Thermodynamic binding networks

slides © 2021, David Haley and David Doty
ECS 232: Theory of Molecular Computation, UC Davis

Representing Information with Molecules

In an electronic circuit, voltage can represent Boolean input

Representing Information with Molecules

Representing Information with Molecules

In a well-mixed solution, concentration can represent Boolean input

Representing Information with Molecules

In a well-mixed solution, concentration can represent Boolean input

Chemical Identity Gate: Idealized vs. Actual Behavior

Experimental Implementation of Chemical Logic

Chemical Identity Gate: Idealized vs. Actual Behavior

Experimental Implementation of Chemical Logic

Chemical Identity Gate: Idealized vs. Actual Behavior

Experimental Implementation of Chemical Logic

Output

(Don't worry about the details in the pictures above)

Chemical Identity Gate: Idealized vs. Actual Behavior

Experimental Implementation of Chemical Logic

(Don't worry about the details in the pictures above)

Levels of Abstraction

Levels of Abstraction

DNA
20000000

Levels of Abstraction

DNA \downarrow

Base Pairs

Levels of Abstraction

Levels of Abstraction

Levels of Abstraction

DNA strand displacement

DNA strand displacement
Bind

DNA strand displacement
Bind

DNA strand displacement
Bind

DNA strand displacement

Bind

DNA strand displacement

Bind

Displace

Release

$X \rightarrow Y+Z$

$$
\begin{aligned}
& X \rightarrow Y+Z
\end{aligned}
$$

$X \rightarrow Y+Z$

$$
X \rightarrow Y+Z
$$

$X \rightarrow Y+Z$

Leak in strand displacement experiments

$y_{2} y_{1}=\left\lfloor\sqrt{x_{4} x_{3} x_{2} x_{1}}\right\rfloor$

Source
Lulu Qian, Erik Winfree. Scaling Up Digital Circuit Computation Science 332, 2011

Leak in strand displacement experiments

Source:
Lulu Qian, Erik Winfree. Scaling Up Digital Circuit Computation Science 332, 2011

Reducing Leak

$N=6$
shift $=1$

[Boya Wang, Chris Thachuk, Andrew Ellington, David Soloveichik. The Design Space of Strand Displacement Cascades with Toehold-Size Clamps DNA Computing Conference, 2017]

Reducing Leak

Intended:
$N=6$
shift $=1$
shift $=1$

$\mathrm{F}_{5} \longrightarrow \square$
ream $\square \square \mid \square$
[Boya Wang, Chris Thachuk, Andrew Ellington, David Soloveichik. The Design Space of Strand Displacement Cascades with Toehold-Size Clamps DNA Computing Conference, 2017]

Reducing Leak

Intended:

$N=6$
 shift $=1$

Leak:
(a) ${ }^{1600}$

$$
X \rightarrow Y+Z
$$

What causes leak "kinetically"?

$$
\emptyset \longrightarrow Y+Z
$$

What causes leak "kinetically"?

What causes leak "kinetically"?

$$
\emptyset \longrightarrow Y+Z
$$

What causes leak "thermodynamically"?

After:

What causes leak "thermodynamically"?

What causes leak "thermodynamically"?

What causes leak "thermodynamically"?

Need a kinetic binding network model

Need a kinetic binding network model

- Can we design pathways that maintain local stability?

Need a kinetic binding network model

- Can we design pathways that maintain local stability?

Need a kinetic binding network model

- Can we design pathways that maintain local stability?

Need a kinetic binding network model

- Can we design pathways that maintain local stability?

Levels of Abstraction

Base Pairs

Strands

Levels of Abstraction

Base Pairs

Strands
\downarrow
Thermodynamic Binding Network

Thermodynamic Binding Networks

Geometry-Free Model:
The domains within a monomer are unordered

Monomer = collection of domains
Configuration = how monomers are bound

Energetic favorability: Bonds and complexes

all else equal,
more bonds
= more favorable

Energetic favorability: Bonds and complexes

```
all else equal,
more bonds
= more favorable
```

all else equal, more complexes
= more favorable

Tradeoff between \#bonds and \#complexes

Tradeoff between \#bonds and \#complexes

- in general, there's some weight parameter w:
energy = w*\#bonds + \#complexes

Tradeoff between \#bonds and \#complexes

- in general, there's some weight parameter w:
energy $=\mathrm{w}^{*} \#$ bonds + \#complexes
(physics notation: $\Delta G=\Delta H-T \cdot \Delta S$)

Tradeoff between \#bonds and \#complexes

- in general, there's some weight parameter w :
energy $=\mathrm{w}^{*} \#$ bonds + \#complexes
(physics notation: $\Delta G=\Delta H-T \cdot \Delta S$)
- We often consider a natural limiting case:
- favoring \# bonds infinitely over \#complexes
- require maximal \#bonds formed; use \#complexes only as tiebreaker

Tradeoff between \#bonds and \#complexes

- in general, there's some weight parameter w :
energy $=\mathrm{w}^{*}$ \#bonds + \#complexes
(physics notation: $\Delta G=\Delta H-T \cdot \Delta S$)
- We often consider a natural limiting case:
- favoring \# bonds infinitely over \#complexes
- require maximal \#bonds formed; use \#complexes only as tiebreaker
- Corresponds to bonds that are so strong they cannot spontaneously dissociate, but can exchange with each other to find configurations with more complexes

Thermodynamic Binding Networks

Thermodynamic Binding Networks

saturated = maximum \#bonds formed

Thermodynamic Binding Networks

saturated = maximum \#bonds formed
stable = saturated, AND maximum \#complexes

Saturated

Thermodynamic Binding Networks

Saturated

If we're careful to make starred binding sites limiting, then
saturated = all starred sites are bound

Computing via Thermodynamic Equilibrium

AND gate

Issues with Boolean logic

Issues with Boolean logic

- How to compose?
- We don't know how to prove the previous gate is composable, and used a more complex design in the paper

Issues with Boolean logic

- How to compose?
- We don't know how to prove the previous gate is composable, and used a more complex design in the paper
- Want "entropy gap":
- Need not merely that unwanted configurations are unstable (i.e., if saturated, they have lower entropy), but more strongly that they have much lower entropy.
- We can use $O(n)$ domain/monomer types to achieve an entropy gap of n.

Issues with Boolean logic

- How to compose?
- We don't know how to prove the previous gate is composable, and used a more complex design in the paper
- Want "entropy gap":
- Need not merely that unwanted configurations are unstable (i.e., if saturated, they have lower entropy), but more strongly that they have much lower entropy.
- We can use $O(n)$ domain/monomer types to achieve an entropy gap of n.
- Output convention?
- Obvious one: "there's a unique stable configuration with the correct output"
- It's problematic, so we have a one-sided convention:
- if correct output is 0 , unique stable configuration with correct answer
- if correct output is 1 , then both the "output=1" and "output=0" configurations are stable

Composable AND gate with entropy gap 3

Rather than release a single output monomer, it suffices to gather all output domains on one complex.

Kinetic pathways and energy barriers

Pathways

Thermodynamics: Which configurations are energetically favorable Kinetics: How a system moves between configurations over time

$$
X \rightarrow Y+Z
$$

$$
X \rightarrow Y+Z
$$

$n_{x} \mid x$

$$
X \rightarrow Y+Z
$$

$n_{x} \mid x$

$$
X \rightarrow Y+Z
$$

$n_{x} \mid x$

$$
X \rightarrow Y+Z
$$

$$
X \rightarrow Y+Z
$$

$$
X \rightarrow Y+Z
$$

$$
X \rightarrow Y+Z
$$

$$
X \rightarrow Y+Z
$$

$$
\varnothing \rightarrow Y+Z
$$

$$
\varnothing \rightarrow Y+Z
$$

$$
\varnothing \rightarrow Y+Z
$$

What causes leak "kinetically"?

$$
\varnothing \rightarrow Y+Z
$$

n_{2}	2

Kinetic Binding Networks

Kinetic Binding Networks

- Favorability is a combination of bond count and complex count

Kinetic Binding Networks

- Favorability is a combination of bond count and complex count
$\underline{\text { Weighted average: }}$
Energy $:=-\mathrm{w}_{\mathrm{H}}(\#$ bonds $)-(\#$ complexes $)$

Kinetic Binding Networks

- Favorability is a combination of bond count and complex count
$\underline{\text { Weighted average: }}$
Energy $:=-\mathrm{w}_{\mathrm{H}}(\#$ bonds $)-(\#$ complexes $)$
- Define pathways to consist of merges and splits

Kinetic Binding Networks

- Favorability is a combination of bond count and complex count
$\underline{\text { Weighted average: }}$
Energy := $-\mathrm{w}_{\mathrm{H}}(\#$ bonds $)-(\#$ complexes $)$
- Define pathways to consist of merges and splits
- But for $w_{H} \geq 2$, only saturated pathways need be considered

Kinetic Binding Networks

- Favorability is a combination of bond count and complex count

$$
\begin{gathered}
\frac{\text { Weighted average: }}{\text { Energy }:=}-\mathrm{W}_{\mathrm{H}}(\# \text { bonds })-(\# \text { complexes })
\end{gathered}
$$

- Define pathways to consist of merges and splits
- But for $w_{H} \geq 2$, only saturated pathways need be considered

Since all saturated configurations have an equal number of bonds, we can focus solely on the number of complexes

Large Energy Barriers

Large Energy Barriers

Large Energy Barriers

A Network with a Programmable Energy Barrier

A Network with a Programmable Energy Barrier

A Network with a Programmable Energy Barrier

A Network with a Programmable Energy Barrier

A Network with a Programmable Energy Barrier

A Network with a Programmable Energy Barrier

A Network with a Programmable Energy Barrier

Catalysis

x_{31}	x_{32}	x_{33}	x_{34}

Split
(more favorable)

Catalysis

x_{11}	x_{12}	x_{13}	x_{14}

x_{21}	x_{22}	x_{23}	x_{24}

x_{31}	x_{32}	x_{33}	x_{34}

Split
(more favorable)

Catalysis

x_{11}	x_{12}	x_{13}	x_{14}

x_{21}	x_{22}	x_{23}	x_{24}

x_{31}	x_{32}	x_{33}	x_{34}

Split
(more favorable)

Catalysis

Autocatalysis

Autocatalysis

Autocatalysis

Autocatalysis

Multiple Stable Configurations

For a grid of prime size $n \times n$, there can be at most $n+1$ different stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

For a grid of prime size $n \times n$, there can be at most $n+1$ different stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

For a grid of prime size $n \times n$, there can be at most $n+1$ different stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

For a grid of prime size $n \times n$, there can be at most $n+1$ different stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

For a grid of prime size $n \times n$, there can be at most $n+1$ different stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

For a grid of prime size $n \times n$, there can be at most $n+1$ different stable configurations with barrier n to pass between any of them

Multiple Stable Configurations

For a grid of prime size $n \times n$, there can be at most $n+1$ different stable configurations with barrier n to pass between any of them

Directed Catalysis

Directed Catalysis

Along a catalyzed pathway, the barrier is 1

Directed Catalysis

Along a catalyzed pathway, the barrier is 1 Otherwise the barrier is $\mathrm{n} / 2$

Social Golfer Problem

- Can $25\left(n^{2}\right)$ golfers play in 5 -somes (n-somes) for $6(n+1)$ days, so that no two golfers play together more than once?

Social Golfer Problem

- Can $25\left(n^{2}\right)$ golfers play in 5 -somes (n-somes) for $6(n+1)$ days, so that no two golfers play together more than once?
- First studied by Euler.

Social Golfer Problem

- Can $25\left(n^{2}\right)$ golfers play in 5 -somes (n-somes) for $6(n+1)$ days, so that no two golfers play together more than once?
- First studied by Euler.
- True if n is a prime power ($2,3,4,5,7,8,9,11,13, \ldots$)

Social Golfer Problem

- Can $25\left(n^{2}\right)$ golfers play in 5 -somes (n-somes) for $6(n+1)$ days, so that no two golfers play together more than once?
- First studied by Euler.
- True if n is a prime power ($2,3,4,5,7,8,9,11,13, \ldots$)
- False for smallest non-prime power $n=6$: can only play for 3 days! [Gaston Tarry (1901). "Le Probléme des 36 Officiers". Compte Rendu de l'Association Française pour l'Avancement des Sciences. Secrétariat de l'Association. 2: 170-203.]

Social Golfer Problem

- Can $25\left(n^{2}\right)$ golfers play in 5 -somes (n-somes) for $6(n+1)$ days, so that no two golfers play together more than once?
- First studied by Euler.
- True if n is a prime power ($2,3,4,5,7,8,9,11,13, \ldots$)
- False for smallest non-prime power $n=6$: can only play for 3 days! [Gaston Tarry (1901). "Le Probléme des 36 Officiers". Compte Rendu de l'Association Française pour l'Avancement des Sciences. Secrétariat de l'Association. 2: 170-203.]
- Unknown for next prime power $n=10$:
- trivial upper bound is 11 days
- best known lower bound is 3

(Feasible?) DNA implementation

(Feasible?) DNA implementation

(Feasible?) DNA implementation

(Feasible?) DNA implementation

(Feasible?) DNA implementation

(Feasible?) DNA implementation

(Feasible?) DNA implementation

(Feasible?) DNA implementation

(Feasible?) DNA implementation

(Feasible?) DNA implementation

Thermodynamic self-assembly

Grafting the TBN model onto self-assembly

A modest goal

- Informal: Design monomers that self-assemble arbitrarily large complexes.
- size of a complex $=\#$ monomers in the complex

A modest goal

- Informal: Design monomers that self-assemble arbitrarily large complexes.
- size of a complex $=$ \# monomers in the complex
- Formal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S.

A modest goal

- Informal: Design monomers that self-assemble arbitrarily large complexes.
- size of a complex $=\#$ monomers in the complex
- Formal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S.
- Easy to do in Abstract Tile Assembly Model:

Difficulty of self-assembling large complexes

Difficulty of self-assembling large complexes

Difficulty of self-assembling large complexes

attempt 2:

Difficulty of self-assembling large complexes

attempt 2:

Difficulty of self-assembling large complexes

attempt 2:

Difficulty of self-assembling large complexes

more complexes \Rightarrow higher entropy \Rightarrow more stable

These have more complexes, and each is self-saturating (every domain can be bound within the complex)
attempt 2:

An even more modest goal

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex of size at least S.

An even more modest goal

Original goal: Design aset of momes so that, for all $S \subset \mathbb{N}$, there is a stable--complex of size at least S.

Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types with a stable complex of size at least S.

An even more modest goal

Original goal: Design aset of momes so that, for all $S \subset \mathbb{N}$, there is a stable--complex of size at least S.

Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types with a stable complex of size at least S.

How large can we make S relative to D and M ?

An even more modest goal

Original geal: Design ase of moner so that, for all $S \subset \mathbb{N}$, there is a stablecomplex of size at least S.

Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types with a stable complex of size at least S.

How large can we make S relative to D and M ?
$D, M=O(1), S=$ arbitrarily large

An even more modest goal

Original geal: Desig a set of mor so that, for all $S \in \mathbb{N}$, there is a stablecomplex of size at least S.
and $O(1)$ domains per monomer
Re-Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types $\boldsymbol{\lambda}$ with a stable complex of size at least S.

How large can we make S relative to D and M ?
$D, M=O(1), S=$ arbitrarily large

An even more modest goal

Original geal: Desig a set of mor so that, for all $S \in \mathbb{N}$, there is a stablecomplex of size at least S.
and $O(1)$ domains per monomer
Re-Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types $\boldsymbol{\lambda}$ with a stable complex of size at least S.

How large can we make S relative to D and M ?
$D, M=O(1), S=$ arbitrarily large

$$
S \approx D
$$

An even more modest goal

Original geal: Desig a set of mor so that, for all $S \in \mathbb{N}$, there is a stablecomplex of size at least S.
and $O(1)$ domains per monomer
Re-Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types $\boldsymbol{\lambda}$ with a stable complex of size at least S.

How large can we make S relative to D and M ?
$D, M=O(1), S=$ arbitrarily large

$$
\begin{gathered}
S \approx D \\
d_{1}^{*} *^{*}-\sqrt[d_{1} d_{2}^{*}]{*}-\left[d_{2} d_{3}^{*}-d_{3} d_{4}^{*}-\sqrt{d_{4}}\right.
\end{gathered}
$$

An even more modest goal

Original geal: Desig a set of mor so that, for all $S \in \mathbb{N}$, there is a stable--complex of size at least S.
and $O(1)$ domains per monomer
Re-Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types $\boldsymbol{\lambda}$ with a stable complex of size at least S.

How large can we make S relative to D and M ?

$$
S \approx D^{2}
$$

$D, M=O(1), S=$ arbitrarily large

$$
\begin{gathered}
S \approx D \\
d_{1}^{*} *^{*}-\sqrt[d_{1} d_{2}^{*}]{ } \sqrt{d_{2} d_{3}^{*}} \sqrt{d_{3} d_{4}^{*}}-\sqrt[d_{4}]{ }
\end{gathered}
$$

An even more modest goal

Original geal: Desig a set of mor so that, for all $S \in \mathbb{N}$, there is a stable--complex of size at least S.
and $O(1)$ domains per monomer
Re-Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types $\boldsymbol{\wedge}$ with a stable complex of size at least S.

How large can we make S relative to D and M ?

$$
S \approx D^{2}
$$

$D, M=O(1), S=$ arbitrarily large

$$
\begin{gathered}
S \approx D \\
d_{1}^{*} \underbrace{*}-d_{1} d_{2}^{*}-\sqrt{d_{2} d_{3}^{*}}-d_{3} d_{4}^{*} *-d_{4}
\end{gathered}
$$

An even more modest goal

Original geal: Desig a set of mor so that, for all $S \in \mathbb{N}$, there is a stable--complex of size at least S.
and $O(1)$ domains per monomer
Re-Revised goal: For all $S \in \mathbb{N}$, design a set of M monomer types using D domain types $\boldsymbol{\wedge}$ with a stable complex of size at least S.

How large can we make S relative to D and M ?

$$
S \approx D^{2}
$$

$D, M=O(1), S=$ arbitrarily large

How large can we make S relative to D and M ?

$$
S \approx 2^{D} ?
$$

How large can we make S relative to D and M ?

How large can we make S relative to D and M ?

How large can we make S relative to D and M ?

Stable complexes have at most exponential size

Theorem: Any thermodynamic binding network with

- D domain types,
- M monomer types,
- $\leq A$ domains per monomer type (note $D / A \leq M \leq A^{D+1}$)

Has stable complexes of size $\leq 2(M+D)(A D)^{2 D+3}=\operatorname{poly}\left(D^{D}\right)$ if $A=O(1)$

Easy proof if binding graph is acyclic (tree)

Easy proof if binding graph is acyclic (tree)

- Since monomers have $O(1)$ domains, binding graph is bounded degree

Easy proof if binding graph is acyclic (tree)

- Since monomers have $O(1)$ domains, binding graph is bounded degree

- \# nodes of tree is at most exponential in depth (longest path length $\leq 2 \cdot$ depth)

Easy proof if binding graph is acyclic (tree)

- Since monomers have $O(1)$ domains, binding graph is bounded degree

- \# nodes of tree is at most exponential in depth (longest path length $\leq 2 \cdot$ depth)
- If some path has >2D edges, it must repeat some ordered pair $\left(d_{i}, d_{i}^{*}\right)$ or $\left(d_{i}^{*}, d_{i}\right)$

Easy proof if binding graph is acyclic (tree)

- Since monomers have $O(1)$ domains, binding graph is bounded degree

- \# nodes of tree is at most exponential in depth (longest path length $\leq 2 \cdot$ depth)
- If some path has > 2D edges, it must repeat some ordered pair $\left(d_{i}, d_{i}^{*}\right)$ or $\left(d_{i}^{*}, d_{i}\right)$
- Break into two saturated complexes as shown.

Monomers as vectors

- monomer $\left\{a, b^{*}, b^{*}, \quad d, d, d, d, d^{*}, \quad e, e^{*}\right\}$ represented as (1,-2, $\left.0,3,0\right)$

Monomers as vectors

- monomer $\left\{\mathrm{a}, \mathrm{b}^{*}, \mathrm{~b}^{*}, \quad \mathrm{~d}, \mathrm{~d}, \mathrm{~d}, \mathrm{~d}, \mathrm{~d}^{*}, \quad \mathrm{e}, \mathrm{e}^{*}\right\}$ represented as ($1,-2,0,3,0$)
- sum of many monomers gives the number of excess domains in a fully bound (saturated) complex with those monomers
- i.e., 2 copies of above monomer $2 \cdot(1,-2,0,3,0)=(2,-4,0,6,0)$ have an excess of 2 a's, 4 b*'s, 0 c's, 6 d's, 0 e's

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size.

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size. m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size. m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size. m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.
3. $\quad P_{i}$ is composed of monomers $m_{1 i}, m_{2 i}, \ldots, m_{k i}$.

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size. m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.
3. P_{i} is composed of monomers $m_{1 i}, m_{2 i}, \ldots, m_{k i}$.
4. Let $S_{i}=m_{1 i}+m_{2 i}+\ldots+m_{k i}$. Note that there is a $m \times d$ matrix M such that $S_{i}=M \cdot P_{i j}$

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size. m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.
3. P_{i} is composed of monomers $m_{1 i}, m_{2 i}, \ldots, m_{k i}$.
4. Let $S_{i}=m_{1 i}+m_{2 i}+\ldots+m_{k i}$. Note that there is a $m \times d$ matrix M such that $S_{i}=M \cdot P_{i j}$
5. Take several infinite subsequences:

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size. m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.
3. P_{i} is composed of monomers $m_{1 i}, m_{2 i}, \ldots, m_{k i}$.
4. Let $S_{i}=m_{1 i}+m_{2 i}+\ldots+m_{k i}$. Note that there is a $m \times d$ matrix M such that $S_{i}=M \cdot P_{i j}$
5. Take several infinite subsequences:
6. Since there are a finite number of domain types, some infinite subsequence of P_{i}^{\prime} 's agrees on which set of domain types are unbound.

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size.
m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.
3. P_{i} is composed of monomers $m_{1 i}, m_{2 i}, \ldots, m_{k i}$.
4. Let $S_{i}=m_{1 i}+m_{2 i}+\ldots+m_{k i}$. Note that there is a $m \times d$ matrix M such that $S_{i}=M \cdot P_{i j}$
5. Take several infinite subsequences:
6. Since there are a finite number of domain types, some infinite subsequence of P_{i}^{\prime} 's agrees on which set of domain types are unbound.
7. By Dickson's Lemma we may assume $P_{1}<P_{2}<\ldots$ and $S_{1}<S_{2}<\ldots$ i.e., each has all the monomers of the previous, plus some more, and each has all the unbound domains of the previous, plus some more.

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size.
m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.
3. P_{i} is composed of monomers $m_{1 i}, m_{2 i}, \ldots, m_{k i}$.
4. Let $S_{i}=m_{1 i}+m_{2 i}+\ldots+m_{k i}$. Note that there is a $m \times d$ matrix M such that $S_{i}=M \cdot P_{i j}$
5. Take several infinite subsequences:
6. Since there are a finite number of domain types, some infinite subsequence of P_{i}^{\prime} 's agrees on which set of domain types are unbound.
7. By Dickson's Lemma we may assume $P_{1}<P_{2}<\ldots$ and $S_{1}<S_{2}<\ldots$ i.e., each has all the monomers of the previous, plus some more, and each has all the unbound domains of the previous, plus some more.
8. Let $d=P_{2}-P_{1}$. Then $M \cdot d=M \cdot P_{2}-M \cdot P_{1}=S_{2}-S_{1} \geq 0$.

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size.
m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.
3. P_{i} is composed of monomers $m_{1 i}, m_{2 i}, \ldots, m_{k i}$.
4. Let $S_{i}=m_{1 i}+m_{2 i}+\ldots+m_{k i}$. Note that there is a $m \times d$ matrix M such that $S_{i}=M \cdot P_{i}$,
5. Take several infinite subsequences:
6. Since there are a finite number of domain types, some infinite subsequence of P_{i}^{\prime} 's agrees on which set of domain types are unbound.
7. By Dickson's Lemma we may assume $P_{1}<P_{2}<\ldots$ and $S_{1}<S_{2}<\ldots$ i.e., each has all the monomers of the previous, plus some more, and each has all the unbound domains of the previous, plus some more.
8. Let $d=P_{2}-P_{1}$. Then $M \cdot d=M \cdot P_{2}-M \cdot P_{1}=S_{2}-S_{1} \geq 0$.
9. i.e., $S_{2}=S_{1}+M \cdot d$ and all three are nonnegative,

Somewhat easy proof that unbounded size complexes cannot be assembled

Original goal: Design a set of monomer types so that, for all $S \in \mathbb{N}$, there is a stable complex P of size $\geq S$.
Theorem: Original goal is impossible.

Proof:

1. Suppose otherwise, let P_{1}, P_{2}, \ldots in \mathbb{N}^{m} be an infinite sequence of stable complexes increasing in size.
m is number of monomer types, $P_{i}(j)=\#$ monomers of type j in complex P_{i}.
2. Represent each monomer type as a vector in \mathbb{Z}^{d} as on previous slide.
3. P_{i} is composed of monomers $m_{1 i}, m_{2 i}, \ldots, m_{k i}$.
4. Let $S_{i}=m_{1 i}+m_{2 i}+\ldots+m_{k i}$. Note that there is a $m \times d$ matrix M such that $S_{i}=M \cdot P_{i}$,
5. Take several infinite subsequences:
6. Since there are a finite number of domain types, some infinite subsequence of P_{i}^{\prime} 's agrees on which set of domain types are unbound.
7. By Dickson's Lemma we may assume $P_{1}<P_{2}<\ldots$ and $S_{1}<S_{2}<\ldots$ i.e., each has all the monomers of the previous, plus some more, and each has all the unbound domains of the previous, plus some more.
8. Let $d=P_{2}-P_{1}$. Then $M \cdot d=M \cdot P_{2}-M \cdot P_{1}=S_{2}-S_{1} \geq 0$.
9. i.e., $S_{2}=S_{1}+M \cdot d$ and all three are nonnegative,
10. i.e., we can split S_{2} into 2 disjoint nonempty nonnegative subsets, S_{1} and $M \cdot d$. QED

A digression into computational complexity

- Integer-Programming problem

Given: integer matrix \mathbf{A}, integer vector \mathbf{b}
Question: is there a nonnegative integer vector \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$?

A digression into computational complexity

- Integer-Programming problem

Given: integer matrix \mathbf{A}, integer vector \mathbf{b}
Question: is there a nonnegative integer vector \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$?

- 0/1-Integer-Programming is NP-complete (Karp 1972).

A digression into computational complexity

- Integer-Programming problem

Given: integer matrix \mathbf{A}, integer vector \mathbf{b}
Question: is there a nonnegative integer vector \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$?

- 0/1-Integer-Programming is NP-complete (Karp 1972).
- Non-obvious fact: Integer-Programming is in NP. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

A digression into computational complexity

- Integer-Programming problem

Given: integer matrix \mathbf{A}, integer vector \mathbf{b}
Question: is there a nonnegative integer vector \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$?

- 0/1-Integer-Programming is NP-complete (Karp 1972).
- Non-obvious fact: Integer-Programming is in NP. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])

If $\mathbf{A} \mathbf{x}=\mathbf{b}$ has a solution, it has a "small" solution... $\max _{i} \mathbf{x}_{i} \leq \exp \left(\max _{i j}\left(\mathbf{A}_{i j} \mathbf{b}_{j}\right)\right)$

A digression into computational complexity

- Integer-Programming problem

Given: integer matrix \mathbf{A}, integer vector \mathbf{b}
Question: is there a nonnegative integer vector \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$?

- 0/1-Integer-Programming is NP-complete (Karp 1972).
- Non-obvious fact: Integer-Programming is in NP. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])
If $\mathbf{A x}=\mathbf{b}$ has a solution, it has a "small" solution... $\max _{i} \mathbf{x}_{i} \leq \exp \left(\max _{i j}\left(\mathbf{A}_{i j} \mathbf{b}_{j}\right)\right)$
- Papadimitriou's proof: [On the complexity of integer programming. Papadimitriou, JACM 1981]
- If \mathbf{x} is a large enough solution, there is $\mathbf{0}<\mathbf{y}<\mathbf{x}, \mathbf{y} \in \mathbb{N}^{m}$, such that $\mathbf{A y}=\mathbf{0}$.

A digression into computational complexity

- Integer-Programming problem

Given: integer matrix \mathbf{A}, integer vector \mathbf{b}
Question: is there a nonnegative integer vector \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$?

- 0/1-Integer-Programming is NP-complete (Karp 1972).
- Non-obvious fact: Integer-Programming is in NP. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])
If $\mathbf{A x}=\mathbf{b}$ has a solution, it has a "small" solution... $\max _{i} \mathbf{x}_{i} \leq \exp \left(\max _{i j}\left(\mathbf{A}_{i j} \mathbf{b}_{j}\right)\right)$
- Papadimitriou's proof: [On the complexity of integer programming. Papadimitriou, JACM 1981]
- If \mathbf{x} is a large enough solution, there is $\mathbf{0}<\mathbf{y}<\mathbf{x}, \mathbf{y} \in \mathbb{N}^{m}$, such that $\mathbf{A} \mathbf{y}=\mathbf{0}$.
- Defining $\mathbf{z}=\mathbf{x}-\mathbf{y}, A \mathbf{z}=A(\mathbf{x}-\mathbf{y})=A x-A y=A x-0=b$.

A digression into computational complexity

- Integer-Programming problem

Given: integer matrix \mathbf{A}, integer vector \mathbf{b}
Question: is there a nonnegative integer vector \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$?

- 0/1-Integer-Programming is NP-complete (Karp 1972).
- Non-obvious fact: Integer-Programming is in NP. (independently due to [Borosh and Treybig 1976], [Gathen and Sieveking 1978], [Kannan and Monma 1978])
If $\mathbf{A x}=\mathbf{b}$ has a solution, it has a "small" solution... $\max _{i} \mathbf{x}_{i} \leq \exp \left(\max _{i j}\left(\mathbf{A}_{i j} \mathbf{b}_{j}\right)\right)$
- Papadimitriou's proof: [On the complexity of integer programming. Papadimitriou, JACM 1981]
- If \mathbf{x} is a large enough solution, there is $\mathbf{0}<\mathbf{y}<\mathbf{x}, \mathbf{y} \in \mathbb{N}^{m}$, such that $\mathbf{A} \mathbf{y}=\mathbf{0}$.
- Defining $\mathbf{z}=\mathbf{x}-\mathbf{y}, \quad \mathbf{A z}=\mathbf{A}(\mathbf{x}-\mathbf{y})=\mathbf{A x}-\mathbf{A y}=\mathbf{A x}-\mathbf{0}=\mathbf{b}$.
- So \mathbf{z} is a strictly smaller solution than \mathbf{x} : \mathbf{x} cannot be the smallest solution.

Farkas' Lemma

Given vectors $\mathbf{m}_{1}, \mathbf{m}_{\mathbf{2}}, \ldots$, they obey one of two constraints:
a) are directions of balanced forces

b) lie on one side of some hyperplane

Farkas' Lemma

Given vectors $\mathbf{m}_{1}, \mathbf{m}_{\mathbf{2}}, \ldots$, they obey one of two constraints:
a) are directions of balanced forces
$\exists \mathrm{c} \quad$ (counts of monomers)
$\left(m_{1} m_{2} m_{3}\right) c=0$

b) lie on one side of some hyperplane

How to prove exponential complex size bound for complexes with cycles in binding graph?

monomer collection $\mathbf{c} \in \mathbb{N}^{M}$

How to prove exponential complex size bound for complexes with cycles in binding graph?

- $\mathbf{A}=d \times m$ matrix: $\mathbf{A}_{i j}=$ monomer \mathbf{m}_{j}^{\prime} s excess of domain d_{i} over d_{i}^{*}
monomer collection $\mathbf{c} \in \mathbb{N}^{M}$

How to prove exponential complex size bound for complexes with cycles in binding graph?

- $\mathbf{A}=d \times m$ matrix: $\mathbf{A}_{i j}=$ monomer \mathbf{m}_{j} 's excess of domain d_{i} over d_{i}^{*}
- If $\mathbf{A} \mathbf{c}=\mathbf{b}$, then $\mathbf{b}_{i}=$ total \# unbound d_{i} in any saturated configuration of \mathbf{c}
monomer collection $\mathbf{c} \in \mathbb{N}^{M}$

How to prove exponential complex size bound for complexes with cycles in binding graph?

- $\mathbf{A}=d \times m$ matrix: $\mathbf{A}_{i j}=$ monomer \mathbf{m}_{j} 's excess of domain d_{i} over d_{i}^{*}
- If $\mathbf{A} \mathbf{c}=\mathbf{b}$, then $\mathbf{b}_{i}=$ total \# unbound d_{i} in any saturated configuration of \mathbf{c}
monomer collection $\mathbf{c} \in \mathbb{N}^{M}$

How to prove exponential complex size bound for complexes with cycles in binding graph?

- $\mathbf{A}=d \times m$ matrix: $\mathbf{A}_{i j}=$ monomer \mathbf{m}_{j}^{\prime} s excess of domain d_{i} over d_{i}^{*}
- If $\mathbf{A} \mathbf{c}=\mathbf{b}$, then $\mathbf{b}_{i}=$ total \# unbound d_{i} in any saturated configuration of \mathbf{c}
- If $|\mathbf{c}|>\operatorname{exponential~in~} D$, Papadimtriou's proof gives us subcollection $\mathbf{y}<\mathbf{c}$ such that $\mathbf{A y}=\mathbf{0}$, (Farkas' Lemma says that if this fails, then monomer vectors all lie on one side of a hyperplane, see next slide)
monomer collection $\mathbf{c} \in \mathbb{N}^{M}$

$$
\begin{gathered}
a b c \\
\mathbf{A c}=(2,1,0)
\end{gathered}
$$

How to prove exponential complex size bound for complexes with cycles in binding graph?

- $\mathbf{A}=d \times m$ matrix: $\mathbf{A}_{i j}=$ monomer \mathbf{m}_{j} 's excess of domain d_{i} over d_{i}^{*}
- If $\mathbf{A} \mathbf{c}=\mathbf{b}$, then $\mathbf{b}_{i}=$ total \# unbound d_{i} in any saturated configuration of \mathbf{c}
- If $|\mathbf{c}|>\operatorname{exponential~in~} D$, Papadimtriou's proof gives us subcollection $\mathbf{y}<\mathbf{c}$ such that $\mathbf{A y}=\mathbf{0}$, (Farkas' Lemma says that if this fails, then monomer vectors all lie on one side of a hyperplane, see next slide)
- i.e., $\# d_{i}$ in $\mathbf{y}=\# d_{i}^{*}$ in \mathbf{y}, so \mathbf{y} is self-saturating.
monomer collection $\mathbf{c} \in \mathbb{N}^{M}$
a b c

$$
A c=(2,1,0)
$$

How to prove exponential complex size bound for complexes with cycles in binding graph?

- $\mathbf{A}=d \times m$ matrix: $\mathbf{A}_{i j}=$ monomer \mathbf{m}_{j}^{\prime} s excess of domain d_{i} over d_{i}^{*}
- If $\mathbf{A} \mathbf{c}=\mathbf{b}$, then $\mathbf{b}_{i}=$ total \# unbound d_{i} in any saturated configuration of \mathbf{c}
- If $|\mathbf{c}|>$ exponential in D, Papadimtriou's proof gives us subcollection $\mathbf{y}<\mathbf{c}$ such that $\mathbf{A y}=\mathbf{0}$, (Farkas' Lemma says that if this fails, then monomer vectors all lie on one side of a hyperplane, see next slide)
- i.e., $\# d_{i}$ in $\mathbf{y}=\# d_{i}^{*}$ in \mathbf{y}, so \mathbf{y} is self-saturating.
- So whatever bonds were broken to separate y can be re-bound within y.
monomer collection $\mathbf{c} \in \mathbb{N}^{M}$
a b c

$$
A c=(2,1,0)
$$

How to prove exponential complex size bound for complexes with cycles in binding graph?

- $\mathbf{A}=d \times m$ matrix: $\mathbf{A}_{i j}=$ monomer \mathbf{m}_{j} 's excess of domain d_{i} over d_{i}^{*}
- If $\mathbf{A} \mathbf{c}=\mathbf{b}$, then $\mathbf{b}_{i}=$ total \# unbound d_{i} in any saturated configuration of \mathbf{c}
- If $|\mathbf{c}|>\operatorname{exponential~in~} D$, Papadimtriou's proof gives us subcollection $\mathbf{y}<\mathbf{c}$ such that $\mathbf{A y}=\mathbf{0}$, (Farkas' Lemma says that if this fails, then monomer vectors all lie on one side of a hyperplane, see next slide)
- i.e., $\# d_{i}$ in $\mathbf{y}=\# d_{i}^{*}$ in \mathbf{y}, so \mathbf{y} is self-saturating.
- So whatever bonds were broken to separate y can be re-bound within \mathbf{y}.
- By symmetry, the same bonds in $\mathbf{z}=\mathbf{c}-\mathbf{y}$ can be rebound within \mathbf{z}.
monomer collection $\mathbf{c} \in \mathbb{N}^{M}$

If all monomer types lie on one side of hyperplane h...

If all monomer types lie on one side of hyperplane h...

- Consider "slack monomers" $\left\{\mathrm{d}_{1}{ }^{*}\right\},\left\{\mathrm{d}_{2}{ }^{*}\right\}$,..., adding just enough to bind to all the excess d_{i} domains, so saturated (fully bound) $==$ all domains bound

If all monomer types lie on one side of hyperplane h...

- Consider "slack monomers" $\left\{d_{1}{ }^{*}\right\},\left\{d_{2}{ }^{*}\right\}, \ldots$, , adding just enough to bind to all the excess d_{i} domains, so saturated (fully bound) $==$ all domains bound
- If \mathbf{c} is count of all monomers including slack monomers ($\mathbf{c}(\mathrm{i})=$ count of $\left.\boldsymbol{m}_{\mathrm{i}}\right)$, then $\mathbf{A c}=\mathbf{0}$, where each column of \mathbf{A} represents a monomer (counts of domains).

If all monomer types lie on one side of hyperplane h...

- Consider "slack monomers" $\left\{\mathrm{d}_{1}{ }^{*}\right\},\left\{\mathrm{d}_{2}{ }^{*}\right\}$,..., adding just enough to bind to all the excess d_{i} domains, so saturated (fully bound) $==$ all domains bound
- If \mathbf{c} is count of all monomers including slack monomers ($\mathbf{c}(\mathrm{i})=$ count of $\boldsymbol{m}_{\mathrm{i}}$), then $\mathbf{A c}=\mathbf{0}$, where each column of \mathbf{A} represents a monomer (counts of domains).
- dot-product \mathbf{h} on both sides: $\mathbf{h} \cdot \mathbf{A c}=\mathbf{h} \cdot \mathbf{0}=\mathbf{0}$, distribute through: $\sum_{i}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c}(\mathbf{i})=\mathbf{0}$

If all monomer types lie on one side of hyperplane h...

- Consider "slack monomers" $\left\{\mathrm{d}_{1}{ }^{*}\right\},\left\{\mathrm{d}_{2}{ }^{*}\right\}$,..., adding just enough to bind to all the excess d_{i} domains, so saturated (fully bound) $==$ all domains bound
- If \mathbf{c} is count of all monomers including slack monomers ($\mathbf{c}(\mathrm{i})=$ count of $\left.\boldsymbol{m}_{\mathrm{i}}\right)$, then $\mathbf{A c}=\mathbf{0}$, where each column of \mathbf{A} represents a monomer (counts of domains).
- dot-product \mathbf{h} on both sides: $\mathbf{h} \cdot \mathbf{A c}=\mathbf{h} \cdot \mathbf{0}=\mathbf{0}$, distribute through: $\sum_{i}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c}(\mathbf{i})=\mathbf{0}$
- Let S be set of monomers with "small" counts, move them to one side:

$$
-\sum_{i \in S}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c}(\mathbf{i})=\sum_{i \notin S}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c}(\mathbf{i})
$$

If all monomer types lie on one side of hyperplane h...

- Consider "slack monomers" $\left\{d_{1}{ }^{*}\right\},\left\{d_{2}{ }^{*}\right\}, \ldots$, , adding just enough to bind to all the excess d_{i} domains, so saturated (fully bound) $==$ all domains bound
- If \mathbf{c} is count of all monomers including slack monomers ($\mathbf{c}(\mathrm{i})=$ count of $\left.\boldsymbol{m}_{\mathrm{i}}\right)$, then $\mathbf{A c}=\mathbf{0}$, where each column of \mathbf{A} represents a monomer (counts of domains).
- dot-product \mathbf{h} on both sides: $\mathbf{h} \cdot \mathbf{A c}=\mathbf{h} \cdot \mathbf{0}=\mathbf{0}$, distribute through: $\sum_{i}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c}(\mathbf{i})=\mathbf{0}$
- Let S be set of monomers with "small" counts, move them to one side:
$\left.-\sum_{i \in S}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c}(\mathbf{i})=\sum_{i \notin S}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c} \mathbf{c} \mathbf{i}\right)$
- Then "small" ${ }_{2} \geq-\sum_{i \in S}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c}(\mathrm{i})=\sum_{\mathrm{i} \notin S}\left(\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}\right) \mathbf{c}(\mathrm{i}) \geq \sum_{i \notin S} \mathbf{c}(\mathrm{i})$
c(i) (count of i'th monomer) is
small by definition, and $\mathbf{h} \cdot \mathbf{m}_{\mathbf{i}}=\mathbf{O}(1)$

Applying thermodynamic model to tile assembly

- Let's incorporate the thermodynamic binding network model into the abstract tile assembly model.
- How can we create a large assembly from a small number of tile types?

A thermodynamically unstable tile assembly counter

A thermodynamically stable tile assembly counter

Difference is that each row (corresponding to bits of the same significance) has glues labeled with the row number

Conclusions

- Strong bonds (surprisingly) aren't sufficient to self-assemble large thermodynamically stable structures. Geometry helps!
- Kinetically self-assembling a thermodynamically stable structure has very strong guarantees on errors:
- target structure eventually results despite arbitrary kinetic errors.
- If it's the only stable structure, and free energy of other structures is much less, then it's the only result you'll see.
- Bad news: NP-complete to tell if a given configuration is unstable... even NP-hard to approximate entropy of stable configuration:
[Breik, Thachuk, Heule, Soloveichik, Computing properties of stable configurations of thermodynamic binding networks, Theoretical Computer Science 2019]

