

Tile set:

S 1 1 2 2 1

Tile set:

S 1 1 2 2 1

Tile set:

S 1 1 2 2 1

Tile set:

S 1

1 2

2 2

Tile set:

S 1

1 2

Tile set:

3 4 4

4 3 3

S 1

3 1 1 2

2 2

Tile set:

S 1

1 2

Tile set:

3 4 4

4 3 3

S 1

3 1 1 2

2 2

Tile set:

S 1

1 2

2 2

Tile set:

S 1

1 2

Tile set:

3 4 4

4 3 3

S 1

 $\begin{bmatrix} 3 \\ 1 & 1 & 2 \end{bmatrix}$

Tile set:

3 4 4

4 3 3

S 1

 $\begin{bmatrix} 3 \\ 1 & 1 & 2 \end{bmatrix}$

Tile set:

3 4 4

4 3 3

S 1

3 1 1 2

Self-Assembly at Temperature 1 Building an "Eventual Comb"

Self-Assembly at Temperature 1 Building an "Eventual Comb"

Self-Assembly at Temperature 1 Building an "Eventual Comb"

Power of Cooperative Binding

 "Temperature 1" self-assembly: any tile may bind if even one glue matches

Power of Cooperative Binding

 "Temperature 1" self-assembly: any tile may bind if even one glue matches

Power of Cooperative Binding

 "Temperature 1" self-assembly: any tile may bind if even one glue matches

Our result relies on a notion of *pumpable* paths in an assembly.

Partial assembly, with grey seed tile

Our result relies on a notion of *pumpable* paths in an assembly.

Our result relies on a notion of *pumpable* paths in an assembly.

Look at just this partial path

Our result relies on a notion of *pumpable* paths in an assembly.

Uniquely color each tile type

Our result relies on a notion of *pumpable* paths in an assembly.

Note the repeating pattern, beginning with yellow tiles, which

we call a *pumpable segment*

Our result relies on a notion of *pumpable* paths in an assembly.

The pumpable segment can be infinitely repeated, or *pumped*, to create an infinite, periodic path

Pumpable Tile Assembly System

A directed temperature 1 TAS **T** is <u>c-pumpable</u> if, given any two points *p* and *q* at least distance *c* apart in the terminal assembly of **T**, there is a path from *p* to *q* that contains a pumpable segment within the first *c* points on the path.

In other words, every long path contains repetitions of a tile type (an obvious consequence of the pigeonhole principle) that can be pumped (repeated infinitely many times) to create a periodic path without colliding with the assembly up to that point.

Not all repeating patterns are pumpable!

Not all repeating patterns are pumpable!

Not all repeating patterns are pumpable!

Linear Sets

A set of points is *linear* if every point in the set can be expressed as a nonnegative integer affine combination of two integer vectors:

An initial offset *b* from the origin, plus a multiple of *u* plus a multiple of *v*