
Thermodynamic binding
networks

slides © 2021, David Haley and David Doty

ECS 232: Theory of Molecular Computation, UC Davis

In an electronic circuit,

voltage can represent Boolean input

Representing Information with Molecules

Time

Voltage

2/41

In an electronic circuit,

voltage can represent Boolean input

0

1

Representing Information with Molecules

Time

Voltage

2/41

In a well-mixed solution,

concentration can represent Boolean input

Representing Information with Molecules

Time

Concentration

2/41

In a well-mixed solution,

concentration can represent Boolean input

0

1

Representing Information with Molecules

Time

Concentration

2/41

Chemical Identity Gate: Idealized vs. Actual Behavior

OutputInput

3/41

Qian et al. Science 332, 2011

Wang et al. DNA 23, 2017

Qian et al. Nature 475, 2011

(Don’t worry about the details in
the pictures above)

Experimental Implementation of Chemical Logic

Chemical Identity Gate: Idealized vs. Actual Behavior

Time

Output

Input Present

No Input (Ideal)

OutputInput

3/41

Qian et al. Science 332, 2011

Wang et al. DNA 23, 2017

Qian et al. Nature 475, 2011

(Don’t worry about the details in
the pictures above)

Experimental Implementation of Chemical Logic

0

1

Chemical Identity Gate: Idealized vs. Actual Behavior

Time

Output

Input Present

No Input (Ideal)

OutputInput

3/41

Qian et al. Science 332, 2011

Wang et al. DNA 23, 2017

Qian et al. Nature 475, 2011

(Don’t worry about the details in
the pictures above)

Experimental Implementation of Chemical Logic

0

1

Chemical Identity Gate: Idealized vs. Actual Behavior

Time

Output

Input Present

No Input (Ideal)

OutputInput

3/41

Qian et al. Science 332, 2011

Wang et al. DNA 23, 2017

Qian et al. Nature 475, 2011

(Don’t worry about the details in
the pictures above)

Experimental Implementation of Chemical Logic

Levels of Abstraction

4/41

Levels of Abstraction

DNA

4/41

Levels of Abstraction

DNA

Base Pairs

4/41

Levels of Abstraction

DNA

Base Pairs

Strands

4/41

Levels of Abstraction

DNA

Base Pairs

Strands

long

4/41

Levels of Abstraction

DNA

Base Pairs

Strands

short

4/41

DNA strand displacement

t1

t2

t1* a* t2*

a

a

5

DNA strand displacement

Bind

t1 t2

t1* a* t2*

a

5

DNA strand displacement

Bind

t1 t2

t1* a* t2*

a

5

DNA strand displacement

Bind

t1 t2

t1* a* t2*

a

5

DNA strand displacement

Bind

Displace
t1 t2

t1* a* t2*

a

5

DNA strand displacement

Bind

Displace

Release

t1

t2

t1* a* t2*

a

a

5

X ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

6

X ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

X

ZY

6

X ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

6

X ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

6

X ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3 y t4hy

6

Leak in strand displacement experiments
Source:

Lulu Qian, Erik Winfree.
Scaling Up Digital Circuit Computation

Science 332, 2011

7

Leak in strand displacement experiments
Source:

Lulu Qian, Erik Winfree.
Scaling Up Digital Circuit Computation

Science 332, 2011

7

Reducing Leak
[Boya Wang, Chris Thachuk, Andrew Ellington,
David Soloveichik. The Design Space of Strand
Displacement Cascades with Toehold-Size Clamps
DNA Computing Conference, 2017]

8

Reducing Leak
[Boya Wang, Chris Thachuk, Andrew Ellington,
David Soloveichik. The Design Space of Strand
Displacement Cascades with Toehold-Size Clamps
DNA Computing Conference, 2017]Intended:

8

Reducing Leak
[Boya Wang, Chris Thachuk, Andrew Ellington,
David Soloveichik. The Design Space of Strand
Displacement Cascades with Toehold-Size Clamps
DNA Computing Conference, 2017]Intended:

Leak:

8

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

X ⟶ Y + Z

9

Ø ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

What causes leak
“kinetically”?

9

Ø ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

What causes leak
“kinetically”?

9

Ø ⟶ Y + Z

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2* hy* t3* hz* t5*

t5 z t6hz

t3 y t4hy

What causes leak
“kinetically”?

9

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

t5 z t6hz

t3 y t4hy

hy* t3* hz* t5*

t3 hz
t5hyt2x

t1* x* t2*

Before: After:

What causes leak “thermodynamically”?

10

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

t5 z t6hz

t3 y t4hy

hy* t3* hz* t5*

t3 hz
t5hyt2x

t1* x* t2*

Before: After:

What causes leak “thermodynamically”?

slow

10

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

t5 z t6hz

t3 y t4hy

hy* t3* hz* t5*

t3 hz
t5hyt2x

t1* x* t2*

Before: After:

What causes leak “thermodynamically”?

slow

very slow

10

more favorable

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

t5 z t6hz

t3 y t4hy

hy* t3* hz* t5*

t3 hz
t5hyt2x

t1* x* t2*

Before: After:

What causes leak “thermodynamically”?

slow

very slow

less favorable
10

Need a kinetic binding network model

11

Need a kinetic binding network model

• Can we design pathways that maintain local stability?

11

Need a kinetic binding network model

• Can we design pathways that maintain local stability?

11

Need a kinetic binding network model

Designed Pathway

• Can we design pathways that maintain local stability?

11

Need a kinetic binding network model

Designed Pathway
Leak

Leak

• Can we design pathways that maintain local stability?

11

Levels of Abstraction

DNA

Base Pairs

Strands

12

Levels of Abstraction

DNA

Base Pairs

Strands

Thermodynamic
Binding Network

12

Thermodynamic Binding Networks

Monomer = collection of domains

Configuration = how monomers are bound

a* b*

bba a

a*

Geometry-Free Model:

The domains within a
monomer are unordered

13

Energetic favorability: Bonds and complexes

14

= <
all else equal,
more bonds
= more favorable a* b*

b

a b

a

a* b*

b

a b

a

a* b*

b

a b

a

Energetic favorability: Bonds and complexes

14

= <

= <

all else equal,
more bonds
= more favorable

all else equal,
more complexes
= more favorable

a* b*

b

a b

a

a* b*

b

a b

a

a* b*

b

a b

a

a* b*

b

a b

a

a* b*

b

a b

a

a* b*

b

a b

a

Tradeoff between #bonds and #complexes

15

Tradeoff between #bonds and #complexes

• in general, there’s some weight parameter w:

energy = w*#bonds + #complexes

15

Tradeoff between #bonds and #complexes

• in general, there’s some weight parameter w:

energy = w*#bonds + #complexes

(physics notation: ΔG = ΔH – T∙ΔS)

15

Tradeoff between #bonds and #complexes

• in general, there’s some weight parameter w:

energy = w*#bonds + #complexes

(physics notation: ΔG = ΔH – T∙ΔS)

• We often consider a natural limiting case:

• favoring # bonds infinitely over #complexes

• require maximal #bonds formed; use #complexes only as tiebreaker

15

Tradeoff between #bonds and #complexes

• in general, there’s some weight parameter w:

energy = w*#bonds + #complexes

(physics notation: ΔG = ΔH – T∙ΔS)

• We often consider a natural limiting case:

• favoring # bonds infinitely over #complexes

• require maximal #bonds formed; use #complexes only as tiebreaker

• Corresponds to bonds that are so strong they cannot spontaneously dissociate,
but can exchange with each other to find configurations with more complexes

15

Thermodynamic Binding Networks

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

16

Thermodynamic Binding Networks

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

Saturatedsaturated = maximum #bonds formed

16

Thermodynamic Binding Networks

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

Saturated

Stable

saturated = maximum #bonds formed
stable = saturated, AND maximum #complexes

16

Thermodynamic Binding Networks

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

Saturated

Stable

saturated = maximum #bonds formed
stable = saturated, AND maximum #complexes

16

If we’re careful to
make starred binding
sites limiting, then
saturated = all starred
sites are bound

Computing via Thermodynamic
Equilibrium

19

AND gate

20

a* b* c* d*

ea b c d

e*b* c* d*

b c e fd

e f

e* f*

output monomer to
be released only if
both inputs present

AND gate

20

a b

a* b* c* d*

ea b c d

e*b* c* d*

b c e fd

e f

e* f*

output monomer to
be released only if
both inputs present

AND gate

20

a* b* c* d*

ea b c d

e*b* c* d*

b c e fd

e f

e* f*

c d

output monomer to
be released only if
both inputs present

AND gate

20

a b

a* b* c* d*

ea b c d

e*b* c* d*

b c e fd

e f

e* f*

c d

output monomer to
be released only if
both inputs present

AND gate

20

a b

a* b* c* d*

ea b c d

e*b* c* d*

b c e fd

e f

e* f*

c d

output monomer to
be released only if
both inputs present

AND gate

20

a b

a* b* c* d*

ea b c d

e*b* c* d*

b c e fd

e f

e* f*

c d

output monomer to
be released only if
both inputs present

AND gate

20

a b

a* b* c* d*

ea b c d

e*b* c* d*

b c
e fd e f

e* f*

c d

output monomer to
be released only if
both inputs present

AND gate

20

a b

a* b* c* d*

ea b c d

e*b* c* d*

b c
e fd e f

e* f*

c d

output monomer to
be released only if
both inputs present

Issues with Boolean logic

21

Issues with Boolean logic

• How to compose?
– We don’t know how to prove the previous gate is composable, and used a

more complex design in the paper

21

Issues with Boolean logic

• How to compose?
– We don’t know how to prove the previous gate is composable, and used a

more complex design in the paper

• Want “entropy gap”:
– Need not merely that unwanted configurations are unstable (i.e., if saturated,

they have lower entropy), but more strongly that they have much lower
entropy.

– We can use O(n) domain/monomer types to achieve an entropy gap of n.

21

Issues with Boolean logic

• How to compose?
– We don’t know how to prove the previous gate is composable, and used a

more complex design in the paper

• Want “entropy gap”:
– Need not merely that unwanted configurations are unstable (i.e., if saturated,

they have lower entropy), but more strongly that they have much lower
entropy.

– We can use O(n) domain/monomer types to achieve an entropy gap of n.

• Output convention?
– Obvious one: “there’s a unique stable configuration with the correct output”

– It’s problematic, so we have a one-sided convention:
• if correct output is 0, unique stable configuration with correct answer

• if correct output is 1, then both the “output=1” and “output=0” configurations are stable

21

Composable AND gate with entropy gap 3

22

Rather than release a single output monomer, it suffices to gather all output domains on one complex.

Kinetic pathways and energy
barriers

23

Pathways

Thermodynamics: Which configurations are energetically favorable

Kinetics: How a system moves between configurations over time

a* b*

b

ba

a

a* b*

b

ba

a

a* b*

b

ba

a

24

t1 x t2hx

t3 hz
t5hyt2x

t1* x* t2*

t2* hy* t3* hz* t5*

t5 z t6hzt3hy

X ⟶ Y + Z

25

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

26

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

X

ZY

26

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

26

progress

Energy

Merge
(less favorable)

Split
(more favorable)

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

26

progress

Energy

Merge
(less favorable)

Split
(more favorable)

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhyxhx

26

progress

Energy

Merge
(less favorable)

Split
(more favorable)

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

26

progress

Energy

Merge
(less favorable)

Split
(more favorable)

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

26

progress

Energy

Merge
(less favorable)

Split
(more favorable)

zhzyhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

26

progress

Energy

Merge
(less favorable)

Split
(more favorable)

zhz

yhy

hz*hy*

X ⟶ Y + Z

x*

x hzhy

xhx

26

Ø ⟶ Y + Z

zhzyhy

hz*hy*

x*

x hzhy

progress

Energy

Merge
(less favorable)

Split
(more favorable)

27

Ø ⟶ Y + Z

zhzyhy

hz*hy*x*

x hzhy

progress

Energy

Merge
(less favorable)

Split
(more favorable)

27

Ø ⟶ Y + Z

zhzyhy

hz*hy*x*

x hzhy

progress

Energy

Merge
(less favorable)

Split
(more favorable)

27

Ø ⟶ Y + Z

zhz

yhy

hz*hy*x*

x hzhy

progress

Energy

Merge
(less favorable)

Split
(more favorable)

27

What causes leak
“kinetically”?

Kinetic Binding Networks

28

Kinetic Binding Networks
• Favorability is a combination of bond count and complex count

28

Kinetic Binding Networks

Weighted average:

Energy := – wH(# bonds) – (# complexes)

• Favorability is a combination of bond count and complex count

28

Kinetic Binding Networks

• Define pathways to consist of merges and splits

Weighted average:

Energy := – wH(# bonds) – (# complexes)

• Favorability is a combination of bond count and complex count

28

Kinetic Binding Networks

• Define pathways to consist of merges and splits

Weighted average:

Energy := – wH(# bonds) – (# complexes)

[Keenan Breik, Cameron Chalk, David Doty, David Haley, David Soloveichik. Programming Substrate-Independent
Kinetic Barriers with Thermodynamic Binding Networks. Computational Methods in Systems Biology 2018]

• But for wH ≥ 2, only saturated pathways need be considered

• Favorability is a combination of bond count and complex count

28

Kinetic Binding Networks

• Define pathways to consist of merges and splits

Weighted average:

Energy := – wH(# bonds) – (# complexes)

[Keenan Breik, Cameron Chalk, David Doty, David Haley, David Soloveichik. Programming Substrate-Independent
Kinetic Barriers with Thermodynamic Binding Networks. Computational Methods in Systems Biology 2018]

• But for wH ≥ 2, only saturated pathways need be considered

• Favorability is a combination of bond count and complex count

Since all saturated configurations have an equal number of
bonds, we can focus solely on the number of complexes

28

Configuration space

Energy

α β

Large Energy Barriers

Merge
(less favorable)

Split
(more favorable)

29

Configuration space

Energy

α β

Large Energy Barriers

Barrier

Merge
(less favorable)

Split
(more favorable)

29

Configuration space

Energy

α β

Large Energy Barriers

Reaction Pathway

Barrier

Merge
(less favorable)

Split
(more favorable)

29

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

A Network with a Programmable Energy Barrier

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

30

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

A Network with a Programmable Energy Barrier

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

30

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

A Network with a Programmable Energy Barrier

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

30

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

A Network with a Programmable Energy Barrier

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

30

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

A Network with a Programmable Energy Barrier

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

30

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

A Network with a Programmable Energy Barrier

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

30

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

A Network with a Programmable Energy Barrier

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

30

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

x14

x24

x34

x44

progress

Energy

Merge
(less favorable)

Split
(more favorable)

Catalysis

++
x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

31

Autocatalysis

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

+

+

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x11

x21

x31

x41

x22

x32

x42

x12

x32

x42

x33

x43

x13

x23

x43

x44

x14

x24

x34

x22

x33

x44

32

Autocatalysis

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

+

+

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x11

x21

x31

x41

x22

x32

x42

x12

x32

x42

x33

x43

x13

x23

x43

x44

x14

x24

x34

x22

x33

x44

32

Autocatalysis

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

+

+

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x11

x21

x31

x41

x22

x32

x42

x12

x32

x42

x33

x43

x13

x23

x43

x44

x14

x24

x34

x22

x33

x44

32

Autocatalysis

x11*

x21*

x31*

x41*

x12*

x22*

x32*

x42*

x13*

x23*

x33*

x43*

x14*

x24*

x34*

x44*

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

+

+

+

+

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x33

x22

x31 x32

x44x41 x42 x43

x11

x21

x31

x41

x11

x21

x31

x41

x22

x32

x42

x12

x32

x42

x33

x43

x13

x23

x43

x44

x14

x24

x34

x22

x33

x44

32

Multiple Stable Configurations

33

Multiple Stable Configurations

33

Multiple Stable Configurations

33

Multiple Stable Configurations

33

Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different
stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different
stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different
stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different
stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different
stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different
stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

33

For a grid of prime size n x n, there can be at most n+1 different
stable configurations with barrier n to pass between any of them

Directed Catalysis

34

Directed Catalysis

34

Along a catalyzed pathway, the barrier is 1

Directed Catalysis

34

Along a catalyzed pathway, the barrier is 1

Otherwise the barrier is n/2

Social Golfer Problem

• Can 25 (n2) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no
two golfers play together more than once?

35

Social Golfer Problem

• Can 25 (n2) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no
two golfers play together more than once?

• First studied by Euler.

35

Social Golfer Problem

• Can 25 (n2) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no
two golfers play together more than once?

• First studied by Euler.

• True if n is a prime power (2,3,4,5,7,8,9,11,13,…)

35

Social Golfer Problem

• Can 25 (n2) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no
two golfers play together more than once?

• First studied by Euler.

• True if n is a prime power (2,3,4,5,7,8,9,11,13,…)

• False for smallest non-prime power n=6: can only play for 3 days!
[Gaston Tarry (1901). "Le Probléme des 36 Officiers". Compte Rendu de l'Association Française pour
l'Avancement des Sciences. Secrétariat de l'Association. 2: 170–203.]

35

Social Golfer Problem

• Can 25 (n2) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no
two golfers play together more than once?

• First studied by Euler.

• True if n is a prime power (2,3,4,5,7,8,9,11,13,…)

• False for smallest non-prime power n=6: can only play for 3 days!
[Gaston Tarry (1901). "Le Probléme des 36 Officiers". Compte Rendu de l'Association Française pour
l'Avancement des Sciences. Secrétariat de l'Association. 2: 170–203.]

• Unknown for next prime power n=10:
• trivial upper bound is 11 days

• best known lower bound is 3

35

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

36

(Feasible?) DNA implementation

Thermodynamic self-assembly
Grafting the TBN model onto self-assembly

A modest goal

• Informal: Design monomers that self-assemble arbitrarily large complexes.
• size of a complex = # monomers in the complex

39

A modest goal

• Informal: Design monomers that self-assemble arbitrarily large complexes.
• size of a complex = # monomers in the complex

• Formal: Design a set of monomer types so that, for all S ∈ ℕ, there is a
stable complex of size at least S.

39

A modest goal

• Informal: Design monomers that self-assemble arbitrarily large complexes.
• size of a complex = # monomers in the complex

• Formal: Design a set of monomer types so that, for all S ∈ ℕ, there is a
stable complex of size at least S.

• Easy to do in Abstract Tile Assembly Model:

39

a a*

set of monomer types:
size-8 complex (assembly) formed
with 8 copies of monomer

a a* a a* a a* a a* a a* a a* a a* a a*

Difficulty of self-assembling large complexes

40

a a*

a a*

a a*

a a*

a a*

a a*

a a*

a a*

Difficulty of self-assembling large complexes

40

a a*

a a*

a a*

a a*

a a*

a a*

a a*

a a*

not stable! (or even saturated)

a a*

more complexes ⇒ higher entropy ⇒ more stable

a a*

a a*

a a*

a a*

a a*

a a*

a a*

Difficulty of self-assembling large complexes

40

a a*

a a*

a a*

a a*

a a*

a a*

a a*

a a*

not stable! (or even saturated)

a a*

more complexes ⇒ higher entropy ⇒ more stable

a a*

a a*

a a*

a a*

a a*

a a*

a a*

w x*

x y*

y z*

z w*

attempt 2:

Difficulty of self-assembling large complexes

40

a a*

a a*

a a*

a a*

a a*

a a*

a a*

a a*

not stable! (or even saturated)

a a*

more complexes ⇒ higher entropy ⇒ more stable

a a*

a a*

a a*

a a*

a a*

a a*

a a*

w x*

x y*

y z*

z w*

attempt 2:

w x*

x y*

y z*

z w*

…

Difficulty of self-assembling large complexes

40

a a*

a a*

a a*

a a*

a a*

a a*

a a*

a a*

not stable! (or even saturated)

a a*

more complexes ⇒ higher entropy ⇒ more stable

a a*

a a*

a a*

a a*

a a*

a a*

a a*

w x*

x y*

y z*

z w*

attempt 2:

w x*

x y*

y z*

z w*

w x*

x y*

y z*

z w*

not stable!

w x*

x y*

y z*

z w*

…

Difficulty of self-assembling large complexes

40

a a*

a a*

a a*

a a*

a a*

a a*

a a*

a a*

not stable! (or even saturated)

a a*

more complexes ⇒ higher entropy ⇒ more stable

a a*

a a*

a a*

a a*

a a*

a a*

a a*

w x*

x y*

y z*

z w*

attempt 2:

w x*

x y*

y z*

z w*

w x*

x y*

y z*

z w*

not stable!

w x*

x y*

y z*

z w*

…

These have more complexes, and each is self-saturating
(every domain can be bound within the complex)

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types
with a stable complex of size at least S.

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

How large can we make S relative to D and M?

Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types
with a stable complex of size at least S.

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

How large can we make S relative to D and M?

D,M = O(1), S = arbitrarily large

d

d* d* d* d* d* d* d* d*

d d d d d d d

Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types
with a stable complex of size at least S.

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

How large can we make S relative to D and M?

D,M = O(1), S = arbitrarily large

d

d* d* d* d* d* d* d* d*

d d d d d d d

and O(1) domains per monomer

^
Re-Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types

with a stable complex of size at least S.

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

How large can we make S relative to D and M?

S ≈ D
D,M = O(1), S = arbitrarily large

d

d* d* d* d* d* d* d* d*

d d d d d d d

and O(1) domains per monomer

^
Re-Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types

with a stable complex of size at least S.

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

How large can we make S relative to D and M?

S ≈ D
D,M = O(1), S = arbitrarily large

d1 d2* d2 d3* d3 d4* d4d1*
d

d* d* d* d* d* d* d* d*

d d d d d d d

and O(1) domains per monomer

^
Re-Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types

with a stable complex of size at least S.

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

How large can we make S relative to D and M?

S ≈ D
D,M = O(1), S = arbitrarily large

S ≈ D2

d1 d2* d2 d3* d3 d4* d4d1*
d

d* d* d* d* d* d* d* d*

d d d d d d d

and O(1) domains per monomer

^
Re-Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types

with a stable complex of size at least S.

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

How large can we make S relative to D and M?

S ≈ D
D,M = O(1), S = arbitrarily large

S ≈ D2

d1 d2* d2 d3* d3 d4* d4d1*
d

d* d* d* d* d* d* d* d*

d d d d d d d

and O(1) domains per monomer

^

d1 c1 d2*c1 d1* d2 c1 d3* d3 c1

Re-Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types
with a stable complex of size at least S.

An even more modest goal

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable
complex of size at least S.

41

How large can we make S relative to D and M?

S ≈ D
D,M = O(1), S = arbitrarily large

S ≈ D2

d1 d2* d2 d3* d3 d4* d4d1*
d

d* d* d* d* d* d* d* d*

d d d d d d d

and O(1) domains per monomer

^

d1 c1 d2*c1 d1* d2 c1 d3* d3 c1

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

c2

c1*

c3

c2*

c3*

Re-Revised goal: For all S ∈ ℕ, design a set of M monomer types using D domain types
with a stable complex of size at least S.

How large can we make S relative to D and M?

42

S ≈ 2D?

How large can we make S relative to D and M?

42

d2 d1* d2

d1 d1

d2 d1* d2

d3 d2* d3

d4 d3* d4

d4*

d3 d2* d3
d3 d2* d3 d3 d2* d3

d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4

d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4*

S ≈ 2D?

How large can we make S relative to D and M?

42

d2 d1* d2

d1 d1

d2 d1* d2

d3 d2* d3

d4 d3* d4

d4*

d3 d2* d3
d3 d2* d3 d3 d2* d3

d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4

d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4*

S ≈ 2D? 𝑆 ≈ 22𝐷
??

How large can we make S relative to D and M?

42

d2 d1* d2

d1 d1

d2 d1* d2

d3 d2* d3

d4 d3* d4

d4*

d3 d2* d3
d3 d2* d3 d3 d2* d3

d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4 d4 d3* d4

d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4* d4*

S ≈ 2D? 𝑆 ≈ 22𝐷
??

Stable complexes have at most exponential size

Theorem: Any thermodynamic binding network with
• D domain types,

• M monomer types,

• ≤ A domains per monomer type (note D/A ≤ M ≤ AD+1)

Has stable complexes of size ≤ 2(M+D)(AD)2D+3 = poly(DD) if A = O(1)

43

Easy proof if binding
graph is acyclic (tree)

44

Easy proof if binding
graph is acyclic (tree)

44

• Since monomers have O(1) domains, binding
graph is bounded degree

Easy proof if binding
graph is acyclic (tree)

44

• Since monomers have O(1) domains, binding
graph is bounded degree

• # nodes of tree is at most exponential in
depth (longest path length ≤ 2∙depth)

Easy proof if binding
graph is acyclic (tree)

44

• Since monomers have O(1) domains, binding
graph is bounded degree

• # nodes of tree is at most exponential in
depth (longest path length ≤ 2∙depth)

• If some path has > 2D edges, it must repeat
some ordered pair (di,di*) or (di*,di)

Easy proof if binding
graph is acyclic (tree)

44

• Since monomers have O(1) domains, binding
graph is bounded degree

• # nodes of tree is at most exponential in
depth (longest path length ≤ 2∙depth)

• If some path has > 2D edges, it must repeat
some ordered pair (di,di*) or (di*,di)

• Break into two saturated complexes as shown.

not stable

Monomers as vectors

• monomer {a, b*,b*, d,d,d,d,d*, e,e*} represented as (1,-2,0,3,0)

45

Monomers as vectors

• monomer {a, b*,b*, d,d,d,d,d*, e,e*} represented as (1,-2,0,3,0)

• sum of many monomers gives the number of excess domains in a fully
bound (saturated) complex with those monomers
• i.e., 2 copies of above monomer 2∙(1,-2,0,3,0) = (2,-4,0,6,0) have an excess of

2 a’s, 4 b*’s, 0 c’s, 6 d’s, 0 e’s

45

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki.

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki.
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki.
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

3. Take several infinite subsequences:

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki.
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

3. Take several infinite subsequences:
1. Since there are a finite number of domain types, some infinite subsequence of Pi’s agrees on which set

of domain types are unbound.

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki.
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

3. Take several infinite subsequences:
1. Since there are a finite number of domain types, some infinite subsequence of Pi’s agrees on which set

of domain types are unbound.
2. By Dickson’s Lemma we may assume P1 < P2 < ... and S1 < S2 < ... i.e., each has all the monomers of the

previous, plus some more, and each has all the unbound domains of the previous, plus some more.

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki.
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

3. Take several infinite subsequences:
1. Since there are a finite number of domain types, some infinite subsequence of Pi’s agrees on which set

of domain types are unbound.
2. By Dickson’s Lemma we may assume P1 < P2 < ... and S1 < S2 < ... i.e., each has all the monomers of the

previous, plus some more, and each has all the unbound domains of the previous, plus some more.
4. Let d = P2 – P1. Then M∙d = M∙P2 – M∙P1 = S2 - S1 ≥ 0.

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki.
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

3. Take several infinite subsequences:
1. Since there are a finite number of domain types, some infinite subsequence of Pi’s agrees on which set

of domain types are unbound.
2. By Dickson’s Lemma we may assume P1 < P2 < ... and S1 < S2 < ... i.e., each has all the monomers of the

previous, plus some more, and each has all the unbound domains of the previous, plus some more.
4. Let d = P2 – P1. Then M∙d = M∙P2 – M∙P1 = S2 - S1 ≥ 0.
5. i.e., S2 = S1 + M∙d and all three are nonnegative,

Somewhat easy proof that unbounded size
complexes cannot be assembled

46

Original goal: Design a set of monomer types so that, for all S ∈ ℕ, there is a stable complex P of size ≥ S.

Theorem: Original goal is impossible.

Proof:
1. Suppose otherwise, let P1, P2, … in ℕm be an infinite sequence of stable complexes increasing in size.

m is number of monomer types, Pi(j) = # monomers of type j in complex Pi.
2. Represent each monomer type as a vector in ℤd as on previous slide.

1. Pi is composed of monomers m1i, m2i, …, mki.
2. Let Si = m1i + m2i + … + mki. Note that there is a m x d matrix M such that Si = M∙Pi,

3. Take several infinite subsequences:
1. Since there are a finite number of domain types, some infinite subsequence of Pi’s agrees on which set

of domain types are unbound.
2. By Dickson’s Lemma we may assume P1 < P2 < ... and S1 < S2 < ... i.e., each has all the monomers of the

previous, plus some more, and each has all the unbound domains of the previous, plus some more.
4. Let d = P2 – P1. Then M∙d = M∙P2 – M∙P1 = S2 - S1 ≥ 0.
5. i.e., S2 = S1 + M∙d and all three are nonnegative,
6. i.e., we can split S2 into 2 disjoint nonempty nonnegative subsets, S1 and M∙d. QED

A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

47

A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

47

A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

• Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

47

A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

• Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a “small” solution… maxi xi ≤ exp(maxij(Aij,bj))

47

A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

• Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a “small” solution… maxi xi ≤ exp(maxij(Aij,bj))

• Papadimitriou’s proof:
• If x is a large enough solution, there is 0 < y < x, y ∈ ℕm, such that Ay = 0.

47

[On the complexity of integer programming. Papadimitriou, JACM 1981]

A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

• Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a “small” solution… maxi xi ≤ exp(maxij(Aij,bj))

• Papadimitriou’s proof:
• If x is a large enough solution, there is 0 < y < x, y ∈ ℕm, such that Ay = 0.

• Defining z = x – y, Az = A(x – y) = Ax – Ay = Ax – 0 = b.

47

[On the complexity of integer programming. Papadimitriou, JACM 1981]

A digression into computational complexity

• INTEGER-PROGRAMMING problem
Given: integer matrix A, integer vector b

Question: is there a nonnegative integer vector x such that Ax = b?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

• Non-obvious fact: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig
1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a “small” solution… maxi xi ≤ exp(maxij(Aij,bj))

• Papadimitriou’s proof:
• If x is a large enough solution, there is 0 < y < x, y ∈ ℕm, such that Ay = 0.

• Defining z = x – y, Az = A(x – y) = Ax – Ay = Ax – 0 = b.

• So z is a strictly smaller solution than x: x cannot be the smallest solution.

47

[On the complexity of integer programming. Papadimitriou, JACM 1981]

Farkas’ Lemma

48

Given vectors m1, m2, … , they obey one of two constraints:

a) are directions of balanced forces b) lie on one side of some hyperplane

m1

m2

m3

m1

m2

m3

Farkas’ Lemma

48

Given vectors m1, m2, … , they obey one of two constraints:

a) are directions of balanced forces b) lie on one side of some hyperplane

h∙mi ≥ 1

m1

h(m1 m2 m3)c = 0
∃c (counts of monomers)

(hyperplane
orthogonal vector)

∃h

m2

m3

m1

m2

m3

How to prove exponential complex size bound
for complexes with cycles in binding graph?

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

monomer collection c ∈ ℕM

How to prove exponential complex size bound
for complexes with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of

domain di over di*

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

monomer collection c ∈ ℕM

How to prove exponential complex size bound
for complexes with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of

domain di over di*

• If Ac = b, then bi = total # unbound di in any
saturated configuration of c

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

monomer collection c ∈ ℕM

How to prove exponential complex size bound
for complexes with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of

domain di over di*

• If Ac = b, then bi = total # unbound di in any
saturated configuration of c

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

Ac = (2,1,0)
a b c

monomer collection c ∈ ℕM

How to prove exponential complex size bound
for complexes with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of

domain di over di*

• If Ac = b, then bi = total # unbound di in any
saturated configuration of c

• If |c| > exponential in D, Papadimtriou’s proof gives
us subcollection y < c such that Ay = 0, (Farkas’
Lemma says that if this fails, then monomer vectors
all lie on one side of a hyperplane, see next slide)

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

Ac = (2,1,0)
a b c

y

monomer collection c ∈ ℕM

How to prove exponential complex size bound
for complexes with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of

domain di over di*

• If Ac = b, then bi = total # unbound di in any
saturated configuration of c

• If |c| > exponential in D, Papadimtriou’s proof gives
us subcollection y < c such that Ay = 0, (Farkas’
Lemma says that if this fails, then monomer vectors
all lie on one side of a hyperplane, see next slide)

• i.e., #di in y = #di* in y, so y is self-saturating.

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

Ac = (2,1,0)
a b c

y

monomer collection c ∈ ℕM

How to prove exponential complex size bound
for complexes with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of

domain di over di*

• If Ac = b, then bi = total # unbound di in any
saturated configuration of c

• If |c| > exponential in D, Papadimtriou’s proof gives
us subcollection y < c such that Ay = 0, (Farkas’
Lemma says that if this fails, then monomer vectors
all lie on one side of a hyperplane, see next slide)

• i.e., #di in y = #di* in y, so y is self-saturating.

• So whatever bonds were broken to separate y can
be re-bound within y.

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

Ac = (2,1,0)
a b c

y

monomer collection c ∈ ℕM

How to prove exponential complex size bound
for complexes with cycles in binding graph?
• A = d x m matrix: Aij = monomer mj‘s excess of

domain di over di*

• If Ac = b, then bi = total # unbound di in any
saturated configuration of c

• If |c| > exponential in D, Papadimtriou’s proof gives
us subcollection y < c such that Ay = 0, (Farkas’
Lemma says that if this fails, then monomer vectors
all lie on one side of a hyperplane, see next slide)

• i.e., #di in y = #di* in y, so y is self-saturating.

• So whatever bonds were broken to separate y can
be re-bound within y.

• By symmetry, the same bonds in z = c – y can be re-
bound within z.

49

a b c*

a b* a*
a c* c*

a* c* a

a* c b

a* b* c

b b a

a b* a*
a b b*

Ac = (2,1,0)
a b c

y

z

monomer collection c ∈ ℕM

If all monomer types lie on one side of hyperplane h…

50

If all monomer types lie on one side of hyperplane h…

• Consider “slack monomers” {d1*}, {d2*},…, adding just enough to bind to all the
excess di domains, so saturated (fully bound) == all domains bound

50

If all monomer types lie on one side of hyperplane h…

• Consider “slack monomers” {d1*}, {d2*},…, adding just enough to bind to all the
excess di domains, so saturated (fully bound) == all domains bound

• If c is count of all monomers including slack monomers (c(i) = count of mi), then
Ac = 0, where each column of A represents a monomer (counts of domains).

50

If all monomer types lie on one side of hyperplane h…

• Consider “slack monomers” {d1*}, {d2*},…, adding just enough to bind to all the
excess di domains, so saturated (fully bound) == all domains bound

• If c is count of all monomers including slack monomers (c(i) = count of mi), then
Ac = 0, where each column of A represents a monomer (counts of domains).

• dot-product h on both sides: h∙Ac = h∙0 = 0, distribute through: ∑i(h∙mi)c(i) = 0

50

If all monomer types lie on one side of hyperplane h…

• Consider “slack monomers” {d1*}, {d2*},…, adding just enough to bind to all the
excess di domains, so saturated (fully bound) == all domains bound

• If c is count of all monomers including slack monomers (c(i) = count of mi), then
Ac = 0, where each column of A represents a monomer (counts of domains).

• dot-product h on both sides: h∙Ac = h∙0 = 0, distribute through: ∑i(h∙mi)c(i) = 0

• Let S be set of monomers with “small” counts, move them to one side:

 – ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i)

50

If all monomer types lie on one side of hyperplane h…

• Consider “slack monomers” {d1*}, {d2*},…, adding just enough to bind to all the
excess di domains, so saturated (fully bound) == all domains bound

• If c is count of all monomers including slack monomers (c(i) = count of mi), then
Ac = 0, where each column of A represents a monomer (counts of domains).

• dot-product h on both sides: h∙Ac = h∙0 = 0, distribute through: ∑i(h∙mi)c(i) = 0

• Let S be set of monomers with “small” counts, move them to one side:

 – ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i)

• Then “small”2 ≥ – ∑i∈S(h∙mi)c(i) = ∑i∉S(h∙mi)c(i) ≥ ∑i∉Sc(i)

50

c(i) (count of i’th monomer) is
small by definition, and h∙mi = O(1)

above since h∙mi ≥ 1

Applying thermodynamic model to tile assembly

• Let’s incorporate the thermodynamic binding network model into the
abstract tile assembly model.

• How can we create a large assembly from a small number of tile
types?

51

A thermodynamically unstable tile assembly counter

52

A thermodynamically unstable tile assembly counter

52

0

0

0

1

A thermodynamically unstable tile assembly counter

52

0

0

1

0

A thermodynamically unstable tile assembly counter

52

0

0

1

1

A thermodynamically unstable tile assembly counter

52

0

0

1

1

A thermodynamically stable tile assembly counter

53

Difference is that each row (corresponding to bits of the same significance)
has glues labeled with the row number

Conclusions

• Strong bonds (surprisingly) aren’t sufficient to self-assemble large
thermodynamically stable structures. Geometry helps!

• Kinetically self-assembling a thermodynamically stable structure has
very strong guarantees on errors:
• target structure eventually results despite arbitrary kinetic errors.
• If it’s the only stable structure, and free energy of other structures is much

less, then it’s the only result you’ll see.

• Bad news: NP-complete to tell if a given configuration is unstable…
even NP-hard to approximate entropy of stable configuration:

[Breik, Thachuk, Heule, Soloveichik, Computing properties of stable configurations of
thermodynamic binding networks, Theoretical Computer Science 2019]

54

	Slide 1: Thermodynamic binding networks
	Slide 2: Representing Information with Molecules
	Slide 3: Representing Information with Molecules
	Slide 4: Representing Information with Molecules
	Slide 5: Representing Information with Molecules
	Slide 6: Chemical Identity Gate: Idealized vs. Actual Behavior
	Slide 7: Chemical Identity Gate: Idealized vs. Actual Behavior
	Slide 8: Chemical Identity Gate: Idealized vs. Actual Behavior
	Slide 9: Chemical Identity Gate: Idealized vs. Actual Behavior
	Slide 10: Levels of Abstraction
	Slide 11: Levels of Abstraction
	Slide 12: Levels of Abstraction
	Slide 13: Levels of Abstraction
	Slide 14: Levels of Abstraction
	Slide 15: Levels of Abstraction
	Slide 16: DNA strand displacement
	Slide 17: DNA strand displacement
	Slide 18: DNA strand displacement
	Slide 19: DNA strand displacement
	Slide 20: DNA strand displacement
	Slide 21: DNA strand displacement
	Slide 22: X ⟶ Y + Z
	Slide 23: X ⟶ Y + Z
	Slide 24: X ⟶ Y + Z
	Slide 25: X ⟶ Y + Z
	Slide 26: X ⟶ Y + Z
	Slide 27: Leak in strand displacement experiments
	Slide 28: Leak in strand displacement experiments
	Slide 29: Reducing Leak
	Slide 30: Reducing Leak
	Slide 31: Reducing Leak
	Slide 32
	Slide 33: Ø ⟶ Y + Z
	Slide 34: Ø ⟶ Y + Z
	Slide 35: Ø ⟶ Y + Z
	Slide 36
	Slide 37
	Slide 38
	Slide 39: more favorable
	Slide 40: Need a kinetic binding network model
	Slide 41: Need a kinetic binding network model
	Slide 42: Need a kinetic binding network model
	Slide 43: Need a kinetic binding network model
	Slide 44: Need a kinetic binding network model
	Slide 45: Levels of Abstraction
	Slide 46: Levels of Abstraction
	Slide 47: Thermodynamic Binding Networks
	Slide 48: Energetic favorability: Bonds and complexes
	Slide 49: Energetic favorability: Bonds and complexes
	Slide 50: Tradeoff between #bonds and #complexes
	Slide 51: Tradeoff between #bonds and #complexes
	Slide 52: Tradeoff between #bonds and #complexes
	Slide 53: Tradeoff between #bonds and #complexes
	Slide 54: Tradeoff between #bonds and #complexes
	Slide 55: Thermodynamic Binding Networks
	Slide 56: Thermodynamic Binding Networks
	Slide 57: Thermodynamic Binding Networks
	Slide 58: Thermodynamic Binding Networks
	Slide 61: Computing via Thermodynamic Equilibrium
	Slide 62: AND gate
	Slide 63: AND gate
	Slide 64: AND gate
	Slide 65: AND gate
	Slide 66: AND gate
	Slide 67: AND gate
	Slide 68: AND gate
	Slide 69: AND gate
	Slide 70: Issues with Boolean logic
	Slide 71: Issues with Boolean logic
	Slide 72: Issues with Boolean logic
	Slide 73: Issues with Boolean logic
	Slide 74: Composable AND gate with entropy gap 3
	Slide 75: Kinetic pathways and energy barriers
	Slide 76: Pathways
	Slide 77: X ⟶ Y + Z
	Slide 78: X ⟶ Y + Z
	Slide 79: X ⟶ Y + Z
	Slide 80: X ⟶ Y + Z
	Slide 81: X ⟶ Y + Z
	Slide 82: X ⟶ Y + Z
	Slide 83: X ⟶ Y + Z
	Slide 84: X ⟶ Y + Z
	Slide 85: X ⟶ Y + Z
	Slide 86: X ⟶ Y + Z
	Slide 87: Ø ⟶ Y + Z
	Slide 88: Ø ⟶ Y + Z
	Slide 89: Ø ⟶ Y + Z
	Slide 90: Ø ⟶ Y + Z
	Slide 91: Kinetic Binding Networks
	Slide 92: Kinetic Binding Networks
	Slide 93: Kinetic Binding Networks
	Slide 94: Kinetic Binding Networks
	Slide 95: Kinetic Binding Networks
	Slide 96: Kinetic Binding Networks
	Slide 97: Large Energy Barriers
	Slide 98: Large Energy Barriers
	Slide 99: Large Energy Barriers
	Slide 100: A Network with a Programmable Energy Barrier
	Slide 101: A Network with a Programmable Energy Barrier
	Slide 102: A Network with a Programmable Energy Barrier
	Slide 103: A Network with a Programmable Energy Barrier
	Slide 104: A Network with a Programmable Energy Barrier
	Slide 105: A Network with a Programmable Energy Barrier
	Slide 106: A Network with a Programmable Energy Barrier
	Slide 107: Catalysis
	Slide 108: Catalysis
	Slide 109: Catalysis
	Slide 110: Catalysis
	Slide 111: Catalysis
	Slide 112: Catalysis
	Slide 113: Catalysis
	Slide 114: Catalysis
	Slide 115: Catalysis
	Slide 116: Catalysis
	Slide 117: Catalysis
	Slide 118: Autocatalysis
	Slide 119: Autocatalysis
	Slide 120: Autocatalysis
	Slide 121: Autocatalysis
	Slide 122: Multiple Stable Configurations
	Slide 123: Multiple Stable Configurations
	Slide 124: Multiple Stable Configurations
	Slide 125: Multiple Stable Configurations
	Slide 126: Multiple Stable Configurations
	Slide 127: Multiple Stable Configurations
	Slide 128: Multiple Stable Configurations
	Slide 129: Multiple Stable Configurations
	Slide 130: Multiple Stable Configurations
	Slide 131: Multiple Stable Configurations
	Slide 132: Multiple Stable Configurations
	Slide 133: Directed Catalysis
	Slide 134: Directed Catalysis
	Slide 135: Directed Catalysis
	Slide 136: Social Golfer Problem
	Slide 137: Social Golfer Problem
	Slide 138: Social Golfer Problem
	Slide 139: Social Golfer Problem
	Slide 140: Social Golfer Problem
	Slide 141: (Feasible?) DNA implementation
	Slide 142: (Feasible?) DNA implementation
	Slide 143: (Feasible?) DNA implementation
	Slide 144: (Feasible?) DNA implementation
	Slide 145: (Feasible?) DNA implementation
	Slide 146: (Feasible?) DNA implementation
	Slide 147: (Feasible?) DNA implementation
	Slide 148: (Feasible?) DNA implementation
	Slide 149: (Feasible?) DNA implementation
	Slide 150: (Feasible?) DNA implementation
	Slide 155: Thermodynamic self-assembly
	Slide 156: A modest goal
	Slide 157: A modest goal
	Slide 158: A modest goal
	Slide 159: Difficulty of self-assembling large complexes
	Slide 160: Difficulty of self-assembling large complexes
	Slide 161: Difficulty of self-assembling large complexes
	Slide 162: Difficulty of self-assembling large complexes
	Slide 163: Difficulty of self-assembling large complexes
	Slide 164: Difficulty of self-assembling large complexes
	Slide 165: An even more modest goal
	Slide 166: An even more modest goal
	Slide 167: An even more modest goal
	Slide 168: An even more modest goal
	Slide 169: An even more modest goal
	Slide 170: An even more modest goal
	Slide 171: An even more modest goal
	Slide 172: An even more modest goal
	Slide 173: An even more modest goal
	Slide 174: An even more modest goal
	Slide 175: How large can we make S relative to D and M?
	Slide 176: How large can we make S relative to D and M?
	Slide 177: How large can we make S relative to D and M?
	Slide 178: How large can we make S relative to D and M?
	Slide 179: Stable complexes have at most exponential size
	Slide 180: Easy proof if binding graph is acyclic (tree)
	Slide 181: Easy proof if binding graph is acyclic (tree)
	Slide 182: Easy proof if binding graph is acyclic (tree)
	Slide 183: Easy proof if binding graph is acyclic (tree)
	Slide 184: Easy proof if binding graph is acyclic (tree)
	Slide 185: Monomers as vectors
	Slide 186: Monomers as vectors
	Slide 187: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 188: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 189: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 190: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 191: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 192: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 193: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 194: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 195: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 196: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 197: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 198: Somewhat easy proof that unbounded size complexes cannot be assembled
	Slide 199: A digression into computational complexity
	Slide 200: A digression into computational complexity
	Slide 201: A digression into computational complexity
	Slide 202: A digression into computational complexity
	Slide 203: A digression into computational complexity
	Slide 204: A digression into computational complexity
	Slide 205: A digression into computational complexity
	Slide 206: Farkas’ Lemma
	Slide 207: Farkas’ Lemma
	Slide 208: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 209: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 210: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 211: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 212: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 213: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 214: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 215: How to prove exponential complex size bound for complexes with cycles in binding graph?
	Slide 216: If all monomer types lie on one side of hyperplane h…
	Slide 217: If all monomer types lie on one side of hyperplane h…
	Slide 218: If all monomer types lie on one side of hyperplane h…
	Slide 219: If all monomer types lie on one side of hyperplane h…
	Slide 220: If all monomer types lie on one side of hyperplane h…
	Slide 221: If all monomer types lie on one side of hyperplane h…
	Slide 222: Applying thermodynamic model to tile assembly
	Slide 223: A thermodynamically unstable tile assembly counter
	Slide 224: A thermodynamically unstable tile assembly counter
	Slide 225: A thermodynamically unstable tile assembly counter
	Slide 226: A thermodynamically unstable tile assembly counter
	Slide 227: A thermodynamically unstable tile assembly counter
	Slide 228: A thermodynamically stable tile assembly counter
	Slide 229: Conclusions

