
DNA sequence design
slides © 2021, David Doty

ECS 232: Theory of Molecular Computation, UC Davis

Two layers of abstraction in DNA nanotech

d

d*t*

dt

DNA strands with abstract
“binding domains”

ACATC

DNA sequences

CATTCTACCATACTCTTTCTT

CATTCTACCATACTCTTTCTT

TGTAG GTAAGATGGTATGAGAAAGAA

2

Two layers of abstraction in DNA nanotech

d

d*t*

dt

DNA strands with abstract
“binding domains”

ACATC

DNA sequences

CATTCTACCATACTCTTTCTT

CATTCTACCATACTCTTTCTT

TGTAG GTAAGATGGTATGAGAAAGAA

This describes ideally how we want strands to bind.
2

Two layers of abstraction in DNA nanotech

d

d*t*

dt

DNA strands with abstract
“binding domains”

ACATC

DNA sequences

CATTCTACCATACTCTTTCTT

CATTCTACCATACTCTTTCTT

TGTAG GTAAGATGGTATGAGAAAGAA

This describes ideally how we want strands to bind.

How to design DNA
sequences to achieve
“ideal” binding?

2

DNA sequence design

dt

bad choice of
DNA sequence

GGCCG GCCGGTTTTTCCGGCCGGCCAAT

3

DNA sequence design

dt

bad choice of
DNA sequence

GGCCG GCCGGTTTTTCCGGCCGGCCAAT most likely structure
CCGGCCGGCCAAT

GGCCGGCCGG

3

DNA sequence design

dt

bad choice of
DNA sequence

GGCCG GCCGGTTTTTCCGGCCGGCCAAT most likely structure
CCGGCCGGCCAAT

GGCCGGCCGG

Why is this bad?
If we want the strand to bind to other strands,
it first has to break up its own structure.
i.e., effective binding rate/strength is lowered

3

Common DNA sequence design goals: What to avoid

• Excessive secondary structure of strands
CCGGCCGGCCAAT

GGCCGGCCGG

4

Common DNA sequence design goals: What to avoid

• Excessive secondary structure of strands

• Significant interaction between non-
complementary domains

CCGGCCGGCCAAT

GGCCGGCCGG

AAAAAAAAAAAAAAAAAAAAA

TTTTTTTGTTTTTTTTATTTT

domain d

domain f*
TTTTTTTTTTTTTTTTTTTTT

domain d*

4

Common DNA sequence design goals: What to avoid

• Excessive secondary structure of strands

• Significant interaction between non-
complementary domains

CCGGCCGGCCAAT

GGCCGGCCGG

AAAAAAAAAAAAAAAAAAAAA

TTTTTTTGTTTTTTTTATTTT

domain d

domain f*
TTTTTTTTTTTTTTTTTTTTT

domain d*
• Certain string-based rules, e.g.

• some patterns such as GGGG (forms “G-tetraplex”:

https://www.idtdna.com/pages/education/decoded/article/g-repeats-structural-challenges-for-oligo-design)

• > 70 % or < 30% G/C content (G/C binds more strongly)
• domains ending in A/T (they “breathe” more)

• And often other constraints

4

https://www.idtdna.com/pages/education/decoded/article/g-repeats-structural-challenges-for-oligo-design

DNA energy models
How do we predict what structures DNA strands are likely to form?

5

DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

6

DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

• 1st approximation: proportional to length:
• ΔG(5’-AAGGTTAC-3’ ,

3’-TTCCAATG-5’) = 1+1+1+1+1+1+1+1 = 8

6

DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

• 1st approximation: proportional to length:
• ΔG(5’-AAGGTTAC-3’ ,

3’-TTCCAATG-5’) = 1+1+1+1+1+1+1+1 = 8

• 2nd approximation: depends on base pair:
• G/C about twice as strong as A/T

• ΔG(5’-AAGGTTAC-3’ ,

3’-TTCCAATG-5’) = 1+1+2+2+1+1+1+2 = 11

6

DNA duplex energy model (simple versions)

• How strongly does a DNA strand bind to its perfect complement?

• 1st approximation: proportional to length:
• ΔG(5’-AAGGTTAC-3’ ,

3’-TTCCAATG-5’) = 1+1+1+1+1+1+1+1 = 8

• 2nd approximation: depends on base pair:
• G/C about twice as strong as A/T

• ΔG(5’-AAGGTTAC-3’ ,

3’-TTCCAATG-5’) = 1+1+2+2+1+1+1+2 = 11

• 3rd approximation: nearest neighbor model (used in practice):
• depends on base pair, and on the neighboring base pairs

6

Why do the neighbors matter?

Much of DNA stability is
not from base pair
(formed by hydrogen
bonds) but from
“stacking” interactions
between adjacent bases.

source: https://dna-robotics.eu/2019/11/29/simulating-dna/
7

Holds adjacent bases
together on a single strand
(strong covalent bond)Responsible for

specific base-pairing

https://dna-robotics.eu/2019/11/29/simulating-dna/

Nearest neighbor energy model

[A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics,
John SantaLucia Jr., PNAS 1998]

ΔGinit = penalty for bringing together two
strands (TODO: maybe not… not explained in
paper) (different terms if end is C/G or A/T)

8

Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary,
but some bases match?

9

Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary,
but some bases match?

Definition: A secondary structure of a set of DNA strands
is a set of base pairs among complementary bases.
Formally, it is a matching on the graph G=(V,E), where
V = { bases in each strand }
E = { {u,v} | {u,v} = {A,T} or {u,v} = {G,C} }

9

Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary,
but some bases match?

Definition: A secondary structure of a set of DNA strands
is a set of base pairs among complementary bases.
Formally, it is a matching on the graph G=(V,E), where
V = { bases in each strand }
E = { {u,v} | {u,v} = {A,T} or {u,v} = {G,C} }

Definition: A secondary structure is
unpseudoknotted (with respect to a particular
circular ordering of the strands) if, drawing
strands in 5’-3’ order in a circle and connecting
the base pairs by straight lines, no lines cross.

unpseudoknotted:

sometimes drawn with strands straight
and base pairs as curved arcs:

9

Energy of non-duplex secondary structures

What about DNA strands that are not perfectly complementary,
but some bases match?

Definition: A secondary structure of a set of DNA strands
is a set of base pairs among complementary bases.
Formally, it is a matching on the graph G=(V,E), where
V = { bases in each strand }
E = { {u,v} | {u,v} = {A,T} or {u,v} = {G,C} }

Definition: A secondary structure is
unpseudoknotted (with respect to a particular
circular ordering of the strands) if, drawing
strands in 5’-3’ order in a circle and connecting
the base pairs by straight lines, no lines cross.

unpseudoknotted:

sometimes drawn with strands straight
and base pairs as curved arcs:

pseudoknots:

9

Equivalent definitions of unpseudoknotted
Definition 1: Drawing strands in 5’-3’
order in a circle and connecting the base
pairs by straight lines, no lines cross.

10

Equivalent definitions of unpseudoknotted
Definition 1: Drawing strands in 5’-3’
order in a circle and connecting the base
pairs by straight lines, no lines cross.

Definition 2: Base pair indices obey the nesting property:
there are no base pairs (a,b) ∈ ℕ2 and (x,y) ∈ ℕ2 such that
a < x < b < y (e.g., it can be a < b < x < y or a < x < y < b)

10

Equivalent definitions of unpseudoknotted
Definition 1: Drawing strands in 5’-3’
order in a circle and connecting the base
pairs by straight lines, no lines cross.

Definition 2: Base pair indices obey the nesting property:
there are no base pairs (a,b) ∈ ℕ2 and (x,y) ∈ ℕ2 such that
a < x < b < y (e.g., it can be a < b < x < y or a < x < y < b)

Definition 3: Balanced parentheses describe base pairs in
dot-parens (a.k.a., dot-bracket) notation.

10

Equivalent definitions of unpseudoknotted
Definition 1: Drawing strands in 5’-3’
order in a circle and connecting the base
pairs by straight lines, no lines cross.

Definition 2: Base pair indices obey the nesting property:
there are no base pairs (a,b) ∈ ℕ2 and (x,y) ∈ ℕ2 such that
a < x < b < y (e.g., it can be a < b < x < y or a < x < y < b)

Definition 3: Balanced parentheses describe base pairs in
dot-parens (a.k.a., dot-bracket) notation.

10

pseudoknotted:
need multiple
parenthesis types
to describe

Equivalent definitions of unpseudoknotted
Definition 1: Drawing strands in 5’-3’
order in a circle and connecting the base
pairs by straight lines, no lines cross.

Definition 4: The graph G=(V,E) is outerplanar, where
V = { bases in each strand }
E = { {u,v} | {u,v} are a paired base pair,

or {u,v} are adjacent }

outerplanar = can be drawn with no edges crossing
(planar), and all vertices incident to the outer face

Definition 2: Base pair indices obey the nesting property:
there are no base pairs (a,b) ∈ ℕ2 and (x,y) ∈ ℕ2 such that
a < x < b < y (e.g., it can be a < b < x < y or a < x < y < b)

Definition 3: Balanced parentheses describe base pairs in
dot-parens (a.k.a., dot-bracket) notation.

outerplanar not outerplanar

10

pseudoknotted:
need multiple
parenthesis types
to describe

Back to first approximation of energy model

• (For now, consider only one strand.)

• Given a DNA sequence S, what is the maximum number of base pairs
that can be formed in any unpseudoknotted secondary structure?

11

Back to first approximation of energy model

• (For now, consider only one strand.)

• Given a DNA sequence S, what is the maximum number of base pairs
that can be formed in any unpseudoknotted secondary structure?
• Without unpseudoknotted constraint, this is trivial: min(#C,#G) + min(#A,#T)

11

Back to first approximation of energy model

• (For now, consider only one strand.)

• Given a DNA sequence S, what is the maximum number of base pairs
that can be formed in any unpseudoknotted secondary structure?
• Without unpseudoknotted constraint, this is trivial: min(#C,#G) + min(#A,#T)

• Can be taken as a rough approximation of the minimum free energy
structure of S, i.e., the most probable structure “at thermodynamic
equilibrium” (what you’d see if you heat it up and slowly cool it).

11

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

k–1 k+1k

A T

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

OPT(i,j−1), // don’t form base pair with j

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

OPT(i,j−1), // don’t form base pair with j
maxi≤k<j 1 + OPT(i,k−1) + OPT(k+1,j−1) // form k,j base pair

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

OPT(i,j−1), // don’t form base pair with j
maxi≤k<j 1 + OPT(i,k−1) + OPT(k+1,j−1) // form k,j base pair

only if k and j are complementary bases

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

OPT(i,j−1), // don’t form base pair with j
maxi≤k<j 1 + OPT(i,k−1) + OPT(k+1,j−1) // form k,j base pair

base case: OPT(i,i) = 0

only if k and j are complementary bases

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

OPT(i,j−1), // don’t form base pair with j
maxi≤k<j 1 + OPT(i,k−1) + OPT(k+1,j−1) // form k,j base pair

base case: OPT(i,i) = 0
optimal value for whole strand = OPT(1,n)

only if k and j are complementary bases

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

OPT(i,j−1), // don’t form base pair with j
maxi≤k<j 1 + OPT(i,k−1) + OPT(k+1,j−1) // form k,j base pair

base case: OPT(i,i) = 0
optimal value for whole strand = OPT(1,n)

Running time:
There are O(n2) subproblems: choices i,j with 1 ≤ i < j ≤ n.

only if k and j are complementary bases

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

OPT(i,j−1), // don’t form base pair with j
maxi≤k<j 1 + OPT(i,k−1) + OPT(k+1,j−1) // form k,j base pair

base case: OPT(i,i) = 0
optimal value for whole strand = OPT(1,n)

Running time:
There are O(n2) subproblems: choices i,j with 1 ≤ i < j ≤ n.
Each takes time O(n) to search all values of k, so O(n3) total.

only if k and j are complementary bases

pair j with another base or not?

j–1

12

Computing maximally bound unpseudoknotted
secondary structure in polynomial time

1 2 ni j

Recursive solution:
• Strand length is n.
• For 1 ≤ i ≤ j ≤ n, let OPT(i,j) = max base pairs

possible using only bases i through j.
• Question: do we pair base j with some

other base between i and j–1?
• If not, recursively, the optimal value is:

• OPT(i,j) = OPT(i,j–1)
• If we pair j with k, nesting property implies

no base pair can form between any base in
[i,… k–1] and any base in [k+1,j–1]

• Recursively, optimal value depends on:
• OPT(i,k–1) and OPT(k+1,j–1)

k–1 k+1k

A T

Recursive algorithm (implement w/ dynamic programming):
OPT(i,j) = max of:

OPT(i,j−1), // don’t form base pair with j
maxi≤k<j 1 + OPT(i,k−1) + OPT(k+1,j−1) // form k,j base pair

base case: OPT(i,i) = 0
optimal value for whole strand = OPT(1,n)

Running time:
There are O(n2) subproblems: choices i,j with 1 ≤ i < j ≤ n.
Each takes time O(n) to search all values of k, so O(n3) total.

This gives optimal value: how to
find actual secondary structure?

only if k and j are complementary bases

pair j with another base or not?

j–1

12

Example of dynamic
programming algorithm

13

strand sequence =

ATTGATC

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

base cases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

base cases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

base cases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

base cases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0
base cases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0
base cases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

base cases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

recursive cases with
complementary bases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

1

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

1

0

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

1

0

1

1

1

1

2

1

2

2

2

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

1

0

1

1

1

1

2

1

2

2

2

?

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

1

0

1

1

1

1

2

1

2

2

2

?

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

1

0

1

1

1

1

2

1

2

2

2

?

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

1

0

1

1

1

1

2

1

2

2

2

?

Example of dynamic
programming algorithm

13

i/j 1 2 3 4 5 6 7

1

2

3

4

5

6

7

A

T

T

G

A

T

C

A T T G A T C

strand sequence =

ATTGATC

0

0

0

0

0

0

0

base cases

1

recursive cases with
complementary bases

recursive cases without
complementary bases

0

0

0

1

0

1

0

1

1

0

1

1

1

1

2

1

2

2

2

3

?

Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases

14

https://piercelab-caltech.github.io/nupack-docs/definitions/

Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
• base case switches from OPT(i,i) = 0 to OPT(i,j)=0 if j–i ≤ 4

14

https://piercelab-caltech.github.io/nupack-docs/definitions/

Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
• base case switches from OPT(i,i) = 0 to OPT(i,j)=0 if j–i ≤ 4

• G/C twice as strong as A/T?

14

https://piercelab-caltech.github.io/nupack-docs/definitions/

Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
• base case switches from OPT(i,i) = 0 to OPT(i,j)=0 if j–i ≤ 4

• G/C twice as strong as A/T?
• maxi≤k<j (1 if k,j is A/T base pair, else 2) + OPT(i,k−1) + OPT(k+1,j−1)

14

https://piercelab-caltech.github.io/nupack-docs/definitions/

Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
• base case switches from OPT(i,i) = 0 to OPT(i,j)=0 if j–i ≤ 4

• G/C twice as strong as A/T?
• maxi≤k<j (1 if k,j is A/T base pair, else 2) + OPT(i,k−1) + OPT(k+1,j−1)

• nearest-neighbor interaction?
• maxi≤k<j (more complex lookup here) + OPT(i,k−1) + OPT(k+1,j−1)

14

https://piercelab-caltech.github.io/nupack-docs/definitions/

Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
• base case switches from OPT(i,i) = 0 to OPT(i,j)=0 if j–i ≤ 4

• G/C twice as strong as A/T?
• maxi≤k<j (1 if k,j is A/T base pair, else 2) + OPT(i,k−1) + OPT(k+1,j−1)

• nearest-neighbor interaction?
• maxi≤k<j (more complex lookup here) + OPT(i,k−1) + OPT(k+1,j−1)

• multiple strands?
• a ΔGassoc term for each strand beyond the first one

14

https://piercelab-caltech.github.io/nupack-docs/definitions/

Extensions to more realistic energy models

• base pairs on one strand must be separated by at least 4 other bases
• base case switches from OPT(i,i) = 0 to OPT(i,j)=0 if j–i ≤ 4

• G/C twice as strong as A/T?
• maxi≤k<j (1 if k,j is A/T base pair, else 2) + OPT(i,k−1) + OPT(k+1,j−1)

• nearest-neighbor interaction?
• maxi≤k<j (more complex lookup here) + OPT(i,k−1) + OPT(k+1,j−1)

• multiple strands?
• a ΔGassoc term for each strand beyond the first one

• https://piercelab-caltech.github.io/nupack-docs/definitions/

14

https://piercelab-caltech.github.io/nupack-docs/definitions/

Software to compute minimum free energy
DNA structures

ViennaRNA
https://www.tbi.univie.ac.at/RNA/

NUPACK
http://www.nupack.org/

15

https://www.tbi.univie.ac.at/RNA/
http://www.nupack.org/

What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol).

Energy and probability are exponentially related.

16

What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol).

Energy and probability are exponentially related.

• If S is a secondary structure, let Pr[S] denote probability of seeing it (“at equilibrium”).

16

What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol).

Energy and probability are exponentially related.

• If S is a secondary structure, let Pr[S] denote probability of seeing it (“at equilibrium”).
• At fixed temperature, ln(Pr[S]) ≈ ΔG(S) (recall free energy ΔG(S) is negative)

16

What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol).

Energy and probability are exponentially related.

• If S is a secondary structure, let Pr[S] denote probability of seeing it (“at equilibrium”).
• At fixed temperature, ln(Pr[S]) ≈ ΔG(S) (recall free energy ΔG(S) is negative)

• Some constants: ln(Pr[S]) ≈ ΔG(S)/(RT), usually expressed as Pr[S] ∝ e–ΔG(S)/(RT)

T = temperature in K (Kelvin), R = Boltzmann's constant ≈ 0.001987204 kcal/mol/K

16

What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol).

Energy and probability are exponentially related.

• If S is a secondary structure, let Pr[S] denote probability of seeing it (“at equilibrium”).
• At fixed temperature, ln(Pr[S]) ≈ ΔG(S) (recall free energy ΔG(S) is negative)

• Some constants: ln(Pr[S]) ≈ ΔG(S)/(RT), usually expressed as Pr[S] ∝ e–ΔG(S)/(RT)

T = temperature in K (Kelvin), R = Boltzmann's constant ≈ 0.001987204 kcal/mol/K

• To convert e–ΔG(S)/(RT) to a probability, need to normalize so they sum to 1.

16

What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol).

Energy and probability are exponentially related.

• If S is a secondary structure, let Pr[S] denote probability of seeing it (“at equilibrium”).
• At fixed temperature, ln(Pr[S]) ≈ ΔG(S) (recall free energy ΔG(S) is negative)

• Some constants: ln(Pr[S]) ≈ ΔG(S)/(RT), usually expressed as Pr[S] ∝ e–ΔG(S)/(RT)

T = temperature in K (Kelvin), R = Boltzmann's constant ≈ 0.001987204 kcal/mol/K

• To convert e–ΔG(S)/(RT) to a probability, need to normalize so they sum to 1.
• For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.

16

What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol).

Energy and probability are exponentially related.

• If S is a secondary structure, let Pr[S] denote probability of seeing it (“at equilibrium”).
• At fixed temperature, ln(Pr[S]) ≈ ΔG(S) (recall free energy ΔG(S) is negative)

• Some constants: ln(Pr[S]) ≈ ΔG(S)/(RT), usually expressed as Pr[S] ∝ e–ΔG(S)/(RT)

T = temperature in K (Kelvin), R = Boltzmann's constant ≈ 0.001987204 kcal/mol/K

• To convert e–ΔG(S)/(RT) to a probability, need to normalize so they sum to 1.
• For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.

Definition: The partition function
of Ω is Q = ΣS∈Ω e– ΔG(S)/(RT).

16

What is “free energy”?

A way to express probability of seeing a structure, in units of energy (kcal/mol).

Energy and probability are exponentially related.

• If S is a secondary structure, let Pr[S] denote probability of seeing it (“at equilibrium”).
• At fixed temperature, ln(Pr[S]) ≈ ΔG(S) (recall free energy ΔG(S) is negative)

• Some constants: ln(Pr[S]) ≈ ΔG(S)/(RT), usually expressed as Pr[S] ∝ e–ΔG(S)/(RT)

T = temperature in K (Kelvin), R = Boltzmann's constant ≈ 0.001987204 kcal/mol/K

• To convert e–ΔG(S)/(RT) to a probability, need to normalize so they sum to 1.
• For a DNA strand/set of DNA strands, let Ω denote set of all secondary structures.

Definition: The partition function
of Ω is Q = ΣS∈Ω e– ΔG(S)/(RT).

For any secondary structure S,
Pr[S] = (1/Q) ∙ e–ΔG(S)/(RT).

16

Minimum free energy versus complex free energy

17

Recall: For any secondary structure S,
Pr[S] = (1/Q) ∙ e–ΔG(S)/(RT)

Minimum free energy structure S
is the most likely structure.

Minimum free energy versus complex free energy

17

Recall: For any secondary structure S,
Pr[S] = (1/Q) ∙ e–ΔG(S)/(RT)

Minimum free energy structure S
is the most likely structure.

Problem: What if most likely
structure S is not very likely?

Pr[] = 0.2, but

Pr[] = Pr[] = Pr[]

= Pr[] = 0.199

Minimum free energy versus complex free energy

17

Recall: For any secondary structure S,
Pr[S] = (1/Q) ∙ e–ΔG(S)/(RT)

Minimum free energy structure S
is the most likely structure.

Problem: What if most likely
structure S is not very likely?

Pr[] = 0.2, but

Pr[] = Pr[] = Pr[]

= Pr[] = 0.199 This strand spends nearly
80% of its time bound.

Minimum free energy versus complex free energy

17

Recall: For any secondary structure S,
Pr[S] = (1/Q) ∙ e–ΔG(S)/(RT)

Minimum free energy structure S
is the most likely structure.

Problem: What if most likely
structure S is not very likely?

Solution: Consider energy of
all secondary structures at once.

Pr[] = 0.2, but

Pr[] = Pr[] = Pr[]

= Pr[] = 0.199 This strand spends nearly
80% of its time bound.

Minimum free energy versus complex free energy

17

Definition: The complex free energy of Ω is
ΔG = –RT ln Q.
Intuitively captures how much we expect
strand to be bound/structured: higher
(closer to 0) means more unstructured.

Recall: For any secondary structure S,
Pr[S] = (1/Q) ∙ e–ΔG(S)/(RT)

Minimum free energy structure S
is the most likely structure.

Problem: What if most likely
structure S is not very likely?

Solution: Consider energy of
all secondary structures at once.

Pr[] = 0.2, but

Pr[] = Pr[] = Pr[]

= Pr[] = 0.199 This strand spends nearly
80% of its time bound.

https://piercelab-caltech.github.io/nupack-docs/definitions/#complex-free-energy

https://piercelab-caltech.github.io/nupack-docs/definitions/#complex-free-energy

Minimum free energy versus complex free energy

17

Definition: The complex free energy of Ω is
ΔG = –RT ln Q.
Intuitively captures how much we expect
strand to be bound/structured: higher
(closer to 0) means more unstructured.

Recall: For any secondary structure S,
Pr[S] = (1/Q) ∙ e–ΔG(S)/(RT)

Minimum free energy structure S
is the most likely structure.

Problem: What if most likely
structure S is not very likely?

Solution: Consider energy of
all secondary structures at once.

Pr[] = 0.2, but

Pr[] = Pr[] = Pr[]

= Pr[] = 0.199 This strand spends nearly
80% of its time bound.

https://piercelab-caltech.github.io/nupack-docs/definitions/#complex-free-energy

ΔG can also be computed in time O(n3).

https://piercelab-caltech.github.io/nupack-docs/definitions/#complex-free-energy

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four
domains each (lengths 10 and 11), assign
DNA sequences to them satisfying:

18

15

04

15

14

13

02

03

02

13

12

03

12

05

04

05

14

05

14

15

04

Abbreviated list of constraints similar to those used in [Diverse and robust
molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,
Myhrvold, Hui, Zhou, Yin, Winfree. Nature 2019.]

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four
domains each (lengths 10 and 11), assign
DNA sequences to them satisfying:

• ∀strands s, ΔG(s) ≥ –1.65 kcal/mol

18

15

04

15

14

13

02

03

02

13

12

03

12

05

04

05

14

05

14

15

04

Abbreviated list of constraints similar to those used in [Diverse and robust
molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,
Myhrvold, Hui, Zhou, Yin, Winfree. Nature 2019.]

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four
domains each (lengths 10 and 11), assign
DNA sequences to them satisfying:

• ∀strands s, ΔG(s) ≥ –1.65 kcal/mol

• ∀strand pairs s,t, ΔG(s,t) ≥ –5.4 kcal/mol if no complementary domains,
≥ –7.4 kcal/mol otherwise

18

15

04

15

14

13

02

03

02

13

12

03

12

05

04

05

14

05

14

15

04

Abbreviated list of constraints similar to those used in [Diverse and robust
molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,
Myhrvold, Hui, Zhou, Yin, Winfree. Nature 2019.]

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four
domains each (lengths 10 and 11), assign
DNA sequences to them satisfying:

• ∀strands s, ΔG(s) ≥ –1.65 kcal/mol

• ∀strand pairs s,t, ΔG(s,t) ≥ –5.4 kcal/mol if no complementary domains,
≥ –7.4 kcal/mol otherwise

• all domains end with A or T

18

15

04

15

14

13

02

03

02

13

12

03

12

05

04

05

14

05

14

15

04

Abbreviated list of constraints similar to those used in [Diverse and robust
molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,
Myhrvold, Hui, Zhou, Yin, Winfree. Nature 2019.]

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four
domains each (lengths 10 and 11), assign
DNA sequences to them satisfying:

• ∀strands s, ΔG(s) ≥ –1.65 kcal/mol

• ∀strand pairs s,t, ΔG(s,t) ≥ –5.4 kcal/mol if no complementary domains,
≥ –7.4 kcal/mol otherwise

• all domains end with A or T

• all domains have nearest-neighbor duplex energy between –9.2 and –8.9 kcal/mol

18

15

04

15

14

13

02

03

02

13

12

03

12

05

04

05

14

05

14

15

04

Abbreviated list of constraints similar to those used in [Diverse and robust
molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,
Myhrvold, Hui, Zhou, Yin, Winfree. Nature 2019.]

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four
domains each (lengths 10 and 11), assign
DNA sequences to them satisfying:

• ∀strands s, ΔG(s) ≥ –1.65 kcal/mol

• ∀strand pairs s,t, ΔG(s,t) ≥ –5.4 kcal/mol if no complementary domains,
≥ –7.4 kcal/mol otherwise

• all domains end with A or T

• all domains have nearest-neighbor duplex energy between –9.2 and –8.9 kcal/mol

• tiles with even subscript domains on top have at most one G per domain (helps to
satisfy first constraint)

18

15

04

15

14

13

02

03

02

13

12

03

12

05

04

05

14

05

14

15

04

Abbreviated list of constraints similar to those used in [Diverse and robust
molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,
Myhrvold, Hui, Zhou, Yin, Winfree. Nature 2019.]

Example: DNA sequence design for single-stranded tiles

Given many single-stranded tiles with four
domains each (lengths 10 and 11), assign
DNA sequences to them satisfying:

• ∀strands s, ΔG(s) ≥ –1.65 kcal/mol

• ∀strand pairs s,t, ΔG(s,t) ≥ –5.4 kcal/mol if no complementary domains,
≥ –7.4 kcal/mol otherwise

• all domains end with A or T

• all domains have nearest-neighbor duplex energy between –9.2 and –8.9 kcal/mol

• tiles with even subscript domains on top have at most one G per domain (helps to
satisfy first constraint)

• pairs of domains d1,d2 that could result in one-domain mismatches during tile
binding have ΔG(d1,d2) ≥ –1.6 kcal/mol

18

15

04

15

14

13

02

03

02

13

12

03

12

05

04

05

14

05

14

15

04

Abbreviated list of constraints similar to those used in [Diverse and robust
molecular algorithms using reprogrammable DNA self-assembly. Woods, Doty,
Myhrvold, Hui, Zhou, Yin, Winfree. Nature 2019.]

DNA sequence design
• If we have DNA sequences, we can compute MFE/complex free energies of

individual strands, pairs of strands, etc. in polynomial time.

• DNA sequence design problem: given abstract strands with abstract domains,
assign concrete DNA sequences to the domains to satisfy a list of (experiment-
specific) constraints.

• This is almost certainly NP-hard for any “reasonable” choice of constraints.

19

d

d*t*

dt

DNA strands
with abstract domains

ACATC

DNA sequences

CATTCTACCATACTCTTTCTT

CATTCTACCATACTCTTTCTT

TGTAG GTAAGATGGTATGAGAAAGAA

Stochastic local search for finding DNA sequences

20

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.
3. If no constraints violated, we’re done!

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.
5. Assign new random DNA sequence to d.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.
5. Assign new random DNA sequence to d.

• This change propagates through to all instances of d and d* on all strands.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.
5. Assign new random DNA sequence to d.

• This change propagates through to all instances of d and d* on all strands.
6. Repeat step 2; if the new DNA sequence for d results in lower score of violations, keep it,

otherwise, ignore it and pick a new random domain at step 4.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.
5. Assign new random DNA sequence to d.

• This change propagates through to all instances of d and d* on all strands.
6. Repeat step 2; if the new DNA sequence for d results in lower score of violations, keep it,

otherwise, ignore it and pick a new random domain at step 4.
7. Repeat until no constraints are violated.

https://github.com/UC-Davis-molecular-computing/nuad

https://github.com/UC-Davis-molecular-computing/nuad

Stochastic local search for finding DNA sequences

20

1. Assign DNA sequences randomly to domains.
• Each domain has a fixed length.
• Implicitly assign complement sequence to complement domains.
• “Easy” single-domain constraints such as [no GGGG] or [domains have A or T at each end]

can be automatically satisfied at this step.
2. Check list of all constraints, tallying violations and “blaming” appropriate domains.

• For example, if a strand s has too low ΔG(s), all domains on strand are blamed.
3. If no constraints violated, we’re done!
4. Otherwise, pick a domain d at random in proportion to total “score” of violations it caused.
5. Assign new random DNA sequence to d.

• This change propagates through to all instances of d and d* on all strands.
6. Repeat step 2; if the new DNA sequence for d results in lower score of violations, keep it,

otherwise, ignore it and pick a new random domain at step 4.
7. Repeat until no constraints are violated.

https://github.com/UC-Davis-molecular-computing/nuad
Slow and unclever, but it works
for any set of constraints.

https://github.com/UC-Davis-molecular-computing/nuad

	Slide 1: DNA sequence design
	Slide 2: Two layers of abstraction in DNA nanotech
	Slide 3: Two layers of abstraction in DNA nanotech
	Slide 4: Two layers of abstraction in DNA nanotech
	Slide 5: DNA sequence design
	Slide 6: DNA sequence design
	Slide 7: DNA sequence design
	Slide 8: Common DNA sequence design goals: What to avoid
	Slide 9: Common DNA sequence design goals: What to avoid
	Slide 10: Common DNA sequence design goals: What to avoid
	Slide 11: DNA energy models
	Slide 12: DNA duplex energy model (simple versions)
	Slide 13: DNA duplex energy model (simple versions)
	Slide 14: DNA duplex energy model (simple versions)
	Slide 15: DNA duplex energy model (simple versions)
	Slide 16: Why do the neighbors matter?
	Slide 17: Nearest neighbor energy model
	Slide 18: Energy of non-duplex secondary structures
	Slide 19: Energy of non-duplex secondary structures
	Slide 20: Energy of non-duplex secondary structures
	Slide 21: Energy of non-duplex secondary structures
	Slide 22: Equivalent definitions of unpseudoknotted
	Slide 23: Equivalent definitions of unpseudoknotted
	Slide 24: Equivalent definitions of unpseudoknotted
	Slide 25: Equivalent definitions of unpseudoknotted
	Slide 26: Equivalent definitions of unpseudoknotted
	Slide 27: Back to first approximation of energy model
	Slide 28: Back to first approximation of energy model
	Slide 29: Back to first approximation of energy model
	Slide 30: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 31: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 32: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 33: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 34: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 35: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 36: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 37: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 38: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 39: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 40: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 41: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 42: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 43: Computing maximally bound unpseudoknotted secondary structure in polynomial time
	Slide 44: Example of dynamic programming algorithm
	Slide 45: Example of dynamic programming algorithm
	Slide 46: Example of dynamic programming algorithm
	Slide 47: Example of dynamic programming algorithm
	Slide 48: Example of dynamic programming algorithm
	Slide 49: Example of dynamic programming algorithm
	Slide 50: Example of dynamic programming algorithm
	Slide 51: Example of dynamic programming algorithm
	Slide 52: Example of dynamic programming algorithm
	Slide 53: Example of dynamic programming algorithm
	Slide 54: Example of dynamic programming algorithm
	Slide 55: Example of dynamic programming algorithm
	Slide 56: Example of dynamic programming algorithm
	Slide 57: Example of dynamic programming algorithm
	Slide 58: Example of dynamic programming algorithm
	Slide 59: Example of dynamic programming algorithm
	Slide 60: Example of dynamic programming algorithm
	Slide 61: Example of dynamic programming algorithm
	Slide 62: Example of dynamic programming algorithm
	Slide 63: Example of dynamic programming algorithm
	Slide 64: Example of dynamic programming algorithm
	Slide 65: Example of dynamic programming algorithm
	Slide 66: Example of dynamic programming algorithm
	Slide 67: Example of dynamic programming algorithm
	Slide 68: Example of dynamic programming algorithm
	Slide 69: Example of dynamic programming algorithm
	Slide 70: Example of dynamic programming algorithm
	Slide 71: Example of dynamic programming algorithm
	Slide 72: Example of dynamic programming algorithm
	Slide 73: Example of dynamic programming algorithm
	Slide 74: Example of dynamic programming algorithm
	Slide 75: Example of dynamic programming algorithm
	Slide 76: Example of dynamic programming algorithm
	Slide 77: Example of dynamic programming algorithm
	Slide 78: Extensions to more realistic energy models
	Slide 79: Extensions to more realistic energy models
	Slide 80: Extensions to more realistic energy models
	Slide 81: Extensions to more realistic energy models
	Slide 82: Extensions to more realistic energy models
	Slide 83: Extensions to more realistic energy models
	Slide 84: Extensions to more realistic energy models
	Slide 85: Software to compute minimum free energy DNA structures
	Slide 86: What is “free energy”?
	Slide 87: What is “free energy”?
	Slide 88: What is “free energy”?
	Slide 89: What is “free energy”?
	Slide 90: What is “free energy”?
	Slide 91: What is “free energy”?
	Slide 92: What is “free energy”?
	Slide 93: What is “free energy”?
	Slide 94: Minimum free energy versus complex free energy
	Slide 95: Minimum free energy versus complex free energy
	Slide 96: Minimum free energy versus complex free energy
	Slide 97: Minimum free energy versus complex free energy
	Slide 98: Minimum free energy versus complex free energy
	Slide 99: Minimum free energy versus complex free energy
	Slide 100: Example: DNA sequence design for single-stranded tiles
	Slide 101: Example: DNA sequence design for single-stranded tiles
	Slide 102: Example: DNA sequence design for single-stranded tiles
	Slide 103: Example: DNA sequence design for single-stranded tiles
	Slide 104: Example: DNA sequence design for single-stranded tiles
	Slide 105: Example: DNA sequence design for single-stranded tiles
	Slide 106: Example: DNA sequence design for single-stranded tiles
	Slide 107: DNA sequence design
	Slide 108: Stochastic local search for finding DNA sequences
	Slide 109: Stochastic local search for finding DNA sequences
	Slide 110: Stochastic local search for finding DNA sequences
	Slide 111: Stochastic local search for finding DNA sequences
	Slide 112: Stochastic local search for finding DNA sequences
	Slide 113: Stochastic local search for finding DNA sequences
	Slide 114: Stochastic local search for finding DNA sequences
	Slide 115: Stochastic local search for finding DNA sequences
	Slide 116: Stochastic local search for finding DNA sequences
	Slide 117: Stochastic local search for finding DNA sequences
	Slide 118: Stochastic local search for finding DNA sequences
	Slide 119: Stochastic local search for finding DNA sequences
	Slide 120: Stochastic local search for finding DNA sequences
	Slide 121: Stochastic local search for finding DNA sequences

