
ECS 120 Notes

David Doty
based on Introduction to the Theory of Computation by Michael Sipser

ii

Copyright c© December 1, 2015, David Doty

No part of this document may be reproduced without the expressed written consent of
the author. All rights reserved.

Based heavily (some parts copied) on Introduction to the Theory of Computation, by
Michael Sipser. These are notes intended to assist in lecturing from Sipser’s book; they are
not entirely the original work of the author. Some proofs are also taken from Automata and
Computability by Dexter Kozen.

Contents

Introduction v

0.1 Mathematical Background . viii

0.1.1 Implication Statements . viii

0.1.2 Sets . viii

0.1.3 Sequences and Tuples . ix

0.1.4 Functions and Relations . x

0.1.5 Strings and Languages . xi

0.1.6 Graphs . xii

0.1.7 Boolean Logic . xii

0.2 Proof by Induction . xii

0.2.1 Proof by Induction on Natural Numbers . xii

0.2.2 Induction on Other Structures . xiii

1 Regular Languages 1

1.1 Finite Automata . 1

1.1.1 Formal Definition of a Finite Automaton (Syntax) 1

1.1.2 More Examples . 3

1.1.3 Formal Definition of Computation by a DFA (Semantics) 4

1.1.4 The Regular Operations . 5

1.2 Nondeterminism . 8

1.2.1 Formal Definition of an NFA (Syntax) . 9

1.2.2 Formal Definition of Computation by an NFA (Semantics) 10

1.2.3 Equivalence of DFAs and NFAs . 11

1.3 Regular Expressions . 14

1.3.1 Formal Definition of a Regular Expression . 15

1.3.2 Equivalence with Finite Automata . 16

1.4 Nonregular Languages . 19

1.4.1 The Pumping Lemma . 19

2 Context-Free Languages 23

2.1 Context-Free Grammars . 23

2.2 Pushdown Automata . 24

iii

iv CONTENTS

3 The Church-Turing Thesis 25
3.1 Turing Machines . 25

3.1.1 Formal Definition of a Turing machine . 26
3.1.2 Formal Definition of Computation by a Turing Machine 26

3.2 Variants of Turing Machines . 27
3.2.1 Multitape Turing Machines . 28
3.2.2 Nondeterministic Turing Machines . 29
3.2.3 Enumerators . 30

3.3 The Definition of Algorithm . 30

4 Decidability 33
4.1 Decidable Languages . 33
4.2 The Halting Problem . 34

4.2.1 Diagonalization . 34
4.2.2 The Halting Problem is Undecidable . 36
4.2.3 A Non-c.e. Language . 37

5 Reducibility 39
5.1 Undecidable Problems from Language Theory (Computability) 39

6 Advanced Topics in Computability 43

7 Time Complexity 45
7.1 Measuring Complexity . 45

7.1.1 Analyzing Algorithms . 46
7.1.2 Complexity Relationships Among Models . 47

7.2 The Class P . 48
7.2.1 Polynomial Time . 48
7.2.2 Examples of Problems in P . 49

7.3 The Class NP . 51
7.3.1 Examples of Problems in NP . 53
7.3.2 The P Versus NP Question . 54

7.4 NP-Completeness . 55
7.4.1 Polynomial-Time Reducibility . 56
7.4.2 Definition of NP-Completeness . 58
7.4.3 The Cook-Levin Theorem . 59

7.5 Additional NP-Complete Problems . 59
7.5.1 The Vertex Cover Problem . 60
7.5.2 The Subset Sum Problem . 61

7.6 Proof of the Cook-Levin Theorem . 63
7.7 My Views . 66

7.7.1 A Brief History of the P versus NP Problem 66
7.7.2 Relativization (Or: Why not to submit a paper about P vs. NP without

showing it to an expert first) . 68

Introduction

What This Course is About

The following is a rough sketch of what to expect from this course:

• In ECS 30/40/60, you programmed computers without studying them formally.

• In ECS 20, you formally studied things that are not computers.

• In ECS 120, you will use the tools of ECS 20 to formally study computers.

Newton’s equations of motion tell us that each body of mass obeys certain rules that cannot
be broken. For instance, a body cannot accelerate in the opposite direction in which force is being
applied to it. Of course, nothing in the world is a rigid body of mass subject to no friction, etc., so
Newton’s equations of motion do not exactly predict anything. But they are a useful abstraction
of what real matter is like, and many things in the world are close enough to this abstraction that
Newton’s predictions are reasonably accurate.

The fundamental premise of the theory of computation is that the computer on your desk obeys
certain laws, and therefore, certain unbreakable limitations. I often think of the field of computer
science outside of theory as being about proving what can be done with a computer, by doing
it. Much of research in theoretical computer science is about proving what cannot be done with
a computer. This can be more difficult, since you cannot simply cite your failure to invent an
algorithm for a problem to be a proof that there is no algorithm. But certain important problems
cannot be solved with any algorithm, as we will see.

We will draw no distinction between the idea of “formal proof” and more nebulous instructions
such as “show your work”/“justify your answer”/“explain”. A “proof” of a theorem is an argument
that convinces an intelligent person who has never seen the theorem before and cannot see why it
is true with having it explained. It does not matter if the argument uses formal notation or not
(though formal notation is convenient for achieving brevity), or if it uses induction or contradiction
or just a straightforward argument (though it is often easier to think in terms of induction or
contradiction). What matters is that there are no holes or counter-arguments that can be thrown
at the argument, and that every statement is precise and unambiguous.

Note, however, that one effective technique used by Sipser to prove theorems is to first give
a “proof idea”, helping you to see how the proof will go. The proof is easier to read because of
the proof idea, but the proof idea by itself is not a proof. In fact, I would go so far as to say
that the proof by itself is not a very effective proof either, since bare naked details and formalism,

v

vi INTRODUCTION

without any intuition to reinforce it, do not communicate why the theorem is true any better than
the hand-waving proof idea. Both are usually necessary to accomplish the goal of the proof: to
communicate why the theorem is true. In this course, in the interest of time, I will often give the
intuitive proof idea only verbally, and write only the formal details on the board, since learning to
turn the informal intuition into a formal detailed proof is the most difficult part of this course. On
your homework, however, you should explicitly write both, to make it easy for the TA to understand
your proof and give you full credit.

Three problems

Multivariate polynomials (Diophantine equation)

x2 + 2xy − y3 = 13. Does this have an integer solution? Yes: x = 3, y = 2

How about x2 − y2 = 2? No.

Task A: write an algorithm that indicates whether a given Diophantine equation has any
integer solution.

Fact: Task 1 is impossible.1

Task A′: write an algorithm that indicates whether a given Diophantine equation has any
integer real solution.

Fact: Task A′ is possible.2

Paths touring a graph

Does the graph G = (V,E) given in Figure 1 have a path that contains each edge exactly once?
(Eulerian path)

Task B: write an “efficient” algorithm that indicates if a graph as a path containing each edge
exactly once

Fact: Task B is possible. (iff connected and even degree)

Task B′: write an “efficient” algorithm that indicates if a graph as a path containing each edge
node exactly once

Fact: (assuming P 6= NP) Task B′ is impossible.

Balanced parentheses

• [[]] balanced

• [[] unbalanced

• [][[][[[]][]]] balanced

• [[]][]][[] unbalanced

1We could imagine trying “all” possible integer solutions, but if there is no integer solution, then we will be trying
forever and the algorithm will not halt.

2Strange, since there are more potential solutions to search, but the algorithm does not work by trying different
solutions.

vii

Figure 1: “Königsberg graph”. Licensed under CC BY-SA 3.0 via Commons
– https://commons.wikimedia.org/wiki/File:K%C3%B6nigsberg_graph.svg#/media/File:K%

C3%B6nigsberg_graph.svg

A regular expression is an expression that matches some strings and not others. For example

(0(0 ∪ 1 ∪ 2)∗) ∪ ((0 ∪ 2)∗1)

matches any string of digits that starts with a 0, followed by any number of 0’s, 1’s, and 2’s, or
ends with a 1, preceded by any number of 0’s and 2’s.

Task C: write a regular expression that matches a string of parentheses exactly when they are
balanced.

Fact: Task C is impossible

Task C ′: write a regular expression that matches a string of parentheses exactly when every [

is followed by a].

Answer: ([∪])∗

Rough layout of this course

Computability theory (unit 2): What problems can algorithms solve? (real roots of polyno-
mials, but not integer roots)

Complexity theory (unit 3): What problems can algorithms solve efficiently? (paths visiting
every edge, but not every vertex)

Automata theory (unit 1): What problems can algorithms solve with “optimal” efficiency? (at
least for finite automata this is a good description; balanced parentheses provably requires
non-constant memory)

viii INTRODUCTION

0.1 Mathematical Background

Reading assignment: Chapter 0 of Sipser. 3

0.1.1 Implication Statements

Given two boolean statements p and q 4, the implication p =⇒ q is shorthand for “p implies q”, or
“If p is true, then q is true” 5, p is the hypothesis, and q is the conclusion. The following statements
are related to p =⇒ q:

• the inverse: ¬p =⇒ ¬q

• the converse: q =⇒ p

• the contrapositive: ¬q =⇒ ¬p6

If an implication statement p =⇒ q and its converse q =⇒ p are both true, then we say p if and
only if (iff) q, written p ⇐⇒ q. Proving a “p ⇐⇒ q” theorem usually involves proving p =⇒ q
and q =⇒ p separately.

0.1.2 Sets

A set is a group of objects, called elements, with no duplicates.7 The cardinality of a set A is the
number of elements it contains, written |A|. For example, {7, 21, 57} is the set consisting of the
integers 7, 21, and 57, with cardinality 3.

For two sets A and B, we write A ⊆ B, and say that A is a subset of B, if every element of A
is also an element of B. A is a proper subset of B, written A B, if A ⊆ B and A 6= B.

We use the following sets throughout the course

• the natural numbers N = {0, 1, 2, . . .}

• the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}

• the rational numbers Q =

{
p

q

∣∣∣∣ p ∈ Z, q ∈ Z, and q 6= 0

}
• the real numbers R

3This is largely material from ECS 20.
4e.g., “Hawaii is west of California”, or “The stoplight is green.”
5e.g., “If the stoplight is green, then my car can go.”
6The contrapositive of a statement is logically equivalent to the statement itself. For example, it is equivalent to

state “If someone is allowed to drink alcohol, then they are at least 21” and “If someone is under 21, then they are
not allowed drink alcohol”. Hence a statement’s converse and inverse are logically equivalent to each other, though
not equivalent to the statement itself.

7Think of std::set.

0.1. MATHEMATICAL BACKGROUND ix

The unique set with no elements is called the empty set, written ∅.
To define sets symbolically,8 we use set-builder notation: for instance, { x ∈ N | x is odd } is

the set of all odd natural numbers.

We write ∀x ∈ A as a shorthand for “for all elements x in the set A ...”, and ∃x ∈ A as a
shorthand for “there exists an element x in the set A ...”. For example, (∃n ∈ N) n > 10 means
“there exists a natural number greater than 10”.

Given two sets A and B, A ∪ B = { x | x ∈ A or x ∈ B } is the union of A and B, A ∩ B =
{ x | x ∈ A and x ∈ B } is the intersection of A and B, and A \ B = { x ∈ A | x 6∈ B } is the
difference between A and B (also written A−B). A = { x | x 6∈ A } is the complement of A. 9

Given a set A, P(A) = { S | S ⊆ A } is the power set of A, the set of all subsets of A. For
example,

P({2, 3, 5}) = {∅, {2}, {3}, {5}, {2, 3}, {2, 5}, {3, 5}, {2, 3, 5}}.

Given any set A, it always holds that ∅, A ∈ P(A), and that |P(A)| = 2|A| if |A| <∞. 10 11

0.1.3 Sequences and Tuples

A sequence is an ordered list of objects 12. For example, (7, 21, 57, 21) is the sequence of integers
7, then 21, then 57, then 21.

A tuple is a finite sequence.13 (7, 21, 57) is a 3-tuple. A 2-tuple is called a pair.

For two sets A and B, the cross product of A and B is A × B = { (a, b) | a ∈ A and b ∈ B }.
For k ∈ N, we write Ak = A×A× . . .×A︸ ︷︷ ︸

k times

and A≤k =
⋃k
i=0A

i.

For example, N2 = N× N is the set of all ordered pairs of natural numbers.

8In other words, to express them without listing all of their elements explicitly, which is convenient for large finite
sets and necessary for infinite sets.

9Usually, if A is understood to be a subset of some larger set U , the “universe” of possible elements, then A is
understood to be U \ A. For example if we are dealing only with N, and A ⊆ N, then A = { n ∈ N | n 6∈ A }. In
other words, we used “typed” sets, in which case each set we use has some unique superset – such as {0, 1}∗, N, R, Q,
the set of all finite automata, etc. – that is considered to contain all the elements of the same type as the elements of
the set we are discussing. Otherwise, we would have the awkward situation that for A ⊆ N, A would contain not only
nonnegative integers that are not in A, but also negative integers, real numbers, strings, functions, stuffed animals,
and other objects that are not elements of A.

10Why?
11Actually, Cantor’s theory of infinite set cardinalities makes sense of the claim that |P(A)| = 2|A| even if A is an

infinite set. The furthest we will study this theory in this course is to observe that there are at least two infinite set
cardinalities: that of the set of natural numbers, and that of the set of real numbers, which is bigger than the set of
natural numbers according to this theory.

12Think of std::vector.
13The closest Java analogy to a tuple, as we will use them in this course, is an object. Each member variable of an

object is like an element of the tuple, although Java is different in that each member variable of an object has a name,
whereas the only way to distinguish one element of a tuple from another is their position. But when we use tuples,
for instance to define a finite automaton as a 5-tuple, we intuitively think of the 5 elements as being like 5 member
variables that would be used to define a finite automaton object. And of course, the natural way to implement such
an object in C++ by defining a FiniteAutomaton class with 5 member variables, which is an easier way to keep track
of what each of the 5 elements is supposed to represent than, for instance, using an void[] array of length 5.

x INTRODUCTION

0.1.4 Functions and Relations

A function f that takes an input from set D (the domain) and produces an output in set R (the
range) is written f : D → R. 14 Given A ⊆ D, define f(A) = { f(x) | x ∈ A }; call this the image
of A under f .

Given f : D → D, k ∈ N and d ∈ D, define fk : D → D by fk(d) = f(f(. . . f(︸ ︷︷ ︸
k times

d)) . . .)) to be f

composed with itself k times.

If f might not be defined for some values in the domain, we say f is a partial function.15 If f
is defined on all values, it is a total function.16

A function f with a finite domain can be represented with a table. For example, the function
f : {0, 1, 2, 3} → Q defined by f(n) = n

2 is represented by the table

n f(n)

0 0

1 1
2

2 1

3 3
2

If

(∀d1, d2 ∈ D) d1 6= d2 =⇒ f(d1) 6= f(d2),

then we say f is 1-1 (one-to-one or injective).17

If

(∀r ∈ R)(∃d ∈ D) f(d) = r,

then we say f is onto (surjective). Intuitively, f “covers” the range R, in the sense that no element
of R is left un-mapped-to by f .

f is a bijection (a.k.a. a 1-1 correspondence) if f is both 1-1 and onto.

A predicate is a function whose output is boolean.

Given a set A, a relation R on A is a subset of A × A. Intuitively, the elements in R are the
ones related to each other. Relations are often written with an operator; for instance, the relation
≤ on N is the set R = { (n,m) ∈ N× N | (∃k ∈ N) n+ k = m }.

14Think of a static method; Integer.parseInt, which takes a String and returns the int that the String represents
(if it indeed represents an integer) is like a function with domain String and range int. Math.max is like a function
with domain int × int (since it accepts a pair of ints as input) and range int.

15For instance, Integer.parseInt is (strictly) partial, because not all Strings look like integers, and such Strings
will cause the method to throw a NumberFormatException.

16Every total function is a partial function, but the converse does not hold for any function that is undefined for
at least one value. We will usually assume that functions are total unless explicitly stated otherwise.

17Intuitively, f does not map any two points in D to the same point in R. It does not lose information; knowing
an output r ∈ R suffices to identify the input d ∈ D that produced it (through f).

0.1. MATHEMATICAL BACKGROUND xi

0.1.5 Strings and Languages

An alphabet is any non-empty finite set, whose elements we call symbols or characters. For example,
{0, 1} is the binary alphabet, and

{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}
is the Roman alphabet. 18

A string over an alphabet is a finite sequence of symbols taken from the alphabet. We write
strings such as 010001, without the parentheses and commas. If x is a string, |x| denotes the length
of x.

If Σ is an alphabet, the set of all strings over Σ is denoted Σ∗. For n ∈ N, Σn = { x ∈ Σ∗ | |x| = n }
is the number of strings in Σ∗ of length n. Similarly Σ≤n = { x ∈ Σ∗ | |x| ≤ n } and Σ<n =
{ x ∈ Σ∗ | |x| < n }.

The string of length 0 is written λ, and in the textbook, ε; in most programming languages it
is written "".

Note in particular the difference between λ, ∅, and {λ}.19
Given n,m ∈ N, x[n . .m] is the substring consisting of the nth through mth symbols of x, and

x[n] = x[n . . n] is the nth symbol in x.
We write xy (or x◦y when we would like an explicit operator symbol) to denote the concatenation

of x and y, and given k ∈ N, we write xk = xx . . . x︸ ︷︷ ︸
k times

. 20

Given two strings x, y ∈ Σ∗ for some alphabet Σ, x is a prefix of y, written x v y, if x is a
substring that occurs at the start of y. x is a suffix of y if x is a substring that occurs at the end
of y.

The lexicographic ordering (a.k.a. military ordering) of strings over an alphabet is the stan-
dard dictionary ordering, except that shorter strings precede longer strings. For example, the
lexicographical ordering of {0, 1}∗ is

λ, 0, 1, 00, 01, 10, 11, 000, 001, . . .

A language (a.k.a. a decision problem) is a set of strings. A class is a set of languages. 21

Given two languages A,B ⊆ Σ∗, let AB = { ab | a ∈ A and b ∈ B } (also denoted A ◦ B).22

Similarly, for all n ∈ N, An = AA . . . A︸ ︷︷ ︸
n times

,23, A≤n =
⋃n
i=0A

i and A<n = A≤n \An.24

18We always let the symbols in the alphabet have single-character names.
19λ is a string, ∅ is a set with no elements, and {λ} is a set with one element. Intuitively, think of the following

Java code as defining these three objects
String lambda = "";

Set emptySet = new HashSet();

Set<String> setWithLambda = new HashSet<String>();

setWithLambda.add(lambda);
20Alternatively, define xk inductively as x0 = λ and xk = xxk−1

21These terms are useful because, without them, we would just call everything a “set”, and easily forget whether
it is a set of strings, a set of set of strings, or even the dreaded set of set of set of strings (they are out there; the
arithmetical and polynomial hierarchies are sets – sequences, actually – of classes).

22The set of all strings formed by concatenating one string from A to one string from B
23The set of all strings formed by concatenating n strings from A.
24Note that there is ambiguity, since An could also mean the set of all n-tuples of strings from A, which is a

xii INTRODUCTION

Given a language A, let A∗ =
⋃∞
n=0A

n.25 Note that A = A1 (hence A ⊆ A∗).

Examples. Define the languagesA,B ⊆ {0, 1, 2}∗ as follows: A = {0, 11, 222} andB = {000, 11, 2}.
Then

AB = {0000, 011, 02, 11000, 1111, 112, 222000, 22211, 2222}
A2 = {00, 011, 0222, 110, 1111, 11222, 2220, 22211, 222222}
A∗ = { λ︸︷︷︸

A0

, 0, 11, 222︸ ︷︷ ︸
A1

, 00, 011, 0222, 110, 1111, 11222, 2220, 22211, 222222︸ ︷︷ ︸
A2

, 000, 0011︸ ︷︷ ︸
part of A3

, . . .}

LECTURE: end of day 1

0.1.6 Graphs

See the textbook for review.

0.1.7 Boolean Logic

See the textbook for review.

0.2 Proof by Induction

26

0.2.1 Proof by Induction on Natural Numbers

Theorem 0.2.1. For every n ∈ N, |{0, 1}n| = 2n.

Proof. (by induction on n) 27

different set. We assume that An means n-fold concatenation whenever A is a language. The difference is that in
concatenation of strings, boundaries between strings are lost, whereas tuples always have the various elements of the
tuple delimited explicitly from the others.

25The set of all strings formed by concatenating 0 or more strings from A.
26The book discusses proof by construction and proof by contradiction as two alternate proof techniques. These

are both simply formalizations of the way humans naturally think about ordinary statements and reasoning. Proof by
induction is the only general technique among the three that really is a technique that must be taught, rather than a
name for something humans already intuitively understand. Luckily, you already understand proof by induction better
than most people, since it is merely the “proof” version of the technique of recursion you learned in programming
courses.

27To start, state in English what the theorem is saying: For every string length n, there are 2n strings of length n.

0.2. PROOF BY INDUCTION xiii

Base case: {0, 1}0 = {λ}.28 |{λ}| = 1 = 20, so the base case holds.

Inductive case: Assume |{0, 1}n−1| = 2n−1.29 We must prove that |{0, 1}n| = 2n. Note that
every x ∈ {0, 1}n−1 appears as a prefix of exactly two unique strings in {0, 1}n, namely x0
and x1.30 Then

|{0, 1}n| =2 · |{0, 1}n−1|
=2 · 2n−1 inductive hypothesis

=2n.

Theorem 0.2.2. For every n ∈ Z+,
∑n

i=1
1

i(i+1) = n
n+1 .

Proof. Base case (n = 1):
∑n

i=1
1

i(i+1) = 1
1(1+1) = 1

2 = n
n+1 , so the base case holds.

Inductive case: Let n ∈ Z+ and suppose the theorem holds for n. Then

n+1∑
i=1

1

i(i+ 1)
=

1

(n+ 1)(n+ 2)
+

n∑
i=1

1

i(i+ 1)
pull out last term

=
1

(n+ 1)(n+ 2)
+

n

n+ 1
inductive hypothesis

=
1 + n(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 2n+ 1

(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1)(n+ 2)

=
n+ 1

n+ 2
,

so the inductive case holds.

0.2.2 Induction on Other Structures

31

28Note that {0, 1}0 is not ∅; there is always one string of length 0, so the set of such strings is not empty.
29Call this the inductive hypothesis, the fact we get to assume is true in proving the inductive case.
30The fact that they are unique means that if we count two strings in {0, 1}n for every one string in {0, 1}n−1, we

won’t double-count any strings. Hence |{0, 1}n| = 2 · |{0, 1}n−1|
31Induction is often taught as something that applies only to natural numbers, but one can write recursive algo-

rithms that operate on data structures other than natural numbers. Similarly, it is possible to prove something by
induction on something other than a natural number.

xiv INTRODUCTION

Here is an inductive definition of the number of 0’s in a binary string x, denoted #(0, x).32

#(0, x) =

0, if x = λ; (base case)
#(0, w) + 1, if x = w0 for some w ∈ {0, 1}∗; (inductive case)
#(0, w), if x = w1 for some w ∈ {0, 1}∗. (inductive case)

To prove a theorem by induction, identify the base case as the “smallest” object33 for which
the theorem holds.34

Theorem 0.2.3. Every binary tree T of depth d has at most 2d leaves.

Proof. (by induction on a binary tree T) For T a tree, let d(T) be the depth of T , and l(T) the
number of leaves in T .

Base case: Let T be the tree with one node. Then d(T) = 0, and 20 = 1 = l(T).

Inductive case: Let T ’s root have subtrees T0 and T1, at least one of them non-empty. If only
one is non-empty (say Ti), then

l(T) =l(Ti)

≤2d(Ti) inductive hypothesis

=2d(T)−1 definition of depth

<2d(T).

If both subtrees are non-empty, then

l(T) =l(T0) + l(T1)

≤2d(T0) + 2d(T1) ind. hyp.

≤max{2d(T0) + 2d(T0), 2d(T1) + 2d(T1)}
= max{2d(T0)+1, 2d(T1)+1}
=2max{d(T0)+1,d(T1)+1} 2n is monotone increasing

=2d(T). definition of depth

32We will do lots of proofs involving induction on strings, but for now we will just give an inductive definition. Get
used to breaking down strings and other structures in this way.

33In the case of strings, this is the empty string. In the case of trees, this could be the empty tree, or the tree with
just one node: the root (just like with natural numbers, the base case might be 0 or 1, depending on the theorem).

34The inductive step should then employ the truth of the theorem on some “smaller” object than the target object.
In the case of strings, this is typically a substring, often a prefix, of the target string. In the case of trees, a subtree,
typically a subtree of the root. Using smaller subtrees than the immediate subtrees of the root, or shorter substrings
than a one-bit-shorter prefix, is like using a number smaller than n− 1 to prove the inductive case for n; this is the
difference between weak induction (using the truth of the theorem on n − 1 to prove it for n) and strong induction
(using the truth of the theorem on all m < n to prove it for n)

Chapter 1

Regular Languages

1.1 Finite Automata

Reading assignment: Section 1.1 in Sipser.

See Sipser example of a finite automaton to control an automatic door.

See Figure 1.4 in the textbook. This is a state diagram of a finite automaton M1. it has three
states: q1, q2, and q3. q1 is the start state. q2 is the only accept state. The arrows are transitions.
The digits labeling the transitions are input symbols. The state M1 is in at the end of the input
determines whether M1 accepts or rejects.

If we give the input string 1101 to M1, the following happens.

1. Start in state q1

2. Read 1, transition from q1 to q2

3. Read 1, transition from q2 to q2

4. Read 0, transition from q2 to q3

5. Read 1, transition from q3 to q2

6. Accept the input because M1 is in state q2 at the end of the input.

1.1.1 Formal Definition of a Finite Automaton (Syntax)

To describe how a finite automaton transitions between states, we introduce a transition function
δ. The goal is to express that if an automaton is in state q, and it reads the symbol 1 (for example),
and transitions to state q′, then this means δ(q, 1) = q′.

Definition 1.1.1. A (deterministic) finite automaton (DFA) is a 5-tuple (Q,Σ, δ, s, F), where

• Q is a non-empty, finite set of states,

• Σ is the input alphabet,

1

2 CHAPTER 1. REGULAR LANGUAGES

• δ : Q× Σ→ Q is the transition function,

• s ∈ Q is the start state, and

• F ⊆ Q is the set of accepting states.

For example, the DFA M1 of Figure 1.4 in Sipser is defined M1 = (Q,Σ, δ, s, F), where

• Q = {q1, q2, q3},

• Σ = {0, 1},

• δ is defined

δ(q1, 0) = q1,

δ(q1, 1) = q2,

δ(q2, 0) = q3,

δ(q2, 1) = q2,

δ(q3, 0) = q2,

δ(q3, 1) = q2,

or more succinctly, we represent δ by the transition table

δ 0 1

q1 q1 q2
q2 q3 q2
q3 q2 q2

• q1 is the start state, and

• F = {q2}.1

If M = (Q,Σ, δ, s, F) is a DFA, how large is δ?

If A ⊆ Σ∗ is the set of all strings that M accepts, we say that M recognizes (accepts,decides)
A, and we write L(M) = A. 2

M1 recognizes the language

L(M1) =

{
w ∈ {0, 1}∗

∣∣∣∣ w contains at least one 1 and an
even number of 0’s follow the last 1

}
Show DFA simulator and file format.

1The diagram and this formal description contain exactly the same information. The diagram is easy for humans
to read, and the formal description is easy to work with mathematically, and to program.

2If a DFA accepts no strings, what language does it recognize?

1.1. FINITE AUTOMATA 3

Example 1.1.2. See Figure 1.8 in Sipser.
Formally, M2 = ({q1, q2}, {0, 1}, δ, q1, {q2}), where δ is defined

δ 0 1

q1 q1 q2
q2 q1 q2

3 L(M2) = { w ∈ {0, 1}∗ | w ends in a 1 }

Example 1.1.3. See Figure 1.11 in Sipser.
L(M4) = { w ∈ {a, b}+ | w[0] = w[|w| − 1] }

1.1.2 More Examples

Example 1.1.4. Design a DFA that recognizes the language{
a3n

∣∣ n ∈ N } = { w ∈ {a}∗ | |w| is a multiple of 3 } .

M = (Q,Σ, δ, s, F), where

• Q = {0, 1, 2},

• Σ = {a},

• s = 0,

• F = {0}, and

• δ is defined
δ a

0 1
1 2
2 0

Example 1.1.5. Design a DFA that recognizes the language

{ w ∈ {0, 1}∗ | w represents a multiple of 2 in binary } .

M = (Q,Σ, δ, s, F), where

• Q = {0, 1},

• Σ = {0, 1},

• s = 0,

• F = {0}, and

3Talk through the example 1101.

4 CHAPTER 1. REGULAR LANGUAGES

• δ is defined
δ 0 1

0 0 1
1 0 1

.

Example 1.1.6. Design a DFA that recognizes the language

{ w ∈ {0, 1}∗ | w represents a multiple of 3 in binary } .

M = (Q,Σ, δ, s, F), where

• Q = {0, 1, 2},

• Σ = {0, 1},

• s = 0,

• F = {0}, and

• δ is defined
δ 0 1

0 0 1
1 2 0
2 1 2

.

LECTURE: end of day 2

1.1.3 Formal Definition of Computation by a DFA (Semantics)

Sipser defines DFA acceptance this way: We say M = (Q,Σ, δ, s, F) accepts a string x ∈ Σn if there
is a sequence of states q0, q1, q2, . . . , qn ∈ Q such that

1. q0 = s,

2. qi+1 = δ(qi, x[i]) for i ∈ {0, 1, . . . , n− 1}, and

3. qn ∈ F .

There are other ways to define the same concept. I find the following definition to be more work
initially, but easier for proofs later.

Let M = (Q,Σ, δ, s, F) be a DFA. Define the extended transition function

δ̂ : Q× Σ∗ → Q

1.1. FINITE AUTOMATA 5

4 for all q ∈ Q, x ∈ Σ∗, and b ∈ Σ by the recursion

δ̂(q, λ) = q,

δ̂(q, xb) = δ(δ̂(q, x), b).

For example, for the machine M1,

δ̂(q1, λ) = q1,

δ̂(q1, 1) = q2,

δ̂(q1, 10) = q3,

δ̂(q1, 101) = q2.

We say M accepts a string x if δ̂(s, x) ∈ F ; otherwise M rejects x.

Define the language recognized by M as

L(M) = { x ∈ Σ∗ | M accepts x } .

We say a language L is regular if some DFA recognizes it.

1.1.4 The Regular Operations

So far we have read and “programmed” DFAs that recognize particular regular languages. We now
study fundamental properties shared by all regular languages.

Example 1.1.7. Design a DFAM = (Q, {a}, δ, s, F) to recognize the language { an | n is divisible by 3 or 5 }.

• Q = { (i, j) | 0 ≤ i < 3, 0 ≤ j < 5 }

• s = (0, 0)

• δ((i, j), a) = (i+ 1 mod 3, j + 1 mod 5)

• F = { (i, j) | i = 0 or j = 0 }

M is essentially simulating two DFAs at once: one that computes congruence mod 3 and the
other that computes congruence mod 5. We now generalize this idea.

Definition 1.1.8. Let A and B be languages.

Union: A ∪B = { x | x ∈ A or x ∈ B }5

Concatenation: A ◦B = { xy | x ∈ A and y ∈ B }6 (also written A ◦B)

4Intuitively, we want δ̂(q, w) to mean “M ’s state after reading the string w.”
5The normal union operation that makes sense for any two sets, which happen to be languages in this case
6The set of all strings formed by concatenating one string from A to one string from B; only makes sense for

languages because not all types of objects can be concatenated

6 CHAPTER 1. REGULAR LANGUAGES

(Kleene) Star: A∗ =
⋃∞
n=0A

n = { x1x2 . . . xk | k ∈ N and x1, x2, . . . , xk ∈ A }7

Each is an operator on one or two languages, with another language as output.

The regular languages are closed under each of these operations.8 This means that if A,B are
regular, A∪B, A ◦B, and A∗ are all regular also.9 The proofs of each of these facts are something
like the “divisible by 3 or 5” DFA above: we show how to simulate some DFAs (that recognize the
languages A and B) with another DFA (that recognizes A ∪B, or A ◦B, or A∗).

Theorem 1.1.9. The class of regular languages is closed under ∪.

10

Proof. (Product Construction)11

12

Let M1 = (Q1,Σ, δ1, s1, F1) and M2 = (Q2,Σ, δ2, s2, F2) be DFAs. We construct the DFA
M = (Q,Σ, δ, s, F) to recognize L(M1) ∪ L(M2) by simulating both M1 and M2 in parallel, where

• Q keeps track of the states of both M1 and M2:

Q = Q1 ×Q2 (= { (r1, r2) | r1 ∈ Q1 and r2 ∈ Q2 })

• δ simulates moving both M1 and M2 one step forward in response to the input symbol. Define
δ for all (r1, r2) ∈ Q and all b ∈ Σ as

δ((r1, r2) , b) = (δ1(r1, b) , δ2(r2, b))

• s ensures both M1 and M2 start in their respective start states:

s = (s1, s2)

7The set of all strings formed by concatenating 0 or more strings from A. Just like with Σ∗, except now whole
strings may be concatenated instead of individual symbols.

8Note that this is not the same as the property of a subset A ⊆ Rd being closed in the sense that it contains
all of its limit points. The concepts are totally different, even if the same English word “closed” is used in each
definition. In particular, one typically does not talk about any class of languages being merely “closed,” but rather,
closed with respect to a certain operation such as union, concatenation, or Kleene star.

9The intuition for the terminology is that if you think of the class of regular languages as being like a room,
and doing an operation as being like moving from one language (or languages) to another, then moving via union,
concatenation, or star won’t get you out of the room; the room is “closed” with respect to moving via those operations.

10Proof Idea: (The Product Construction)
We must show that if A1 and A2 are regular, then so is A1 ∪ A2. Since A1 and A2 are regular, some DFA M1

recognizes A1, and some DFA M2 recognizes A2. It suffices to show that some DFA M recognizes A1 ∪ A2; i.e., it
accepts a string x if and only if at least one of M1 or M2 accepts x.
M will simulate M1 and M2. If either accepts the input string, then so will M . M must simulate them simultane-

ously, because if it tried to simulate M1, then M2, it could not remember the input to supply it to M2
11The name comes from the cross product used to define the state set.
12In this proof, I will write more than normal. In the future I will say out loud the explanation that makes the

proof understandable, but refrain from writing it all for the sake of time. On your homework, you should write these
explanations, so the TA will understand the proof.

1.1. FINITE AUTOMATA 7

• F must be accepting exactly when either one or the other or both of M1 and M2 are in an
accepting state:

F = { (r1, r2) | r1 ∈ F1 or r2 ∈ F2 } .
13

Let x ∈ Σ∗. Then

x ∈ L(M) ⇐⇒ δ̂(s, x) ∈ F defn of L()

⇐⇒
(
δ̂1(s1, x) , δ̂2(s2, x)

)
∈ F this claim shown below

⇐⇒ δ̂1(s1, x) ∈ F1 or δ̂2(s2, x) ∈ F2 defn of F

⇐⇒ x ∈ L(M1) or x ∈ L(M2) defn of L()

⇐⇒ x ∈ L(M1) ∪ L(M2), defn of ∪

whence L(M) = L(M1)∪L(M2). Now we justify the claim above that δ̂(s, x) = (δ̂1(s1, x), δ̂2(s2, x))
by induction on x.14 In the base case x = λ, then

δ̂(s, λ) =s base defn of δ̂

=(s1, s2) defn of s

=
(
δ̂1(s1, λ) , δ̂2(s2, λ)

)
base defn of δ̂1 and δ̂2

Now inductively assume that for x ∈ Σ∗, δ̂(s, x) = (δ̂1(s1, x), δ̂1(s2, x)). Let b ∈ Σ. Then

δ̂(s, xb) =δ
(
δ̂(s, x) , b

)
ind. defn of δ̂

=δ
((

δ̂1(s1, x), δ̂2(s2, x)
)
, b
)

ind. hyp.

=
(
δ1

(
δ̂1(s1, x), b

)
, δ2

(
δ̂2(s2, x), b

))
defn of δ

=
(
δ̂1(s1, xb) , δ̂2(s2, xb)

)
, ind. defn of δ̂1 and δ̂2

whence the claim holds for xb.15

Theorem 1.1.10. The class of regular languages is closed under complement.

13This is not the same as F = F1 × F2. What would the machine do if we defined F = F1 × F2?
14Although we do induction manually in this class, it is common in theoretical computer science papers to see a

claim such as that above left unproven (often with the flippant remark, “this is easily shown with a trivial induction
on x”). This is because claims of the form “what I stated holds for the one-symbol-at-a-time function δ, so it obviously

holds for the extended-to-whole-strings function δ̂” are typically verified by induction. But when an author claims
it is “easily verified”, they mean that it is easy for someone who has already taken a course like 120, so as to get to
the point where they could easily reproduce the induction. In other words, you aren’t allowed to claim something
is “a trivial induction” until you could produce that induction in your sleep; until that point, you have to prove it
explicitly.

15Now go back to the claim and verify that the final chain of inequalities actually is what we intended to prove. It
is, but it is difficult to remember what claim was intended to be proven after such mental gymnastics.

8 CHAPTER 1. REGULAR LANGUAGES

Proof Idea: Swap the accept and reject states.

Theorem 1.1.11. The class of regular languages is closed under ∩.

Proof Idea: DeMorgan’s Laws.

Proof. Let A,B be regular languages; then

A ∩B = A ∪B

is the complement of the union of two languages A and B that are the complements of regular
languages. By the union and complement closure properties, this language is also regular.

Note that we have only proved that the regular languages are closed under a single application
of ∪ or ∩ to two regular languages A1 and A2. You can use induction to prove that they are closed
under finite union and intersection; for instance, if A1, . . . , Ak are regular, then

⋃k
i=1Ai is regular,

for any k ∈ N.16

Finally, we show another nontrivial closure property of the regular languages.

Theorem 1.1.12. The class of regular languages is closed under ◦.

17

We prove this by introducing a tool to help us.

LECTURE: end of day 3

1.2 Nondeterminism

Reading assignment: Section 1.2 in Sipser.

We now reach a central motif in theoretical computer science:

16What about infinite union or infinite intersection?
17In other words, we need to construct M so that, if M1 accepts x and M2 accepts y, then M accepts xy. If we try

to reason about this like with the union operation, there is one additional complication. We are no longer simulating
the machines on the same input; rather, x precedes y in the string xy. We could say, “build M to simulate M1 on x,
and after the x portion of xy has been read, then simulate M2 on y.”

What is wrong with this idea? When x and y are concatenated to form xy, we no longer know where x ends and
y begins. So M would not know when to switch from simulating M1 to simulating M2.

We now study nondeterminism as an (apparently) more powerful mechanism for recognizing languages with finite
automata. Surprisingly, it turns out it is no more powerful, but is easier think about for certain problems such as
this one.

1.2. NONDETERMINISM 9

Proof Technique: When you want to prove that an algorithm can solve a problem, brazenly
assume your algorithm has a magic ability that you can use to cheat. Then prove that adding
adding the magic ability does not improve the fundamental power of the algorithm.18

Deterministic finite automata (DFA): realistic difficult to program

Nondeterministic finite automata (NFA): (apparently) unrealistic easy to program

Example 1.2.1. Design a finite automaton to recognize the language { x ∈ {0, 1}∗ | x[|x| − 3] = 0 }.

See Figure 1.27 in Sipser.

Differences between DFA’s and NFA’s:

• An NFA state may have any number (including 0) of transition arrows out of a state, for the
same input symbol.19

• An NFA may change states without reading any input (a λ-transition).

• If there is a series of choices (when there is a choice) to reach an accept state, then the NFA
accepts. If there is no series of choices that leads to an accept state, the NFA rejects.20

Example 1.2.2. Design an NFA to recognize the language

{ x ∈ {a}∗ | |x| is a multiple of 2 or 3 or 5 }

1.2.1 Formal Definition of an NFA (Syntax)

Definition 1.2.3. A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Σ,∆, s, F), where

• Q is a non-empty, finite set of states,

• Σ is the input alphabet,

• ∆ : Q× (Σ ∪ {λ})→ P(Q) is the transition function,

• s ∈ Q is the start state, and

• F ⊆ Q is the set of accepting states.

When defining ∆, we assume that if for some q ∈ Q and b ∈ Σ ∪ {λ}, ∆(q, b) is not explicitly
defined, then ∆(q, b) = ∅.

Example 1.2.4. See Example 1.38 in Sipser.

The formal description of N1 is (Q,Σ,∆, q1, F), where

18This proves it could have been done without the magic ability.
19Unlike a DFA, an NFA may attempt to read a symbol a in a state q that has no transition arrow for a; in this

case the NFA is interpreted as immediately rejecting the string.
20Note that accepting and rejecting are treated asymmetrically; if there is a series of choices that leads to accept

and there is another series of choices that leads to reject, then the NFA accepts.

10 CHAPTER 1. REGULAR LANGUAGES

• Q = {q1, q2, q3, q4},

• Σ = {0, 1},

• ∆ is defined

∆ 0 1 λ

q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q2}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅

• q1 is the start state, and

• F = {q4}.

1.2.2 Formal Definition of Computation by an NFA (Semantics)

An NFA N = (Q,Σ,∆, s, F) accepts a string x ∈ Σ∗ if there are sequences y0, y1, y2, . . . , ym−1 ∈
Σ ∪ {λ} and q0, q1, . . . , qm+1 ∈ Q such that

1. x = y0y1 . . . ym−1,

2. q0 = s,

3. qi+1 ∈ ∆(qi, y[i]) for i ∈ {0, 1, . . . ,m}, and

4. qm ∈ F .

With NFAs, strings appear

• easier to accept, but

• harder to reject.21

21The trick with NFAs is that it becomes (apparently) easier to accept a string, since multiple paths through the
NFA could lead to an accept state, and only one must do so in order to accept. But NFAs aren’t magic; you can’t
simply put accept states and λ-transitions everywhere and claim that there exist paths doing what you want, so the
NFA works.

By the same token that makes acceptance easier, rejection becomes more difficult, because you must ensure that
no path leads to acceptance if the string ought to be rejected. Therefore, the more transitions and accept states you
throw in to make accepting easier, that much more difficult does it become to design the NFA to properly reject.
The key difference is that the condition “there exists a path to an accept state” becomes, when we negate it to define
rejection, “all paths lead to a reject state”. It is of course, more difficult to verify a “for all” claim than a “there
exists” claim.

1.2. NONDETERMINISM 11

1.2.3 Equivalence of DFAs and NFAs

Theorem 1.2.5. For every DFA M , there is an NFA N such that L(N) = L(M).

Proof. A DFA M = (Q,Σ, δ, s, F) is an NFA N = (Q,Σ,∆, s, F) with no λ-transitions and, for
every q ∈ Q and a ∈ Σ, ∆(q, a) = {δ(q, a)}.

LECTURE: end of day 4

We now show the converse of Theorem 1.2.5.

Theorem 1.2.6. For every NFA N , there is a DFA D such that L(N) = L(D).

Show example 1.41, with figures 1.42, 1.43, and 1.44 from textbook.

Proof. (Subset Construction) Let N = (QN ,Σ,∆, sN , FN) be an NFA with no λ-transitions.22

Define the DFA D = (QD,Σ, δ, sD, FD) as follows

• QD = P(QN). Each state of D keeps track of a set of states in N , representing the set of all
states N could be in after reading some portion of the input.

• For all R ∈ QD (i.e., all R ⊆ QN) and b ∈ Σ,

δ(R, b) =
⋃
q∈R

∆(q, b),

If N is in state q ∈ R after reading some portion of the input, then the states could it be in
after reading the next symbol b are all the states in ∆(q, b); since N could be in any state
q ∈ R before reading b, then we must take the union over all q ∈ R.

• sD = {sN}, After reading no input, N can only be in state sN .

• FD = { A ⊆ QN | A ∩ FN 6= ∅ } . Recall the asymmetric acceptance criterion; we want to
accept if there is a way to reach an accept state, i.e., if the set of states N could be in after
reading the whole input contains any accept states.

Now we show how to handle the λ-transitions. For any R ⊆ QN and define

E(R) = { q ∈ Q | q is reachable from some state in R by following 0 or more λ-transitions } .

Show example picture of some states R and E(R)

To account for the λ-transitions, D must be able to simulate

22At the end of the proof we explain how to modify the construction to handle them.

12 CHAPTER 1. REGULAR LANGUAGES

1. N following λ-transitions after each non-λ-transition, i.e., define

δ(R, b) = E

⋃
q∈R

∆(q, b)

 .

2. N following λ-transitions before the first non-λ-transition, i.e., define sD = E({sN}).

We have constructed a DFA D such that for all x ∈ Σ∗, δ̂(sD, x) ⊆ QN is the subset of states that
N could be in after reading x. By the definition of FD, D accepts x ⇐⇒ δ̂(sD, x) ∈ FD ⇐⇒
δ̂(sD, x) ∩ FN 6= ∅, i.e., if and only if some state q ∈ δ̂(sD, x) is accepting, which by the definition
of NFA acceptance occurs if and only if N accepts x. Thus L(D) = L(N).

Note that the subset construction uses the power set of QN , which is exponentially larger than
QN . It can be shown (see Kozen’s textbook) that there are languages for which this is necessary;
the smallest NFA recognizing the language has n states, while the smallest DFA recognizing the
language has 2n states. For example, for any n ∈ N, the language { x ∈ {0, 1}∗ | x[|x| − n] = 0 }
has this property.

Corollary 1.2.7. The class of languages recognized by some NFA is precisely the regular languages.

Proof. This follows immediately from Theorems 1.2.5 and 1.2.6.

Theorem 1.2.8. The class of regular languages is closed under ◦.

Proof. Let N1 = (Q1,Σ,∆1, s1, F1) and N2 = (Q2,Σ,∆2, s2, F2) be NFAs. It suffices to define the
NFA N = (Q,Σ,∆, s, F) such that N recognizes

L(N1) ◦ L(N2) = { xy ∈ Σ∗ | x ∈ L(N1) and y ∈ L(N2) } .

Show example picture from Sipser

Define

• Q = Q1 ∪Q2,

• s = s1,

• F = F2, and

• ∆ is defined for all q ∈ Q and b ∈ Σ ∪ {λ} by

∆(q, b) =

∆1(q, b), if q ∈ Q1 and q 6∈ F1;
∆1(q, b), if q ∈ Q1 and b 6= λ;
∆2(q, b), if q ∈ Q2;
∆1(q, b) ∪ {s2}, if q ∈ F1 and b = λ.

1.2. NONDETERMINISM 13

To see that L(N1) ◦ L(N2) ⊆ L(N). Let w ∈ Σ∗. If there are x ∈ L(N1) and y ∈ L(N2) such
that w = xy (i.e., w ∈ L(N1) ◦L(N2), then there is a sequence of choices of N such that N accepts
w (i.e., q ∈ L(N)): follow the choices N1 makes to accept x, ending in a state in F1, then execute
the λ-transition to state s2 defined above, then follow the choices N2 makes to accept y. This shows
L(N1) ◦ L(N2) ⊆ L(N).

To see the reverse containment L(N) ⊆ L(N1) ◦ L(N2), suppose w ∈ L(N). Then there is
a sequence of choices such that N accepts w. By construction, all paths from s = s1 to some
state in F = F2 pass through s2, so N must reach s2 after reading some prefix x v w, and the
remaining suffix y of w takes N from s2 to a state in F2, i.e., y ∈ L(N2). By construction, all
paths from s = s1 to s2 go through a state in F1, and those states are connected to s2 only by a
λ-transition, so x takes N from s1 to a state in F2, i.e., x ∈ L(N1). Since w = xy, this shows that
L(N) ⊆ L(N1) ◦ L(N2).

Thus N recognizes L(N1) ◦ L(N2).

LECTURE: end of day 5

Theorem 1.2.9. The class of regular languages is closed under ∗.

Proof. Let D = (QD,Σ, δ, sD, FD) be an DFA. It suffices to define the NFA N = (QN ,Σ,∆, sN , FN)
such that N recognizes

L(D)∗ =

∞⋃
k=0

L(D)k = { x1x2 . . . xk ∈ Σ∗ | k ∈ N and, for all 0 ≤ i ≤ k, xi ∈ L(D) } .

Show example picture from Sipser

Define

• QN = QD ∪ {sN},

• FN = FD ∪ {sN}, and

• ∆′ is defined for all q ∈ Q′ and b ∈ Σ ∪ {λ} by

∆′(q, b) =

∆(q, b), if q ∈ QD and q 6∈ FD;
∆(q, b), if q ∈ FD and b 6= λ;
∆(q, b) ∪ {sD}, if q ∈ FD and b = λ;
{sD}, if q = sN and b = λ;
∅, if q = sN and b 6= λ.

Clearly N accepts λ ∈ L(D)∗, so we consider only nonempty strings.

14 CHAPTER 1. REGULAR LANGUAGES

To see that L(D)∗ ⊆ L(N), suppose w ∈ L(D)∗ \ {λ}. Then w = x1x2 . . . xk, where each xj ∈
L(D)\{λ}. Thus for each j ∈ {1, . . . , k}, there is a sequence of states sD = qj,0, qj,1, . . . , qj,|xj | ∈ Q,
where qj,|xj | ∈ F , and a sequence yj,0, . . . , yj,|xj |−1 ∈ Σ, such that xj = yj,0 . . . yj,|xj |−1, and for each
i ∈ {0, . . . , |xj | − 1}, qj,i+1 = δ(qj,i, yj,i). The following sequence of states in QN testifies that N
accepts w:

(sN , sD, q1,1, . . . , q1,|x1|,

sD, q2,1, . . . , q2,|x2|,

. . .
sD, qk,1, . . . , qk,|xk|).

Each transition between adjacent states in the sequence is either one of the ∆(qj,i, yj,i) listed above,
or is the λ-transition from sN to sD or from qj,|xj | to sD. Since qk,|xk| ∈ F ⊆ F

′, N ′ accepts w, i.e.,
L(N)∗ ⊆ L(N ′).

To see that L(N ′) ⊆ L(N)∗, let w ∈ L(N ′) \ {λ}. Then there are sequences s′ = q0, q1 . . . , qm ∈
Q′ and y0, . . . , ym−1 ∈ Σ∪{λ} such that qm ∈ F ′, w = y0y1 . . . ym−1, and, for all i ∈ {0, . . . ,m−1},
qi+1 ∈ ∆′(qi, y[i]). Since w 6= λ, qm 6= s′, so qm ∈ F . Since the start state is s′ = q0, which has
no outgoing non-λ-transition, the first transition from q0 to q1 is the λ-transition s′ to s. Suppose
there are k − 1 λ-transitions from a state in F to s in q1, . . . , qm. Then we can write q1, . . . , qm as

(sD, q1,1, . . . , q1,|x1|,

sD, q2,1, . . . , q2,|x2|,

. . .
sD, qk,1, . . . , qk,|xk|).

where each qj,|xj | ∈ F and has a λ-transition to s.23 For each j ∈ {1, . . . , k) and i ∈ {0, |xj | − 1},
let yj,i be the corresponding symbol in Σ ∪ {λ} causing the transition from qj,i to qj,i+1, and let
xj = yj,0yj,1 . . . yj,|xj |−1. Then the sequences s, qj,1qj,2 . . . qj,|xj | and yj,0yj,1 . . . yj,mj−1 testify that N
accepts xj , thus xj ∈ L(N). Thus w = x1x2 . . . xk, where each xj ∈ L(N), so w ∈ L(N)∗, showing
L(N ′) ⊆ L(N)∗.

Thus N ′ recognizes L(N)∗.

1.3 Regular Expressions

Reading assignment: Section 1.3 in Sipser.
A regular expression is a pattern that matches some set of strings, used in many programming

languages and applications such as grep. For example, the regular expression

(0 ∪ 1)0∗

matches any string starting with a 0 or 1, followed by zero or more 0’s.24

(0 ∪ 1)∗

23Perhaps there are no such λ-transitions, in which case k = 1.
24The notation (0|1)0∗ is more common, but we use the ∪ symbol in place of | to emphasize the connections to set

theory, and because | looks too much like 1.

1.3. REGULAR EXPRESSIONS 15

matches any string consisting of zero or more 0’s and 1’s; i.e., any binary string.
Let Σ = {0, 1, 2}. Then

(0Σ∗) ∪ (Σ∗1)

matches any ternary string that either starts with a 0 or ends with a 1. The above is shorthand for

(0(0 ∪ 1 ∪ 2)∗) ∪ ((0 ∪ 1 ∪ 2)∗1)

since Σ = {0} ∪ {1} ∪ {2}.
Each regular expression R defines a language L(R).

1.3.1 Formal Definition of a Regular Expression

Definition 1.3.1. Let Σ be an alphabet.
R is a regular expression (regex) if R is

1. b for some b ∈ Σ, defining the language {b},

2. λ, defining the language {λ},

3. ∅, defining the language {},

4. R1 ∪R2, where R1, R2 are regex’s, defining the language L(R1) ∪ L(R2),

5. R1R2 (or R1 ◦R2), where R1, R2 are regex’s, defining the language L(R1) ◦ L(R2), or

6. R∗, where R is a regex, defining the language L(R)∗.

The operators have precedence ∗ > ◦ > ∪. Parentheses may be used to override this precedence.

We sometimes abuse notation and write R to mean L(R) and rely on context to interpret the
meaning.

For convenience, define R+ = RR∗, for each k ∈ N, let Rk = RR . . . R︸ ︷︷ ︸
k times

, and given an alphabet

Σ = {a1, a2, . . . , ak}, then Σ is shorthand for the regex a1 ∪ a2 ∪ . . . ∪ ak.

Example 1.3.2. Let Σ be an alphabet.

• 0∗10∗ = { w | w contains a single 1 }.

• Σ∗1Σ∗ = { w | w has at least one 1 }.

• Σ∗001Σ∗ = { w | w contains the substring 001 }.

• 1∗(01+)∗ = { w | every 0 in w is followed by at least one 1 }.

• (ΣΣ)∗ = { w | |w| is even }.

• 01 ∪ 10 = {01, 10}.

• 0 (0∪1)∗ 0 ∪ 1 (0∪1)∗ 1 ∪ 0 ∪ 1 = { w ∈ {0, 1}∗ | w starts and ends with the same symbol }

16 CHAPTER 1. REGULAR LANGUAGES

• (0 ∪ λ)1∗ = 01∗ ∪ 1∗.

• (0 ∪ λ)(1 ∪ λ) = {λ, 0, 1, 01}.

• 1∗∅ = ∅.

• ∅∗ = {λ}.

• R ∪ ∅ = R, where R is any regex.

• R ◦ λ = R, where R is any regex.

Example 1.3.3. Design a regular expression to match C++ float literals (e.g., 2, 3.14, -.02,
0.02, .02, 3.).

Let D = 0 ∪ 1 ∪ . . . ∪ 9 be a regex recognizing a single decimal digit.

(+ ∪ − ∪ λ)(D+ ∪D+.D∗ ∪D∗.D+)

LECTURE: end of day 6

1.3.2 Equivalence with Finite Automata

Theorem 1.3.4. A language is regular if and only if some regular expression defines it.

We prove each direction separately via two lemmas.

Lemma 1.3.5. If a language is defined by a regular expression, then it is regular.

Proof. Let R be a regular expression over an alphabet Σ. It suffices to construct an NFA N =
(Q,Σ,∆, s, F) such that L(R) = L(N).

The definition of regex gives us six cases:

1. R = b, where b ∈ Σ, so L(R) = {b}, recognized by the NFA N = ({q1, q2},Σ,∆, q1, {q2}),
where ∆(q1, b) = {q2}.

2. R = λ, so L(R) = {λ}, recognized by the NFA N = ({q1},Σ, δ, q1, {q1}) (no transitions).

3. R = ∅, so L(R) = ∅, recognized by the NFA N = ({q1},Σ, δ, q1, ∅) (no transitions).

4. R = R1 ∪R2, so L(R) = L(R1) ∪ L(R2).

5. R = R1 ◦R2, so L(R) = L(R1) ◦ L(R2).

6. R = R∗1, so L(R) = L(R1)
∗.

1.3. REGULAR EXPRESSIONS 17

For the last three cases, assume inductively that L(R1) and L(R2) are regular. Since the regular
languages are closed under the operations of ∪, ◦, and ∗, R is regular.

See examples 1.56 and 1.58 in Sipser.

Lemma 1.3.6. If a language is regular, then it is defined by a regular expression.

Proof. Let D = (Q,Σ, δ, s, F) be a DFA. It suffices to construct a regex R such that L(R) = L(D).
Given P ⊆ Q and u, v ∈ Q, we will construct a regex RPuv to define the language

L(RPuv) =
{
x ∈ Σ∗

∣∣∣ v = δ̂(u, x) and (∀i ∈ {1, 2, . . . , |x| − 1}) δ̂(u, x[0 . . i− 1]) ∈ P
}
.

draw picture

That is, x ∈ L(RPuv) if and only if input x takes D from state u to state v “entirely through P ,
except possibly at the start and end”. The construction of RPuv is inductive on P .25

Base case: Let P = ∅, and let b1, . . . , bk ∈ Σ be the symbols such that v = δ(u, bi). If u 6= v,
define

R∅uv =

{
b1 ∪ . . . ∪ bk, if k ≥ 1;
∅, if k = 0.

If u = v, define

R∅uu =

{
b1 ∪ . . . ∪ bk ∪ λ, if k ≥ 1;
λ, if k = 0.

The λ represents “traversing” from u to u without reading a symbol, by simply sitting still.

Inductive case: Let P ⊆ Q be nonempty. Choose q ∈ P arbitrarily, and define

RPuv = RP\{q}uv ∪RP\{q}uq

(
RP\{q}qq

)∗
RP\{q}qv .

draw picture

That is, either x traverses from u to v through P without ever visiting q, or it visits q one or
more times, and between each of these visits, traverses within P without visiting q. 26

To finish the proof, observe that the regex

R = RQsf1 ∪R
Q
sf2
∪ . . . ∪RQsfk ,

where F = {f1, f2, . . . , fk}, defines L(D), since the set of strings accepted by D is precisely those
strings that follow a path from the start state s to some accept state fi, staying within the entire
state set Q.

25That is, we assume inductively that the regex’s RP
′

u′v′ can be constructed for proper subsets P ′ (P and all pairs
of states u′, v′ ∈ Q, and use these to define RPuv).

26Suppose x follows a path from u to v through P . It either visits state q or not. If not, then the first sub-regex
R
P\{q}
uq will match x. If so, then it will get to q, take 0 or more paths through P \ {q}, revisiting q after each one,

then proceed within P \ {q} from q to v. The second sub-regex expresses this. Therefore RPuv matches x. Since these
two sub-regex’s express the only two ways for x to follow a path from u to v through P , the converse holds that RPuv
matching x implies x follows a path from u to v through P .

18 CHAPTER 1. REGULAR LANGUAGES

Example: convert the DFA ({1, 2}, {a, b}, δ, 1, {2}) to a regular expression using the given pro-
cedure, where

δ a b

1 1 2
2 2 2

In the first step of recursion, we choose q = 2, i.e., we define R
{1,2}
12 inductively in terms of

R
{1,2}\{2}
uv = R

{1}
uv .

R
{1,2}
12 = R

{1}
12 ∪R

{1}
12

(
R
{1}
22

)∗
R
{1}
22

R
{1}
12 = R∅12 ∪R∅11(R∅11)∗R∅12

R
{1}
22 = R∅22 ∪R∅21(R∅11)∗R∅12
R∅12 = b

R∅22 = a ∪ b ∪ λ
R∅21 = ∅
R∅11 = a ∪ λ

We use the identity below that for any regex X, (X ∪ λ)∗ = X∗ (since concatenating λ any
number of times does not alter a string). We also use this observation: for any regex’s X and Y ,
X∪XY Y ∗ = XY ∗, since X means X followed by 0 Y ’s, and XY Y ∗ is X followed by 1 or more Y ’s,
so their union is the same as X followed by 0 or more Y ’s, i.e., XY ∗. Similarly, X∪Y Y ∗X = Y ∗X.

Substituting the definitions of R∅11, R
∅
12, R

∅
21, R

∅
22, we have

R
{1}
12 = b ∪ (a ∪ λ)(a ∪ λ)∗b

= (a ∪ λ)∗b since X ∪ Y Y ∗X = Y ∗X

= a∗b since (X ∪ λ)∗ = X∗

R
{1}
22 = (a ∪ b ∪ λ) ∪ ∅(a ∪ λ)∗b

= (a ∪ b ∪ λ) since ∅X = ∅

Substituting the definitions of R
{1}
12 , R

{1}
22 , we have

R
{1,2}
12 = R

{1}
12 ∪R

{1}
12

(
R
{1}
22

)∗
R
{1}
22

= a∗b ∪ (a∗b)(a ∪ b ∪ λ)∗(a ∪ b ∪ λ)

= a∗b(a ∪ b ∪ λ)∗ since X ∪XY Y ∗ = XY ∗

= a∗b(a ∪ b)∗ since (X ∪ λ)∗ = X∗

In other words, L(R) is the set of strings with at least one b.

1.4. NONREGULAR LANGUAGES 19

s
q
1

q
3

q
4

q
2

q
5

0

1

0

1

0

1

1

0

0

0

1
1

q
5 q

6

0,1

0,1

Figure 1.1: A DFA D = (Q,Σ, δ, s, F) to help illustrate the idea of the pumping lemma.

LECTURE: end of day 7

1.4 Nonregular Languages

Reading assignment: Section 1.4 in Sipser.
Consider the language

B = { 0n1n | n ∈ N } .

B is not regular.27

Recall that given strings a, b, #(a, b) denotes the number of times that a appears as a substring
of b. Consider the languages

C = { x ∈ {0, 1}∗ | #(0, x) = #(1, x) } , and

D = { x ∈ {0, 1}∗ | #(01, x) = #(10, x) } .

C is not regular, but D is.

1.4.1 The Pumping Lemma

The pumping lemma is based on the pigeonhole principle. The proof informally states, “If an input
to a DFA is long enough, then some state must be visited twice, and the substring between the two
visitations can be repeated without changing the DFA’s final answer.”28

See the DFA in Figure 1.1. Consider states reached by reading various strings.

27Intuitively, it appears to require unlimited memory to count all the 0’s. But we must prove this formally; the
next example shows that a language can appear to require unbounded memory while actually being regular.

28That is, we “pump” more copies of the substring into the full string. The goal is to pump until we change the
membership of the string in the language, at which point we know the DFA cannot decide the language, since it gives
the same answer on two strings, one of which is in the language and the other of which is not.

20 CHAPTER 1. REGULAR LANGUAGES

Note that if we reach, for example, q1, then read the bits 1001, we will return to q1. Therefore,
for any string x such that δ̂(s, x) = q1, it follows that δ̂(s, x1001) = q1, and δ̂(s, x10011001) = q1,
etc. i.e., for all n ∈ N, defining y = 1001, δ̂(s, xyn) = q1.

Also notice that if we are in state q1, and we read the string 1100, we end up in accepting state
q4. Therefore, defining z = 1100, δ̂(s, xz) = q4, thus D accepts xz. But combined with the previous
reasoning, we also have that D accepts xynz for all n ∈ N.

More generally, for any DFA D, any string w with |w| ≥ |Q| has to cause D to traverse a cycle.
The substring y read along this cycle can either be removed, or more copies added, and the DFA
will end in the same state. Calling x the part of w before y and z the part after, we have that
whatever is D’s answer on w = xyz, it is the same on xynz for any n ∈ N, since all of those strings
take D to the same state.

Pumping Lemma. For every DFA D, there is a number p ∈ N (the pumping length) such that,
if w is any string accepted by D of length at least p, then w may be written w = xyz, such that

1. for each i ∈ N, D accepts xyiz,

2. |y| > 0, and

3. |xy| ≤ p.

Proof. Let D = (Q,Σ, δ, s, F) be a DFA and let p = |Q|.
Let w ∈ Σn be a string accepted by D, where n ≥ p. Let r0, r1, . . . , rn be the sequence of

n+ 1 states M enters while reading w, i.e., ri = δ̂(s, w[0 . . i− 1]). Note r0 = s and rn ∈ F . Since
n ≥ p = |Q|, two states, say, rj and rl, with j < l ≤ p + 1, must be equal by the pigeonhole
principle. Let x = w[0 . . j − 1], y = w[j . . l − 1], and z = w[l . . n− 1].

Since δ̂(rj , y) = rl = rj , it follows that for all i ∈ N, δ̂(rj , y
i) = rj . Therefore δ̂(r0, xy

iz) =
rn =∈ F , whence M accepts xyiz, satisfying (1). Since j 6= l, |y| > 0, satisfying (2). Finally,
l ≤ p+ 1, so |xy| ≤ p, satisfying (3).

29

Theorem 1.4.1. The language B = { 0n1n | n ∈ N } is not regular.

Proof. Let M be any DFA, with pumping length p. Let w = 0p1p. If M rejects w, then we are
done since w ∈ B, so assume M accepts w. Then w = xyz, where |y| > 0, |xy| ≤ p, and M accepts
xyiz for all i ∈ N.

Since |xy| ≤ p, y ∈ {0}∗. Since |y| > 0 and xyz has an equal number of 0’s and 1’s, it follows
that xyyz has more 0’s than 1’s, whence xyyz 6∈ B.

But M accepts xyyz, so M does not recognize B.

Theorem 1.4.2. The language F = { ww | w ∈ {0, 1}∗ } is not regular.

29The strategy for employing the Pumping Lemma to show a language L is not regular is: fix a DFA M , find a
long string in L, long enough that it can be pumped (relative to M), then prove that pumping it “moves it out of
the language”. This shows M does not recognize L, since M accepts the pumped string, by the Pumping Lemma.

1.4. NONREGULAR LANGUAGES 21

Proof. Let M be any DFA, with pumping length p. Let w = 0p10p1. If M rejects w, then we are
done since w ∈ F , so assume M accepts w. Then w = xyz, where |y| > 0, |xy| ≤ p, and M accepts
xyiz for all i ∈ N.

Since |xy| ≤ p, y ∈ {0}m for some m ∈ Z+. Hence xyyz = 0p+m10p1 6∈ F .
But M accepts xyyz, so M does not recognize F .

Here is a nonregular unary language.

Theorem 1.4.3. The language D =
{

1n
2
∣∣∣ n ∈ N } is not regular.

Proof. Let M be any DFA, with pumping length p. Let w = 1p
2
. If M rejects w, then we are done

since w ∈ D, so assume M accepts w. Then w = xyz, where |y| > 0, |xy| ≤ p, and M accepts xyiz
for all i ∈ N.

Since |y| ≤ p, |xyyz| − |w| ≤ p. Let u = 1(p+1)2 be the next biggest string in D after w. Then

|u| − |w| = (p+ 1)2 − p2

= p2 + 2p+ 1− p2

= 2p+ 1

> p,

whence |xyyz| is strictly between |w| and |u|, and hence it is not the length of any string in D. So
xyyz 6∈ D.

But M accepts xyyz, so M does not recognize D.

In the next example, we use the nonregularity of one language to prove that another language
is not regular, without directly employing the Pumping Lemma.

Theorem 1.4.4. The language A = { w ∈ {0, 1}∗ | #(0, w) = #(1, w) } is not regular.

Proof. Let B = A∩ {0∗1∗} = { 0n1n | n ∈ N }. Since {0∗1∗} is regular, and the regular languages
are closed under intersection, if A were regular, then B would be regular also. But by Theorem
1.4.1, B is not regular. Hence A is not regular.30

LECTURE: end of day 8

30This is not a proof by contradiction; it is a proof by contrapositive. Since {0∗1∗} is regular, and the regular
languages are closed under intersection, the implication statement “A is regular =⇒ B is regular” is true. The
contrapositive of this statement (hence equivalent to the statement) is “B is not regular =⇒ A is not regular”,
and B is not regular by Theorem 1.4.1; hence, A is not regular. As a matter of style, you should not use a proof by
contradiction that does not actually use the assumed falsity of the theorem; in the case of Theorem 1.4.4, we never
once needed to assume that A is regular in our arguments, so it would have been useless to first claim, “Assume for
the sake of contradiction that A is regular” at the start of the proof, though it is common to see such redundancy in
proofs by contradiction.

22 CHAPTER 1. REGULAR LANGUAGES

Chapter 2

Context-Free Languages

Reading assignment: Chapter 2 of Sipser.

2.1 Context-Free Grammars

A → 0A1

A → B

B → #

A grammar consists of substitution rules (productions), one on each line. The single symbol on the
left is a variable, and the string on the right consists of variables and other symbols called terminals.
One variable is designated as the start variable, on the left of the topmost production. The fact
that the left side of each production has a single variable means the grammar is context-free. We
abbreviate two rules with the same left-hand variable as follows: A→ 0A1 | B.

A and B are variables, and 0, 1, and # are terminals.

Definition 2.1.1. A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S), where

• V is a finite alphabet of variables,

• Σ is a finite alphabet, disjoint from V , called the terminals,

• R ⊆ V × (V ∪ Σ)∗ is a finite set of rules, and

• S ∈ V is the start symbol.

A sequence of productions applied to generate a string of all terminals is a derivation. For
example, a derivation of 000#111 is

A⇒ 0A1⇒ 00A11⇒ 000A111⇒ 000B111⇒ 000#111.

We also may represent this derivation with a parse tree. See Figure 2.1 in Sipser.

23

24 CHAPTER 2. CONTEXT-FREE LANGUAGES

The set of all-terminal strings generated by a CFG G is the language of the grammar L(G).
Given the example CFG G above, its language is L(G) = { 0n#1n | n ∈ N }. A language generated
by a CFG is a context-free language (CFL).

Below is a small portion of the CFG for the Java language:

AssignmentOperator → = | += | -= | *= | /=

Expression1 → Expression2 | Expression2 ? Expression : Expression1

Expression → Expression1 | Expression1 AssignmentOperator Expression1

2.2 Pushdown Automata

Finite automata cannot recognize the language L = { 0n1n | n ∈ N } because their memory is
limited and cannot count 0’s. A pushdown automaton is an NFA augmented with an infinite stack
memory, which enables them to recognize languages such as L.

For an alphabet Σ, let Σλ = Σ ∪ {λ}.

Definition 2.2.1. A (nondeterministic) pushdown automaton (NPDA) is a 6-tuple (Q,Σ,Γ,∆, s, F),
where

• Q is a finite set of states,

• Σ is the input alphabet,

• Γ is the stack alphabet,

• ∆ : Q× Σλ × Γλ → P(Q× Γλ) is the transition function,1

• s ∈ Q is the start state, and

• F ⊆ Q is the set of accept states.

Facts to know about CFLs and NPDAs:

1. A language is context-free if and only if it is recognized by some NPDA.

2. Deterministic PDAs (DPDAs) are strictly weaker than NPDAs, so some CFLs are not recog-
nized by any DPDA.

3. Since a NPDA that does not use its stack is simply an NFA, every regular language is context-
free. The converse is not true; for instance, { 0n1n | n ∈ N } is context-free but not regular.

1where the NPDA may or may not read an input symbol, may or may not pop the topmost stack symbol, and
may or may not push a new stack symbol

Chapter 3

The Church-Turing Thesis

3.1 Turing Machines

Reading assignment: Section 3.1 in Sipser.
A Turing machine is a finite automaton with an unbounded read/write tape memory.
See Figure 3.1 in Sipser.
Differences between finite automata and Turing machines:

• The TM can write on its tape and read from it.

• The read-write tape head can move left or right.

• The tape is unbounded.

• There are special accept and reject states that cause the machine to immediately halt; con-
versely, the machine will not halt until it reaches one of these states, which may never happen.

Example 3.1.1. Design a Turing machine to test membership in the language

A = { w#w | w ∈ {0, 1}∗ } .

1. Zig-zag across the tape to corresponding positions on either side of the #, testing whether
these positions contain the same input symbol. If not, or if there is no #, reject. Cross off
symbols as they are checked so we know which symbols are left to check.

2. When all symbols to the left of the # have been crossed off, check for any remaining symbols
to the right of the #. If any remain, reject ; otherwise, accept.

See Figure 3.2 in Sipser.

LECTURE: end of day 9

25

26 CHAPTER 3. THE CHURCH-TURING THESIS

3.1.1 Formal Definition of a Turing machine

Definition 3.1.2. A Turing machine (TM) is a 7-tuple (Q,Σ,Γ, δ, s, qa, qr), where

• Q is a finite set of states,

• Σ is the input alphabet, assumed not to contain the blank symbol xy,

• Γ is the tape alphabet, where xy ∈ Γ and Σ Γ,

• s ∈ Q the start state,

• qa ∈ Q the accept state,

• qr ∈ Q the reject state, where qa 6= qr, and

• δ : (Q \ {qa, qr})× Γ→ Q× Γ× {L, R} is the transition function.

Example 3.1.3. We formally describe the TM M1 = (Q,Σ,Γ, δ, q1, qa, qr) described earlier, which
decides the language B = { w#w | w ∈ {0, 1}∗ }:

• Q = {q1, q2, q3, q4, q5, q6, q7, q8, qa, qr},

• Σ = {0, 1,#} and Γ = {0, 1,#, x, xy},

• δ is shown in Figure 3.10 of the textbook.

Show TMSimulator with w;w example TM.

3.1.2 Formal Definition of Computation by a Turing Machine

The TM starts with its input written at the leftmost positions on the tape, with xy written every-
where else.

A configuration of a TM M = (Q,Σ,Γ, δ, s, qa, qr) is a triple (q, p, w), where

• q ∈ Q is the current state,

• p ∈ N is the tape head position,

• w ∈ Γ∗ is the tape contents, the string consisting of the symbols starting at the leftmost
position of the tape, until the rightmost non-blank symbol, or the largest position the tape
head has scanned, whichever is larger.

Given two configurations C and C ′, we say C yields C ′, and we write C → C ′, if C ′ is the
configuration that the TM will enter immediately after C. Formally, given C = (q, p, w) and
C ′ = (q′, p′, w′), C → C ′ if and only if δ(q, w[p]) = (q′, w′[p],m), where

• w[i] = w′[i] for all i ∈ {0, . . . , |w| − 1} \ {p}

• if m = L, then

3.2. VARIANTS OF TURING MACHINES 27

– p′ = max{0, p− 1}
– |w′| = |w|

• if m = R, then

– p′ = p+ 1

– |w′| = |w| if p′ < |w|, otherwise |w′| = |w|+ 1 and w′[p′] = xy.

A configuration (q, p, w) is accepting if q = qa, rejecting if q = qr, and halting if it is accepting
or rejecting. M accepts input x ∈ Σ∗ if there is a finite sequence of configurations C1, C2, . . . , Ck
such that

1. C1 = (s, 0, x) (initial/start configuration),

2. for all i ∈ {1, . . . , k − 1}, Ci → Ci+1, and

3. Ck is accepting.

The language recognized (accepted) by M is L(M) = { x ∈ Σ∗ | M accepts x } .

Definition 3.1.4. A language is called Turing-recognizable (Turing-acceptable, computably enu-
merable, recursively enumerable, c.e., or r.e.) if some TM recognizes it.

A language is co-Turing-recognizable (co-c.e.) if its complement is c.e.

On any input, a TM may accept, reject, or loop, meaning that it never enters a halting state.
If a TM M halts on every input string, then we say it is a decider, and that it decides the language
L(M). We also say that M is total, meaning that the function f : Σ∗ → {Accept,Reject} that
it computes is total. f is a partial function if M does not halt on certain inputs, since for those
inputs, f is undefined.

Definition 3.1.5. A language is called Turing-decidable (recursive), or simply decidable, if some
TM decides it.

3.2 Variants of Turing Machines

Reading assignment: Section 3.2 in Sipser.
Why do we believe Turing machines are an accurate model of computation?
One reason is that the definition is robust : we can make all number of changes, including

apparent enhancements, without actually adding any computation power to the model. We describe
some of these, and show that they have the same capabilities as the Turing machines described in
the previous section.1

1This does not mean that any change whatsoever to the Turing machine model will preserve its abilities; by
replacing the tape with a stack, for instance we would reduce the power of the Turing machine to that of a pushdown
automaton. Likewise, allowing the start configuration to contain an arbitrary infinite sequence of symbols already
written on the tape (instead of xy everywhere but the start, as we defined) would add power to the model; by writing
an encoding of an undecidable language, the machine would be able to decide that language. But this would not
mean the machine had magic powers; it just means that we cheated by providing the machine (without the machine
having to “work for it”) an infinite amount of information before the computation even begins.

28 CHAPTER 3. THE CHURCH-TURING THESIS

In a sense, the equivalence of these models is unsurprising to programmers. Programmers are
well aware that all general-purpose programming languages can accomplish the same tasks, since
an interpreter for a given language can be implemented in any of the other languages.

3.2.1 Multitape Turing Machines

A multitape Turing machine has more than one tape, say k ≥ 2 tapes, each with its own head for
reading and writing. Each tape besides the first one is called a worktape, each of which starts blank,
and the first tape, the input tape, starts with the input string written on it in the same fashion as
a single-tape TM.

Such a machine’s transition function is therefore of the form

δ : (Q \ {qa, qr})× Γk → Q× Γk × {L, R, S}k

The expression

δ(qi, a1, . . . , ak) = (qj , b1, . . . , bk, L, R, . . . , L)

means that, if the TM is in state qi and heads 1 through k are reading symbols a1 through ak, the
machine goes to state qj , writes symbols b1 through bk, and directs each head to move left or right,
or to stay put, as specified.

Theorem 3.2.1. For every multitape TM M , there is a single-tape TM M ′ such that L(M) =
L(M ′). Furthermore, if M is total, then M ′ is total.

See Figure 3.14 in the textbook.

Proof. On input w = w1w2 . . . wn, M ′ begins by replacing the string w1w2 . . . wn with the string

#
•
w1w2 . . . wn#

•
xy#

•
xy# . . .

•
xy#︸ ︷︷ ︸

k−1

on its tape. It represents the contents of each of the k tapes between adjacent # symbols, and the
tape head position of each by the position of the character with a • above it.

Whenever a single transition of M occurs, M ′ must scan the entire tape, using its state to store
all the symbols under each • (since there are only a constant k of them, this can be done in its
finite state set). This information can be stored in the finite states of M ′ since there are a fixed
number of tapes and therefore a fixed number of •’s. Then, M ′ will reset its tape to the start, and
move over each of the representations of the k tapes of M , moving the • appropriately (either left,
right, or stay), and writing a new symbol on the tape at the old location of the •, according M ’s
transition function. Each time the • attempts to move to the right onto the right-side boundary
symbol, the entire single tape contents to the right of the • are shifted right to make room to
represent the now-expanded worktape contents.

This allows M ′ to represent completely represent the configuration of M and to simulate the
computation done by M . Note that M ′ halts if and only if M halts, implying that M ′ is total if
M is total.

3.2. VARIANTS OF TURING MACHINES 29

From this point on, we will describe Turing machines in terms of algorithms in pseudocode,
knowing that if we can write an algorithm in some programming language to recognize or decide
a language, then we can write a Turing machine as well. We will only refer to low-level details of
Turing machines when it is convenient to do so; for instance, when simulating an algorithm, it is
easier to simulate a Turing machine than a Java program.

A friend of mine who took this class told me he was glad nobody programmed Turing machines
anymore, because it’s so much harder than a programming language. This is a misunderstanding
of why we study Turing machines. No one ever programmed Turing machines; they are a model of
computation whose simplicity makes them easy to handle mathematically (and whose definition is
intended to model a mathematician sitting at a desk with paper and a pencil), though this same
simplicity makes them difficult to program. We generally use Turing machines when we want to
prove limitations on algorithms. When we want to design algorithms, there is no reason to use
Turing machines instead of pseudocode or a regular programming language.

LECTURE: end of day 10

3.2.2 Nondeterministic Turing Machines

We may define a nondeterministic TM (NTM) in an analogous fashion to an NFA. The transition
function for such a machine is of the form

δ : (Q \ {qa, qr})× Γ→ P(Q× Γ× {L, R})

A NTM accepts a string if any of its computation paths accepts, where a computation path is a
sequence of configurations corresponding to one particular sequence of nondeterministic choices
made during the course of the computation.

Theorem 3.2.2. For every NTM N , there is a TM M such that L(N) = L(M). Furthermore, if
N is total, then M is total.

Proof. N ’s possible computation paths form a directed graph, with an edge from configuration C
to configuration C ′ if C → C ′.2 Conduct a breadth-first search of this graph starting at the initial
configuration, looking for an accepting configuration. If one is found, accept.

If N is total, then all computation paths eventually halt, which implies that this graph is finite.
Hence, if no computation path is accepting, M will terminate its search when the entire graph has
been explored, and reject.

2Nodes with more than one out-neighbor represent nondeterministic choices, and nodes with no out-neighbors
represent halting configurations.

30 CHAPTER 3. THE CHURCH-TURING THESIS

3.2.3 Enumerators

An enumerator is a TM E with a “printer” attached. It takes no input, and runs forever. Every
so often it prints a string.3 The set of strings printed is the language enumerated by E.

Theorem 3.2.3. A language L is c.e. if and only if it is enumerated by some enumerator.

This is why such languages are called computably enumerable.

Proof. (⇐=): Let E be an enumerator that enumerates L. Define M(w) as follows: simulate E.
Whenever E prints a string x, accept if x = w, and keep simulating E otherwise.

Note that if E prints w eventually, then M accepts w, and that otherwise M will not halt.
Thus M accepts w if and only if w is in the language enumerated by E.

(=⇒): Let M be a TM that recognizes L. We use a standard trick in computability theory
known as a dovetailing computation. Let s1 = λ, s2 = 0, s3 = 1, s4 = 00, . . . be the standard
lexicographical enumeration of {0, 1}∗.
Define E as follows:

for i = 1, 2, 3, . . .:

for j = 1, 2, 3, . . . , i:

run M(sj) for i steps; if it accepts in the first i steps, print sj .

Note that for every i, j ∈ N, M will eventually be allowed to run for i steps on input sj .
Therefore, if M(sj) ever halts and accepts, E will detect this and print si. Furthermore, E
prints only strings accepted by M , so E enumerates exactly the strings accepted by M .

3.3 The Definition of Algorithm

Reading assignment: Section 3.3 in Sipser.

• 1928 - David Hilbert puts forth the Entscheidungsproblem, asking for an algorithm that will,
given a mathematical theorem (stated in some formal language, with formal rules of deduction
and a set of axioms, such as Peano arithmetic or ZFC), will indicate whether it is true or
false

• 1931 - Kurt Gödel proves the incompleteness theorem: for logical systems such as Peano
arithmetic or ZFC, there are theorems which are true but cannot be proven in the system.4

3We could imagine implementing these semantics by having a special “print” worktape. Whenever the TM needs
to print a string, it writes the string on the tape, with a xy immediately to the right of the string, and places the
tape head on the first symbol of the string (so that one could print λ by placing the tape head on a xy symbol), and
enters a special state qprint. The set of strings printed is then the set of all strings that were between the tape head
and the first xy to the right of the tape head on the printing tape whenever the TM was in the state qprint.

4Essentially, any sufficiently powerful logical system can express the statement, “This statement is unprovable.”,
which is either true, hence exhibiting a statement whose truth cannot be proven in the system, or false, meaning the
false theorem can be proved, and the system is contradictory.

3.3. THE DEFINITION OF ALGORITHM 31

This leaves open the possibility of an algorithm that decides whether the statement is true
or false, even though the correctness of the algorithm cannot be proven.5

• At this point in history, it remains the case that no one in the world knows exactly what they
mean by the word “algorithm”, or “computable function”.

• 1936 - Alonzo Church proposes λ-calculus (the basis of modern functional languages such as
LISP and Haskell) as a candidate for the class of computable functions. He shows that it can
compute a large variety of known computable functions, but his arguments are questionable
and researchers are not convinced.6

• 1936 - Alan Turing, as a first-year graduate student at the University of Cambridge in Eng-
land, hears of the Entscheidungsproblem taking a graduate class. He submits a paper, “On
computable numbers, with an application to the Entscheidungsproblem”, to the London
Mathematical Society, describing the Turing machine (he called them a-machines) as a model
of computation that captures all the computable functions and formally defines what an al-
gorithm is. He also shows that as a consequence of various undecidability results concerning
Turing machines, there is no solution to the Entscheidungsproblem; no algorithm can indicate
whether a given theorem is true or false, in sufficiently powerful logical systems.

• Before the paper is accepted, Church’s paper reaches Turing from across the Atlantic. Before
final publication, Turing adds an appendix proving that Turing machines compute exactly
the same class of functions as the λ-calculus.

• Turing’s paper is accepted, and researchers in the field – Church included – were immediately
convinced by Turing’s arguments.

The Church-Turing Thesis. All functions that can be computed in a finite amount of time by
a physical object in the universe, can be computed by a Turing machine.

5Lest that would provide a proof the truth or falsehood of the statement.
6For instance, Emil Post accused Church of attempting to “mask this identification [of computable functions]

under a definition.” (Emil L. Post, Finite combinatory processes, Formulation I, The Journal of Symbolic Logic, vol.
1 (1936), pp. 103–105, reprinted in [27], pp. 289–303.)

32 CHAPTER 3. THE CHURCH-TURING THESIS

Chapter 4

Decidability

4.1 Decidable Languages

Reading assignment: Section 4.1 in Sipser.

A decidable language is a language decided by some Turing machine (or equivalently, by some
C++ program). Sipser gives extensive examples of decidable languages, all of which are related to
finite automata or pushdown automata in some way. We won’t do this, for two reasons:

1. It gives the impression that even now that we are studying computability, the entire field is just
an elaborate ruse for asking more sophisticated questions about finite-state and pushdown
automata. This is not at all the case; almost everything interesting that we know about
computability has nothing to do with finite automata or pushdown automata.

2. You have extensive experience with decidable languages, because every time that you wrote
a C++ function with a bool return type, that algorithm was recognizing some c.e. language:
specifically, the set of all input arguments that cause the function to return true. If it had
no infinite loops, then it was deciding that language.

Because years of programming has already developed in you an intuition for what constitutes
a decidable language, we will not spend much time on this. It is sufficient that the last chapter
convinced you that Turing machines have the same fundamental computational capabilities as C++
programs, and that therefore all the intuition you have developed in programming, algorithms, and
other classes in which you wrote algorithms, applies to Turing machines as well.

We now concentrate on the primary utility of Turing machines: using their apparent simplicity
to prove limitations on the fundamental capabilities of algorithms.

It is common to write algorithms in terms of the data structures they are operating on, even
though these data structures must be encoded in binary before delivering them to a computer (or
in some alphabet Σ before delivering them to a TM). Given any finite object O, such as a string,
graph, tuple, or even a Turing machine, we use the notation 〈O〉 to denote the encoding of O as a
string in the input alphabet of the Turing machine we are using. To encode multiple objects, we
use the notation 〈O1, O2, . . . , Ok〉 to denote the encoding of the objects O1 through Ok as a single
string.

33

34 CHAPTER 4. DECIDABILITY

4.2 The Halting Problem

Reading assignment: Section 4.2 in Sipser.

Define the Halting Problem (or Halting Language)

ATM = { 〈M,w〉 | M is a TM and M accepts w } .

ATM is sometimes denoted K or 0′.1

Note that ATM is c.e., via the following Turing machine U :

U = “On input 〈M,w〉, where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept. If M ever enters its reject state, reject.”

U is called the universal Turing machine, since it simulates any other Turing machine.2

U simulates M exactly, meaning that if M does not halt, neither does M . We will show that
though ATM is c.e., ATM is not decidable. The proof technique, surprisingly, is 120 years old.

LECTURE: end of day 11

4.2.1 Diagonalization

Cantor considered the question: given two infinite sets, how can we decide which one is “bigger”?
We might say that if A ⊆ B, then |B| ≥ |A|.3 But this is a weak notion, as the converse does not
hold even for finite sets: {1, 2} is smaller than {3, 4, 5}, but {1, 2} 6⊆ {3, 4, 5}.

Cantor noted that two finite sets have equal size if and only if there is a bijection between them.
Extending this slightly, one can say that a finite set A is strictly smaller than B if and only if there
is no onto function f : A→ B.

Draw picture of 1-1 and onto

For instance, try to find an onto function f : {1, 2} → {3, 4, 5}: there are only two values of f ,
f(1) and f(2), but there are three values 3,4,5 that must be mapped to, so at least one of 3, 4, or

1Note that to be precise, ATM does not tell us whether M(w) halts; it tells us whether M accepts w. But if
we knew whether M(w) halted, then we could determine whether it accepts by running it until it halts, and then
reporting the answer. So deciding ATM boils down to deciding whether a given TM on a given input halts, hence the
name.

2It is obvious to us that such a machine exists, since we have programmed enough to realize that any program is
capable of simulating any other, and so we don’t need convincing to see that a TM can be written that is capable of
simulating any other TM. This is the TM equivalent of, for instance, writing an interpreter for Python in Python.
But at the time the universal Turing machine was introduced in Turing’s original paper, it was not at all obvious
that such a universal simulation algorithm existed, and Turing devoted many pages of his paper to constructing the
universal Turing machine in low-level detail.

3For instance, we think of the integers as being at least as numerous as the even integers.

4.2. THE HALTING PROBLEM 35

5 will be left out (will not be an output of f), so f will not be onto. We conclude the obvious fact
that |{1, 2}| < |{3, 4, 5}|.

Since the notion of onto functions is just as well defined for infinite sets as for finite sets, this
gives a reasonable notion of how to compare the cardinality of infinite sets.

The following theorem, proved by Cantor in 1891, changed the course of science. It shows that
the power set of any set is strictly larger than the set itself.

Theorem 4.2.1. Let X be any set. Then there is no onto function f : X → P(X).

Proof. Let X be any set, and let f : X → P(X). It suffices to show that f is not onto.

Define the set

D = { a ∈ X | a 6∈ f(a) } .

Let a ∈ X be arbitrary. Since D ∈ P(X), it suffices to show that D 6= f(a). By the definition of
D,

a ∈ D ⇐⇒ a 6∈ f(a),

so D 6= f(a).

Draw picture of metaphorical “diagonal”.

The interpretation is that |X| < |P(X)|, even if X is infinite.

For two sets X,Y , we write |X| < |Y | if there is no onto function f : X → Y . We write
|X| ≥ |Y | if it is not the case that |X| < |Y |; i.e., if there is an onto function f : X → Y . We write
|X| = |Y | if there is a bijection (a 1-1 and onto function) f : X → Y .4

We say X is countable if |X| ≤ |N|;5 i.e., if X is a finite set or if |X| = |N|.6 We say X is
uncountable if it is not countable; i.e., if |X| > |N|.7

Stating that a set X is countable is equivalent to saying that its elements can be listed; i.e.,
that it can be written X = {x0, x1, x2, . . .}, where every element of X will appear somewhere in
the list.8

Observation 4.2.2. |N| < |R|; i.e., R is uncountable.

Proof. By Theorem 4.2.1, |N| < |P(N)|, so it suffices to prove that |P(N)| ≤ |R|;9 i.e., that there is
an onto function f : R→ P(N).

4By a result known as the Cantor-Bernstein Theorem, this is equivalent to saying that there is an onto function
f : X → Y and another onto function g : Y → X; i.e., |X| = |Y | if and only if |X| ≤ |Y | and |X| ≥ |Y |.

5Some textbooks define countable only for infinite sets, but here we consider finite sets to be countable, so that
uncountable will actually be the negation of countable.

6It is not difficult to show that for every infinite countable set has the same cardinality as N; i.e., there is no
infinite countable set X with |X| < |N|.

7The relations <, >, ≤, ≥, and = are transitive: for instance, (|A| ≤ |B| and |B| ≤ |C|) =⇒ |A| ≤ |C|.
8This is because the order in which we list the elements implicitly gives us the bijection between N and X:

f(0) = x0, f(1) = x1, etc.
9Actually they are equal, but we need not show this for the present observation.

36 CHAPTER 4. DECIDABILITY

Define f : R → P(N) as follows. Each real number r ∈ R has an infinite decimal expansion.10

For all n ∈ N, let rn ∈ {0, 1, . . . , 9} be the nth digit of the decimal expansion of r. Define f(r) ⊆ N
as follows. For all n ∈ N,

n ∈ f(r) ⇐⇒ rn = 0.

That is, if the nth digit of r’s binary expansion is 0, then n is in the set f(r), and n is not in the
set otherwise. Given any set A ⊆ N, there is some some number rA ∈ R whose decimal expansion
has 0’s exactly at the positions n ∈ A, so f(rA) = A, whence f is onto.

Continuum Hypothesis. There is no set A such that |N| < |A| < |P(N)|.
More concretely, this is stating that for every set A, either there is an onto function f : N→ A,

or there is an onto function g : A→ P(N).

Interesting fact: Remember earlier when we stated that Gödel proved that there are true
statements that are not provable? The Continuum Hypothesis is a concrete example of a statement
that, if it is true, is not provable, nor is its negation. So it will forever remain a hypothesis; we can
never hope to prove it either true or false.

Theorem 4.2.1 has immediate consequences for the theory of computing.

Observation 4.2.3. There is an undecidable language L ⊆ {0, 1}∗.

Proof. The set of all TM’s is countable, as is {0, 1}∗. By Theorem 4.2.1, P({0, 1}∗), the set of all
binary languages, is uncountable. Therefore there is a language that is not decided by any TM.

4.2.2 The Halting Problem is Undecidable

Observation 4.2.3 shows that some undecidable language must exist. However, it would be more
satisfying to exhibit a particular undecidable language. In the next theorem, we use the technique
of diagonalization directly to show that

ATM = { 〈M,w〉 | M is a TM and M accepts w }

is undecidable.

Theorem 4.2.4. ATM is undecidable.

Proof. Assume for the sake of contradiction that ATM is decidable, via the TM A. Then A accepts
〈M,w〉 if M accepts w, and A rejects 〈M,w〉 otherwise.

Define the TM D as follows. On input 〈M〉 a TM, D runs A(〈M, 〈M〉〉),11 and does the
opposite.12

10This expansion need not be unique, as expansions such 0.03000000 . . . and 0.02999999 . . . both represent the
number 3

100
. But whenever this happens, exactly one representation will end in an infinite sequence of 0’s, so take

this as the “standard” decimal representation of r.
11That is, D runs A to determine if M accepts the string that is the binary description of M itself.
12In other words, accept if A rejects, and reject if A accepts. Since A is a decider (by our assumption), it will do

one of these.

4.2. THE HALTING PROBLEM 37

Now consider running D with itself as input. Then

D accepts 〈D〉 ⇐⇒ A rejects 〈D, 〈D〉〉 defn of D

⇐⇒ D does not accept 〈D〉, defn of A

a contradiction. Therefore no such TM A exists.

It is worth examining the proof of Theorem 4.2.4 to see the diagonalization explicitly.
See Figures 4.19, 4.20, and 4.21 in Sipser.

4.2.3 A Non-c.e. Language

Theorem 4.2.5. A language is decidable if and only if it is c.e. and co-c.e..

Proof. We prove each direction separately.

(decidable =⇒ c.e. and co-c.e.): Any decidable language is c.e., and the complement of any
decidable language is decidable, hence also c.e.

(c.e. and co-c.e. =⇒ decidable): Let L be c.e. and co-c.e., let M1 be a TM recognizing L,
and let M2 be a TM recognizing L. Define the TM M as follows. On input w, M runs M1(w)
and M2(w) in parallel. One of them will accept since either w ∈ L or w ∈ L. If M1 accepts
first, then M accepts w, and if M2 accepts w first, then M(w) rejects. Hence M decides
L.

Corollary 4.2.6. ATM is not c.e.

Proof. ATM is c.e. If ATM were c.e., then ATM would be co-c.e. by definition, as well as c.e. via U ,
and hence decidable by Theorem 4.2.5, contradicting Theorem 4.2.4.

Note the key fact used in the proof of Corollary 4.2.6 is that the class of c.e. languages is not
closed under complement. Hence any language that is c.e. but not decidable (such as ATM) has a
complement that is not c.e..

38 CHAPTER 4. DECIDABILITY

Chapter 5

Reducibility

Now that we know the halting problem is undecidable, we can use that as a shoehorn to prove
other languages are undecidable, without having to repeat the full diagonalization.

5.1 Undecidable Problems from Language Theory (Computabil-
ity)

Reading assignment: Section 5.1 in Sipser.

Recall

ATM = { 〈M,w〉 | M is a TM and accepts w } .

Define

HALTTM = { 〈M,w〉 | M is a TM and halts on input w } .

Theorem 5.1.1. HALTTM is undecidable.

Proof. Suppose for the sake of contradiction that HALTTM is decidable by TM H. Define the TM
T as follows on input 〈M,w〉:

1. Run H(〈M,w〉)

2. If H rejects 〈M,w〉, reject.

3. If H accepts 〈M,w〉:

4. run M(w)

5. if M accepts w, accept.

6. if M rejects w, reject.

If H accepts in line (3), M is guaranteed to halt in line (4), so T always halts. But T decides ATM, a
contradiction since ATM is undecidable. Hence H does not exist and HALTTM is undecidable.

39

40 CHAPTER 5. REDUCIBILITY

LECTURE: end of day 12

Define
ETM = { 〈M〉 | M is a TM and L(M) = ∅ } .

Theorem 5.1.2. ETM is undecidable.

Proof. For any TM M and string w, define the TM NM,w as follows:
NM,w on input x:

1. If x 6= w, reject.

2. If x = w, run M(w) and accept if M accepts w.

Given M and w, either L(NM,w) = {w} 6= ∅ if M accepts w, and L(NM,w) = ∅ otherwise.
Suppose for the sake of contradiction that ETM is decidable by TM E. Define the TM A as

follows on input 〈M,w〉:

1. Run E(〈NM,w〉)

2. If E accepts 〈NM,w〉, reject

3. If E rejects 〈NM,w〉, accept

Therefore, for TM M and string w,

M accepts w ⇐⇒ L(NM,w) 6= ∅ defn of NM,w

⇐⇒ E rejects NM,w since E decides ETM

⇐⇒ A accepts 〈M,w〉 . lines (2) and (3) of A

Since A always halts, it decides ATM, a contradiction.

Define the diagonal halting problem K0 = { 〈M〉 | M is a TM and M(〈M〉) halts }.

Theorem 5.1.3. K0 is undecidable.

First, suppose we knew already that K0 was undecidable, but not whether HALTTM was unde-
cidable. Then we could easily use the undecidability of K0 to prove that HALTTM is undecidable,
using the same pattern we have used already. That is, suppose for the sake of contradiction that
HALTTM was decidable by TM H. Then to decide whether M(〈M〉) halts, we use the decider H
to determine whether 〈M, 〈M〉〉 ∈ HALTTM. That is, an instance of K0 is a simple special case of
an instance of HALTTM,1 so HALTTM is at least as difficult to decide as K0. Proving that K0 is
undecidable means showing that HALTTM is not actually any more difficult to decide than K0.

1Just as, for instance, determining whether two nodes are connected in a graph is a special case of finding the
length of the shortest path between them (the length being finite if and only if there is a path), which involves
determining whether there is a path as a special case of the more general task of finding the optimal length of the
path.

5.1. UNDECIDABLE PROBLEMS FROM LANGUAGE THEORY (COMPUTABILITY) 41

Proof. Suppose for the sake of contradiction that K0 is decidable by TM K. Define the TM H as
follows on input 〈M,w〉:

1. Define the TM NM,w based on M and w as follows:

(a) On every input x,

(b) Run M(w) and halt if M(w) does.

2. Run K(〈NM,w〉) and echo its answer.

Given M and w, we define NM,w so that, if M(w) halts, then NM,w halts on all inputs (including
the input 〈NM,w〉), and if M(w) does not halt, then NM,w halts on no inputs (including the input
〈NM,w〉). Then H decides HALTTM, a contradiction.

The following theorem generalizes many (but not all) undecidability proofs.

Rice’s Theorem. Given any property φ : P({0, 1}∗) → {N,Y} shared by some, but not all, c.e.
languages, the language { 〈M〉 | φ(L(M)) = Y } is undecidable.

For example, if the property φ is “L(M) is empty,” then Rice’s Theorem shows that ETM is
undecidable. If φ is “|L(M)| ≤ 5”, then Rice’s Theorem shows that the language of problem 4 on
HW7 is undecidable.

(Draw diagram of c.e. contained in set of all languages, and φ cutting both of them.)
Note that Rice’s theorem does not state that all properties of Turing machines are undecidable

(e.g., “does the machine have 5 states?” is plenty easy to decide); the theorem only applies to
properties of the language recognized by the TM.2

However, unless explicitly asked to do so, you may not use Rice’s Theorem to prove that a
language is undecidable.3

skipping linear-bounded automata
skipping section 5.2 of Sipser

2So it must hold that if one TM has the property, all TM’s recognizing the same language must also have the
property. A property such as “has 5 states” fails this test, since any machine with 5 states recognizes a language that
is also recognized by some machine with more than 5 states.

3You may, of course, unravel the proof of Rice’s Theorem in the special case of the problem you are solving, to
get a proof of the undecidability of the language you are studying. But it is usually easier to do a direct proof.

42 CHAPTER 5. REDUCIBILITY

Chapter 6

Advanced Topics in Computability

43

44 CHAPTER 6. ADVANCED TOPICS IN COMPUTABILITY

Chapter 7

Time Complexity

Computability focuses on which problems are computationally solvable in principle. Computational
complexity focuses on which problems are solvable in practice.

7.1 Measuring Complexity

Reading assignment: Section 7.1 in Sipser.

Definition 7.1.1. Let M be a TM, and let x ∈ {0, 1}∗. Define timeM (x) to be the number of
steps M takes before halting on input x (the number of configurations it visits before halting, so
that even a TM that immediately accepts takes 1 step rather than 0), with timeM (x) = ∞ if M
does not halt on input x. If M is total, define the (worst-case) running time (or time complexity)
of M to be the function t : N→ N defined for all n ∈ N by

t(n) = max
x∈{0,1}n

timeM (x).

We call such a function t a time bound.

Definition 7.1.2. Given f, g : N → R+, we write f = O(g) (or f(n) = O(g(n))), if there exists
c ∈ N such that, for all n ∈ N,

f(n) ≤ c · g(n).

We say g is an asymptotic upper bound for f .

Bounds of the form nc for some constant c are called polynomial bounds. Bounds of the form
2n

δ
for some real constant δ > 0 are called exponential bounds.

Definition 7.1.3. Given f, g : N→ R+, we write f = o(g) (or f(n) = o(g(n))), if

lim
n→∞

f(n)

g(n)
= 0.

45

46 CHAPTER 7. TIME COMPLEXITY

One way to see that f(n) = o(g(n)) is to find h(n) so that f(n) ·h(n) = g(n) for some unbounded
h(n).

f = O(g) is like saying f “≤” g.
f = o(g) is like saying f “<” g.
Based on this analogy, we can write

• f = Ω(g) if and only if g = O(f) (like saying f “≥” g),

• f = ω(g) if and only if g = o(f) (like saying f “>” g), and

• f = Θ(g) if and only if f = O(g) and f = Ω(g). (like saying f “=” g)

Example 7.1.4. The following are easy to check.

1.
√
n = o(n).

2. n = o(n log log n).

3. n log logn = o(n log n).

4. n log n = o(n2).

5. n2 = o(n3).

6. For every f : N→ R+, f = O(f), but f 6= o(f).

7.1.1 Analyzing Algorithms

Definition 7.1.5. Let t : N → N be a time bound.1 Define DTIME(t) ⊆ P({0, 1}∗) to be the set
of decision problems

DTIME(t) = { L ⊆ {0, 1}∗ | there is a TM with running time O(t) that decides L } .

Observation 7.1.6. For all time bounds t, T : N→ N such that t = O(T),

DTIME(t) ⊆ DTIME(T).

1We will prove many time complexity results that actually do not hold for all functions t : N→ N. Many results
hold only for time bounds that are what is known as time-constructible, which means, briefly, that t : N → N has
the property that the related function ft : {0}∗ → {0}∗ defined by ft(0

n) = 0t(n) is computable in time t(n). This is
equivalent to requiring that there is a TM that, on input 0n, halts in exactly t(n) steps. The reason is to require that
for every time bound used, there is a TM that can be used as a “clock” to time the number of steps that another
TM is using, and to halt that TM if it exceeds the time bound. If the time bound itself is very difficult to compute,
then this cannot be done.

All “natural” time bounds we will study, such as n, n logn, n2, 2n, etc., are time-constructible. Time-
constructibility is an advanced (and boring) issue that we will not dwell on, but it is worth noting that it is possible
to define unnatural time bounds relative to which unnatural theorems can be proven, such as a time bound t such

that DTIME(t(n)) = DTIME

(
222

t(n)
)

. This is an example of what I like to call a “false theorem”: it is true, of

course, but its truth tells us that our model of reality is incorrect and should be adjusted. Non-time-constructible
time bounds do not model anything found in reality.

7.1. MEASURING COMPLEXITY 47

The following result is the basis for all complexity theory. We will not prove it yet (and perhaps
not at all this semester), but it is important because it tells us that complexity classes are worth
studying; we aren’t just wasting time making up different names for the same class of languages.
Informally, it shows that given more time, one can decide more languages.

Theorem 7.1.7 (Deterministic Time Hierarchy Theorem). Let t, T : N → N be time bounds such
that t(n) log t(n) = o(T (n)). Then

DTIME(t) (DTIME(T).

For instance, there is a language decidable in time n2 that is not decidable in time n, and
another language decidable in time n3 that is not decidable in time n2, etc.

Sipser discusses three algorithms for deciding the language { 0n1n | n ∈ N }, taking time O(n2)
on a one-tape TM, then a better one taking time O(n log n) on a one-tape TM, then one taking
time O(n) on a two-tape TM, on pages 251-253. Read that section, and after proving the next
theorem, we will analyze the time complexity of algorithms at a high level (rather than at the
level of individual transitions of a TM), assuming, as in 228, that individual lines of code in Java
or pseudocode take constant time, so long as those lines are not masking loops or recursion or
something that would not take constant time.

Note that since a TM guaranteed to halt in time t(n) is a decider, in complexity theory we
are back to the situation we had with finite automata, and unlike computability theory: we can
equivalently talk about the language recognized by a TM and the language decided by a TM.

7.1.2 Complexity Relationships Among Models

Theorem 7.1.8. Let t : N → N, where t(n) ≥ n. Then every t(n) time multitape TM can be
simulated in time O(t(n)2) by a single-tape TM.

Proof. Recall that a single-tape TM S can simulate a k-tape TM M with tape contents such as (for

k = 3) #01
•
00#

•
11xy#00

•
xy10#. M ’s tape heads move right by at most t(n) positions, so S’s tape

contents have length at most k︸︷︷︸
number of tapes

· t(n)︸︷︷︸
max size of each of M ’s tape contents

+ k + 1︸ ︷︷ ︸
number of #’s

= O(t(n)).

Simulating one step of M requires moving S’s tape by this length and back, so requires O(t(n))
time. Since M takes t(n) steps, S takes O(t(n)2) steps.

Definition 7.1.9. Let N be a total NTM. The running time of N is the function t : N→ N, where
t(n) is the maximum number of steps that N uses on any branch of its computation on any input
of length n.

(See Figure 7.10 in Sipser.)

48 CHAPTER 7. TIME COMPLEXITY

Theorem 7.1.10. Let t : N → N, where t(n) ≥ n. Then for every t(n) time NTM N , there is a
constant c such that N can be simulated in time 2ct(n) by a deterministic TM.

LECTURE: end of day 13

Proof. We examine the construction in the proof of Theorem 3.2.2, and show that it incurs an
exponential overhead.

Let M be the deterministic TM simulating the NTM N , let x ∈ {0, 1}∗, and let Tx be the BFS
tree created when searching the configuration graph of N on input x. On any input length n, every
branch of Tx has length at most t(n). There is a constant b, depending on N ’s transition function
but independent of n, such that each node in Tx has at most b children. Every tree with at most b
children and depth at most t has at most bt = (2log b)t = 2t log b total nodes. Letting c be sufficiently
large, the time required to search this tree is at most 2ct(n).

That is, NTM’s can be simulated by deterministic TM’s with at most an exponential blowup in
the running time.2 Much of the focus of this chapter is in providing evidence that this exponential
blowup is fundamental, and not an artifact of the above proof that can be avoided through a clever
trick.

7.2 The Class P

Reading assignment: Section 7.2 in Sipser.

7.2.1 Polynomial Time

• We consider polynomial running times to be “small”, and exponential running times to be
“large”.

• For n = 1000, n3 = 1 billion, whereas 2n > number of atoms in the universe

• Usually, exponential time algorithms are encountered when a problem is solved by brute force
search (e.g., searching all paths in a graph, looking for a Hamiltonian cycle). Polynomial
time algorithms are due to someone finding a shortcut that allows the solution to be found
without searching the whole space.

• All “reasonable” models of computation are polynomially equivalent : M1 (e.g., a TM) can
simulate a t(n)-time M2 (e.g., a Java program) in time p(t(n)), for some polynomial p (usually
not much bigger than O(n2) or O(n3)).

2Compare this to the exponential blowup in states of the subset construction; the reasons are similar, in that n
binary choices leads to 2n possibilities.

7.2. THE CLASS P 49

• In this course, we generally ignore polynomial differences in running time. Polynomial dif-
ferences are important, but we simply focus our lens farther out, to see where in complexity
theory the really big differences lie. In ECS 122A, for instance, a difference of a log n or

√
n

factor is considered more significant.

• In ignoring polynomial differences, we can make conclusions that apply to any model of
computation, since they are polynomially equivalent, rather than having to choose one such
model, such as TM’s or Java, and stick with it. Our goal is to understand computation in
general, rather than an individual programming language.

• One objection is that some polynomial running times are not feasible, for instance, n1000. In
practice, there are few algorithms with such running times. Nearly every algorithm known
to have a polynomial running time has a running time less than n10. Also, when the first
polynomial-time algorithm for a problem is discovered, such as the O(n12)-time algorithm
for Primes discovered in 2002,3 it is usually brought down within a few years to a smaller
degree, once the initial insight that gets it down to polynomial inspires further research.
Primes currently is known to have a O(n6)-time algorithm, and this will likely be improved
in the future.

Definition 7.2.1.

P =
∞⋃
k=1

DTIME(nk).

In other words, P is the class of language decidable in polynomial time on a deterministic, one-tape
TM.

1. Although DTIME(t) is different for different models of computation, P is the same class of
languages, in any model of computation polynomially equivalent to single-tape TM’s (which is
all of them worth studying, except possibly for quantum computers, whose status is unknown).

2. P roughly corresponds to the problems feasibly solvable by a deterministic algorithm.4

7.2.2 Examples of Problems in P

We use pseudocode to describe algorithms, knowing that the running time will be polynomially
close to the running time on a single-tape TM.

We must be careful to use reasonable encodings with the encoding function 〈·〉 : D → {0, 1}∗,
that maps elements of a discrete set D (such as N, Σ∗, or the set of all Java programs) to binary
strings. For instance, for n ∈ N, two possibilities are 〈n〉1 = 0n (the unary expansion of n)
and 〈n〉2 = the binary expansion of n. | 〈n〉1 | ≥ 2|〈n〉2|, so 〈n〉1 is a bad choice. Even doing simple

3Here, n is the size of the input, i.e., the number of bits needed to represent an integer p to be tested for primality,
which is ≈ log p.

4Here, “deterministic” is intended both to emphasize that P does not take into account nondeterminism, which is
an unrealistic model of computation, but also that it does not take into account randomized algorithms, which is a
realistic model of computation. BPP, then class of languages decidable by polynomial-time randomized algorithms,
is actually conjectured to be equal to P, though this has not been proven.

50 CHAPTER 7. TIME COMPLEXITY

arithmetic would take exponential time in the length of the binary expansion, if we choose the wrong
encoding. Alternately, exponential-time algorithms might appear mistakenly to be polynomial time,
since the running time is a function of the input size, and exponentially expanding the input lowers
the running time artificially, even though the algorithm still takes the same (very large) number of
steps. Hence, an analysis showing the very slow algorithm to be technically polynomial would be
misinforming.

As another example, a reasonable encoding of a directed graphG = (V,E) with V = {0, 1, . . . , n−
1}, is via its adjacency matrix, where for i, j ∈ {1, . . . , n}, the (n · i+ j)th bit of 〈G〉 is 1 if and only
if (i, j) ∈ E. For an algorithms course, we would care about the difference between this encoding
and an adjacency list, since sparse graphs (those with |E| � |V |2) are more efficiently encoded by
an adjacency list than an adjacency matrix. But since these two representations differ by at most
a linear factor, we ignore the difference.

Define

Path = { 〈G, s, t〉 | G is a directed graph with a path from node s to node t } .

Theorem 7.2.2. Path ∈ P.

Proof. Breadth-first search.

Note in particular that there are an exponential number of simple paths from s to t in the
worst case ((n− 2)! paths in the complete directed graph with n vertices), but we do not examine
them all in a breadth-first search. The BFS takes a shortcut to zero in on one particular path in
polynomial time.

Given x, y ∈ Z+, we say x and y are relatively prime if the largest integer dividing both of them
is 1. Define

RelPrime = { 〈x, y〉 | x and y are relatively prime } .

Theorem 7.2.3. RelPrime ∈ P.

Proof. Since the input size is | 〈x, y〉 | = O(log x + log y), we must be careful to use an algorithm
that is polynomial in | 〈x, y〉 |, not polynomial in x and y themselves, which would be exponential
in the input size.

Euclid’s algorithm for finding the greatest common divisor of two integers works.
gcd((〈x, y〉)) =

1. Repeat until y = 0

2. x← x mod y

3. swap x and y

4. output x

Then R decides RelPrime:
R(〈x, y〉) =

1. If gcd(〈x, y〉) = 1, then accept.

7.3. THE CLASS NP 51

2. Otherwise, reject.

Each iteration of the loop of gcd cuts the value of x in half, for the following reason. If y ≤ x
2 ,

then x mod y < y ≤ x
2 . If y > x

2 , then x mod y = x − y < x
2 . Therefore, at most log x < | 〈x, y〉 |

iterations of the loop execute, and each iteration requires a constant number of polynomial-time
computable arithmetic operations, whence R is operates in polynomial time.

Note that there are an exponential (in | 〈x, y〉 |) number of integers that could potentially be
divisors of x and y (namely, all the integers less than min{x, y}), but Euclid’s algorithm does not
check all of them to see if they divide x or y; it uses a shortcut.

7.3 The Class NP

Reading assignment: Section 7.3 in Sipser.

Some problems have polynomial-time deciders. Other problems are not known to have polynomial-
time deciders, but given a candidate solution (an informal notion that we will make formal later)
to the problem, whether the solution works can be verified in polynomial time.

A Hamiltonian path in a directed graph G is a path that visits each node exactly once. Define

HamPath = { 〈G〉 | G is a directed graph with a Hamiltonian path } .

HamPath is not known to have a polynomial-time algorithm (and it is generally believed not to
have one), but, a related problem, that of checking whether a given path is a Hamiltonian path in
a given graph, does have a polynomial-time algorithm:

HamPathV = { 〈G, π〉 | G is a directed graph with the Hamiltonian path π } .

The algorithm simply verifies that each adjacent pair of nodes in π is connected by an edge in G
(so that π is a valid path in G), and that each node of G appears exactly once in π (so that π is
Hamiltonian).

Another problem with a related polynomial-time verification language is

Composites =
{
〈n〉

∣∣ n ∈ Z+ and n = pq for some integers p, q > 1
}
,

with the related verification language

CompositesV =
{
〈n, p〉

∣∣ n, p ∈ Z+, p divides n, and p > 1
}
.

Actually, Composites ∈ P, so sometimes a problem can be decided and verified in polynomial
time.

Not all problems solvable by exponential brute force necessarily can be verified in polynomial
time. For instance, HamPath is believed not to be verifiable in polynomial time; it is difficult to
imagine what “proof” one could give that a graph has no Hamiltonian path, which could be verified
in polynomial time.

We now formalize these notions.

52 CHAPTER 7. TIME COMPLEXITY

Definition 7.3.1. A polynomial-time verifier for a language A is an algorithm V , where there are
polynomials p, q such that V runs in time p and

A =
{
x ∈ {0, 1}∗

∣∣∣ (∃w ∈ {0, 1}≤q(|x|)) V accepts 〈x,w〉
}
.

That is, x ∈ A if and only if there is a “short” string w where 〈x,w〉 ∈ L(V) (where “short” means
bounded by a polynomial in |x|). We call such a string w a witness (or a proof or certificate) that
testifies that x ∈ A.

Example 7.3.2. For a graph G with a Hamiltonian path π, π is a witness testifying that G has a
Hamiltonian path.

Example 7.3.3. For a composite integer n with a divisor 1 < p < n, 〈p〉 is a witness testifying
that n is composite. Note that n may have more than one such divisor; this shows that a witness
for an element of a polynomially-verifiable language need not be unique.

Definition 7.3.4. NP is the class of languages that have polynomial-time verifiers. We call the
language decided by the verifier the verification language of the NP language.

For instance, HamPathV is the verification language of HamPath.
NP stands for nondeterministic polynomial time, not for “non-polynomial time”. In fact, P ⊆

NP, so some problems in NP are solvable in polynomial time. The name comes from an alternate
(and in my opinion, less intuitive) characterization of NP in terms of nondeterministic polynomial-
time machines.

The following NTM decides HamPath in polynomial time.
N1 = “On input 〈G〉, where G = (V,E) is a directed graph,

1. Nondeterministically choose a list of n = |V | vertices v1, . . . , vn ∈ V .

2. If the list contains any repetitions, reject.

3. For each 1 ≤ i < n, if (vi, vi+1) 6∈ E, reject.

4. If 〈G〉 has not been rejected yet, accept.”

Note what N1 does: it nondeterministically guesses a witness (v1, . . . , vn) and then runs the
verification algorithm with 〈G〉 and the witness as input.

Theorem 7.3.5. A language is in NP if and only if it is decided by some polynomial-time NTM.

Proof. skipping

Definition 7.3.6. NTIME(t) = { L ⊆ {0, 1}∗ | L is decided by a O(t)-time NTM } .

Corollary 7.3.7. NP =
⋃∞
k=1NTIME(nk).

We will use the verification characterization of NP almost exclusively in this course.5

5Most proofs showing that a language is in NP that claim to use the NTM characterization actually use an algorithm

7.3. THE CLASS NP 53

7.3.1 Examples of Problems in NP

A clique in a graph is a subgraph in which every pair of nodes in the clique is connected by an
edge. A k-clique is a clique with k nodes. Define

Clique = { 〈G, k〉 | G is an undirected graph with a k-clique } .

Theorem 7.3.8. Clique ∈ NP.

Proof. The following is a polynomial-time verifier for Clique:
On input 〈〈G, k〉 , C〉6

1. Test whether C is a set of k nodes from G.

2. Test whether every pair of nodes in C is connected by an edge in G.

3. accept iff both tests pass.

LECTURE: end of day 14

midterm

LECTURE: end of day 15

The SubsetSum problem concerns integer arithmetic: given a collection (a multiset) of integers
x1, . . . , xk and a target integer t, is there a subcollection that sums to t?

SubsetSum =

{
〈S, t〉

∣∣∣∣ S = {x1, . . . , xk} is a collection of
integers and (∃S′ ⊆ S) t =

∑
y∈S′ y

}
.

For example, 〈{4, 4, 11, 16, 21, 27}, 29〉 ∈ SubsetSum because 4+4+21 = 29, but 〈{4, 11, 16}, 13〉 6∈
SubsetSum.

similar to that for HamPath: on input x, nondeterministically guess a witness w, then run the verification algorithm
on x and w. In other words, they implicitly use the verification characterization by structuring the algorithm as in
the proof of Theorem 7.3.5; the only point of the nondeterminism is to choose a witness at the start of the algorithm,
which is then provided to the verification algorithm.

I consider the verification characterization to be cleaner, as it separates these two conceptually different ideas –
producing a witness that a string is in the language, and then verifying that it is actually a “truthful” witness – into
two separate steps, rather than mingling the production of the witness with the verification algorithm into a single
algorithm with nondeterministic choices attempting to guess bits of the witness while simultaneously verifying it.
Verifiers also make more explicit what physical reality is being modeled by the class NP. That is, there is no such
thing as a nondeterministic polynomial-time machine that can be physically implemented. Verification algorithms,
however, can be implemented, without having to introduce a new “magic” ability to guess nondeterministic choices;
the model simply states that the witness is provided as an input, without specifying the source of this input.

6We pair G and k together to emphasize that they are the input to the original decision problem, and that the
witness C is then attached to that input to get an input to the verification problem.

54 CHAPTER 7. TIME COMPLEXITY

Theorem 7.3.9. SubsetSum ∈ NP.

Proof. The following is a polynomial-time verifier for SubsetSum:
On input 〈〈S, t〉 , S′〉

1. Test whether S′ is a collection of integers that sum to t.

2. Test whether S contains all the integers in S′. (i.e., whether S′ ⊆ S)

3. accept iff both tests pass.

Note that the complements of these languages, Clique and SubsetSum, are not obviously
members of NP (and are believed not to be). The class coNP is the class of languages whose
complements are in NP, so Clique,SubsetSum ∈ coNP. It is not known whether coNP = NP, but
this is believed to be false, although proving that is at least as difficult as proving that P 6= NP:
since P = coP, if coNP 6= NP, then P 6= NP.

7.3.2 The P Versus NP Question

In summary:

• P is the class of languages for which membership can be decided quickly.

• NP is the class of languages for which membership can be verified quickly.

(Figure 7.26 in Sipser.)

skip rest of this section

The best known method for solving NP problems in general is a brute-force search over all
possible witnesses, giving each as input to the verifier. Since we require that each witness for a
string of length n has length at most p(n) for some polynomial p, there are at most 2p(n) potential
witnesses, which implies that every NP problem can be solved in exponential time by searching
through all possible witnesses; that is,

NP ⊆ EXP =
∞⋃
k=1

DTIME
(

2n
k
)
,

This idea is essentially the same as the proof of Theorem 7.1.10.
No one has proven that NP 6= EXP. It is known that P ⊆ NP ⊆ EXP, and since the Time

Hierarchy Theorem tells us that P EXP, it is known that at least one of the inclusions P ⊆ NP
or NP ⊆ EXP is proper, though it is not known which one. It is suspected that they both are; i.e.,
that P NP EXP.

We distinguish EXP from linear-exponential time:

E =
∞⋃
k=1

DTIME
(

2kn
)
.

Note that E EXP by the Time Hierarchy Theorem. It is not known whether NP ⊆ E or whether
E ⊆ NP, although oddly enough, it is known that NP 6= E. Probably, they are incomparable
(meaning that neither contains the other).

7.4. NP-COMPLETENESS 55

7.4 NP-Completeness

Reading assignment: Section 7.4 in Sipser.
We now come to the only reason that any computer scientist is concerned with the class NP:

the NP-complete problems. (More justification of that claim in Section 7.7.1)
Intuitively, a problem is NP-complete if it is in NP, and every problem in NP is reducible to it

in polynomial time. This implies that the NP-complete problems are, “within a polynomial error,
the hardest problems” in NP. If any NP-complete problem has a polynomial-time algorithm, then
all problems in NP do, including all the other NP-complete problems. The contrapositive is more
interesting because it is stated in terms of two claims we think are true, rather than two things we
think are false:7 if P 6= NP, then no NP-complete problem is in P.

This gives us a tool by which to prove that a problem is “probably” (so long as P 6= NP)
intractable: show that it is NP-complete. Just as with undecidability, it takes some big insights
to prove that one problem is NP-complete, but once this is done, we can use the machinery of
reductions to show that other languages are NP-complete, by showing how they can be used to solve
a problem already known to be NP-complete. Unlike with undecidability, in which we established
that ATM is undecidable before doing anything else, we will first define some problems and show
reductions between them, before finally proving that one of them is NP-complete.

The first problem concerns Boolean formulas. We represent True with 1, False with 0, And
with ∧, Or with ∨, and Not with ¬ or with an overbar:

0 ∨ 0 = 0 0 ∧ 0 = 0 0 = 1
0 ∨ 1 = 1 0 ∧ 1 = 0 1 = 0
1 ∨ 0 = 1 1 ∧ 0 = 0
1 ∨ 1 = 1 1 ∧ 1 = 1

A Boolean formula is an expression involving Boolean variables and the three operations ∧, ∨, and
¬. For example,

φ = (x ∧ y) ∨ (x ∧ z)
is a Boolean formula. A Boolean formula is satisfiable if some assignment w of 0’s and 1’s to its
variables causes the formula to have the value 1. φ is satisfiable because assigning x = 0, y = 1, z = 0
causes φ to evaluate to 1, written φ(010) = 1. We say the assignment satisfies φ. The satisfiability
problem is to test whether a given Boolean formula is satisfiable:

Sat = { 〈φ〉 | φ is a satisfiable Boolean formula } .

Note that Sat ∈ NP, since the language

SatV = { 〈φ,w〉 | φ is a Boolean formula and φ(w) = 1 }

is a polynomial-time verification language for Sat; i.e., if φ has n input variables, then 〈φ〉 ∈
Sat ⇐⇒ (∃w ∈ {0, 1}n) 〈φ,w〉 ∈ SatV .

Theorem 7.4.1 (Cook-Levin Theorem). Sat ∈ P if and only if P = NP.

This is considered evidence (though not proof) that Sat 6∈ P.

7Statements such as “(Some NP-complete problem is in P) =⇒ P = NP” are often called, “If pigs could whistle,
then donkeys could fly”-theorems.

56 CHAPTER 7. TIME COMPLEXITY

7.4.1 Polynomial-Time Reducibility

Definition 7.4.2. A function f : {0, 1}∗ → {0, 1}∗ is polynomial-time computable if there is a
polynomial-time TM that, on input x, halts with f(x) on its tape, and xy’s everywhere else.

Definition 7.4.3. Let A,B ⊆ {0, 1}∗. We say A is polynomial-time mapping reducible to B
(polynomial-time many-one reducible, polynomial-time reducible), written A ≤P

m B, if there is a
polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that, for all x ∈ {0, 1}∗,

x ∈ A ⇐⇒ f(x) ∈ B.

f is called a (polynomial-time) reduction of A to B.

That is, ≤P
m is simply the polynomial-time analog of ≤m. We interpret A ≤P

m B to mean that
“B is at least as hard as A, to within a polynomial-time error.”

Note that for any mapping reduction f computable in time p(n), and all x ∈ {0, 1}∗, |f(x)| ≤
p(|x|).

Theorem 7.4.4. If A ≤P
m B and B ∈ P, then A ∈ P.

Proof. Let M be the algorithm deciding B in time p(n) for some polynomial p, and let f be the
reduction from A to B, computable in time q(n) for some polynomial q. Define the algorithm

N = “On input x,

1. Compute f(x).

2. Run M on input f(x) and echo its output.”

N correctly decides A because x ∈ A ⇐⇒ f(x) ∈ B. Furthermore, on input x, N runs in time
q(|x|) + p(|f(x)|) ≤ q(|x|) + p(q(|x|)). N is then polynomial-time by the closure of polynomials
under composition.8

Corollary 7.4.5. If A ≤P
m B and A 6∈ P, then B 6∈ P.

Theorem 7.4.4 tells us that if the fastest algorithm for B takes time p(n), then the fastest
algorithm for A takes no more than time q(n) + p(q(n)), where q is the running time of f ; i.e., q
is the “polynomial error” when claiming that “A is no harder than B within a polynomial error”.
Since we ignore polynomial differences when defining P, we conclude that A 6∈ P =⇒ B 6∈ P.

We now use ≤P
m-reductions to show that Clique is “at least as hard” (modulo polynomial

differences in running times) as a useful version of the Sat problem known as 3Sat.
A literal is a Boolean variable or negated Boolean variable, such as x or x. A clause is several

literals connected with ∨’s, such as (x1 ∨ x2 ∨ x3 ∨ x4). A conjunction is several subformulas
connected with ∧’s, such as (x1∧ (x2∨x7)∧x3∧x4). A Boolean formula φ is in conjunctive normal
form, called a CNF-formula, if it consists of a conjunction of clauses,9 such as

φ = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6).
8i.e., because r(n) ≡ p(q(n)) is a polynomial whenever p and q are polynomials.
9The obvious dual of CNF is disjunctive normal form (DNF), which is an Or of conjunctions, such as the formula

one would derive applying the sum-of-products rule to the truth table of a boolean function, but 3DNF formulas do
not have the same nice properties that 3CNF formulas have, so we do not discuss them further.

7.4. NP-COMPLETENESS 57

x
1

x
1

x
2

x
1

x
2

x
2

x
2

x
1

x
2

Figure 7.1: Example of the ≤P
m-reduction from 3Sat to Clique when the input is the 3CNF

formula φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2).

φ is a 3CNF-formula if all of its clauses have exactly three literals, such as

φ = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6 ∨ x4) ∧ (x4 ∨ x5 ∨ x6).

Note that any CNF formula with at most 3 literals per clause can be converted easily to 3CNF by
duplicating literals; for example, (x3 ∨ x5) is equivalent to (x3 ∨ x5 ∨ x5).

Define
3Sat = { 〈φ〉 | φ is a satisfiable 3CNF-formula } .

We will later show that 3Sat is NP-complete, but for now we will simply show that it is reducible
to Clique.

Theorem 7.4.6. 3Sat ≤P
m Clique.

Proof. Given a 3CNF formula φ, we convert it in polynomial time (via reduction f) into a pair
f(〈φ〉) = 〈G, k〉, a graph G and integer k so that

φ is satisfiable ⇐⇒ G has a k-clique.

Let k = # of clauses in φ. Write φ as

φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck).

G will have 3k nodes, one for each literal appearing in φ.10

10Note that φ could have many more (or fewer) literals than variables, so G may have many more nodes than φ
has variables. But G will have exactly as many nodes as φ has literals. Note also that literals can appear more than
once, e.g., (x1 ∨ x1 ∨ x2) has two copies of the literal x1.

58 CHAPTER 7. TIME COMPLEXITY

See Figure 7.1 for an example of the reduction.
The nodes of G are organized into k groups of three nodes each, called triples. Each triple

corresponds to a clause in φ.
G has edges between every pair of nodes u and v, unless:

(1) u and v are in the same triple, or

(2) u = xi and v = xi, or vice-versa.

Each of these conditions can be checked in polynomial time, and there are
(|V |

2

)
= O(|V |2) such

conditions, so this is computable in polynomial time.

LECTURE: end of day 16

We now show that
φ is satisfiable ⇐⇒ G has a k-clique.

(=⇒): Suppose that φ has a satisfying assignment. Then at least one literal is true in every
clause. To construct a k-clique C, select exactly one node from each clause labeled by a true
literal (breaking ties arbitrarily); this implies condition (1) is false for every pair of nodes in
C. Since xi and xi cannot both be true, condition (2) is false for every pair of nodes in C.
Therefore every pair of nodes in C is connected by an edge; i.e., C is a k-clique.

(⇐=): Suppose there is a k-clique C in G. No two of the clique’s nodes are in the same triple by
condition (1), so each triple contains exactly one node of C. If xi ∈ C, assign xi = 1 to make
the corresponding clause true. If xi ∈ C, assign xi = 0 to make the corresponding clause true.
Since no two nodes xi and xi are part of C by condition (2), this assignment is well-defined
(we will not attempt to assign xi to be both 0 and 1). The assignment makes every clause
true, thus satisfies φ.

Theorems 7.4.4 and 7.4.6 tell us that if Clique is decidable in polynomial time, then so is
3Sat. Speaking in terms of what we believe is actually true, Corollary 7.4.5 and Theorem 7.4.6
tell us that if 3Sat is not decidable in polynomial time, then neither is Clique.

7.4.2 Definition of NP-Completeness

Definition 7.4.7. A language B is NP-hard if, for every A ∈ NP, A ≤P
m B.

Definition 7.4.8. A language B is NP-complete if

1. B ∈ NP, and

2. B is NP-hard.

Theorem 7.4.9. If B is NP-complete and B ∈ P, then P = NP.

7.5. ADDITIONAL NP-COMPLETE PROBLEMS 59

Proof. Assume the hypothesis and let A ∈ NP. Since B is NP-hard, A ≤P
m B. Since B ∈ P, by

Theorem 7.4.4 (the closure of P under ≤P
m-reductions), A ∈ P, whence NP ⊆ P. Since P ⊆ NP,

P = NP.

Corollary 7.4.10. If P 6= NP, then no NP-complete problem is in P.

11

Theorem 7.4.11. If B is NP-hard and B ≤P
m C, then C is NP-hard.

Proof. Let A ∈ NP. Then A ≤P
m B since B is NP-hard. Since ≤P

m is transitive and B ≤P
m C, it

follows that A ≤P
m C. Since A ∈ NP was arbitrary, C is NP-hard.

Corollary 7.4.12. If B is NP-complete, C ∈ NP, and B ≤P
m C, then C is NP-complete.

That is, NP-complete problems can, in many ways, act as “representatives” of the hardness of
NP, in the sense that black-box access to an algorithm for solving an NP-complete problem is as
good as access to an algorithm for any other problem in NP.

Corollary 7.4.12 is our primary tool for proving a problem is NP-complete: show that some
existing NP-complete problem reduces to it. This should remind you of our tool for proving that
a language is undecidable: show that some undecidable language reduces to it. We will eventually
show that 3Sat is NP-complete; from this, it will immediately follow that Clique is NP-complete
by Corollary 7.4.12 and Theorem 7.4.6.

7.4.3 The Cook-Levin Theorem

Theorem 7.4.13. Sat is NP-complete.12

We delay proving this theorem until we have covered some other NP-complete problems.
For the next section, we will assume that the 3Sat problem is also NP-complete.

7.5 Additional NP-Complete Problems

Reading assignment: Section 7.5 in Sipser.
To construct a polynomial-time reduction from 3Sat to another language, we transform the

variables and clauses in 3Sat into structures in the other language. These structures are called
gadgets. For example, to reduce 3Sat to Clique, nodes “simulate” variables and triples of nodes
“simulate” clauses. 3Sat is not the only NP-complete language that can be used to show other
problems are NP-complete, but its regularity and structure make it convenient for this purpose.

Theorem 7.5.1. Clique is NP-complete.

Proof. We have already shown that Clique ∈ NP. 3Sat ≤P
m Clique by Theorem 7.4.6, and 3Sat

is NP-complete, so Clique is NP-hard.

11Since it is generally believed that P 6= NP, Corollary 7.4.10 implies that showing a problem is NP-complete is
evidence of its intractability.

12By Theorem 7.4.9, Theorem 7.4.13 implies Theorem 7.4.1.

60 CHAPTER 7. TIME COMPLEXITY

x
1

x
1

x
1

x
2

x
1

x
2

x
2

x
1

x
2

x
2

x
2

x
1

x
2

V
1

V
2

(variable
gadgets)

(clause
gadgets)

Figure 7.2: An example of the reduction from 3Sat to VertexCover for the 3CNF formula
φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2).

7.5.1 The Vertex Cover Problem

If G is an undirected graph, a vertex cover of G is a subset of nodes, where each edge in G is
connected to at least one node in the vertex cover. Define

VertexCover = { 〈G, k〉 | G is an undirected graph with a vertex cover of size k } .

Note that adding nodes to a vertex cover cannot remove its ability to touch every edge; hence if
G = (V,E) has a vertex cover of size k, then it has a vertex cover of each size k′ where k ≤ k′ ≤ |V |.
Therefore it does not matter whether we say “of size k” or “of size at most k” in the definition of
VertexCover.

Theorem 7.5.2. VertexCover is NP-complete.

Proof. We must show that VertexCover is in NP, and that some NP-complete problem reduces
to it.

(in NP): The language

VertexCoverV =

{
〈〈G, k〉 , C〉

∣∣∣∣ G is an undirected graph and
C is a vertex cover for G of size k

}
is a verification language for VertexCover, and it is in P: if G = (V,E), the verifier tests
whether C ⊆ V , |C| = k, and for each {u, v} ∈ E, either u ∈ C or v ∈ C.

(NP-hard): Given a 3CNF-formula φ, we show how to (efficiently) transform φ into a pair 〈G, k〉,
where G = (V,E) is an undirected graph and k ∈ N, such that φ is satisfiable if and only if
G has a vertex cover of size k.

See Figure 7.2 for an example of the reduction.

For each variable xi in φ, add two nodes labeled xi and xi to V , and connect them by an
edge; call this set of gadget nodes V1. For each literal in each clause, we add a node labeled
with the literal’s value; call this set of gadget nodes V2.

Connect nodes u and v by an edge if they are

7.5. ADDITIONAL NP-COMPLETE PROBLEMS 61

1. in the same variable gadget,

2. in the same clause gadget, or

3. have the same label.

If φ has m input variables and l clauses, then V has |V1|+|V2| = 2m+3l nodes. Let k = m+2l.

Since |V | = 2m+ 3l and |E| ≤ |V |2, G can be computed in O(| 〈φ〉 |2) time.

LECTURE: end of day 17

Now we show that φ is satisfiable ⇐⇒ G has a vertex cover of size k:

(=⇒): Suppose (∃x1x2 . . . xm ∈ {0, 1}m) φ(x1x2 . . . xn) = 1. If xi = 1 (resp. 0), put the
node in V1 labeled xi (resp. xi) in the vertex cover C; then every variable gadget edge is
covered. In each clause gadget where this literal appears, if it appears in more than one
node, pick one node arbitrarily and put the other two nodes of the gadget in C; then
all clause gadget edges are covered.13 All edges between variable and clause gadgets are
covered, by the variable node if it was included in C, and by a clause node otherwise,
since some other literal satisfies the clause. Since |C| = m+2l = k, G has a vertex cover
of size k.

(⇐=): Suppose G has a vertex cover C with k nodes. Then C contains at least one of
each variable node to cover the variable gadget edges, and at least two clause nodes to
cover the clause gadget edges. This is ≥ k nodes, so C must have exactly one node per
variable gadget and exactly two nodes per clause gadget to have exactly k nodes. Let
xi = 1 ⇐⇒ the variable node labeled xi ∈ C. Each node in a clause gadget has an
external edge to a variable node; since only two nodes of the clause gadget are in C,
the external edges of the third clause gadget node is covered by a node from a variable
gadget, whence the assignment satisfies the corresponding clause.

7.5.2 The Subset Sum Problem

Theorem 7.5.3. SubsetSum is NP-complete.

Proof. Theorem 7.3.9 tells us that SubsetSum ∈ NP. We show SubsetSum is NP-hard by reduc-
tion from 3Sat.

Let φ be a 3CNF formula with variables x1, . . . , xm and clauses c1, . . . , cl. Construct the pair
〈S, t〉, where S = {y1, z1, . . . , ym, zm, g1, h1, . . . , gl, hl} is a collection of 2(m+ l) integers and t is an
integer, whose decimal expansions are based on φ as shown by example:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)
13Any two clause gadget nodes will cover all three clause gadget edges.

62 CHAPTER 7. TIME COMPLEXITY

x1 x2 x3 x4 c1 c2 c3
y1 1 0 0 0 1 0 1
z1 1 0 0 0 0 1 0
y2 1 0 0 0 1 0
z2 1 0 0 1 0 0
y3 1 0 1 1 0
z3 1 0 0 0 1
y4 1 0 0 1
z4 1 0 0 0

g1 1 0 0
h1 1 0 0
g2 1 0
h2 1 0
g3 1
h3 1

t 1 1 1 1 3 3 3

The upper-left and bottom-right of the table contain exactly one 1 per row as shown, the
bottom-left is all empty (leading 0’s), and t is m 1’s followed by l 3’s. The upper-right of the table
has 1’s to indicate which literals (yi for xi and zi for xi) are in which clause. Thus each column in
the upper-right has exactly three 1’s.

The table has size O((m+ l)2), so the reduction can be computed in time O(n2), since m, l ≤ n.

We now show that

φ is satisfiable ⇐⇒ (∃S′ ⊆ S) t =
∑
n∈S′

n

(=⇒): Suppose (∃x1x2 . . . xm ∈ {0, 1}m) φ(x1x2 . . . xm) = 1. Select elements S′ ⊆ S as follows.
For each 1 ≤ i ≤ m, yi ∈ S′ if xi = 1, and zi ∈ S′ if xi = 0. Since every clause cj of
φ is satisfied, for each column cj , at least one row with a 1 in column cj is selected in the
upper-right. For each 1 ≤ j ≤ l, if needed gj and/or hj are placed in S′ to make column cj
on the right side of the table sum to 3.14 Then S′ sums to t.

(⇐=): Suppose (∃S′ ⊆ S) t =
∑

n∈S′ n. All the digits in elements of S are either 0 or 1, and each
column in the table contains at most five 1’s; hence there are no carries when summing S′.
To get a 1 in the first m columns, S′ must contain exactly one of each pair yi and zi. The
assignment x1x2 . . . xm ∈ {0, 1}m is given by letting xi = 1 if yi ∈ S′, and letting xi = 0 if
zi ∈ S′. Let 1 ≤ j ≤ l; in each column cj , to sum to 3 in the bottom row, S′ contains at least
one row with a 1 in column j in the upper-right, since only two 1’s are in the lower-right.
Hence cj is satisfied for every j, whence φ(x1x2 . . . xm) = 1.

14One or both will be needed if the corresponding clause has some false literals, but at least one true literal must
be present to satisfy the clause, so no more than two extra 1’s are needed from the bottom-right to sum the whole
column to 3.

7.6. PROOF OF THE COOK-LEVIN THEOREM 63

LECTURE: end of day 18

7.6 Proof of the Cook-Levin Theorem

We prove Theorem 7.4.13 as follows. We first show that the language CircuitSat is NP-complete,
where CircuitSat consists of the satisfiable Boolean circuits. We then show that CircuitSat ≤P

m

3Sat. Since every 3CNF formula is a special case of a Boolean formula, it is easy to check that
3Sat ≤P

m Sat. Thus, we we are done, we will have shown all three of these languages are NP-hard.
Since they are all in NP, they are NP-complete.

Definition 7.6.1. A Boolean circuit is a collection of gates and inputs (i.e., nodes in a graph)
connected by wires (directed edges). Cycles are not permitted (it is a directed acyclic graph).
Gates are labeled And, Or (each with in-degree 2), or Not (with in-degree 1), and have unbounded
out-degree. One gate is designated the output gate.

Given an n-input Boolean circuit γ and a binary input string x = x1x2 . . . xn, the value γ(x) ∈
{0, 1} is the value of the output gate when evaluating γ with the inputs given by each xi, and the
values of the gates are determined by computing the associated Boolean function of its inputs. A
circuit γ is satisfiable if there is an input string x that satisfies γ; i.e., such that γ(x) = 1.15

Define

CircuitSat = { 〈γ〉 | γ is a satisfiable Boolean circuit } .

Theorem 7.6.2. CircuitSat is NP-complete.

Proof Sketch. CircuitSat ∈ NP because the language

CircuitSatV = { 〈γ,w〉 | γ is a Boolean circuit and γ(w) = 1 }

is a polynomial-time verification language for CircuitSat.16

Let A ∈ NP, and let V be an p(n)-time-bounded verifier for A with witness length q(n), so that,
for all x ∈ {0, 1}∗,

x ∈ A ⇐⇒
(
∃w ∈ {0, 1}q(n)

)
V (x,w) accepts.

15The only difference between a Boolean formula and a Boolean circuit is the unbounded out-degree of the gates.
A Boolean formula has out-degree one, so that when expressed as a circuit, have gates that form a tree (although
note that even in a formula the input variables can appear multiple times and hence have larger out-degree), whereas
a Boolean circuit, by allowing unbounded fanout from its gates, allows the use of shared subformulas. (For example,
“Let ϕ = (x1 ∧ x2) in the formula φ = x1 ∨ ϕ ∧ (x4 ∨ ϕ).”) This is a technicality that will be the main obstacle to
proving that CircuitSat ≤P

m 3Sat, but not a difficult one.
16To show that CircuitSat is NP-hard, we show how any verification algorithm can be simulated by a circuit, in

such a way that the verification algorithm accepts a string if and only if the circuit is satisfiable. The input to the
circuit will not be the first input to the verification algorithm, but rather, the witness.

64 CHAPTER 7. TIME COMPLEXITY

To show that A ≤P
m CircuitSat, we transform an input x to A into a circuit γVx such that γVx is

satisfiable if and only if there is a w ∈ {0, 1}q(n) such that V (x,w) accepts.17

Let V = (Q,Σ,Γ, δ, s, qa, qr) be the Turing machine deciding CircuitSatV . V takes two inputs,
x ∈ {0, 1}n and the witness w ∈ {0, 1}q(n). γVx contains constant gates representing x, and its q(n)
input variables represent a potential witness w. We design γVx so that γVx (w) = 1 if and only if
V (x,w) accepts.

We build a subcircuit γlocal.
18 γlocal has 3m inputs and m outputs, where m depends on V –

but not on x or w – as described below. Assume that each state q ∈ Q and each symbol a ∈ Γ is
represented a binary string,19 called σq and σa, respectively.

Let m = 1 + dlog |Q|e+ dlog |Γ|e.20 Represent V ’s configuration C = (q, p, y)21 as an element of
{0, 1}p(n)·m as follows. The pth tape cell with symbol a is represented as the string σ(p) = 1σqσa.
Every tape cell at positions p′ 6= p with symbol b are represented as σ(p′) = 0σsσb.

22 Represent
the configuration C by the string σ(C) = σ(0)σ(1) . . . σ(nk − 1).

γlocal : {0, 1}3m → {0, 1}m is defined to take as input σ(k − 1)σ(k)σ(k + 1),23 and output the
next configuration string for tape cell k. γlocal can be implemented by a Boolean circuit whose size
depends only on δ, so γlocal’s size is a constant depending on V but independent of n.24

To construct γVx ,25 attach p(n) · (m · p(n)) copies of γlocal in a square array, where the tth

horizontal row of wires input to a row of γlocal’s represents the configuration of V at time step t.
The input x to V is provided as input to the first n copies of γlocal by constant gates, and the input
w to V is provided as input to the next q(n) copies of γlocal by the input gates to γVx . Finally, the
3m output wires from the final row are collated together into a single output gate that indicates
whether the gate representing the tape head position was in state qa, so that the circuit will output
1 if and only if the state of the final configuration is accepting.

Since V (x) runs in time ≤ p(n) and therefore takes space ≤ p(n), γVx contains enough gates in
the horizontal direction to represent the entire non-xy portion of the tape of V (x) at every step,

17In fact, w will be the satisfying assignment for γVx . The subscript x is intended to emphasize that, while x is an
input to V , it is hard-coded into γVx ; choosing a different input y for the same verification algorithm V would result
in a different circuit γVy .

The key idea will be that circuits can simulate algorithms. We prove this by showing that any Turing machine can
be simulated by a circuit, as long as the circuit is large enough to accommodate the running time and space used by
the Turing machine.

18Many copies of γlocal will be hooked together to create γVx .
19This is done so that a circuit may process them as inputs.
20m is the number of bits required to represent a state and a symbol together, plus the boolean value “the tape

head is currently here”.
21where q ∈ Q is the current state, p ∈ N is the position of the tape head, and y ∈ {0, 1}n

k

is the string on the
tape from position 0 to nk − 1. We may assume that y contains all of the non-xy symbols that are on the tape, since
V runs in time nk and cannot move the tape head right by more than one tape cell per time step.

22That is, only the tape cell string with the tape head actually contains a representation of the current state, and
the remaining tape cell strings have filler bits for the space reserved for the state; we have arbitrarily chosen state s
to be the filler bits, but this choice is arbitrary. The first bit indicates whether the tape head is on that tape cell or
not.

23the configuration strings for the three tape cells surrounding tape cell k
24It will be the number of copies of γlocal that are needed to simulate V (x,w) that will depend on n, but we will

show that the number of copies needed is polynomial in n.
25This is where the proof gets sketchy; to specify the proof in full detail, handling every technicality, takes pages

and is not much more informative than the sketch we outline below.

7.6. PROOF OF THE COOK-LEVIN THEOREM 65

and contains enough gates in the vertical direction to simulate V (x) long enough to get an answer.
Since the size of γlocal is constant (say, c), the size of the array is at most cp(n)2. n additional
constant gates are needed to represent x, and the answer on the top row can be collected into a
single output gate in at most O(p(n)) gates. Therefore, |

〈
γVx
〉
| is polynomial in n, whence γVx is

computable from x in polynomial time.

Since γVx (w) simulates V (x,w), w satisfies γVx if and only if V (x,w) accepts, whence γVx is
satisfiable if and only if there is a witness w testifying that x ∈ A.

Theorem 7.6.3. 3Sat is NP-complete.

Proof. 3Sat ∈ NP for the same reason that Sat ∈ NP: the language

3SatV = { 〈φ,w〉 | φ is a 3CNF Boolean formula and φ(w) = 1 }

is a polynomial-time verification language for 3Sat.

To show that 3Sat is NP-hard, we show that CircuitSat ≤P
m 3Sat.26

Let γ be a Boolean circuit with s gates; we design a 3CNF formula φ computable from γ in
polynomial time, which is satisfiable if and only if γ is.27 φ has all the input variables x1, . . . , xn
of γ, and in addition, for each gate gj in γ, φ has a variable yj in φ representing the values of the
output wire of gate gj . Assume that y1 is the output gate of γ.

For each gate gj , φ has a subformula ψj that expresses the fact that the gate is “functioning
properly” in relating its inputs to its outputs. For each gate gj , with output yj and inputs wj and
zj ,

28 define

ψj =

(wj ∨ yj ∨ yj)
∧ (wj ∨ yj ∨ yj)

, if gj is a Not gate;

(wj ∨ zj ∨ yj)
∧ (wj ∨ zj ∨ yj)
∧ (wj ∨ zj ∨ yj)
∧ (wj ∨ zj ∨ yj)

, if gj is an Or gate;

(wj ∨ zj ∨ yj)
∧ (wj ∨ zj ∨ yj)
∧ (wj ∨ zj ∨ yj)
∧ (wj ∨ zj ∨ yj)

, if gj is an And gate.

(7.6.1)

26The main obstacle to simulating a Boolean circuit with a Boolean formula is that circuits allow unbounded
fan-out and formulas do not. The näıve way to handle this would be to make a separate copy of the subformula
representing a non-output gate of the circuit, one copy for each output wire. The problem is that this could lead to
an exponential increase in the number of copies, as subformulas could be copied an exponential number of times if
they are part of larger subformulas that are also copied. Our trick to get around this will actually lead to a formula
in 3CNF form.

27φ is not equivalent to γ: φ has more input bits than γ. But it will be the case that φ is satisfiable if and only if
γ is satisfiable; it will simply require specifying more bits to exhibit a satisfying assignment for φ than for γ.

28wj being the only input if gj is a ¬ gate, and each input being either a γ-input variable xi or a φ-input variable
yi representing an internal wire in γ

66 CHAPTER 7. TIME COMPLEXITY

Observe that, for example, a ∧ gate with inputs a and b and output c is operating correctly if

(a ∧ b =⇒ c)

∧ (a ∧ b =⇒ c)

∧ (a ∧ b =⇒ c)

∧ (a ∧ b =⇒ c)

Applying the fact that the statement p =⇒ q is equivalent to p ∨ q and DeMorgan’s laws gives
the expressions in equation (7.6.1).

To express that γ is satisfied, we express that the output gate outputs 1, and that all gates are
properly functioning:

φ = (y1 ∨ y1 ∨ y1) ∧
s∧
j=1

ψj .

The only way to assign values to the various yj ’s to satisfy φ is for γ to be satisfiable, and furthermore
for the value of yj to actually equal the value of the output wire of gate gj in γ, for each 1 ≤ j ≤ s.29
Thus φ is satisfiable if and only if γ is satisfiable.

LECTURE: end of day 19

29That is to say, even if x1x2 . . . xn is a satisfying assignment to γ, a satisfying assignment to φ includes not only
x1x2 . . . xn, but also the correct values of yj for each gate j; getting these wrong will fail to satisfy φ even if x1x2 . . . xn
is correct.

