Homework 2 - ECS 289, Winter 2016

1. Composition. Recall that the following CRC with input species X_{1}, X_{2} and output species Y stably computes $y=\max \left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
X_{1} & \rightarrow Y+W_{1} \\
X_{2} & \rightarrow Y+W_{2} \\
W_{1}+W_{2} & \rightarrow K \\
K+Y & \rightarrow \varnothing
\end{aligned}
$$

And the following CRC with input species Y, X_{3} and output species Z stably computes $z=\min \left(y, x_{3}\right)$

$$
Y+X_{3} \rightarrow Z
$$

(a) Show that the CRC obtained by simply combining the above 5 reactions, with input species X_{1}, X_{2}, X_{3} and output species Z, does not stably compute $z=\min \left(\max \left(x_{1}, x_{2}\right), x_{3}\right)$.
(b) Design a CRC that stably computes $z=\min \left(\max \left(x_{1}, x_{2}\right), x_{3}\right)$.
2. Combining function and predicate computation. Design a CRC that stably computes the function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}, & \text { if } x_{1} \geq x_{2} \\ 0, & \text { otherwise }\end{cases}
$$

3. Leader election. Consider the following CRC, which stably computes $f(x)=1$

$$
\begin{array}{rll}
X & \rightarrow Y \\
2 Y & \rightarrow Y
\end{array}
$$

(a) Design a leaderless CRC that stably computes $f(x)=2$, in which every reaction has at most two reactants and two products.
(b) Describe how to generalize the previous CRC to produce, for each $k \in \mathbb{N}$, a leaderless CRC that stably computes the function $f(x)=k$, in which every reaction has at most two reactants and two products.

