stability is 
not from base pair 
(formed by hydrogen 
bonds) but from 
“stacking” interactions 
between adjacent bases.

source: https://dna-robotics.eu/2019/11/29/simulating-dna/
7

Holds adjacent bases 
together on a single strand 
(strong covalent bond)Responsible for 

specific base-pairing

https://dna-robotics.eu/2019/11/29/simulating-dna/


Nearest neighbor energy model

[A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, 
John SantaLucia Jr., PNAS 1998]

ΔGinit = penalty for bringing together two 
strands (TODO: maybe not… not explained in 
paper) (different terms if end is C/G or A/T)
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Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary, 
but some bases match? 
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V = { bases in each strand }
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circular ordering of the strands) if, drawing 
strands in 5’-3’ order in a circle and connecting 
the base pairs by straight lines, no lines cross.

unpseudoknotted:

sometimes drawn with strands straight 
and base pairs as curved arcs:

pseudoknots:
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Equivalent definitions of unpseudoknotted
Definition 1: Drawing strands in 5’-3’ 
order in a circle and connecting the base 
pairs by straight lines, no lines cross.
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Equivalent definitions of unpseudoknotted
Definition 1: Drawing strands in 5’-3’ 
order in a circle and connecting the base 
pairs by straight lines, no lines cross.

Definition 4: The graph G=(V,E) is outerplanar, where 
V = { bases in each strand }
E = { {u,v} |      {u,v} are a paired base pair,

or {u,v} are adjacent }

outerplanar = can be drawn with no edges crossing 
(planar), and all vertices incident to the outer face

Definition 2: Base pair indices obey the nesting property:
there are no base pairs (a,b) ∈ ℕ2 and (x,y) ∈ ℕ2 such that 
a < x < b < y    (e.g., it can be a < b < x < y or a < x < y < b )

Definition 3: Balanced parentheses describe base pairs in
dot-parens (a.k.a., dot-bracket) notation.

outerplanar not outerplanar

10

pseudoknotted:
need multiple 
parenthesis types 
to describe



Back to first approximation of energy model

• (For now, consider only one strand.)

• Given a DNA sequence S, what is the maximum number of base pairs 
that can be formed in any unpseudoknotted secondary structure?
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Back to first approximation of energy model

• (For now, consider only one strand.)

• Given a DNA sequence S, what is the maximum number of base pairs 
that can be formed in any unpseudoknotted secondary structure?
• Without unpseudoknotted constraint, this is trivial:   min(#C,#G) + min(#A,#T)

• Can be taken as a rough approximation of the minimum free energy
structure of S, i.e., the most probable structure “at thermodynamic 
equilibrium” (what you’d see if you heat it up and slowly cool it).
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Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs 

possible using only bases i through j.
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Software to compute minimum free energy 
DNA structures

ViennaRNA
https://www.tbi.univie.ac.at/RNA/

NUPACK
http://www.nupack.org/

15
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Given many single-stranded tiles with four                                                                 
domains each (lengths 10 and 11), assign                                                                                
DNA sequences to them satisfying:

• ∀strands s, ΔG(s) ≥ –1.65 kcal/mol

• ∀strand pairs s,t, ΔG(s,t) ≥ –5.4 kcal/mol if no complementary domains,                       
≥ –7.4 kcal/mol otherwise

• all domains end with A or T

• all domains have nearest-neighbor duplex energy between –9.2 and –8.9 kcal/mol
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• ∀strand pairs s,t, ΔG(s,t) ≥ –5.4 kcal/mol if no complementary domains,                       
≥ –7.4 kcal/mol otherwise

• all domains end with A or T

• all domains have nearest-neighbor duplex energy between –9.2 and –8.9 kcal/mol

• tiles with even subscript domains on top have at most one G per domain (helps to 
satisfy first constraint)
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Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four                                                                 
domains each (lengths 10 and 11), assign                                                                                
DNA sequences to them satisfying:

• ∀strands s, ΔG(s) ≥ –1.65 kcal/mol

• ∀strand pairs s,t, ΔG(s,t) ≥ –5.4 kcal/mol if no complementary domains,                       
≥ –7.4 kcal/mol otherwise

• all domains end with A or T

• all domains have nearest-neighbor duplex energy between –9.2 and –8.9 kcal/mol

• tiles with even subscript domains on top have at most one G per domain (helps to 
satisfy first constraint)

• pairs of domains d1,d2 that could result in one-domain mismatches during tile 
binding have ΔG(d1,d2) ≥ –1.6 kcal/mol
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DNA sequence design
• If we have DNA sequences, we can compute MFE/complex free energies of 

individual strands, pairs of strands, etc. in polynomial time.

• DNA sequence design problem: given abstract strands with abstract domains, 
assign concrete DNA sequences to the domains to satisfy a list of (experiment-
specific) constraints.

• This is almost certainly NP-hard for any “reasonable” choice of constraints.

19

d

d*t*

dt

DNA strands 
with abstract domains

ACATC

DNA sequences

CATTCTACCATACTCTTTCTT

CATTCTACCATACTCTTTCTT

TGTAG GTAAGATGGTATGAGAAAGAA
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• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end] 

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.
5. Assign new random DNA sequence to d.

• This change propagates through to all instances of d and d* on all strands.
6. Repeat step 2; if the new DNA sequence for d results in lower score of violations, keep it, 

otherwise, ignore it and pick a new random domain at step 4.
7. Repeat until no constraints are violated.

https://github.com/UC-Davis-molecular-computing/nuad
Slow and unclever, but it works 
for any set of constraints.

https://github.com/UC-Davis-molecular-computing/nuad
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