Thermodynamic binding networks

slides © 2021, David Haley and David Doty ECS 232: Theory of Molecular Computation, UC Davis

DNA XARAAAAA

4/41

4/41

short

Bind

Bind

Bind

Displace

Leak in strand displacement experiments

Source: Lulu Qian, Erik Winfree. Scaling Up Digital Circuit Computation Science 332, 2011

Leak in strand displacement experiments

Reducing Leak

[Boya Wang, Chris Thachuk, Andrew Ellington, David Soloveichik. *The Design Space of Strand Displacement Cascades with Toehold-Size Clamps* <u>DNA Computing Conference</u>, 2017]

[Boya Wang, Chris Thachuk, Andrew Ellington, David Soloveichik. *The Design Space of Strand Displacement Cascades with Toehold-Size Clamps* <u>DNA Computing Conference</u>, 2017]

[Boya Wang, Chris Thachuk, Andrew Ellington, David Soloveichik. The Design Space of Strand Displacement Cascades with Toehold-Size Clamps DNA Computing Conference, 2017]

What causes leak "thermodynamically"?

What causes leak "thermodynamically"?

What causes leak "thermodynamically"?

What causes leak "thermodynamically"?

less favorable

more favorable

Geometry-Free Model:

The domains within a monomer are unordered

Monomer = collection of domains Configuration = how monomers are bound

Energetic favorability: Bonds and complexes

all else equal, more bonds = more favorable

Energetic favorability: Bonds and complexes

• in general, there's some weight parameter w:

energy = w*#bonds + #complexes

• in general, there's some weight parameter w:

energy = w*#bonds + #complexes

(physics notation: $\Delta G = \Delta H - T \cdot \Delta S$)

• in general, there's some weight parameter w:

energy = w*#bonds + #complexes

(physics notation: $\Delta G = \Delta H - T \cdot \Delta S$)

- We often consider a natural limiting case:
 - favoring # bonds <u>infinitely</u> over #complexes
 - require maximal #bonds formed; use #complexes only as tiebreaker

• in general, there's some weight parameter w:

energy = w*#bonds + #complexes

(physics notation: $\Delta G = \Delta H - T \cdot \Delta S$)

- We often consider a natural limiting case:
 - favoring # bonds <u>infinitely</u> over #complexes
 - require maximal #bonds formed; use #complexes only as tiebreaker
 - Corresponds to bonds that are so strong they <u>cannot spontaneously dissociate</u>, but can <u>exchange</u> with each other to find configurations with more complexes

saturated = maximum #bonds formed

Saturated

b

b

If we're careful to make starred binding sites limiting, then saturated = all starred sites are bound

Computing via Thermodynamic Equilibrium

- How to compose?
 - We don't know how to prove the previous gate is composable, and used a more complex design in the paper

- How to compose?
 - We don't know how to prove the previous gate is composable, and used a more complex design in the paper
- Want "entropy gap":
 - Need not merely that unwanted configurations are unstable (i.e., if saturated, they have lower entropy), but more strongly that they have <u>much</u> lower entropy.
 - We can use O(n) domain/monomer types to achieve an entropy gap of n.

- How to compose?
 - We don't know how to prove the previous gate is composable, and used a more complex design in the paper
- Want "entropy gap":
 - Need not merely that unwanted configurations are unstable (i.e., if saturated, they have lower entropy), but more strongly that they have <u>much</u> lower entropy.
 - We can use O(n) domain/monomer types to achieve an entropy gap of n.
- Output convention?
 - Obvious one: "there's a unique stable configuration with the correct output"
 - It's problematic, so we have a one-sided convention:
 - if correct output is 0, unique stable configuration with correct answer
 - if correct output is 1, then both the "output=1" and "output=0" configurations are stable

Composable AND gate with entropy gap 3

Rather than release a single output monomer, it suffices to gather all output domains on one complex.
Kinetic pathways and energy barriers

Pathways

Thermodynamics: Which configurations are energetically favorable **Kinetics**: How a system moves between configurations over time

$X \longrightarrow Y + Z$

. . .

h_z*

h_v*

$X \longrightarrow Y + Z$

$X \longrightarrow Y + Z$

$\phi \rightarrow Y + Z$

$\phi \rightarrow Y + Z$

What causes leak "kinetically"?

 $\phi \longrightarrow \mathbf{Y} + \mathbf{Z}$

• Favorability is a combination of bond count and complex count

• Favorability is a combination of bond count and complex count

Weighted average:

Energy := $-w_H$ (# bonds) – (# complexes)

• Favorability is a combination of bond count and complex count

<u>Weighted average:</u> Energy := $-w_H$ (# bonds) - (# complexes)

• Define pathways to consist of merges and splits

• Favorability is a combination of bond count and complex count

<u>Weighted average:</u> Energy := $-w_H$ (# bonds) - (# complexes)

- Define pathways to consist of merges and splits
- But for $w_H \ge 2$, only saturated pathways need be considered

[Keenan Breik, Cameron Chalk, David Doty, David Haley, David Soloveichik. *Programming Substrate-Independent Kinetic Barriers with Thermodynamic Binding Networks*. <u>Computational Methods in Systems Biology</u> 2018]

• Favorability is a combination of bond count and complex count

<u>Weighted average:</u> Energy := $-w_{H}$ (# bonds) - (# complexes)

- Define pathways to consist of merges and splits
- But for $w_H \ge 2$, only saturated pathways need be considered

Since all saturated configurations have an equal number of bonds, we can focus solely on the number of complexes

[Keenan Breik, Cameron Chalk, David Doty, David Haley, David Soloveichik. *Programming Substrate-Independent Kinetic Barriers with Thermodynamic Binding Networks*. <u>Computational Methods in Systems Biology</u> 2018]

$x_{11} x_{12} x_{13} x_{14}$	x ₁₁ *	x ₁₂ *	x ₁₃ *	x ₁₄ *	x ₁₁	x ₁₂	х ₁₃	x ₁₄
x ₂₁ x ₂₂ x ₂₃ x ₂₄	x ₂₁ *	x ₂₂ *	x ₂₃ *	x ₂₄ *	x ₂₁	x ₂₂	x ₂₃	x ₂₄
X ₃₁ X ₃₂ X ₃₃ X ₃₄	x ₃₁ *	x ₃₂ *	x ₃₃ *	x ₃₄ *	х ₃₁	х ₃₂	х ₃₃	x ₃₄
x ₄₁ x ₄₂ x ₄₃ x ₄₄	x ₄₁ *	x ₄₂ *	x ₄₃ *	x ₄₄ *	x ₄₁	x ₄₂	х ₄₃	x ₄₄

progress

30

X₁₁

X21

X₄₃

^44

X₄₂

progress

(X₄₁)

(X₄₂)

31

x₂₁

X₃₁

. X₄₁

X₁₂

X₂₂

X₃₂

(X₄₂)

x₂₁

X₃₁

x₄₁

x ₁₂	x ₁₃	x ₁₄
x ₂₂	x ₂₃	x ₂₄
х ₃₂	х ₃₃	х ₃₄
x ₄₂	х ₄₃	х ₄₄
	x ₁₂ x ₂₂ x ₃₂ x ₄₂	x ₁₂ x ₁₃ x ₂₂ x ₂₃ x ₃₂ x ₃₃ x ₄₂ x ₄₃

Along a catalyzed pathway, the barrier is 1

 Can 25 (n²) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no two golfers play together more than once?

- Can 25 (n²) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no two golfers play together more than once?
- First studied by Euler.

- Can 25 (n²) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no two golfers play together more than once?
- First studied by Euler.
- True if *n* is a prime power (2,3,4,5,7,8,9,11,13,...)

- Can 25 (n²) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no two golfers play together more than once?
- First studied by Euler.
- True if *n* is a prime power (2,3,4,5,7,8,9,11,13,...)
- False for smallest non-prime power *n*=6: can only play for 3 days! [Gaston Tarry (1901). "Le Probléme des 36 Officiers". *Compte Rendu de l'Association Française pour l'Avancement des Sciences*. Secrétariat de l'Association. 2: 170–203.]

- Can 25 (n²) golfers play in 5-somes (n-somes) for 6 (n+1) days, so that no two golfers play together more than once?
- First studied by Euler.
- True if *n* is a prime power (2,3,4,5,7,8,9,11,13,...)
- False for smallest non-prime power *n*=6: can only play for 3 days! [Gaston Tarry (1901). "Le Probléme des 36 Officiers". *Compte Rendu de l'Association Française pour l'Avancement des Sciences*. Secrétariat de l'Association. 2: 170–203.]
- Unknown for next prime power *n*=10:
 - trivial upper bound is 11 days
 - best known lower bound is 3

Thermodynamic self-assembly

Grafting the TBN model onto self-assembly

A modest goal

- Informal: Design monomers that self-assemble arbitrarily large complexes.
 - <u>size of a complex</u> = # monomers in the complex

A modest goal

- Informal: Design monomers that self-assemble arbitrarily large complexes.
 - <u>size of a complex</u> = # monomers in the complex
- Formal: Design a set of monomer types so that, for all *S* ∈ N, there is a stable complex of size at least *S*.

A modest goal

- Informal: Design monomers that self-assemble arbitrarily large complexes.
 - <u>size of a complex</u> = # monomers in the complex
- Formal: Design a set of monomer types so that, for all *S* ∈ N, there is a stable complex of size at least *S*.
- Easy to do in Abstract Tile Assembly Model:

attempt 2:

attempt 2:

attempt 2:

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least *S*.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S.

Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S.

Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S.

Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

How large can we make S relative to D and M?

D,M = O(1), S = arbitrarily large

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S. and O(1) domains per monomer

Re-Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

How large can we make S relative to D and M?

D,M = O(1), S = arbitrarily large

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S. and O(1) domains per monomer

Re-Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

How large can we make S relative to D and M?

D,M = O(1), S = arbitrarily large $d^* a^* d^* d^* d^* d^*$ $S \approx D$

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S. and O(1) domains per monomer

Re-Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S. and O(1) domains per monomer

Re-Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

How large can we make *S* relative to *D* and *M*?

 $S \approx D^2$

$$D,M = O(1), S = \text{arbitrarily large}$$

$$S \approx D$$

$$d^* a^* d^* d^* d^* d^* d^* d^*$$

$$d_1^* + d_1 d_2^* + d_2 d_3^* + d_3 d_4^* + d_4$$

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S. and O(1) domains per monomer

Re-Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

How large can we make *S* relative to *D* and *M*?

$$D, M = O(1), S = \text{arbitrarily large}$$

$$S \approx D$$

$$d^* a^* d^* d^* d^* d^* d^*$$

$$d^* d^* d^* d^* d^*$$

$$d_1^* + d_1 d_2^* + d_2 d_3^* + d_3 d_4^* + d_4$$

$$c_1 d_1^* - d_1 c_1 d_2^* - d_2 c_1 d_3^* - d_3 c_1$$

 $S \approx D^2$

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S. and O(1) domains per monomer

Re-Revised goal: For all $S \in \mathbb{N}$, design a set of *M* monomer types using *D* domain types with a stable complex of size at least *S*.

$$S \approx 2^D$$
?

Stable complexes have at most exponential size

Theorem: Any thermodynamic binding network with

- D domain types,
- *M* monomer types,
- $\leq A$ domains per monomer type

(note $D/A \leq M \leq A^{D+1}$)

Has stable complexes of size $\leq 2(M+D)(AD)^{2D+3} = \text{poly}(D^D)$ if A = O(1)

• Since monomers have O(1) domains, binding graph is bounded degree

- Since monomers have O(1) domains, binding graph is bounded degree
- # nodes of tree is at most exponential in depth (longest path length ≤ 2·depth)

- Since monomers have O(1) domains, binding graph is bounded degree
- # nodes of tree is at most exponential in depth (longest path length ≤ 2·depth)
- If some path has > 2D edges, it must repeat some ordered pair (d_i,d_i*) or (d_i*,d_i)

- Since monomers have O(1) domains, binding graph is bounded degree
- # nodes of tree is at most exponential in depth (longest path length ≤ 2·depth)
- If some path has > 2D edges, it must repeat some ordered pair (d_i,d_i*) or (d_i*,d_i)
- Break into two saturated complexes as shown.

Monomers as vectors

• monomer {a, b*,b*, d,d,d,d*, e,e*} represented as (1,-2,0,3,0)

Monomers as vectors

- monomer {a, b*,b*, d,d,d,d*, e,e*} represented as (1,-2,0,3,0)
- sum of many monomers gives the number of excess domains in a fully bound (saturated) complex with those monomers
 - i.e., 2 copies of above monomer 2·(1,-2,0,3,0) = (2,-4,0,6,0) have an excess of 2 a's, 4 b*'s, 0 c's, 6 d's, 0 e's
Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.
 - 1. P_i is composed of monomers m_{1i} , m_{2i} , ..., m_{ki} .

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.
 - 1. P_i is composed of monomers m_{1i} , m_{2i} , ..., m_{ki} .
 - 2. Let $S_i = m_{1i} + m_{2i} + ... + m_{ki}$. Note that there is a $m \ge d$ matrix M such that $S_i = M \cdot P_i$,

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.
 - 1. P_i is composed of monomers m_{1i} , m_{2i} , ..., m_{ki} .
 - 2. Let $S_i = m_{1i} + m_{2i} + ... + m_{ki}$. Note that there is a $m \ge d$ matrix M such that $S_i = M \cdot P_i$,
- 3. Take several infinite subsequences:

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.
 - 1. P_i is composed of monomers m_{1i} , m_{2i} , ..., m_{ki} .
 - 2. Let $S_i = m_{1i} + m_{2i} + ... + m_{ki}$. Note that there is a $m \ge d$ matrix M such that $S_i = M \cdot P_i$,
- 3. Take several infinite subsequences:
 - 1. Since there are a finite number of domain types, some infinite subsequence of *P*_i's agrees on which set of domain types are unbound.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.
 - 1. P_i is composed of monomers m_{1i} , m_{2i} , ..., m_{ki} .
 - 2. Let $S_i = m_{1i} + m_{2i} + ... + m_{ki}$. Note that there is a $m \ge d$ matrix M such that $S_i = M \cdot P_i$,
- 3. Take several infinite subsequences:
 - 1. Since there are a finite number of domain types, some infinite subsequence of P_i 's agrees on which set of domain types are unbound.
 - 2. By Dickson's Lemma we may assume $P_1 < P_2 < ...$ and $S_1 < S_2 < ...$ i.e., each has all the monomers of the previous, plus some more, and each has all the unbound domains of the previous, plus some more.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.
 - 1. P_i is composed of monomers m_{1i} , m_{2i} , ..., m_{ki} .
 - 2. Let $S_i = m_{1i} + m_{2i} + ... + m_{ki}$. Note that there is a $m \ge d$ matrix M such that $S_i = M \cdot P_i$,
- 3. Take several infinite subsequences:
 - 1. Since there are a finite number of domain types, some infinite subsequence of *P*_i's agrees on which set of domain types are unbound.
 - 2. By Dickson's Lemma we may assume $P_1 < P_2 < ...$ and $S_1 < S_2 < ...$ i.e., each has all the monomers of the previous, plus some more, and each has all the unbound domains of the previous, plus some more.
- 4. Let $d = P_2 P_1$. Then $M \cdot d = M \cdot P_2 M \cdot P_1 = S_2 S_1 \ge 0$.

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.
 - 1. P_i is composed of monomers m_{1i} , m_{2i} , ..., m_{ki} .
 - 2. Let $S_i = m_{1i} + m_{2i} + ... + m_{ki}$. Note that there is a $m \ge d$ matrix M such that $S_i = M \cdot P_i$,
- 3. Take several infinite subsequences:
 - 1. Since there are a finite number of domain types, some infinite subsequence of P_i 's agrees on which set of domain types are unbound.
 - 2. By Dickson's Lemma we may assume $P_1 < P_2 < ...$ and $S_1 < S_2 < ...$ i.e., each has all the monomers of the previous, plus some more, and each has all the unbound domains of the previous, plus some more.
- 4. Let $d = P_2 P_1$. Then $M \cdot d = M \cdot P_2 M \cdot P_1 = S_2 S_1 \ge 0$.
- 5. i.e., $S_2 = S_1 + M \cdot d$ and all three are nonnegative,

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex *P* of size $\geq S$.

Theorem: Original goal is impossible.

- 1. Suppose otherwise, let $P_1, P_2, ...$ in \mathbb{N}^m be an infinite sequence of stable complexes increasing in size. *m* is number of monomer types, $P_i(j) = \#$ monomers of type j in complex P_i .
- 2. Represent each monomer type as a vector in \mathbb{Z}^d as on previous slide.
 - 1. P_i is composed of monomers m_{1i} , m_{2i} , ..., m_{ki} .
 - 2. Let $S_i = m_{1i} + m_{2i} + ... + m_{ki}$. Note that there is a $m \ge d$ matrix M such that $S_i = M \cdot P_i$,
- 3. Take several infinite subsequences:
 - 1. Since there are a finite number of domain types, some infinite subsequence of P_i 's agrees on which set of domain types are unbound.
 - 2. By Dickson's Lemma we may assume $P_1 < P_2 < ...$ and $S_1 < S_2 < ...$ i.e., each has all the monomers of the previous, plus some more, and each has all the unbound domains of the previous, plus some more.
- 4. Let $d = P_2 P_1$. Then $M \cdot d = M \cdot P_2 M \cdot P_1 = S_2 S_1 \ge 0$.
- 5. i.e., $S_2 = S_1 + M \cdot d$ and all three are nonnegative,
- 6. i.e., we can split S_2 into 2 disjoint nonempty nonnegative subsets, S_1 and $M \cdot d$. **QED**

• INTEGER-PROGRAMMING problem

<u>Given</u>: integer matrix **A**, integer vector **b**

<u>Question</u>: is there a nonnegative integer vector **x** such that **Ax** = **b**?

• INTEGER-PROGRAMMING problem

<u>Given</u>: integer matrix **A**, integer vector **b**

<u>Question</u>: is there a nonnegative integer vector **x** such that **Ax** = **b**?

• 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).

• INTEGER-PROGRAMMING problem

<u>Given</u>: integer matrix **A**, integer vector **b**

<u>Question</u>: is there a nonnegative integer vector **x** such that **Ax** = **b**?

- 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).
- <u>Non-obvious fact</u>: INTEGER-PROGRAMMING is in **NP**. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

• INTEGER-PROGRAMMING problem

<u>Given</u>: integer matrix **A**, integer vector **b**

<u>Question</u>: is there a nonnegative integer vector **x** such that **Ax** = **b**?

- 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).
- <u>Non-obvious fact</u>: INTEGER-PROGRAMMING is in **NP**. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If Ax = b has a solution, it has a "small" solution... $\max_i x_i \le \exp(\max_{ij}(A_{ij}, b_j))$

• INTEGER-PROGRAMMING problem

<u>Given</u>: integer matrix **A**, integer vector **b**

<u>Question</u>: is there a nonnegative integer vector **x** such that **Ax** = **b**?

- 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).
- <u>Non-obvious fact</u>: INTEGER-PROGRAMMING is in NP. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])
 If Ax = b bas a solution, it bas a "small" solution, max x < oxp(max (A, b))

If **Ax** = **b** has a solution, it has a "small" solution... max_i **x**_i ≤ exp(max_{ij}(**A**_{ij},**b**_j))

- Papadimitriou's proof: [On the complexity of integer programming. Papadimitriou, JACM 1981]
 - If **x** is a *large enough* solution, there is 0 < y < x, $y \in \mathbb{N}^m$, such that Ay = 0.

• INTEGER-PROGRAMMING problem

<u>Given</u>: integer matrix **A**, integer vector **b**

<u>Question</u>: is there a nonnegative integer vector **x** such that **Ax** = **b**?

- 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).
- <u>Non-obvious fact</u>: INTEGER-PROGRAMMING is in **NP**. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978]) If Ax = b has a solution, it has a "small" solution... $\max_i x_i \le \exp(\max_{ij}(A_{ij}, b_j))$
- Papadimitriou's proof: [On the complexity of integer programming. Papadimitriou, JACM 1981]
 - If **x** is a *large enough* solution, there is $0 < y < x, y \in \mathbb{N}^m$, such that Ay = 0.
 - Defining $\mathbf{z} = \mathbf{x} \mathbf{y}$, $\mathbf{A}\mathbf{z} = \mathbf{A}(\mathbf{x} \mathbf{y}) = \mathbf{A}\mathbf{x} \mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{x} \mathbf{0} = \mathbf{b}$.

• INTEGER-PROGRAMMING problem

<u>Given</u>: integer matrix **A**, integer vector **b**

<u>Question</u>: is there a nonnegative integer vector **x** such that **Ax** = **b**?

- 0/1-INTEGER-PROGRAMMING is NP-complete (Karp 1972).
- <u>Non-obvious fact</u>: INTEGER-PROGRAMMING is in **NP**. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978]) If Ax = b has a solution, it has a "small" solution... $\max_i x_i \le \exp(\max_{ij}(A_{ij}, b_j))$
- Papadimitriou's proof: [On the complexity of integer programming. Papadimitriou, JACM 1981]
 - If **x** is a *large enough* solution, there is $\mathbf{0} < \mathbf{y} < \mathbf{x}$, $\mathbf{y} \in \mathbb{N}^m$, such that $\mathbf{A}\mathbf{y} = \mathbf{0}$.
 - Defining z = x y, Az = A(x y) = Ax Ay = Ax 0 = b.
 - So z is a strictly smaller solution than x: x cannot be the *smallest* solution.

Farkas' Lemma

Given vectors \mathbf{m}_1 , \mathbf{m}_2 , ..., they obey one of two constraints:

a) are directions of balanced forces b) lie on one side of some hyperplane

Farkas' Lemma

Given vectors \mathbf{m}_1 , \mathbf{m}_2 , ..., they obey one of two constraints:

a) are directions of balanced forces b)

b) lie on one side of some hyperplane

 A = d x m matrix: A_{ij} = monomer m_j's excess of domain d_i over d_i*

- A = d x m matrix: A_{ij} = monomer m_j's excess of domain d_i over d_i*
- If Ac = b, then b_i = total # unbound d_i in any saturated configuration of c

- A = d x m matrix: A_{ij} = monomer m_j's excess of domain d_i over d_i*
- If Ac = b, then b_i = total # unbound d_i in any saturated configuration of c

- A = d x m matrix: A_{ij} = monomer m_j's excess of domain d_i over d_i*
- If Ac = b, then b_i = total # unbound d_i in any saturated configuration of c
- If |c| > exponential in D, Papadimtriou's proof gives us subcollection y < c such that Ay = 0, (Farkas' Lemma says that if this fails, then monomer vectors all lie on one side of a hyperplane, see next slide)

- A = d x m matrix: A_{ij} = monomer m_j's excess of domain d_i over d_i*
- If Ac = b, then b_i = total # unbound d_i in any saturated configuration of c
- If |c| > exponential in D, Papadimtriou's proof gives us subcollection y < c such that Ay = 0, (Farkas' Lemma says that if this fails, then monomer vectors all lie on one side of a hyperplane, see next slide)
- i.e., $\#d_i$ in $\mathbf{y} = \#d_i^*$ in \mathbf{y} , so \mathbf{y} is self-saturating.

- A = d x m matrix: A_{ij} = monomer m_j's excess of domain d_i over d_i*
- If Ac = b, then b_i = total # unbound d_i in any saturated configuration of c
- If |c| > exponential in D, Papadimtriou's proof gives us subcollection y < c such that Ay = 0, (Farkas' Lemma says that if this fails, then monomer vectors all lie on one side of a hyperplane, see next slide)
- i.e., $#d_i$ in $y = #d_i^*$ in y, so y is self-saturating.
- So whatever bonds were broken to separate y can be <u>re-bound within y</u>.

- A = d x m matrix: A_{ij} = monomer m_j's excess of domain d_i over d_i*
- If Ac = b, then b_i = total # unbound d_i in any saturated configuration of c
- If |c| > exponential in D, Papadimtriou's proof gives us subcollection y < c such that Ay = 0, (Farkas' Lemma says that if this fails, then monomer vectors all lie on one side of a hyperplane, see next slide)
- i.e., $#d_i$ in $y = #d_i^*$ in y, so y is self-saturating.
- So whatever bonds were broken to separate y can be <u>re-bound within y</u>.
- By symmetry, the same bonds in z = c y can be rebound within z.

monomer collection $\mathbf{c} \in \mathbb{N}^{M}$

49

Consider "slack monomers" {d₁*}, {d₂*},..., adding just enough to bind to all the excess d_i domains, so saturated (fully bound) == all domains bound

- Consider "slack monomers" {d₁*}, {d₂*},..., adding just enough to bind to all the excess d_i domains, so saturated (fully bound) == all domains bound
- If c is count of all monomers including slack monomers (c(i) = count of m_i), then
 Ac = 0, where each column of A represents a monomer (counts of domains).

- Consider "slack monomers" {d₁*}, {d₂*},..., adding just enough to bind to all the excess d_i domains, so saturated (fully bound) == all domains bound
- If c is count of all monomers including slack monomers (c(i) = count of m_i), then
 Ac = 0, where each column of A represents a monomer (counts of domains).
- dot-product **h** on both sides: $\mathbf{h} \cdot \mathbf{Ac} = \mathbf{h} \cdot \mathbf{0} = 0$, distribute through: $\sum_{i} (\mathbf{h} \cdot \mathbf{m}_{i}) \mathbf{c}(i) = 0$

- Consider "slack monomers" {d₁*}, {d₂*},..., adding just enough to bind to all the excess d_i domains, so saturated (fully bound) == all domains bound
- If c is count of all monomers including slack monomers (c(i) = count of m_i), then
 Ac = 0, where each column of A represents a monomer (counts of domains).
- dot-product **h** on both sides: $\mathbf{h} \cdot \mathbf{Ac} = \mathbf{h} \cdot \mathbf{0} = 0$, distribute through: $\sum_{i} (\mathbf{h} \cdot \mathbf{m}_{i}) \mathbf{c}(i) = 0$
- Let S be set of monomers with "small" counts, move them to one side:

$$-\sum_{i\in S} (\mathbf{h} \cdot \mathbf{m}_i) \mathbf{c}(i) = \sum_{i\notin S} (\mathbf{h} \cdot \mathbf{m}_i) \mathbf{c}(i)$$

- Consider "slack monomers" {d₁*}, {d₂*},..., adding just enough to bind to all the excess d_i domains, so saturated (fully bound) == all domains bound
- If c is count of all monomers including slack monomers (c(i) = count of m_i), then
 Ac = 0, where each column of A represents a monomer (counts of domains).
- dot-product **h** on both sides: $\mathbf{h} \cdot \mathbf{Ac} = \mathbf{h} \cdot \mathbf{0} = 0$, distribute through: $\sum_{i} (\mathbf{h} \cdot \mathbf{m}_{i}) \mathbf{c}(i) = 0$
- Let S be set of monomers with "small" counts, move them to one side:

 $-\sum_{i \in S} (\mathbf{h} \cdot \mathbf{m}_i) \mathbf{c}(i) = \sum_{i \notin S} (\mathbf{h} \cdot \mathbf{m}_i) \mathbf{c}(i)$

• Then "small" $\geq -\sum_{i \in S} (\mathbf{h} \cdot \mathbf{m}_i) \mathbf{c}(i) = \sum_{i \notin S} (\mathbf{h} \cdot \mathbf{m}_i) \mathbf{c}(i) \geq \sum_{i \notin S} \mathbf{c}(i)$ **c**(i) (count of i'th monomer) is above since $\mathbf{h} \cdot \mathbf{m}_i \geq 1$ small by definition, and $\mathbf{h} \cdot \mathbf{m}_i = O(1)$

Applying thermodynamic model to tile assembly

- Let's incorporate the thermodynamic binding network model into the abstract tile assembly model.
- How can we create a large assembly from a small number of tile types?

С

С

С

s₀₁

C

0*

С

С

С

n

0

С

С

Difference is that each row (corresponding to bits of the same significance) has glues labeled with the row number

Conclusions

- Strong bonds (surprisingly) aren't sufficient to self-assemble large thermodynamically stable structures. *Geometry helps*!
- Kinetically self-assembling a thermodynamically stable structure has very strong guarantees on errors:
 - target structure eventually results despite arbitrary kinetic errors.
 - If it's the only stable structure, and free energy of other structures is much less, then it's the only result you'll see.
- Bad news: **NP**-complete to tell if a given configuration is unstable... even **NP**-hard to approximate entropy of stable configuration:

[Breik, Thachuk, Heule, Soloveichik, *Computing properties of stable configurations of thermodynamic binding networks*, <u>Theoretical Computer Science</u> 2019]