

ECS 289: Theory of Molecular Computing

Winter 2016, University of California, Davis

Instructor: David Doty

Description

The computing revolution of the 20th century focused on the systematic manipulation of information. In this century a new revolution is underway, and its goal is the systematic manipulation of *matter* at the molecular level. DNA nanotechnology especially has established several basic low-level tools, such as tile assembly, DNA origami, and strand displacement, out of which more sophisticated molecular systems can be composed.

A traditional programming language is a simplified abstraction of the possible behaviors of the several billion low-level wires and transistors in a modern electronic computer. By analogy this course introduces theoretical abstractions of molecular systems suitable for programming them to have desired behaviors. Emphasis is placed on formal reasoning and proofs as a way to discover fundamental limits to our ability to engineer artificial molecular systems.

The course will cover the theory of chemical reaction networks, molecular circuits, DNA self-assembly, thermodynamics of computation, and connections to the field of distributed computing.

Course registration number: 44328

Prerequisites

ECS 120 or equivalent (Chapters 1,3,4,7 of *Introduction to the Theory of Computation* by Michael Sipser)

Familiarity with basic probability is helpful.

No knowledge of chemistry, physics, or biology is assumed.

Grading

Homework/Project/Participation (no exams)

Syllabus

/	
Week 1	algorithmic self-assembly I
Week 2	algorithmic self-assembly II
Week 3	algorithmic self-assembly III
Week 4	chemical reaction networks I
Week 5	chemical reaction networks II
Week 6	chemical reaction networks III
Week 7	population protocols
Week 8	DNA strand displacement
Week 9	thermodynamics of computing
Week 10	project presentations

Textbook

No textbook. Some papers will be assigned reading.

Image: *Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly,* Constantine Evans, Ph.D. thesis, California Institute of Technology, 2014. The atomic force microscope image is of a ribbon made from DNA strands that count in binary; each bump is a streptavidin molecule, which are designed to attach to the DNA strands that represent the bit 1, to help read out the bits.