kinetic Tile Assembly Model

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

differences with aTAM:

tiles can attach by any positive strength glue

3

• tiles fall off, more quickly if bound weakly

 $r_f \sim e^{-G_{mc}}$ forward rate

differences with aTAM:

tiles can attach by any positive strength glue

4

• tiles fall off, more quickly if bound weakly

 $r_{f} \sim e^{-G_{mc}}$ forward rate $r_{r} \sim e^{-b \cdot G_{se}}$ reverse rate

differences with aTAM:

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

 $r_f \sim e^{-G_{mc}}$ forward rate $r_r \sim e^{-b \cdot G_{se}}$ reverse rate

 $e^{-G_{mc}}$

tile concentration

differences with aTAM:

b

tiles can attach by any positive strength glue

- tiles fall off, more quickly if bound weakly
 - $r_f \sim e^{-G_{mc}}$ forward rate $r_r \sim e^{-b \cdot G_{se}}$ reverse rate
 - $e^{-G_{mc}}$ tile concentration
 - # sticky ends bound

differences with aTAM:

b

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly
 - $r_f \sim e^{-G_{mc}}$ forward rate $r_r \sim e^{-b \cdot G_{se}}$ reverse rate
 - $e^{-G_{mc}}$ tile concentration
 - # sticky ends bound
 - G_{se} strength of 1 sticky end

differences with aTAM:

b

G_{se}

- tiles can attach by any positive strength glue
- tiles fall off, more quickly if bound weakly

 $r_f \sim e^{-G_{mc}}$ forward rate

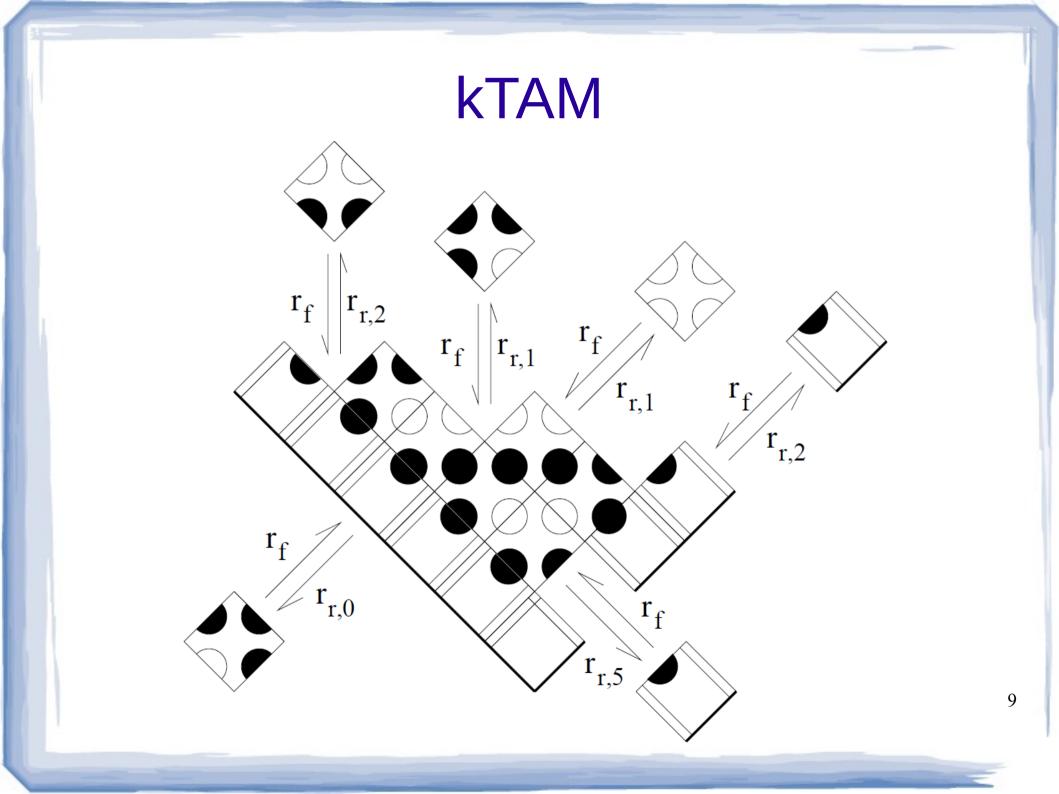
 $r_r \sim e^{-b \cdot G_{se}}$ reverse rate

- $e^{-G_{mc}}$ tile concentration
 - # sticky ends bound

strength of 1 sticky end

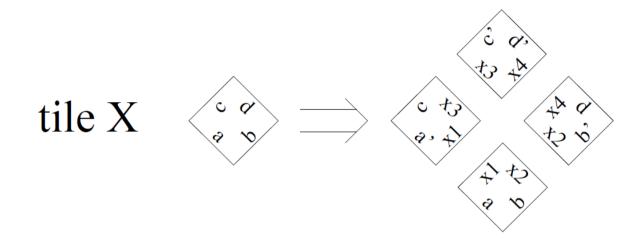
optimal growth when forward rate just barely larger than reverse rate, i.e., when

 $G_{mc} \approx 2 \cdot G_{se}$



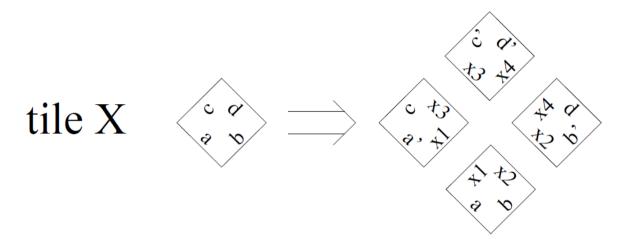
Definition: error = attachment by single strength 1 glue

Definition: error = attachment by single strength 1 glue



2x2 block X (4 tiles)

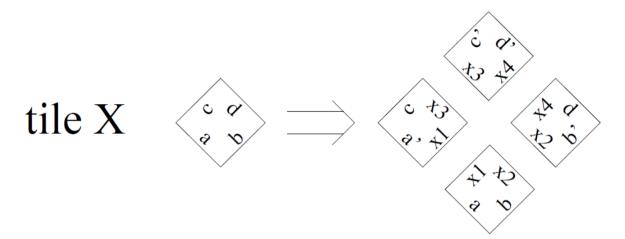
Definition: error = attachment by single strength 1 glue



2x2 block X (4 tiles)

glues internal to block are all unique

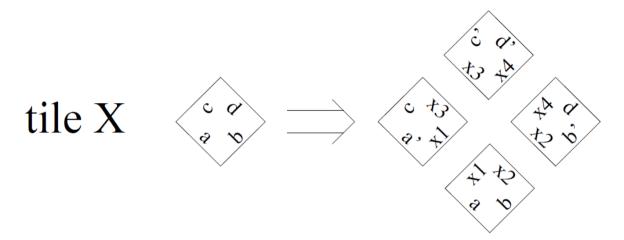
Definition: error = attachment by single strength 1 glue



2x2 block X (4 tiles)

glues internal to block are all unique errors must occur in multiples of 2

Definition: error = attachment by single strength 1 glue



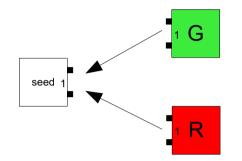
2x2 block X (4 tiles)

glues internal to block are all unique errors must occur in multiples of 2

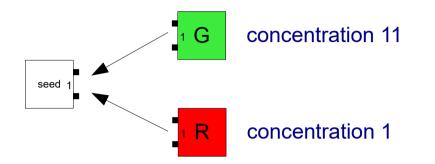
 $k \ge k$ proofreading roughly turns error rate of ε into ε^k

Concentration programming

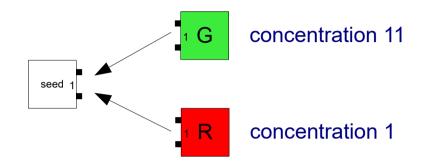
Nondeterministic binding



Nondeterministic binding

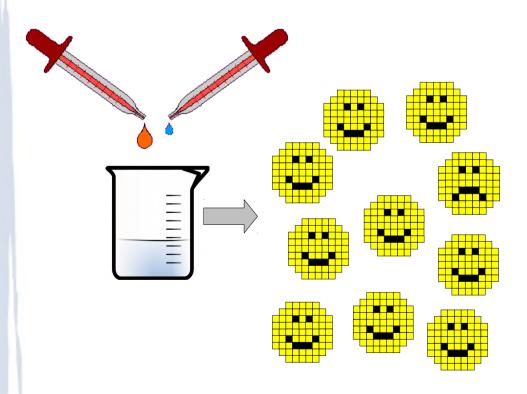


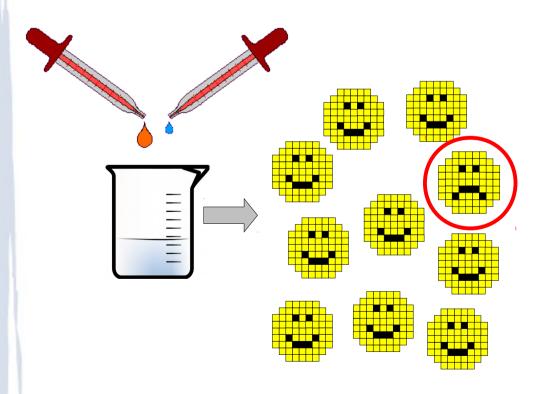
Nondeterministic binding

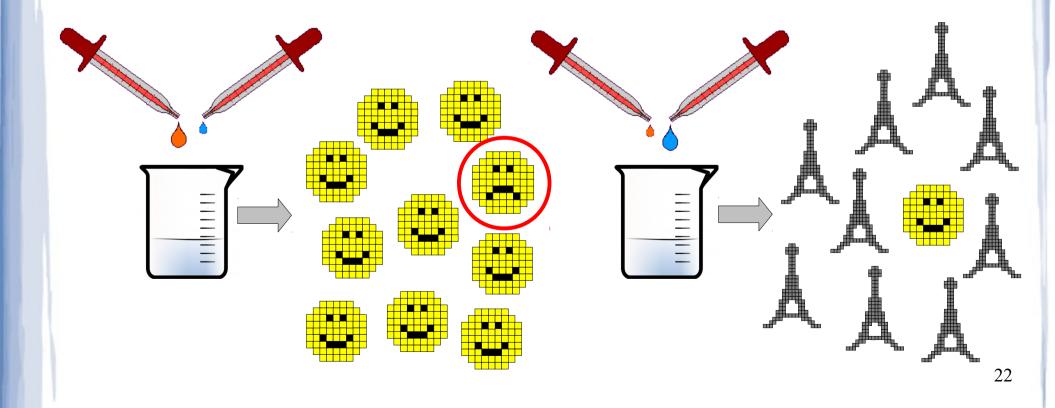


$\Pr[$ seed 1 G] = 11/12

 $\Pr[[]_{R}] = 1/12$

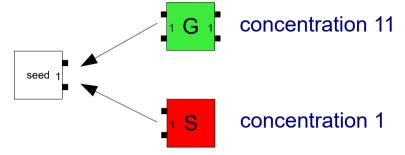




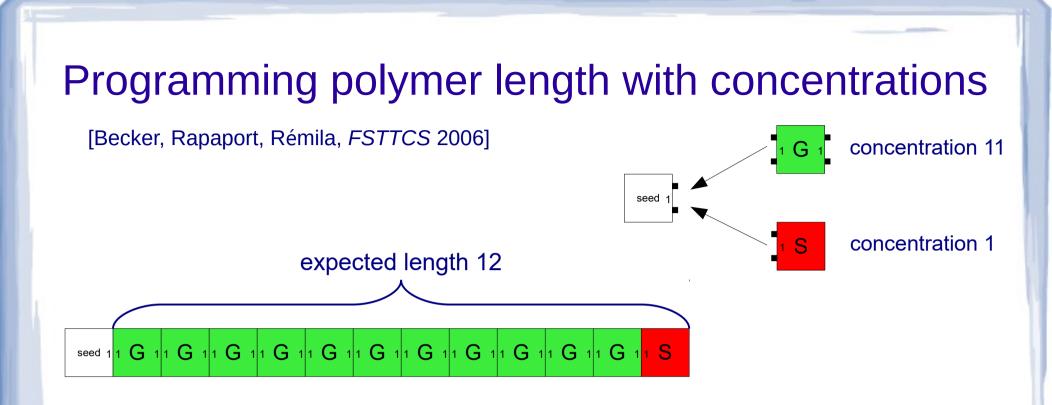


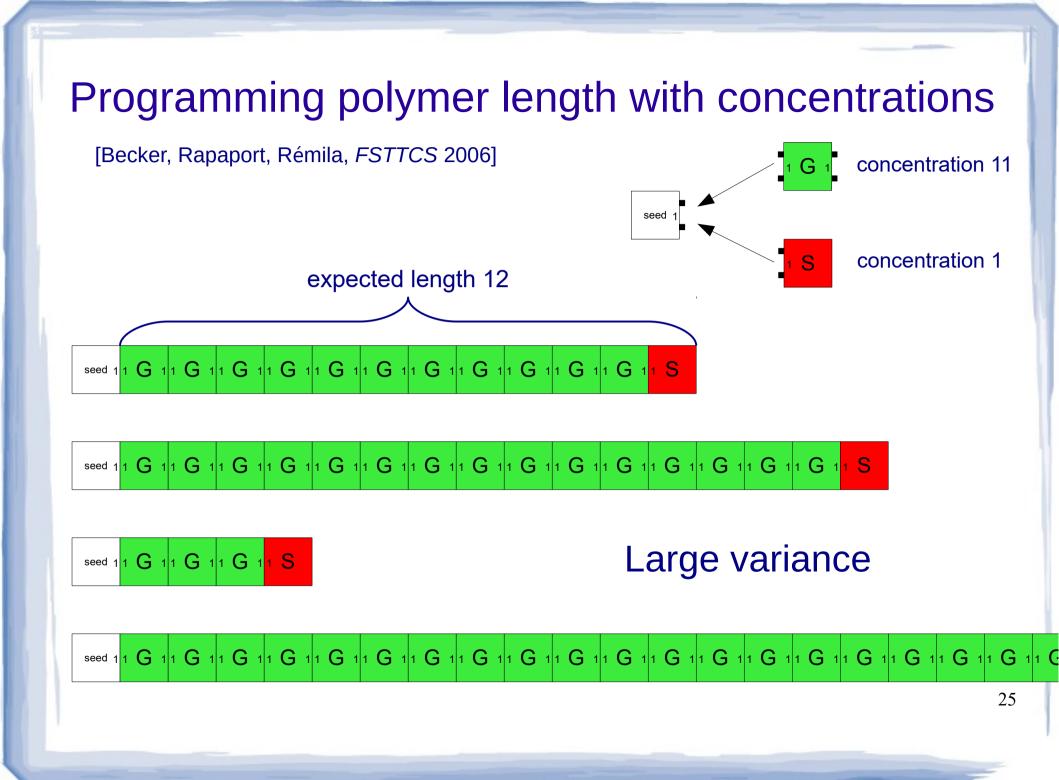
Programming polymer length with concentrations

[Becker, Rapaport, Rémila, FSTTCS 2006]

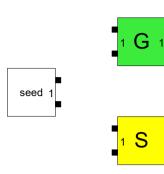


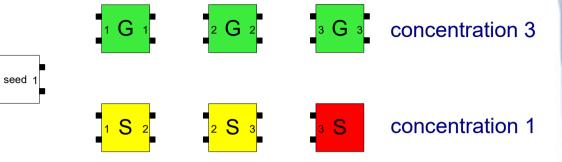
seed 1



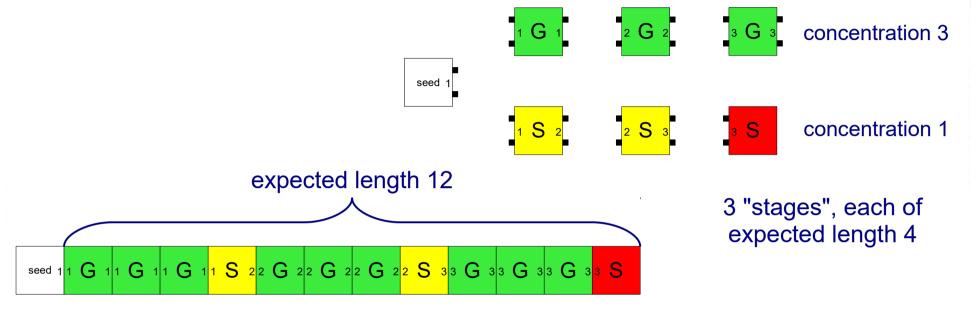


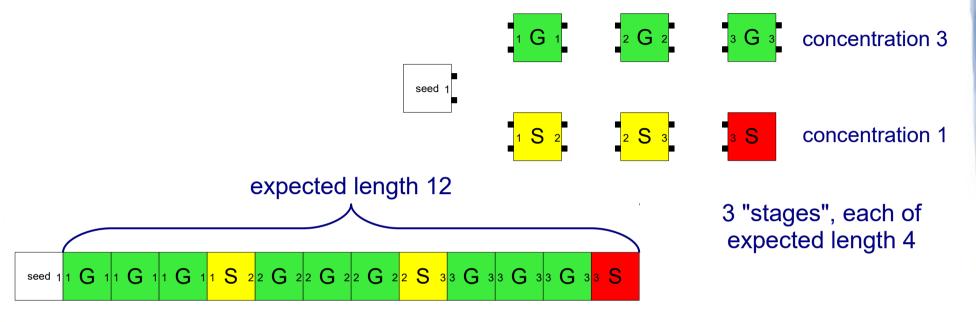
concentration 3



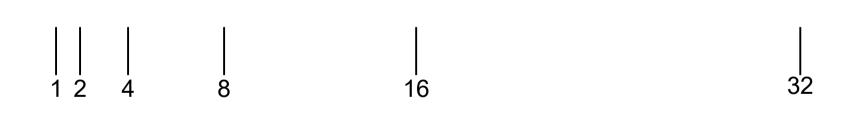


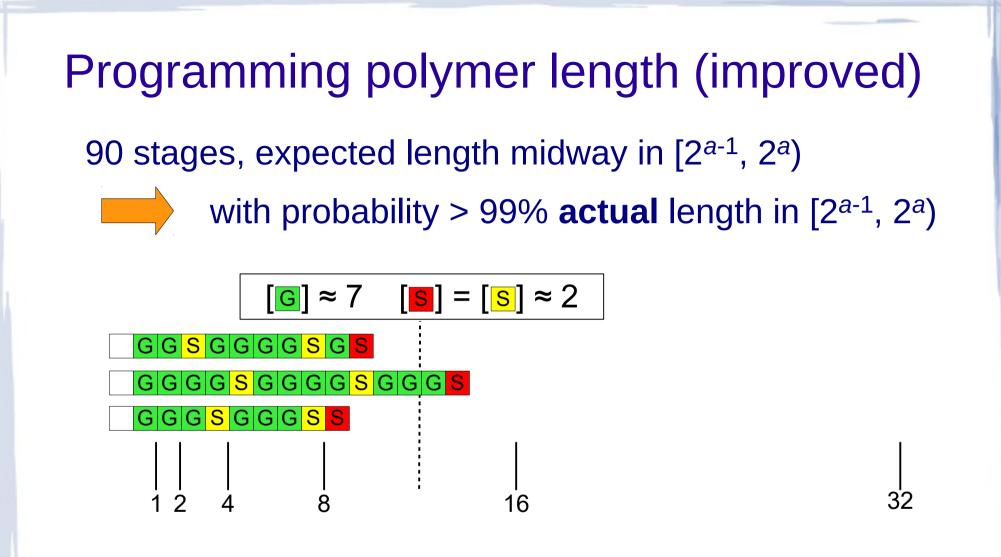
3 "stages", each of expected length 4

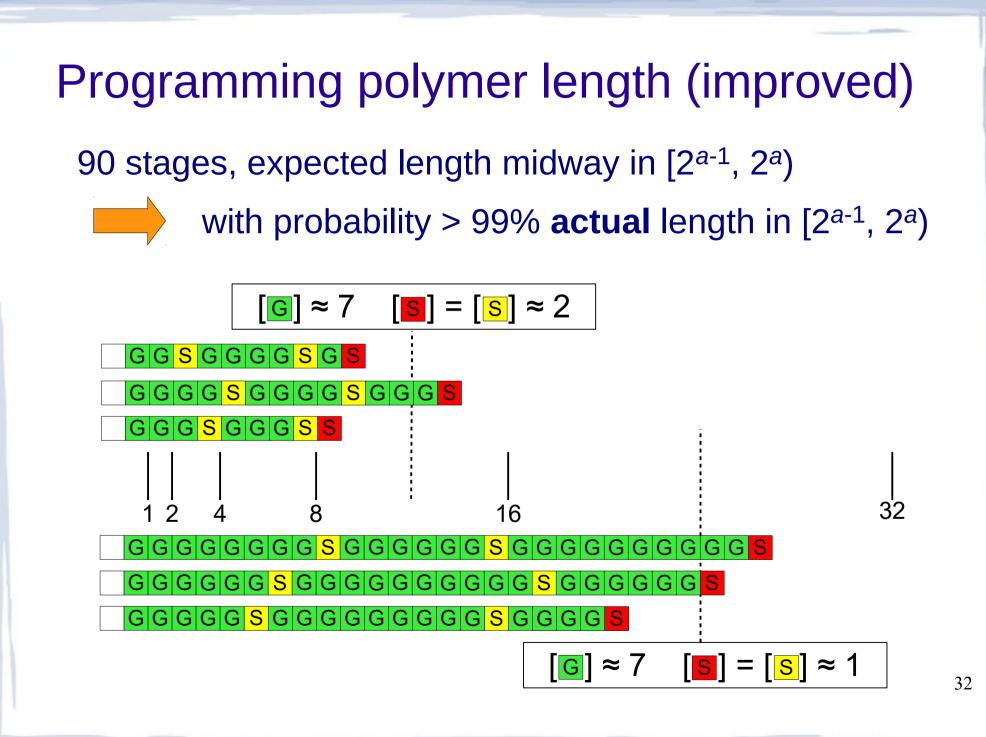


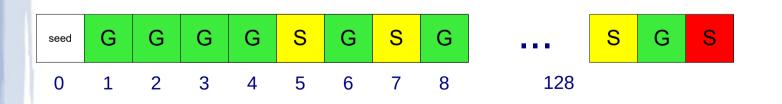


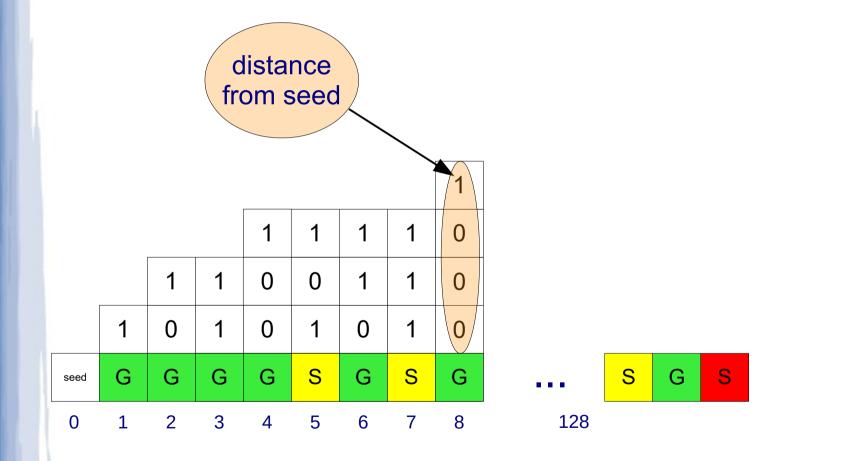
Programming polymer length (improved)
90 stages, expected length midway in [2^{a-1}, 2^a)
with probability > 99% actual length in [2^{a-1}, 2^a)



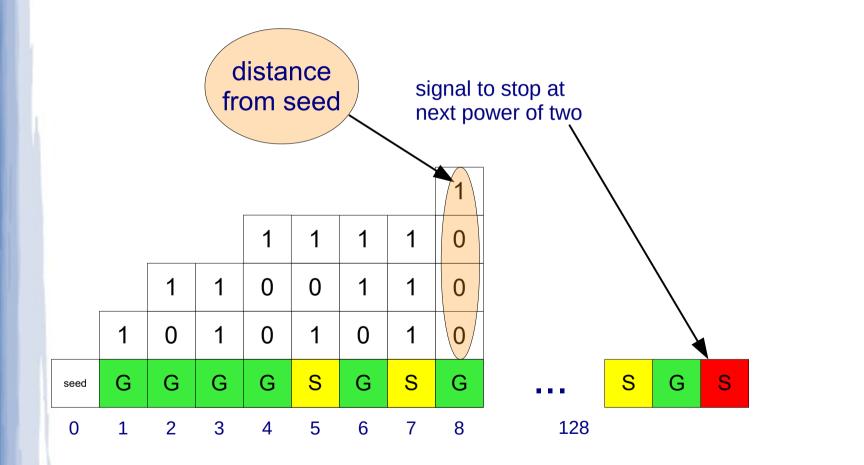




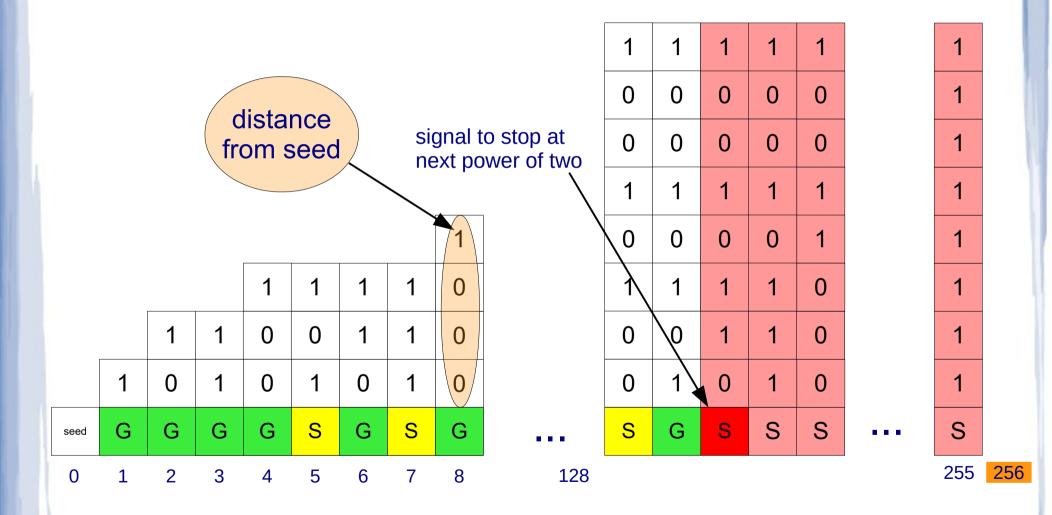




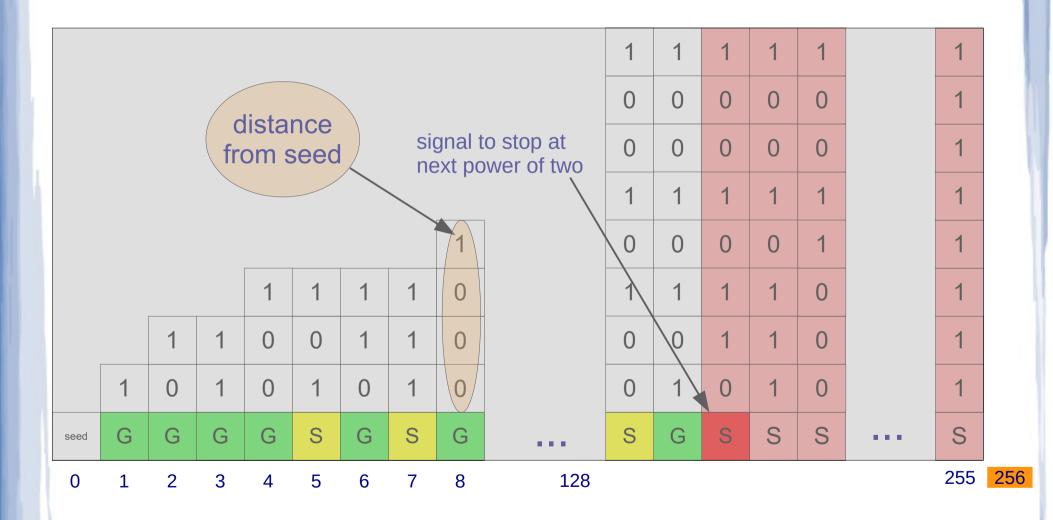
255 256



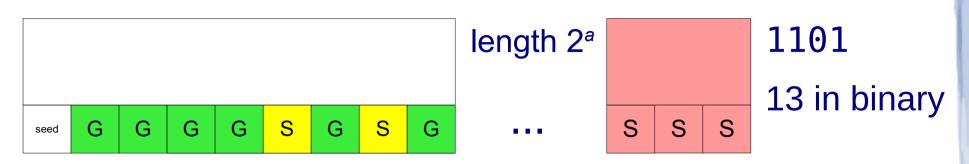
Programming polymer length 2^a precisely

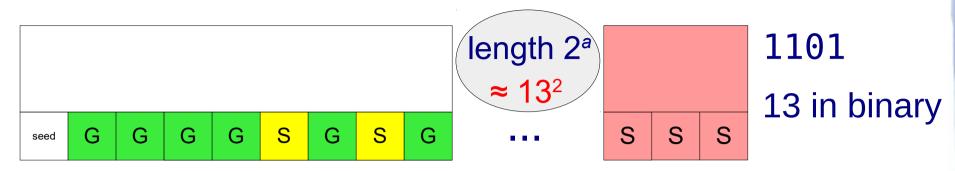


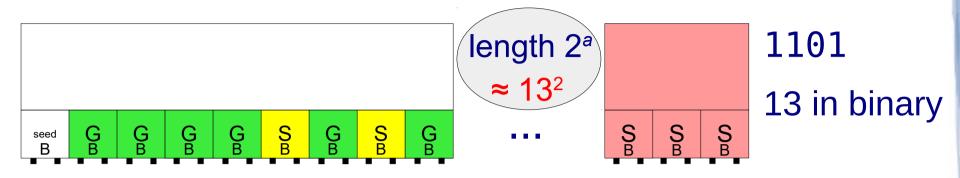
Programming polymer length 2^a precisely

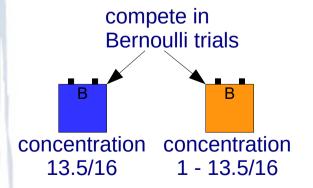


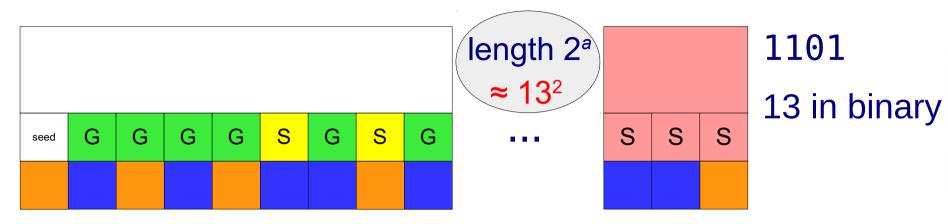
110113 in binary

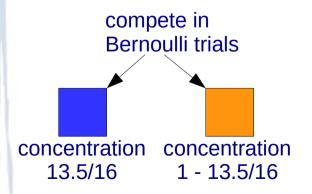


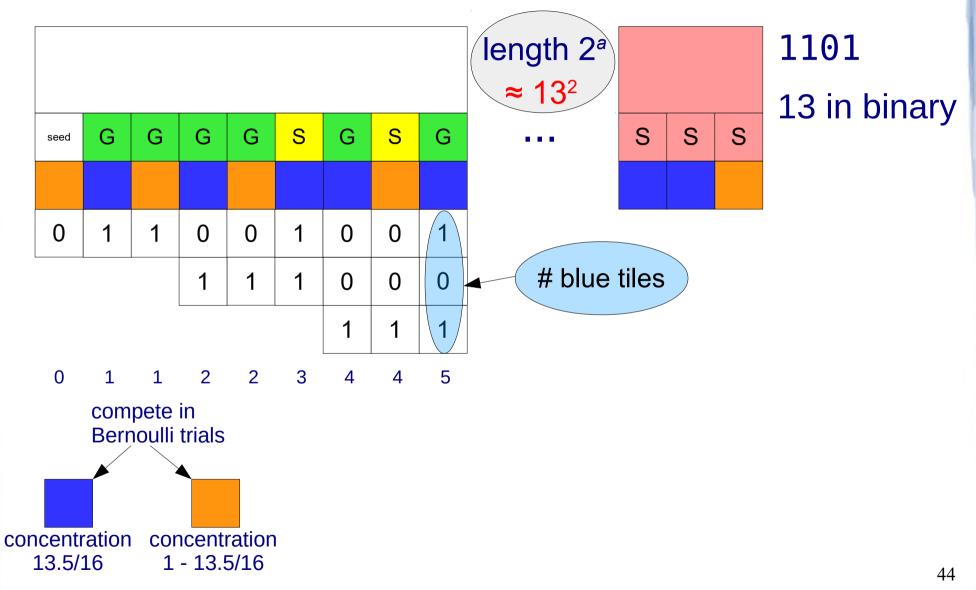


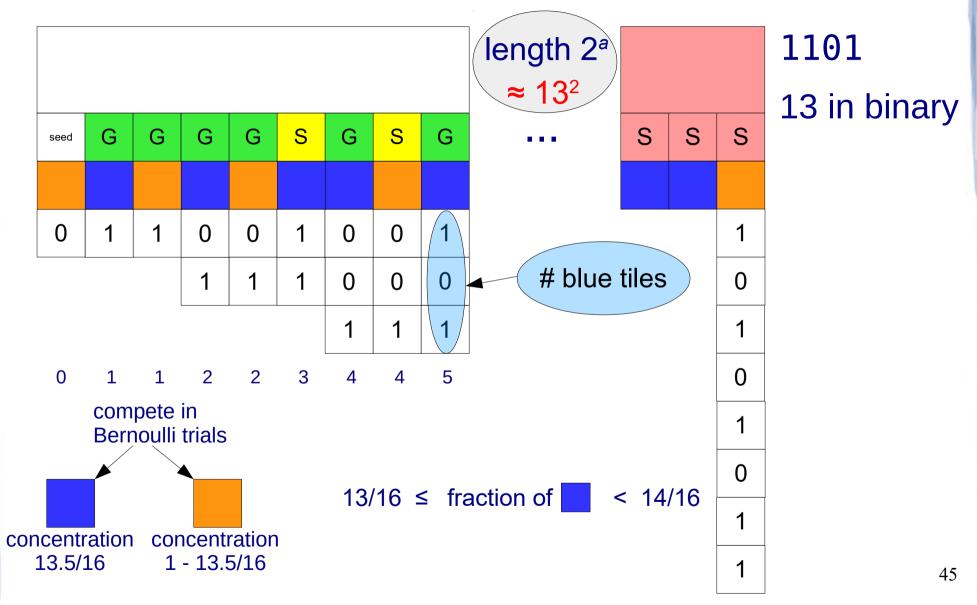


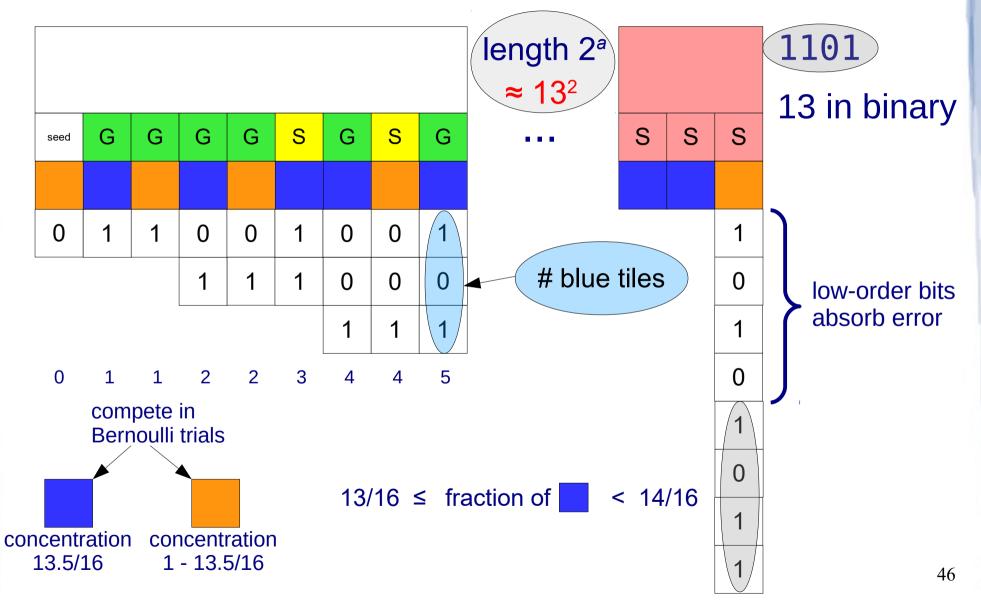


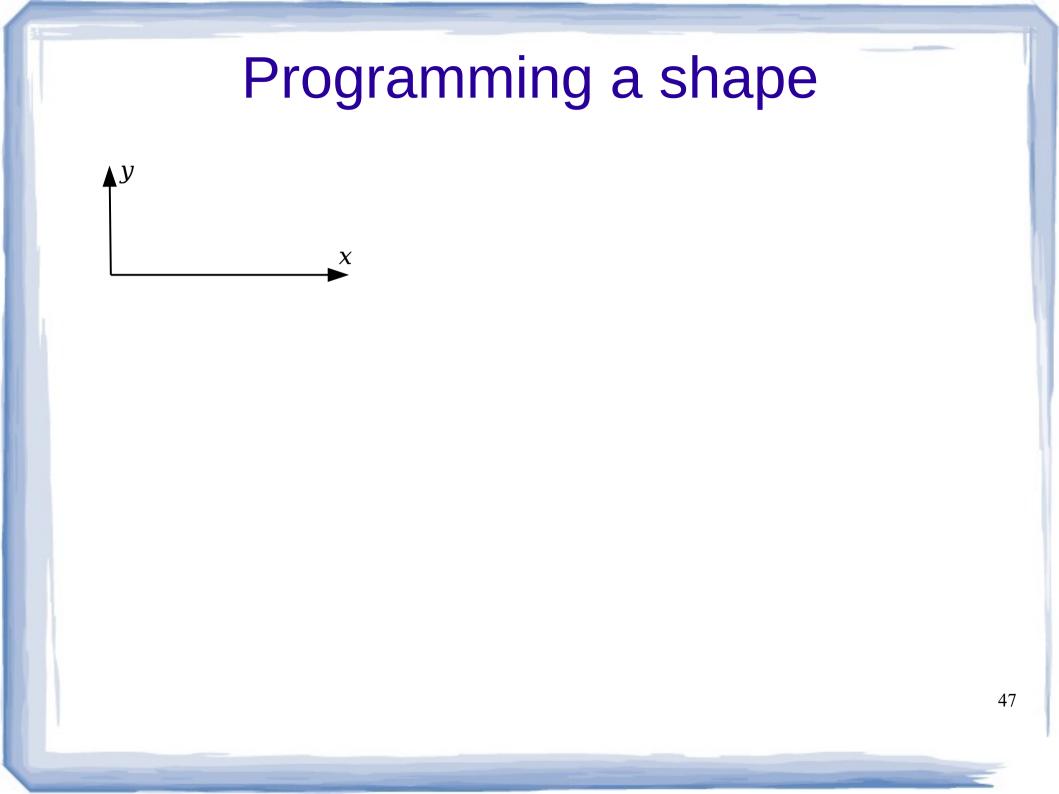


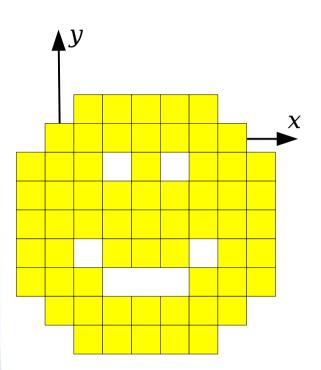


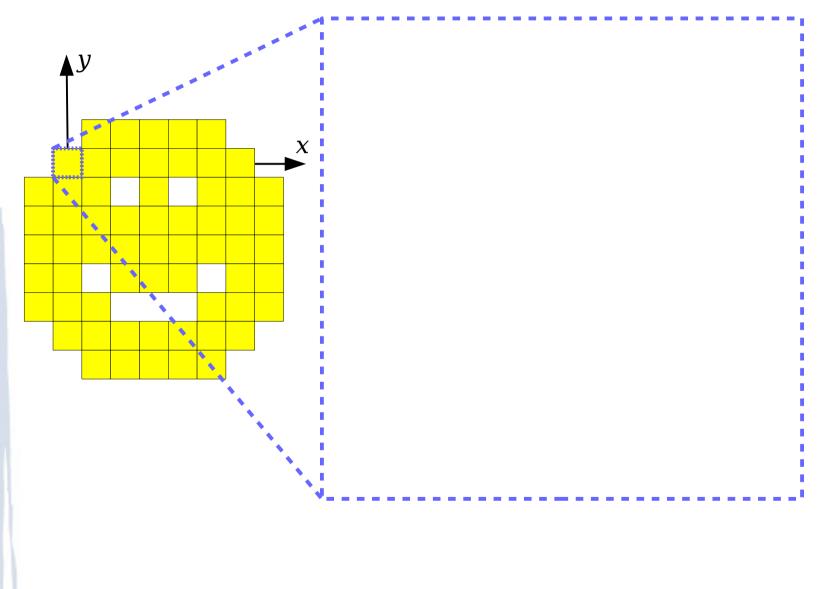


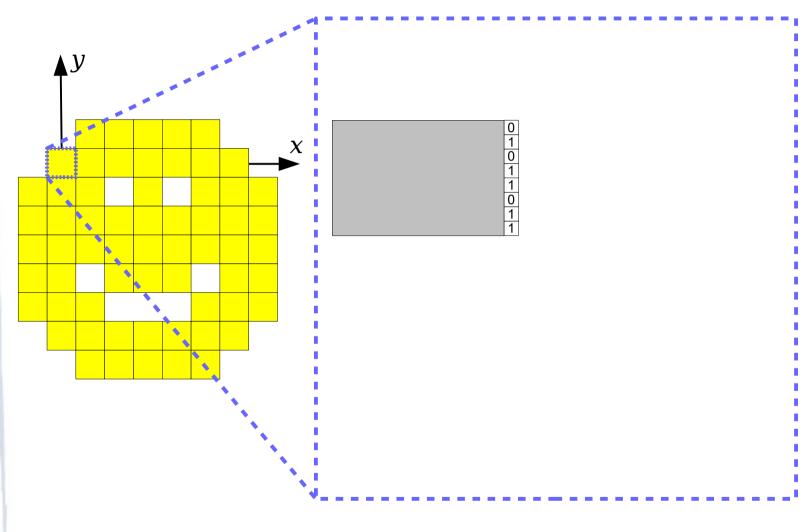


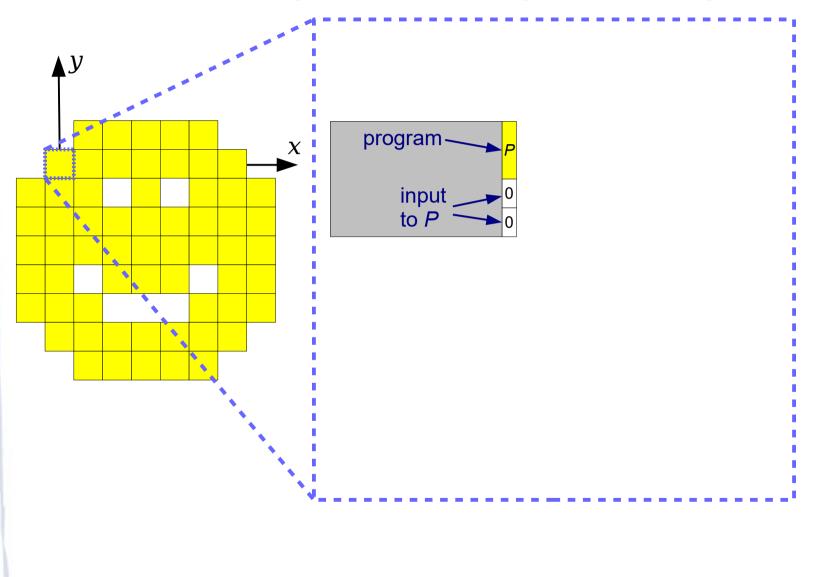


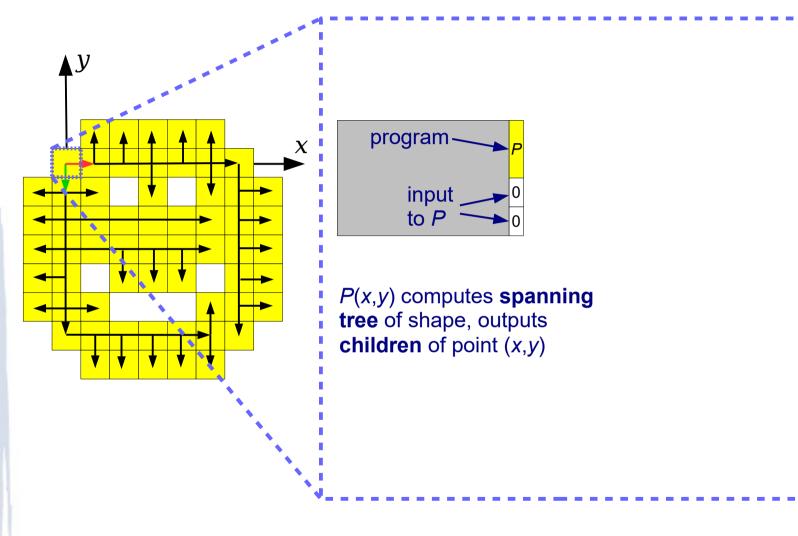


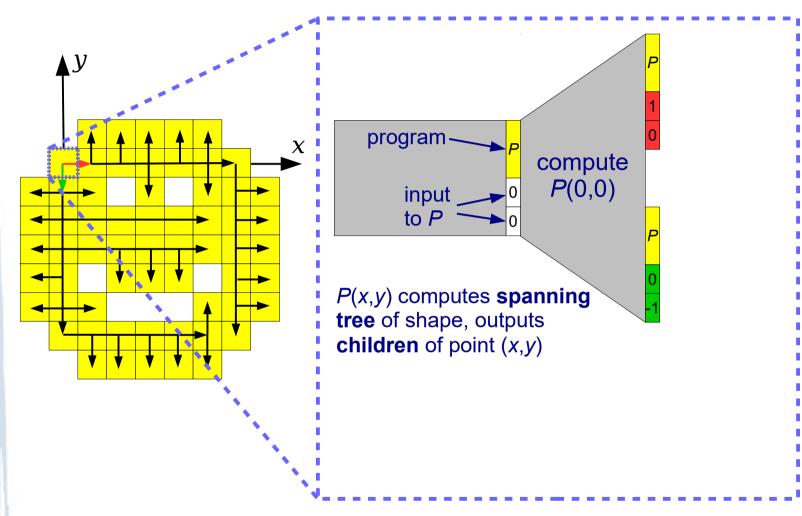


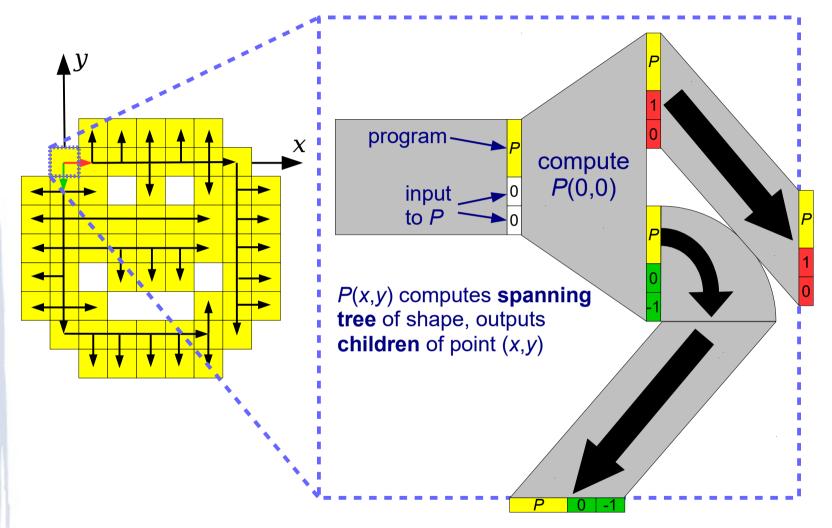


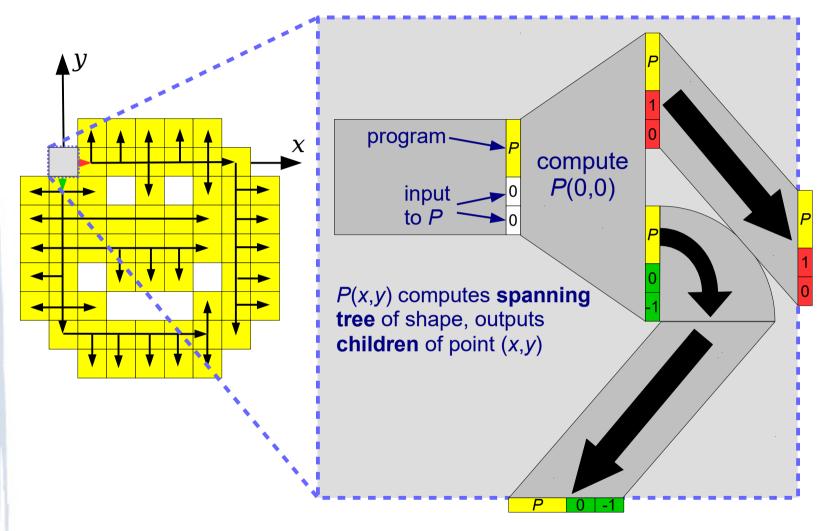


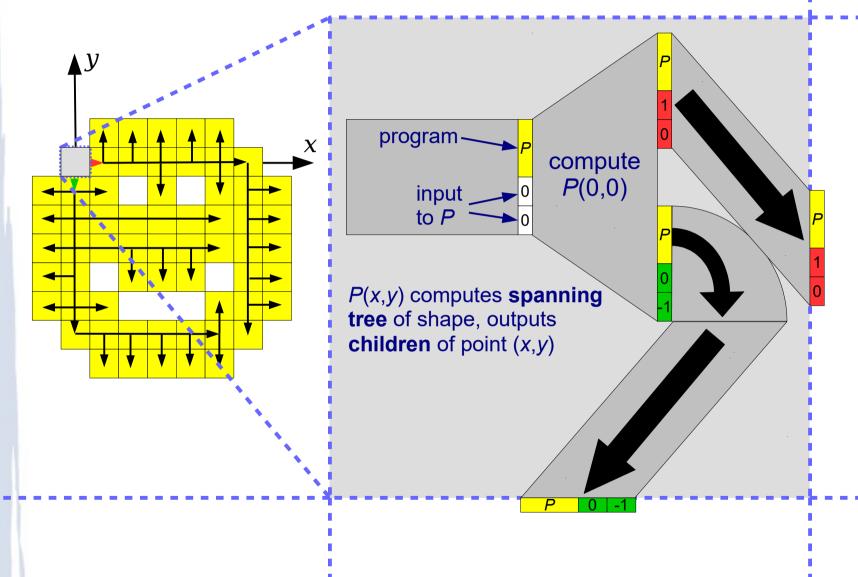


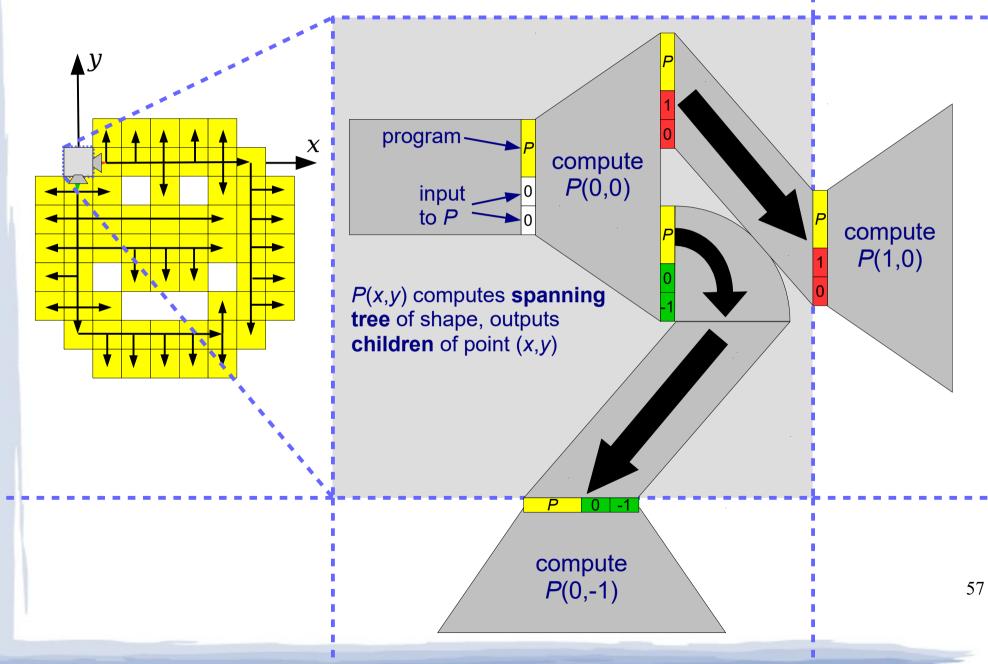


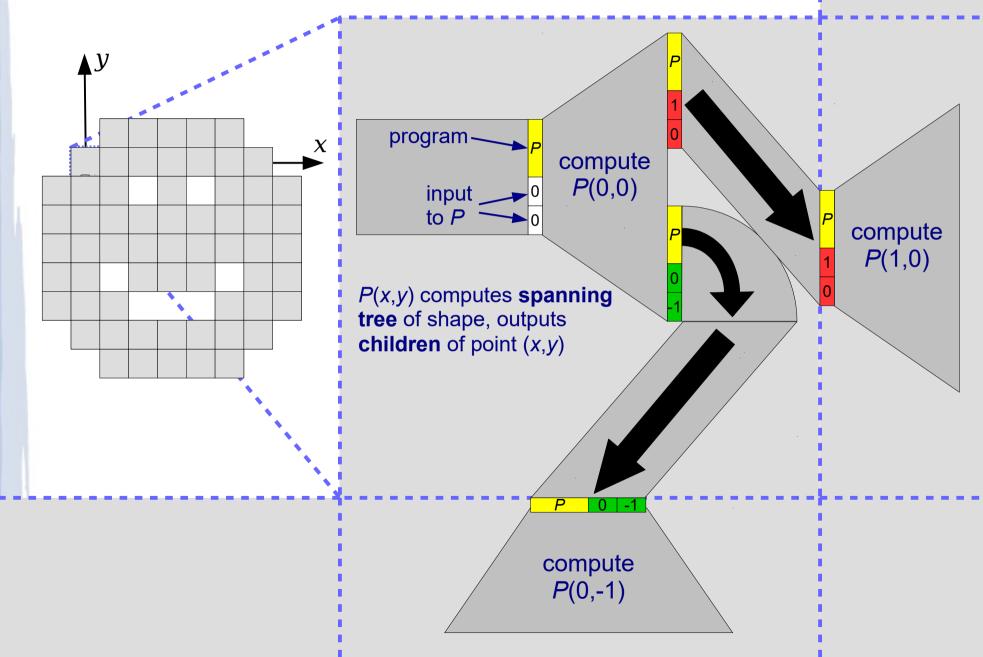








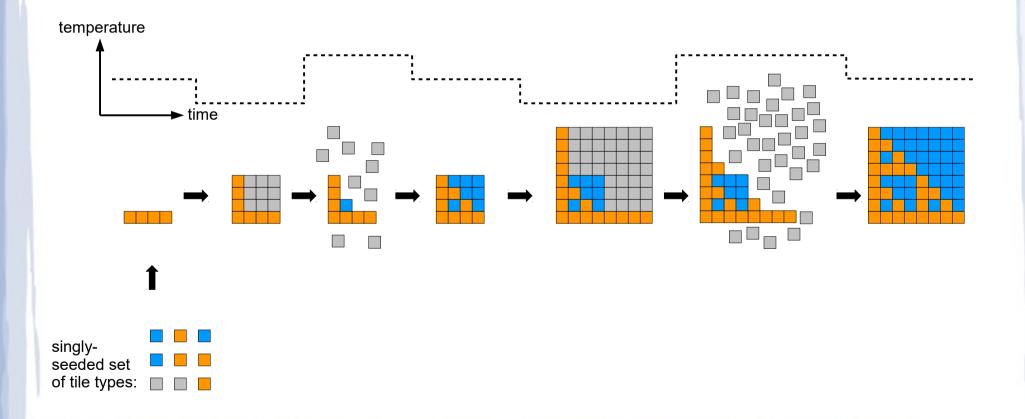




Temperature programming

Temperature programming

(Kao, Schweller, SODA 2006): Vary temperature (binding strength threshold) throughout assembly to control what assembles.



Complexity of Temperature Programming

Scott Summers: A fixed set of (singly-seeded) tile types can assemble any finite scaled shape through temperature programming.

Number of tile types (a self-assembly "resource") is constant (maybe big), no matter the shape.

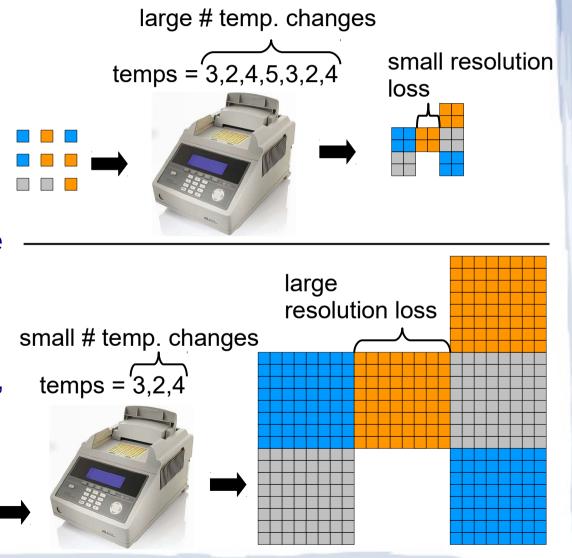
Scott wondered about two other self-assembly resources that might change for each shape:

- What resolution loss is required?
- What number of temperature changes are required?

Complexity of Temperature Programming

For shape *S* with *n* points, trade-off between **resolution loss** and **number of temperature changes**:

- With optimal resolution loss = constant (22 in Scott's paper although shown smaller in the example), need ≈ n temperature changes.
- With optimal number of temperature changes = size of smallest program p that prints S, need resolution loss ≈ t = running time of p.



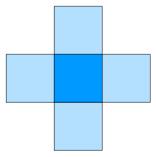
Hierarchical assembly

Parallelism in the Model

potential attachment location

attached tile

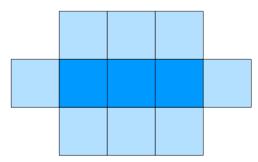
time step 0



Parallelism in the Model

potential attachment location

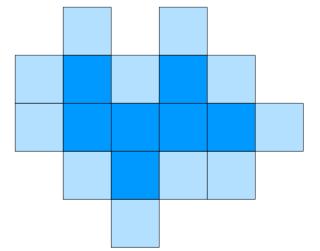
attached tile



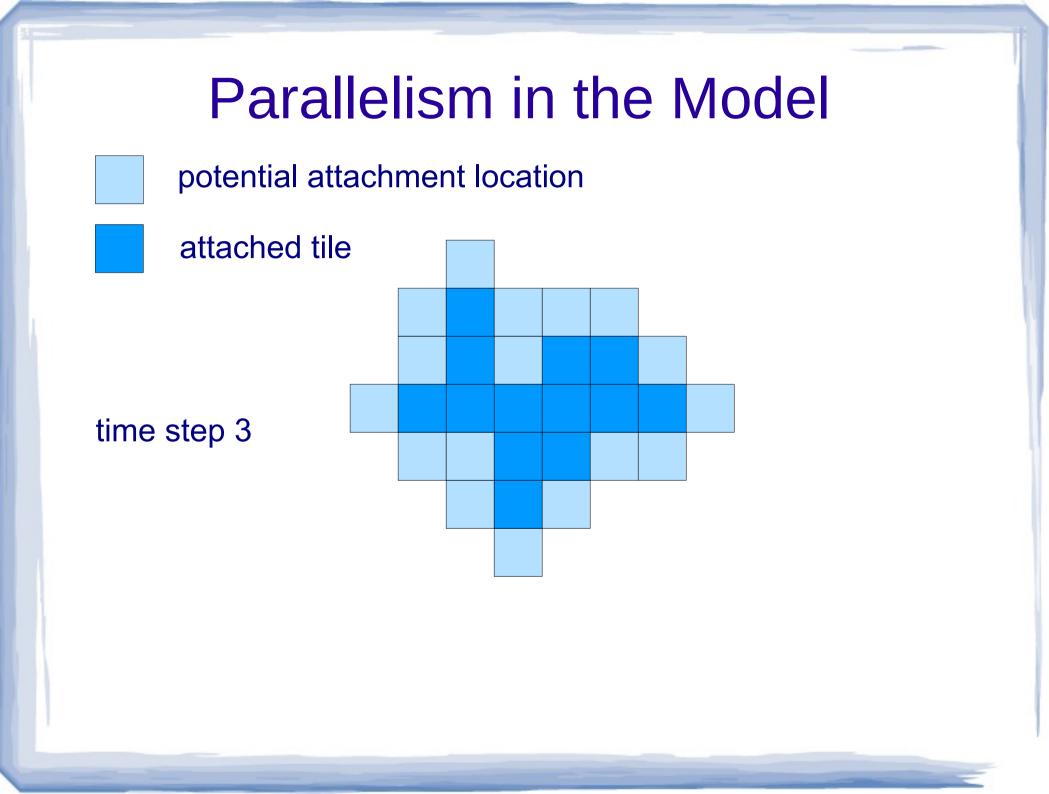
Parallelism in the Model

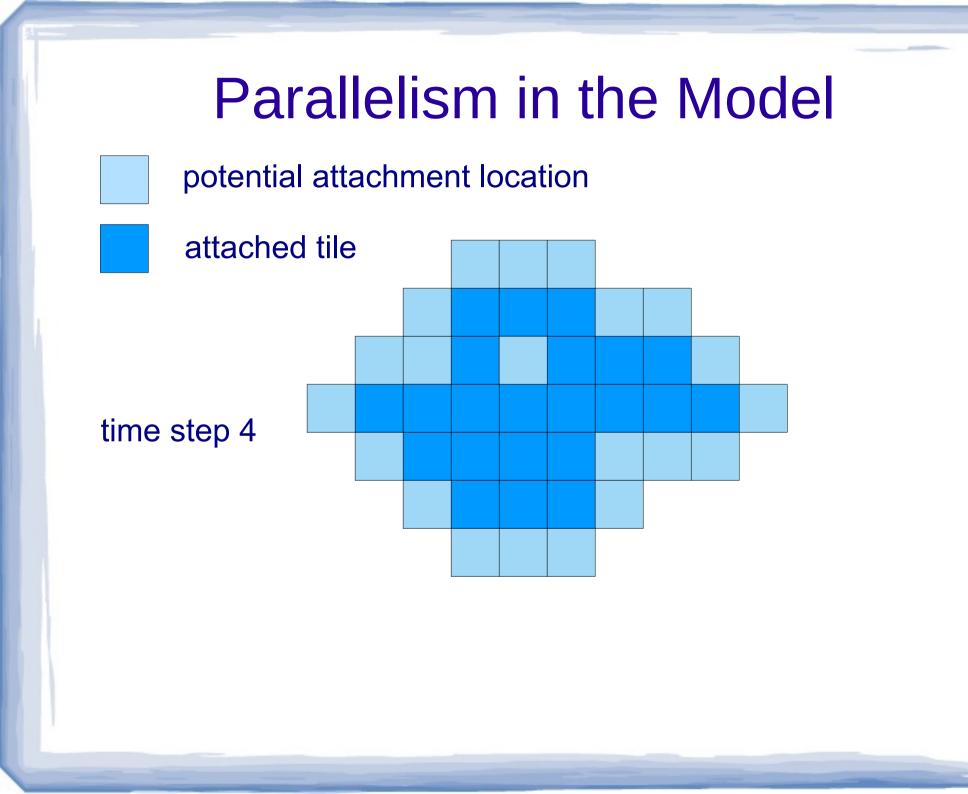
potential attachment location

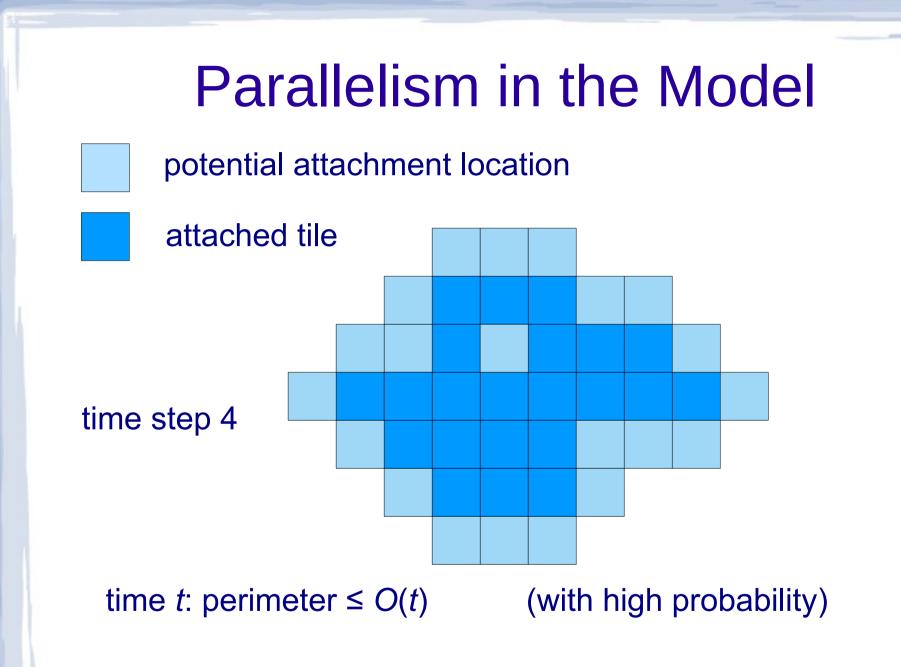
attached tile

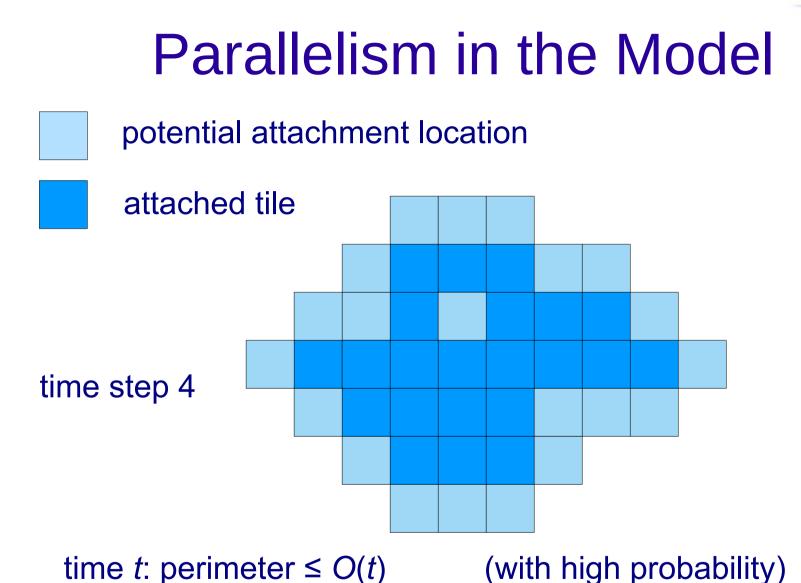


time step 2

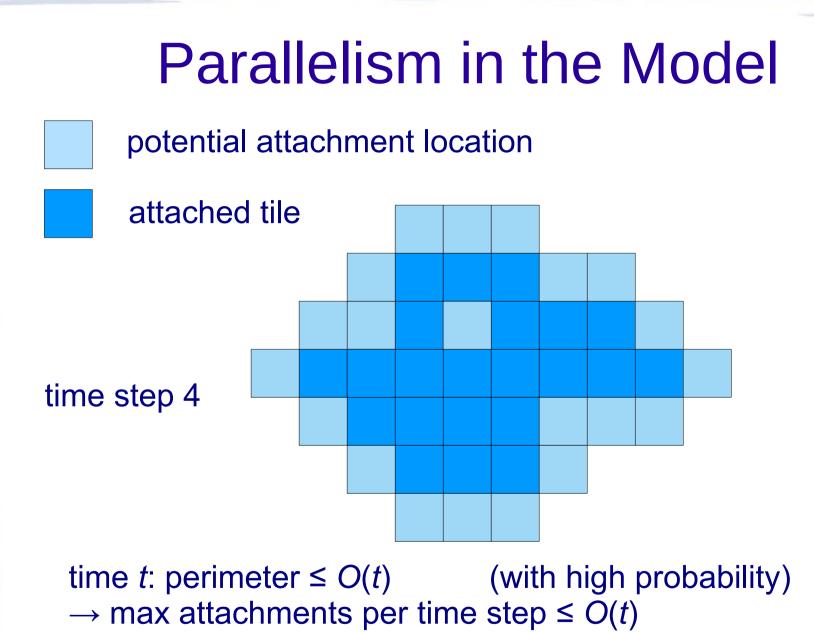




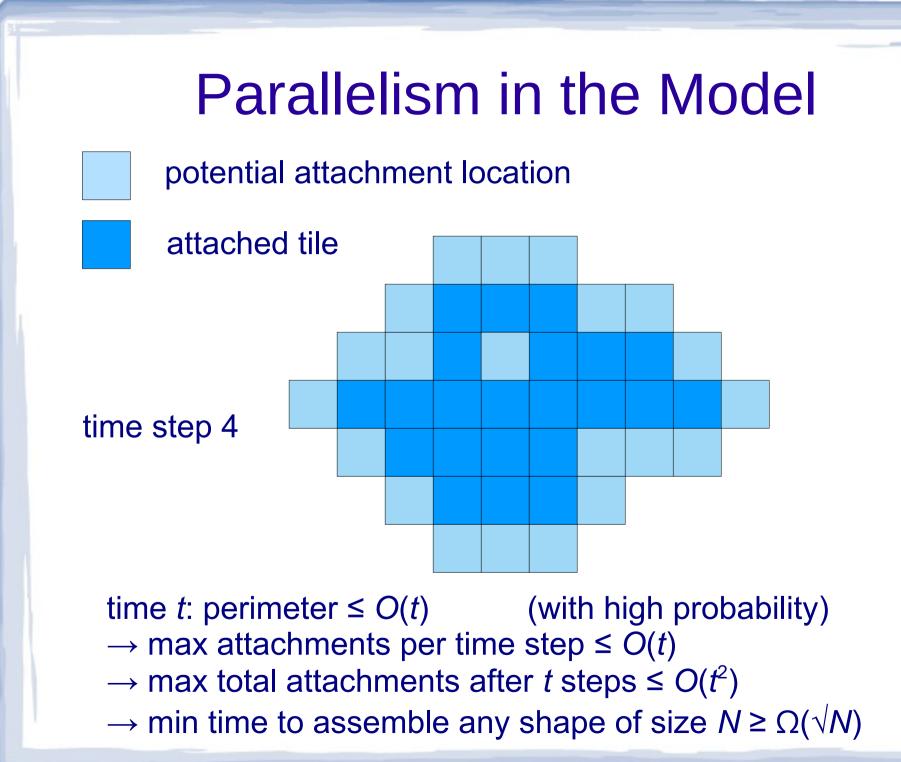




 \rightarrow max attachments per time step $\leq O(t)$ (with high probability)



 \rightarrow max total attachments after *t* steps $\leq O(t^2)$



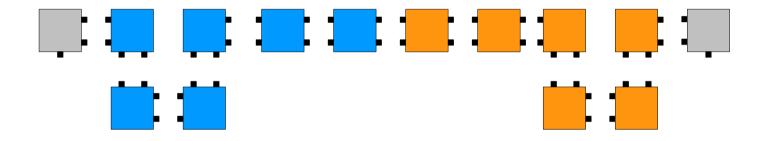
Parallelism and Time

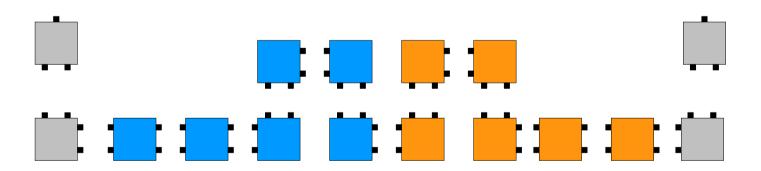
Can we speed up assembly by allowing large assemblies to form in parallel and then attach to each other in one step?

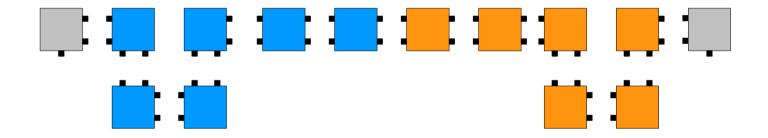
- seeded model
 - growth nucleates from a single seed tile
 - tiles attach one at a time

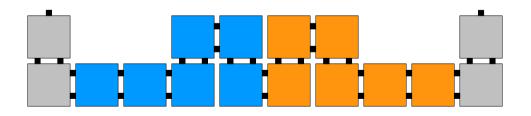
seeded model

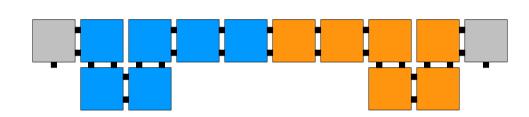
- growth nucleates from a single seed tile
- tiles attach one at a time
- hierarchical model: assembly is producible if
 - base case: it is a single tile, or
 - <u>recursive case</u>: it results from translating two producible assemblies so they stably attach without overlap

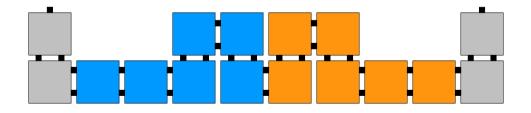


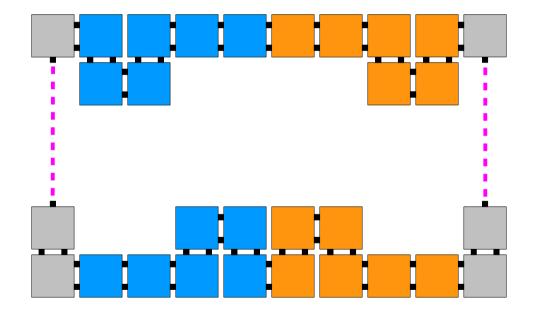


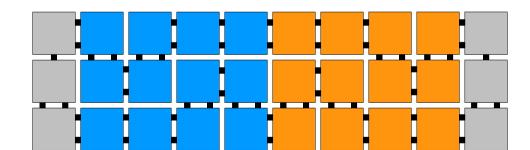


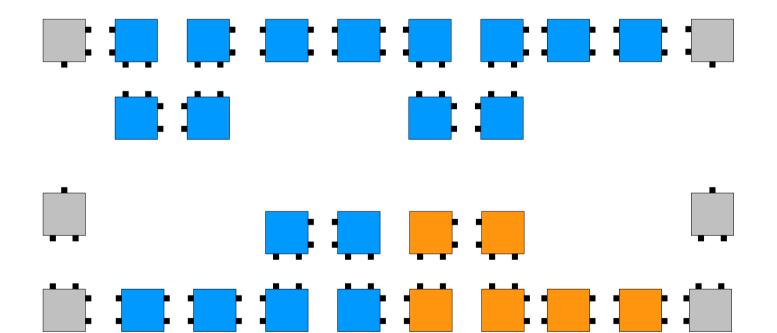


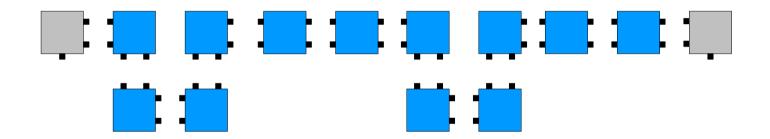


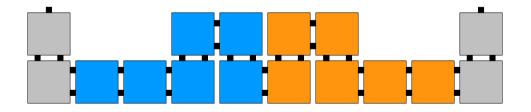


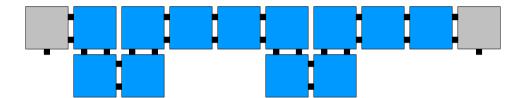


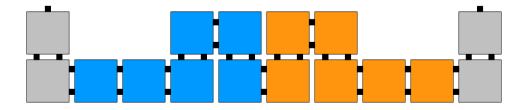


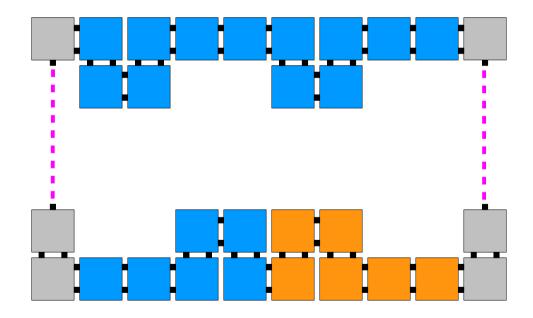


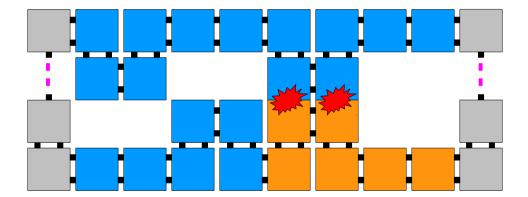












Potentially Unrealistic Aspects of the Hierarchical Assembly Model

- Overlap restriction:
 - DNA is floppy; won't stay in the plane
 - Engineering problem; not fundamental

Potentially Unrealistic Aspects of the Hierarchical Assembly Model

- Overlap restriction:
 - DNA is floppy; won't stay in the plane
 - Engineering problem; not fundamental

More fundamental problems:

- Large assemblies assumed to diffuse as fast as individual tiles
- Uniform binding strength threshold; should be higher for larger assemblies

Potentially Unrealistic Aspects of the Hierarchical Assembly Model

- Overlap restriction:
 - DNA is floppy; won't stay in the plane
 - Engineering problem; not fundamental

More fundamental problems:

- Large assemblies assumed to diffuse as fast as individual tiles
- Uniform binding strength threshold; should be higher for larger assemblies

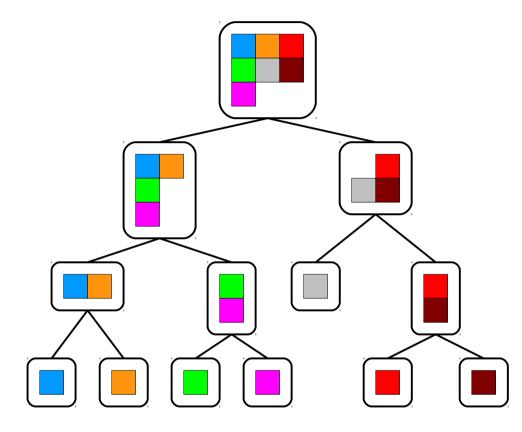
artificially boost assembly speed

Previous result: Assembling an n x n square requires Ω(n) steps in the seeded model; achievable with optimal O(log n / log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)

- Previous result: Assembling an *n* x *n* square requires Ω(*n*) steps in the seeded model; achievable with optimal O(log *n* / log log *n*) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)
- They asked: Can the extra parallelism in the hierarchical model break the Ω(n) lower bound?

- Previous result: Assembling an *n* x *n* square requires Ω(*n*) steps in the seeded model; achievable with optimal O(log *n* / log log *n*) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)
- They asked: Can the extra parallelism in the hierarchical model break the Ω(n) lower bound?
- <u>We show</u>:
 - O(log n / log log n) tile types can assemble an n x n square using "nearly maximal" parallelism.

Definition of Hierarchical Parallelism



<u>assembly tree</u> = possible order of attachments leading to final assembly

<u>assembly depth</u> of tile system = maximum depth of any assembly tree of the tile system

Highly Parallel Square Assembly

 Best possible assembly depth for any shape with N points is log N.

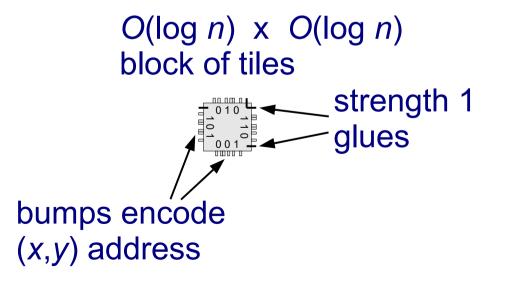
Highly Parallel Square Assembly

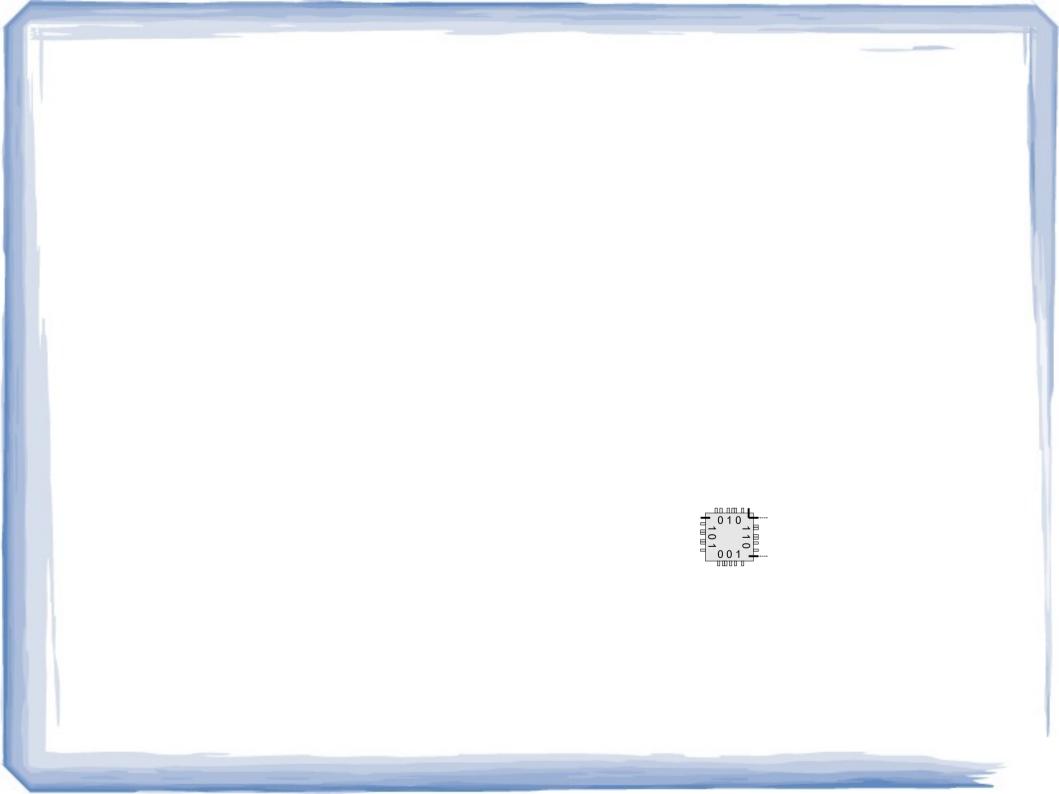
- Best possible assembly depth for any shape with N points is log N.
- Theorem: For every positive integer n, there is a tile system with O(log n / log log n) tile types and assembly depth O(log² n) that assembles an n x n square.

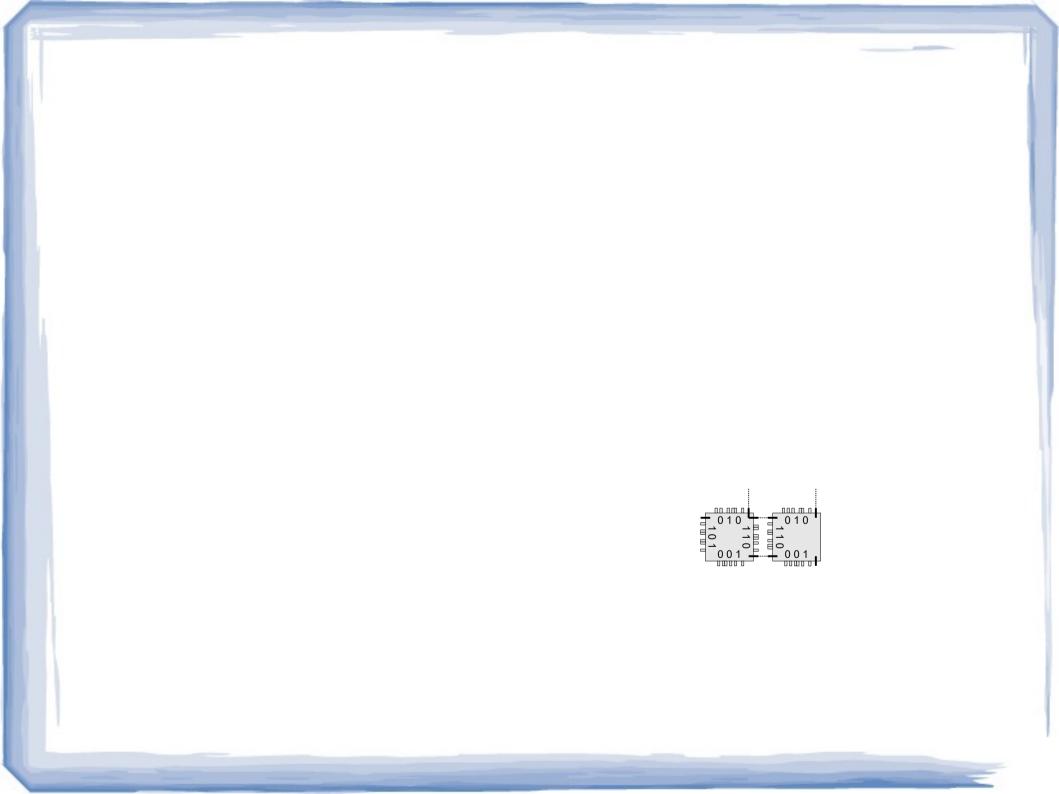
Idea: Blocks of size $O(\log n) \times O(\log n)$, assembled "nonparallelly", randomly guess their (*x*,*y*) position in square and bind only to carefully selected neighboring blocks.

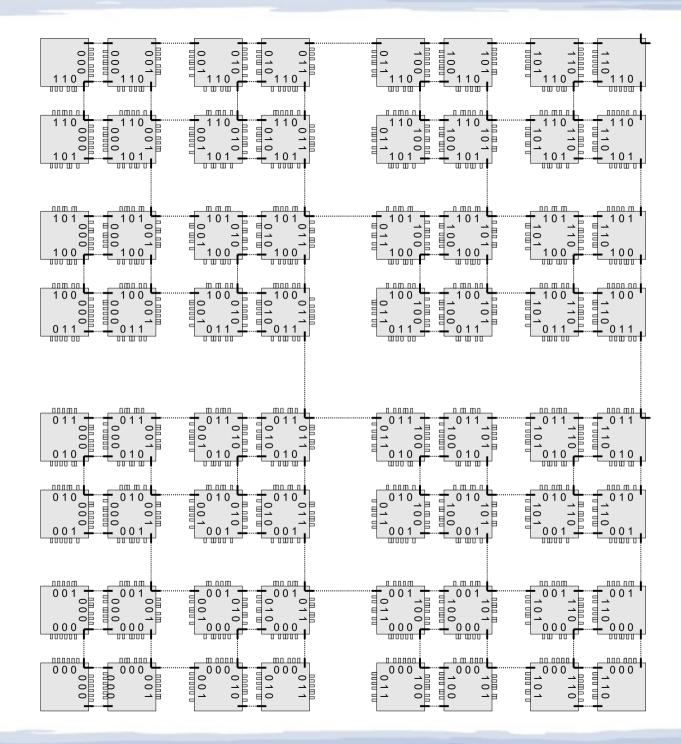
> $O(\log n) \ge O(\log n)$ block of tiles

Idea: Blocks of size $O(\log n) \times O(\log n)$, assembled "nonparallelly", randomly guess their (*x*,*y*) position in square and bind only to carefully selected neighboring blocks.



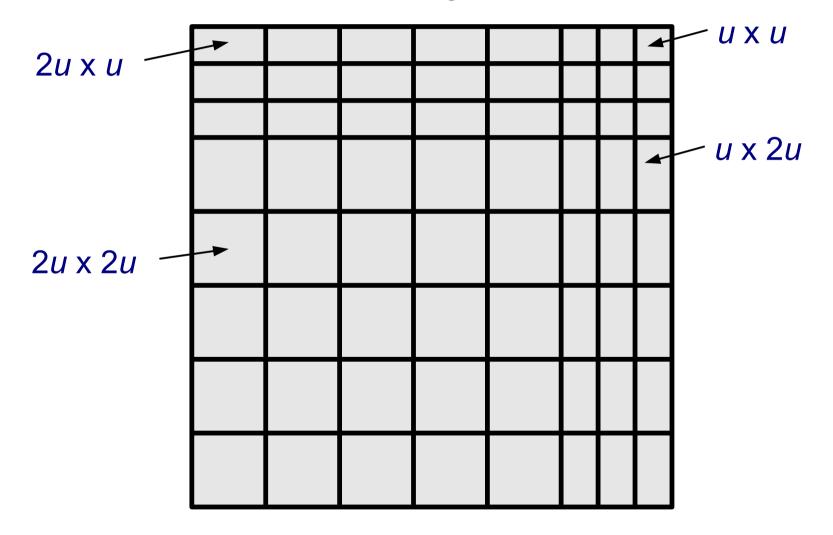




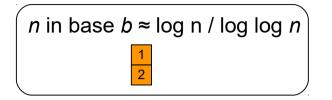


Handling Non-Powers-of-2

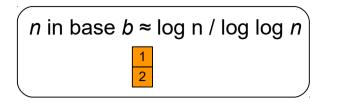
 $u = c \log n$

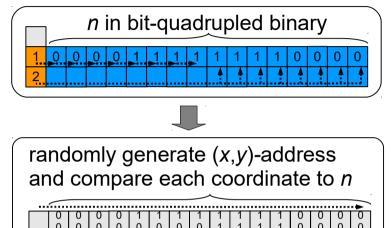


n in base $b \approx \log n / \log \log n$



	<i>n</i> in bit-quadrupled binary																
1	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	ĺ
2												•					
																	-



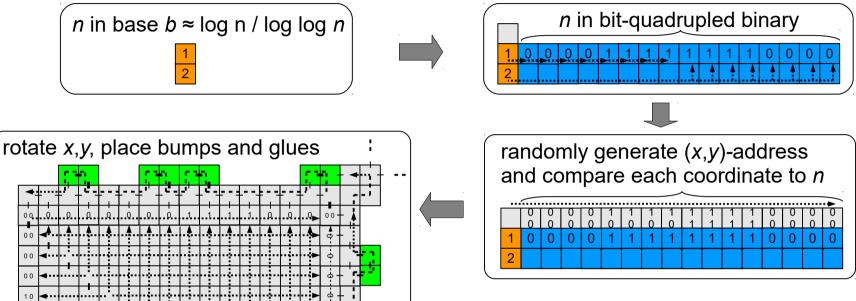


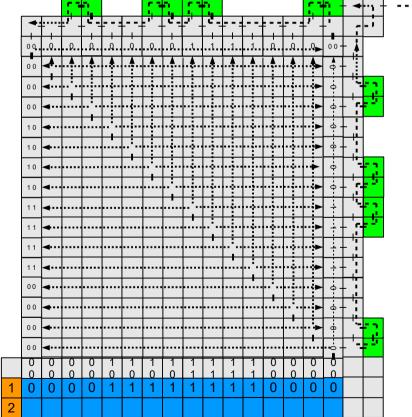
0

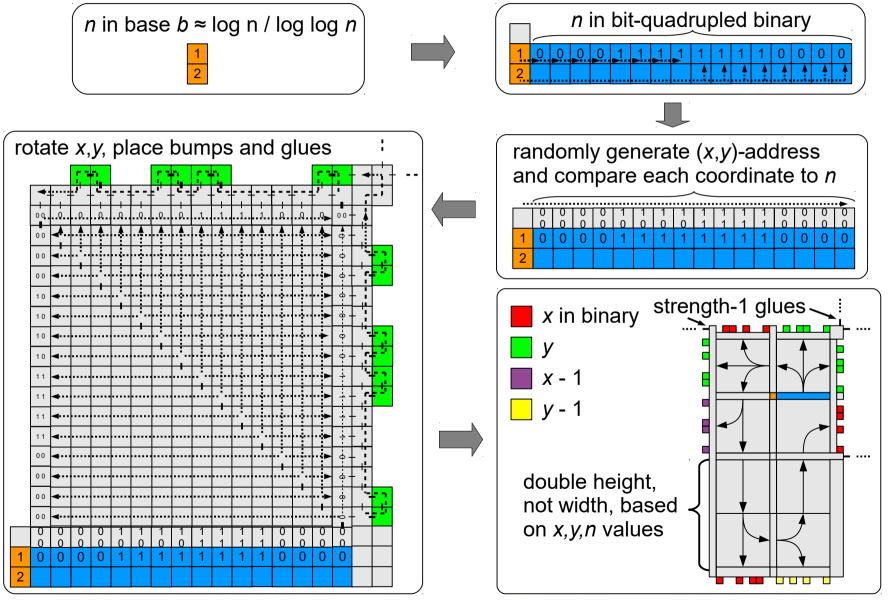
0

0

0 0







- Previous result: Assembling an *n* x *n* square requires Ω(*n*) steps in the seeded model; achievable with optimal O(log *n* / log log *n*) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)
- They asked: Can the extra parallelism in the hierarchical model break the Ω(n) lower bound?
- <u>We show</u>:
 - O(log n / log log n) tile types can assemble an n x n square using "nearly maximal" parallelism.

- Previous result: Assembling an *n* x *n* square requires Ω(*n*) steps in the seeded model; achievable with optimal O(log *n* / log log *n*) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)
- They asked: Can the extra parallelism in the hierarchical model break the Ω(n) lower bound?
- <u>We show</u>:
 - O(log n / log log n) tile types can assemble an n x n square using "nearly maximal" parallelism.
 - This construction takes **superlinear** time.

- Previous result: Assembling an n x n square requires Ω(n) steps in the seeded model; achievable with optimal O(log n / log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)
- They asked: Can the extra parallelism in the hierarchical model break the $\Omega(n)$ lower bound?
- <u>We show</u>:
 - O(log n / log log n) tile types can assemble an n x n square using "nearly maximal" parallelism.
 - This construction takes **superlinear** time.
 - **Every** "partial order system" requires time $\Omega(N)$ to assemble any shape of diameter *N*.

Our Results

- Previous result: Assembling an n x n square requires Ω(n) steps in the seeded model; achievable with optimal O(log n / log log n) tile types (Adleman, Cheng, Goel, Huang, STOC 2001)
- They asked: Can the extra parallelism in the hierarchical model break the $\Omega(n)$ lower bound?
- <u>We show</u>:
 - O(log n / log log n) tile types can assemble an n x n square using "nearly maximal" parallelism.
 - This construction takes superlinear time.
 - **Every** "partial order system" requires time $\Omega(N)$ to assemble any shape of diameter *N*.

The extra parallelism of the hierarchical model is **useless** for speeding up partial order systems.

 Assign each tile type s an initial concentration C(s) so that ∑_sC(s) = 1 (finite density constraint).

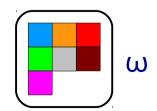
- Assign each tile type *s* an initial concentration C(s) so that $\sum_{s} C(s) = 1$ (finite density constraint).
- At time t = 0, each assembly α with only a single tile s has initial concentration [α](t) = C(s). All larger assemblies α have [α](t) = 0 at time t = 0.

- Assign each tile type *s* an initial concentration C(s) so that $\sum_{s} C(s) = 1$ (finite density constraint).
- At time t = 0, each assembly α with only a single tile s has initial concentration [α](t) = C(s). All larger assemblies α have [α](t) = 0 at time t = 0.
- Each attachment $\alpha + \beta \rightarrow \gamma$ is a chemical reaction with rate $[\alpha](t) \cdot [\beta](t)$ at time *t*.

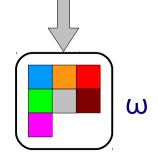
- Assign each tile type *s* an initial concentration C(s) so that $\sum_{s} C(s) = 1$ (finite density constraint).
- At time t = 0, each assembly α with only a single tile s has initial concentration [α](t) = C(s). All larger assemblies α have [α](t) = 0 at time t = 0.
- Each attachment $\alpha + \beta \rightarrow \gamma$ is a chemical reaction with rate $[\alpha](t) \cdot [\beta](t)$ at time *t*.
- Concentrations evolve by mass-action kinetics:

 $d[\alpha] / dt = \sum_{\gamma + \beta \rightarrow \alpha} [\gamma](t) \cdot [\beta](t) - \sum_{\alpha + \beta \rightarrow \gamma} [\alpha](t) \cdot [\beta](t)$

• Fix a position p in the unique final assembly ω , with *initial assembly* σ_p with just the tile at position p

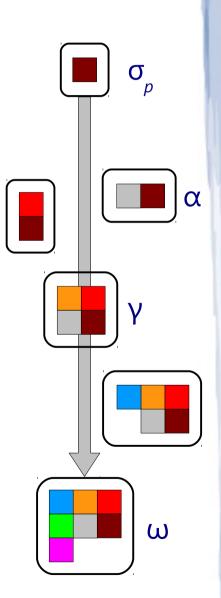


- Fix a position p in the unique final assembly ω , with *initial assembly* σ_p with just the tile at position p
- σ_p changes into ω by a continuous-time Markov chain

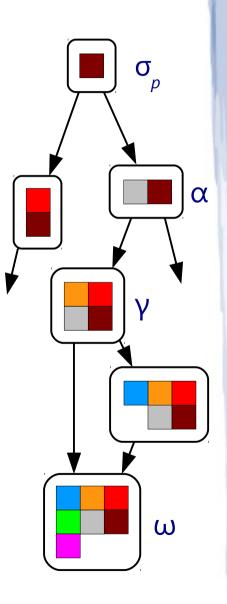


 σ_{p}

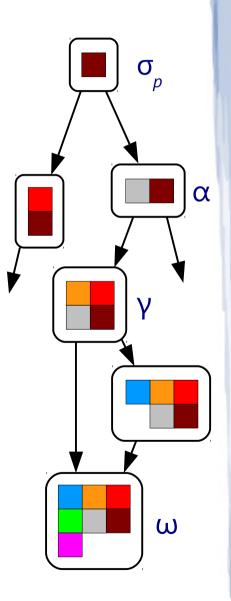
- Fix a position p in the unique final assembly ω , with *initial assembly* σ_p with just the tile at position p
- σ_n changes into ω by a continuous-time Markov chain
- States = assemblies σ_p , ω , and all possible intermediates



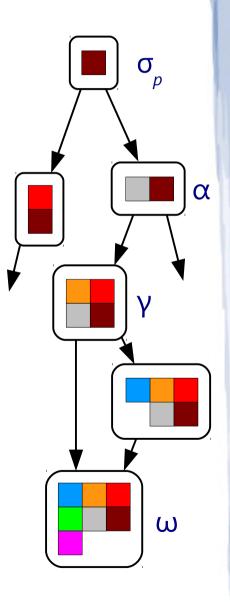
- Fix a position p in the unique final assembly ω , with *initial assembly* σ_p with just the tile at position p
- σ_p changes into ω by a continuous-time Markov chain
- States = assemblies σ_p , ω , and all possible intermediates
- Transition from α to γ if there is a producible assembly β such that $\alpha + \beta \rightarrow \gamma$, with time-dependent rate [β](*t*)



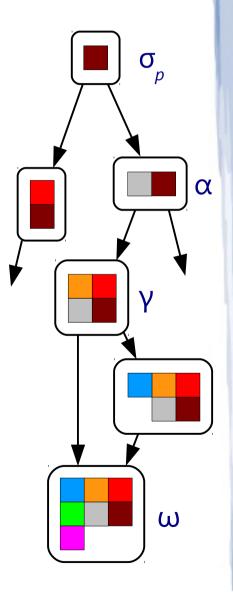
- Fix a position p in the unique final assembly ω , with *initial assembly* σ_p with just the tile at position p
- σ_p changes into ω by a continuous-time Markov chain
- States = assemblies σ_p , ω , and all possible intermediates
- Transition from α to γ if there is a producible assembly β such that $\alpha + \beta \rightarrow \gamma$, with time-dependent rate [β](*t*)
- Unique sink state of the Markov chain is ω



- Fix a position p in the unique final assembly ω , with *initial assembly* σ_p with just the tile at position p
- σ_p changes into ω by a continuous-time Markov chain
- States = assemblies σ_p , ω , and all possible intermediates
- Transition from α to γ if there is a producible assembly β such that $\alpha + \beta \rightarrow \gamma$, with time-dependent rate [β](*t*)
- Unique sink state of the Markov chain is ω
- time relative to p = expected time to reach ω from σ_p



- Fix a position p in the unique final assembly ω , with *initial assembly* σ_p with just the tile at position p
- σ_p changes into ω by a continuous-time Markov chain
- States = assemblies σ_p , ω , and all possible intermediates
- Transition from α to γ if there is a producible assembly β such that $\alpha + \beta \rightarrow \gamma$, with time-dependent rate [β](*t*)
- Unique sink state of the Markov chain is ω
- time relative to p = expected time to reach ω from σ_p
- time = \max_{p} time relative to p



Assembly Time Lower Bound

 partial order system: in the terminal assembly, each pair of adjacent binding tiles have an assembly order precedence relationship (one always binds first, or at the same time)

Assembly Time Lower Bound

- partial order system: in the terminal assembly, each pair of adjacent binding tiles have an assembly order precedence relationship (one always binds first, or at the same time)
- Theorem: Any partial order system whose terminal assembly has diameter N requires time Ω(N).

conservation of mass: assemblies of size *n* and *k* attach to create assembly of size n + k

conservation of mass: assemblies of size n and k attach to create assembly of size n + k

 $\rightarrow (t \ge 0) \sum_{\alpha} [\alpha](t) \cdot |\alpha| = 1$

conservation of mass: assemblies of size n and k attach to create assembly of size n + k

 \rightarrow ($t \ge 0$) $\sum_{\alpha} [\alpha](t) \cdot |\alpha| = 1$

 \rightarrow assembly of size *k* has concentration $\leq 1/k$

conservation of mass: assemblies of size n and k attach to create assembly of size n + k

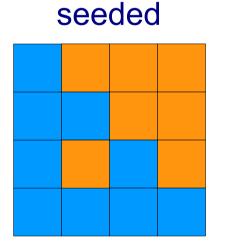
- \rightarrow ($t \ge 0$) $\sum_{\alpha} [\alpha](t) \cdot |\alpha| = 1$
- \rightarrow assembly of size *k* has concentration $\leq 1/k$
- \rightarrow growing by size k in a single step takes expected time $\geq k$

conservation of mass: assemblies of size n and k attach to create assembly of size n + k

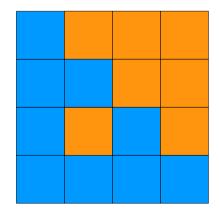
- \rightarrow ($t \ge 0$) $\sum_{\alpha} [\alpha](t) \cdot |\alpha| = 1$
- \rightarrow assembly of size *k* has concentration $\leq 1/k$
- \rightarrow growing by size *k* in a single step takes expected time $\geq k$ seeded hierarchical

conservation of mass: assemblies of size n and k attach to create assembly of size n + k

- \rightarrow ($t \ge 0$) $\sum_{\alpha} [\alpha](t) \cdot |\alpha| = 1$
- \rightarrow assembly of size *k* has concentration $\leq 1/k$
- \rightarrow growing by size k in a single step takes expected time $\geq k$

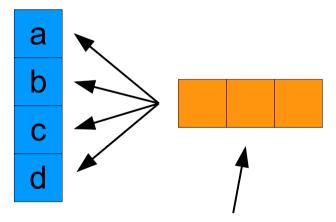


hierarchical



Argument breaks if a single assembly of size *k* could attach to many positions, any one of which suffices to proceed to terminal assembly.

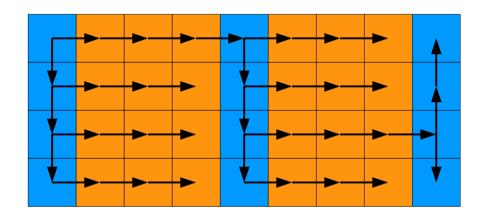
Argument breaks if a single assembly of size *k* could attach to many positions, any one of which suffices to proceed to terminal assembly.

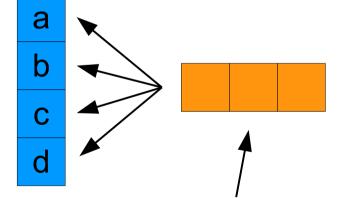


concentration $\leq 1/3$ E[time to attach to a] ≥ 3

E[time to attach to any of a,b,c,d] \geq 3 / 4

Argument breaks if a single assembly of size *k* could attach to many positions, any one of which suffices to proceed to terminal assembly. Any path in partial order DAG must assemble in order





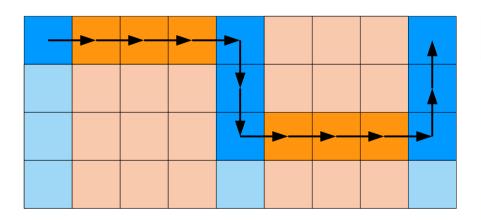
concentration $\leq 1/3$ E[time to attach to a] ≥ 3

E[time to attach to any of a,b,c,d] \geq 3 / 4

Argument breaks if a single assembly of size *k* could attach to many positions, any one of which suffices to proceed to terminal assembly.

> a b c d

concentration $\leq 1/3$ E[time to attach to a] ≥ 3 Any path in partial order DAG must assemble in order



longest path has length \geq diameter of shape

by concentration argument, path takes time *k* to grow by *k* tiles

E[time to attach to any of a,b,c,d] \geq 3 / 4

Removing tiles (RNase model)

Removing Tiles

- aTAM is *monotone*: stably attached tiles do not detach
 - "Computation of a shape" with tiles may take a lot of space
 - Need large resolution loss to compute within the shape
 - kinetic model allows detachment but not controllable
- RNase model (Abel, Benbernou, Damian, Demaine, Demaine, Flatland, Kominers, Schweller)
 - make some tile types from RNA and some from DNA
 - after some time, add RNase enzyme to dissolve RNA tiles
 - only subassemblies made of DNA tiles remain

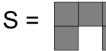
Demaine, Patitz, Schweller, Summers (STACS 2011):

given: finite shape *S*, |*S*|=*n*

there is a TAS T, $|T| \approx K(S)$, that assembles S at scale factor $\approx \log n$, with one step of dissolving RNA tiles

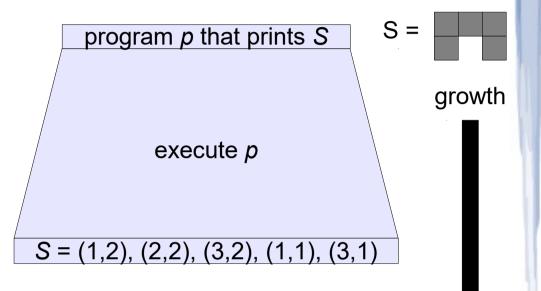
Demaine, Patitz, Schweller, Summers (STACS 2011): **given:** finite shape S, |S|=nthere is a TAS T, $|T| \approx K(S)$, that assembles S at scale factor $\approx \log n$, with one step of dissolving RNA tiles

program *p* that prints S

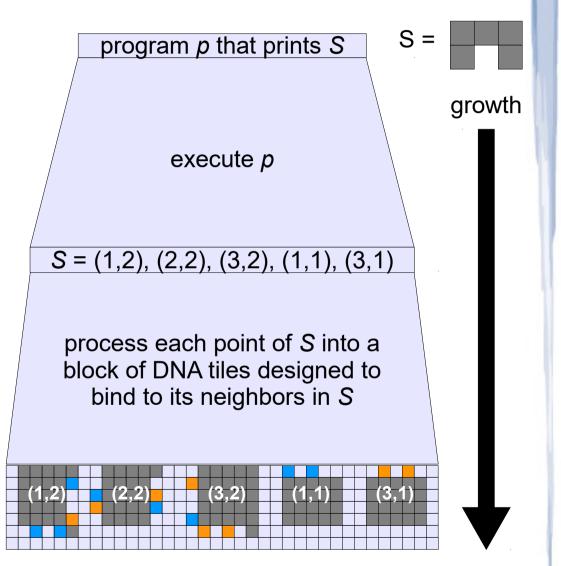


Demaine, Patitz, Schweller, Summers (STACS 2011): **given:** finite shape *S*, *|S|=n*

there is a TAS T, $|T| \approx K(S)$, that assembles S at scale factor $\approx \log n$, with one step of dissolving RNA tiles



Demaine, Patitz, Schweller, Summers (STACS 2011): **given:** finite shape S, |S|=nthere is a TAS T, $|T| \approx K(S)$, that assembles S at scale factor $\approx \log n$, with one step of dissolving RNA tiles

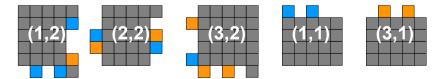


Demaine, Patitz, Schweller, Summers (STACS 2011): **given:** finite shape *S*, |S|=nthere is a TAS T, $|T| \approx K(S)$, that assembles S at scale factor $\approx \log n$, with one

dissolve RNA

S =

step of dissolving RNA tiles



Demaine, Patitz, Schweller, Summers (STACS 2011): **given:** finite shape S, |S|=nthere is a TAS T, $|T| \approx K(S)$, that assembles S at scale factor $\approx \log n$, with one step of dissolving RNA tiles

dissolve RNA

