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Thermodynamic Binding Networks

Monomer = collection of domains

Configuration = how monomers are bound

a* b*

bba a

a*

Geometry-Free Model:

The domains within a 
monomer are unordered
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• in general, there’s some weight parameter w:

energy = w*#bonds + #complexes 

(physics notation: ΔG = ΔH – T∙ΔS)

• We often consider a natural limiting case:

• favoring # bonds infinitely over #complexes

• require maximal #bonds formed; use #complexes only as tiebreaker

• Corresponds to bonds that are so strong they cannot spontaneously dissociate, 
but can exchange with each other to find configurations with more complexes
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If we’re careful to 
make starred binding 
sites limiting, then 
saturated = all starred 
sites are bound
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– We don’t know how to prove the previous gate is composable, and used a 

more complex design in the paper

• Want “entropy gap”:
– Need not merely that unwanted configurations are unstable (i.e., if saturated, 

they have lower entropy), but more strongly that they have much lower 
entropy.

– We can use O(n) domain/monomer types to achieve an entropy gap of n.

• Output convention?
– Obvious one: “there’s a unique stable configuration with the correct output”

– It’s problematic, so we have a one-sided convention: 
• if correct output is 0, unique stable configuration with correct answer

• if correct output is 1, then both the “output=1” and “output=0” configurations are stable

21



Composable AND gate with entropy gap 3

22

Rather than release a single output monomer, it suffices to gather all output domains on one complex.
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Pathways

Thermodynamics: Which configurations are energetically favorable

Kinetics: How a system moves between configurations over time
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Kinetic Binding Networks

• Define pathways to consist of merges and splits

Weighted average:

Energy :=  – wH(# bonds) – (# complexes)

[Keenan Breik, Cameron Chalk, David Doty, David Haley, David Soloveichik. Programming Substrate-Independent 
Kinetic Barriers with Thermodynamic Binding Networks. Computational Methods in Systems Biology 2018]

• But for wH ≥ 2, only saturated pathways need be considered

• Favorability is a combination of bond count and complex count

Since all saturated configurations have an equal number of 
bonds, we can focus solely on the number of complexes
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Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different 
stable configurations with barrier n to pass between any of them
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Directed Catalysis

34

Along a catalyzed pathway, the barrier is 1

Otherwise the barrier is n/2
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Social Golfer Problem

• Can 25 (n2) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no 
two golfers play together more than once?

• First studied by Euler.

• True if n is a prime power (2,3,4,5,7,8,9,11,13,…)

• False for smallest non-prime power n=6: can only play for 3 days!             
[Gaston Tarry (1901). "Le Probléme des 36 Officiers". Compte Rendu de l'Association Française pour 
l'Avancement des Sciences. Secrétariat de l'Association. 2: 170–203.]

• Unknown for next prime power n=10: 
• trivial upper bound is 11 days

• best known lower bound is 3

35
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(Feasible?) DNA implementation



Thermodynamic self-assembly
Grafting the TBN model onto self-assembly



A modest goal

• Informal: Design monomers that self-assemble arbitrarily large complexes.
• size of a complex  =  # monomers in the complex
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A modest goal

• Informal: Design monomers that self-assemble arbitrarily large complexes.
• size of a complex  =  # monomers in the complex

• Formal: Design a set of monomer types so that, for all S ∈ ℕ, there is a 
stable complex of size at least S.

• Easy to do in Abstract Tile Assembly Model: 

39

a a*

set of monomer types:
size-8 complex (assembly) formed 
with 8 copies of monomer  

a a* a a* a a* a a* a a* a a* a a* a a*
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Difficulty of self-assembling large complexes

40

a a*
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more complexes ⇒ higher entropy ⇒ more stable
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attempt 2:
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x y*

y z*

z w*

w x*

x y*

y z*

z w*

not stable! 

w x*

x y*

y z*

z w*

…

These have more complexes, and each is self-saturating 
(every domain can be bound within the complex)
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Stable complexes have at most exponential size

Theorem: Any thermodynamic binding network with 
• D domain types, 

• M monomer types, 

• ≤ A domains per monomer type                (note D/A ≤ M ≤ AD+1)

Has stable complexes of size ≤ 2(M+D)(AD)2D+3 = poly(DD) if A = O(1)

43
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44

• Since monomers have O(1) domains, binding 
graph is bounded degree

• # nodes of tree is at most exponential in 
depth (longest path length ≤ 2∙depth)

• If some path has > 2D edges, it must repeat 
some ordered pair (di,di*) or (di*,di)

• Break into two saturated complexes as shown.

not stable
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Monomers as vectors

• monomer {a,    b*,b*,    d,d,d,d,d*,    e,e*} represented as (1,-2,0,3,0)

• sum of many monomers gives the number of excess domains in a fully 
bound (saturated) complex with those monomers
• i.e., 2 copies of above monomer 2∙(1,-2,0,3,0) = (2,-4,0,6,0) have an excess of 

2 a’s, 4 b*’s, 0 c’s, 6 d’s, 0 e’s
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Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki. 
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

3. Take several infinite subsequences:
1. Since there are a finite number of domain types, some infinite subsequence of Pi’s agrees on which set 

of domain types are unbound.
2. By Dickson’s Lemma we may assume P1 < P2 < ... and S1 < S2 < ... i.e., each has all the monomers of the 

previous, plus some more, and each has all the unbound domains of the previous, plus some more.
4. Let d = P2 – P1. Then M∙d = M∙P2 – M∙P1 = S2 - S1 ≥ 0. 
5. i.e., S2 = S1 + M∙d and all three are nonnegative, 
6. i.e., we can split S2 into 2 disjoint nonempty nonnegative subsets, S1 and M∙d. QED
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• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

• Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig 
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a “small” solution… maxi xi ≤ exp(maxij(Aij,bj))

• Papadimitriou’s proof:
• If x is a large enough solution, there is 0 < y < x, y ∈ ℕm, such that Ay = 0.

• Defining z = x – y,   Az = A(x – y) = Ax – Ay = Ax – 0 = b.

• So z is a strictly smaller solution than x: x cannot be the smallest solution.
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Given vectors m1, m2, … , they obey one of two constraints:

a) are directions of balanced forces b) lie on one side of some hyperplane

h∙mi ≥ 1

m1

h(m1 m2 m3)c = 0
∃c (counts of monomers)

(hyperplane 
orthogonal vector)

∃h

m2

m3

m1

m2
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• A = d x m matrix: Aij = monomer mj‘s excess of 

domain di over di*

• If Ac = b, then bi = total # unbound di in any 
saturated configuration of c

• If |c| > exponential in D, Papadimtriou’s proof gives 
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Lemma says that if this fails, then monomer vectors 
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• i.e., #di in y = #di* in y, so y is self-saturating.

• So whatever bonds were broken to separate y can 
be re-bound within y.

• By symmetry, the same bonds in z = c – y can be re-
bound within z.
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• If c is count of all monomers including slack monomers (c(i) = count of mi), then 
Ac = 0, where each column of A represents a monomer (counts of domains).

• dot-product h on both sides: h∙Ac = h∙0 = 0, distribute through: ∑i(h∙mi)c(i) = 0

• Let S be set of monomers with “small” counts, move them to one side: 

  – ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i)

• Then “small”2 ≥ – ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i) ≥ ∑i∉Sc(i) 

50

c(i) (count of i’th monomer) is 
small by definition, and h∙mi = O(1)

above since h∙mi ≥ 1



Applying thermodynamic model to tile assembly

• Let’s incorporate the thermodynamic binding network model into the 
abstract tile assembly model.

• How can we create a large assembly from a small number of tile 
types?
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A thermodynamically unstable tile assembly counter
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A thermodynamically stable tile assembly counter
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Difference is that each row (corresponding to bits of the same significance) 
has glues labeled with the row number



Conclusions

• Strong bonds (surprisingly) aren’t sufficient to self-assemble large 
thermodynamically stable structures. Geometry helps!

• Kinetically self-assembling a thermodynamically stable structure has 
very strong guarantees on errors:
• target structure eventually results despite arbitrary kinetic errors.
• If it’s the only stable structure, and free energy of other structures is much 

less, then it’s the only result you’ll see.

• Bad news: NP-complete to tell if a given configuration is unstable… 
even NP-hard to approximate entropy of stable configuration:  

[Breik, Thachuk, Heule, Soloveichik, Computing properties of stable configurations of 
thermodynamic binding networks, Theoretical Computer Science 2019]

54


	Slide 1: Thermodynamic binding networks
	Slide 2: Representing Information with Molecules
	Slide 3: Representing Information with Molecules
	Slide 4: Representing Information with Molecules
	Slide 5: Representing Information with Molecules
	Slide 6: Chemical Identity Gate: Idealized vs. Actual Behavior
	Slide 7: Chemical Identity Gate: Idealized vs. Actual Behavior
	Slide 8: Chemical Identity Gate: Idealized vs. Actual Behavior
	Slide 9: Chemical Identity Gate: Idealized vs. Actual Behavior
	Slide 10: Levels of Abstraction
	Slide 11: Levels of Abstraction
	Slide 12: Levels of Abstraction
	Slide 13: Levels of Abstraction
	Slide 14: Levels of Abstraction
	Slide 15: Levels of Abstraction
	Slide 16: DNA strand displacement
	Slide 17: DNA strand displacement
	Slide 18: DNA strand displacement
	Slide 19: DNA strand displacement
	Slide 20: DNA strand displacement
	Slide 21: DNA strand displacement
	Slide 22: X ⟶ Y + Z
	Slide 23: X ⟶ Y + Z
	Slide 24: X ⟶ Y + Z
	Slide 25: X ⟶ Y + Z
	Slide 26: X ⟶ Y + Z
	Slide 27: Leak in strand displacement experiments
	Slide 28: Leak in strand displacement experiments
	Slide 29: Reducing Leak
	Slide 30: Reducing Leak
	Slide 31: Reducing Leak
	Slide 32
	Slide 33: Ø ⟶ Y + Z
	Slide 34: Ø ⟶ Y + Z
	Slide 35: Ø ⟶ Y + Z
	Slide 36
	Slide 37
	Slide 38
	Slide 39: more favorable
	Slide 40: Need a kinetic binding network model
	Slide 41: Need a kinetic binding network model
	Slide 42: Need a kinetic binding network model
	Slide 43: Need a kinetic binding network model
	Slide 44: Need a kinetic binding network model
	Slide 45: Levels of Abstraction
	Slide 46: Levels of Abstraction
	Slide 47: Thermodynamic Binding Networks
	Slide 48: Energetic favorability: Bonds and complexes
	Slide 49: Energetic favorability: Bonds and complexes
	Slide 50: Tradeoff between #bonds and #complexes
	Slide 51: Tradeoff between #bonds and #complexes
	Slide 52: Tradeoff between #bonds and #complexes
	Slide 53: Tradeoff between #bonds and #complexes
	Slide 54: Tradeoff between #bonds and #complexes
	Slide 55: Thermodynamic Binding Networks
	Slide 56: Thermodynamic Binding Networks
	Slide 57: Thermodynamic Binding Networks
	Slide 58: Thermodynamic Binding Networks
	Slide 61: Computing via Thermodynamic Equilibrium
	Slide 62: AND gate
	Slide 63: AND gate
	Slide 64: AND gate
	Slide 65: AND gate
	Slide 66: AND gate
	Slide 67: AND gate
	Slide 68: AND gate
	Slide 69: AND gate
	Slide 70: Issues with Boolean logic
	Slide 71: Issues with Boolean logic
	Slide 72: Issues with Boolean logic
	Slide 73: Issues with Boolean logic
	Slide 74: Composable AND gate with entropy gap 3
	Slide 75: Kinetic pathways and energy barriers
	Slide 76: Pathways
	Slide 77: X ⟶ Y + Z
	Slide 78: X ⟶ Y + Z
	Slide 79: X ⟶ Y + Z
	Slide 80: X ⟶ Y + Z
	Slide 81: X ⟶ Y + Z
	Slide 82: X ⟶ Y + Z
	Slide 83: X ⟶ Y + Z
	Slide 84: X ⟶ Y + Z
	Slide 85: X ⟶ Y + Z
	Slide 86: X ⟶ Y + Z
	Slide 87: Ø ⟶ Y + Z
	Slide 88: Ø ⟶ Y + Z
	Slide 89: Ø ⟶ Y + Z
	Slide 90: Ø ⟶ Y + Z
	Slide 91: Kinetic Binding Networks
	Slide 92: Kinetic Binding Networks
	Slide 93: Kinetic Binding Networks
	Slide 94: Kinetic Binding Networks
	Slide 95: Kinetic Binding Networks
	Slide 96: Kinetic Binding Networks
	Slide 97: Large Energy Barriers
	Slide 98: Large Energy Barriers
	Slide 99: Large Energy Barriers
	Slide 100: A Network with a Programmable Energy Barrier
	Slide 101: A Network with a Programmable Energy Barrier
	Slide 102: A Network with a Programmable Energy Barrier
	Slide 103: A Network with a Programmable Energy Barrier
	Slide 104: A Network with a Programmable Energy Barrier
	Slide 105: A Network with a Programmable Energy Barrier
	Slide 106: A Network with a Programmable Energy Barrier
	Slide 107: Catalysis
	Slide 108: Catalysis
	Slide 109: Catalysis
	Slide 110: Catalysis
	Slide 111: Catalysis
	Slide 112: Catalysis
	Slide 113: Catalysis
	Slide 114: Catalysis
	Slide 115: Catalysis
	Slide 116: Catalysis
	Slide 117: Catalysis
	Slide 118: Autocatalysis
	Slide 119: Autocatalysis
	Slide 120: Autocatalysis
	Slide 121: Autocatalysis
	Slide 122: Multiple Stable Configurations
	Slide 123: Multiple Stable Configurations
	Slide 124: Multiple Stable Configurations
	Slide 125: Multiple Stable Configurations
	Slide 126: Multiple Stable Configurations
	Slide 127: Multiple Stable Configurations
	Slide 128: Multiple Stable Configurations
	Slide 129: Multiple Stable Configurations
	Slide 130: Multiple Stable Configurations
	Slide 131: Multiple Stable Configurations
	Slide 132: Multiple Stable Configurations
	Slide 133: Directed Catalysis
	Slide 134: Directed Catalysis
	Slide 135: Directed Catalysis
	Slide 136: Social Golfer Problem
	Slide 137: Social Golfer Problem
	Slide 138: Social Golfer Problem
	Slide 139: Social Golfer Problem
	Slide 140: Social Golfer Problem
	Slide 141: (Feasible?) DNA implementation
	Slide 142: (Feasible?) DNA implementation
	Slide 143: (Feasible?) DNA implementation
	Slide 144: (Feasible?) DNA implementation
	Slide 145: (Feasible?) DNA implementation
	Slide 146: (Feasible?) DNA implementation
	Slide 147: (Feasible?) DNA implementation
	Slide 148: (Feasible?) DNA implementation
	Slide 149: (Feasible?) DNA implementation
	Slide 150: (Feasible?) DNA implementation
	Slide 155: Thermodynamic self-assembly
	Slide 156: A modest goal
	Slide 157: A modest goal
	Slide 158: A modest goal
	Slide 159: Difficulty of self-assembling large complexes
	Slide 160: Difficulty of self-assembling large complexes
	Slide 161: Difficulty of self-assembling large complexes
	Slide 162: Difficulty of self-assembling large complexes
	Slide 163: Difficulty of self-assembling large complexes
	Slide 164: Difficulty of self-assembling large complexes
	Slide 165: An even more modest goal
	Slide 166: An even more modest goal
	Slide 167: An even more modest goal
	Slide 168: An even more modest goal
	Slide 169: An even more modest goal
	Slide 170: An even more modest goal
	Slide 171: An even more modest goal
	Slide 172: An even more modest goal
	Slide 173: An even more modest goal
	Slide 174: An even more modest goal
	Slide 175: How large can we make S relative to D and M?
	Slide 176: How large can we make S relative to D and M?
	Slide 177: How large can we make S relative to D and M?
	Slide 178: How large can we make S relative to D and M?
	Slide 179: Stable complexes have at most exponential size
	Slide 180: Easy proof if binding graph is acyclic (tree)
	Slide 181: Easy proof if binding graph is acyclic (tree)
	Slide 182: Easy proof if binding graph is acyclic (tree)
	Slide 183: Easy proof if binding graph is acyclic (tree)
	Slide 184: Easy proof if binding graph is acyclic (tree)
	Slide 185: Monomers as vectors
	Slide 186: Monomers as vectors
	Slide 187: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 188: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 189: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 190: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 191: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 192: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 193: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 194: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 195: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 196: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 197: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 198: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 199: A digression into computational complexity
	Slide 200: A digression into computational complexity
	Slide 201: A digression into computational complexity
	Slide 202: A digression into computational complexity
	Slide 203: A digression into computational complexity
	Slide 204: A digression into computational complexity
	Slide 205: A digression into computational complexity
	Slide 206: Farkas’ Lemma
	Slide 207: Farkas’ Lemma
	Slide 208: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 209: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 210: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 211: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 212: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 213: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 214: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 215: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 216: If all monomer types lie on one side of hyperplane h…
	Slide 217: If all monomer types lie on one side of hyperplane h…
	Slide 218: If all monomer types lie on one side of hyperplane h…
	Slide 219: If all monomer types lie on one side of hyperplane h…
	Slide 220: If all monomer types lie on one side of hyperplane h…
	Slide 221: If all monomer types lie on one side of hyperplane h…
	Slide 222: Applying thermodynamic model to tile assembly
	Slide 223: A thermodynamically unstable tile assembly counter
	Slide 224: A thermodynamically unstable tile assembly counter
	Slide 225: A thermodynamically unstable tile assembly counter
	Slide 226: A thermodynamically unstable tile assembly counter
	Slide 227: A thermodynamically unstable tile assembly counter
	Slide 228: A thermodynamically stable tile assembly counter
	Slide 229: Conclusions

