The Master Method and its use

The Master method is a general method for solving (getting a closed form solution to) recurrence relations that arise frequently in divide and conquer algorithms, which have the following form:

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1, b>1$ are constants, and $f(n)$ is function of non-negative integer n. There are three cases.
(a) If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$, for some $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
(b) If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$.
(c) If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$, and $a f(n / b) \leq c f(n)$, for some $c<1$ and for all n greater than some value n^{\prime}, Then $T(n)=\Theta(f(n))$.

For some illustrative examples, consider
(a) $T(n)=4 T(n / 2)+n$
(b) $T(n)=4 T(n / 2)+n^{2}$
(c) $T(n)=4 T(n / 2)+n^{3}$

In these problems, $a=4, b=2$, and $f(n)=n, n^{2}, n^{3}$ respectively. We compare $f(n)$ with $n^{\log _{b} a}=n^{\log _{2} 4}$. The three recurrences satisfy the three different cases of Master theorem.
(a) $f(n)=n=O\left(n^{2-\epsilon}\right.$ for, say, $\epsilon=0.5$. Thus, $T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{2}\right)$.
(b) $f(n)=n^{2}=\Theta\left(n^{2}\right)$, thus $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)=\Theta\left(n^{2} \log n\right)$.
(c) $f(n)=n^{3}=\Omega\left(n^{2+\epsilon}\right.$ for, say, $\epsilon=0.5$ and $a f(n / b) \leq c f(n)$, i.e., $4\left(\frac{n}{2}\right)^{3}=$ $\frac{n^{3}}{2} \leq c n^{3}$ for $c=1 / 2$. Thus, $T(n)=\Theta(f(n))=\Theta\left(n^{3}\right)$.
(d) The recurrence for binary search is $T(n)=T(n / 2)+\Theta(1)$. Using Master Theorem, $a=1, b=2, f(n)=\Theta(1)$. Now $f(n)=\Theta(1)=\Theta\left(n^{\log _{b} a}\right)=$ $\Theta\left(n^{0}\right)=\Theta(1)$. Using the second form of Master Theorem, $T(n)=\Theta\left(n^{0} \log n\right)=$ $\Theta(\log n)$.
(e) $T(n)=4 T(n / 2)+n^{2} \log n$. This does not form any of the three cases of Master Theorem straight away. But we can come up with an upper and lower bound based on Master Theorem.

Clearly $T(n) \geq 4 T(n)+n^{2}$ and $T(n) \leq 4 T(n)+n^{2+\epsilon}$ for some epsilon >0. The first recurrence, using the second form of Master theorem gives us a lower bound of $\Theta\left(n^{2} \log n\right)$. The scond recurrence gives us an upper bound of $\Theta\left(n^{2+\epsilon}\right)$. The actual bound is not clear from Master theorem. We use a recurrence tree to bound the recurrence.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n^{2} \log n \\
& =16 T(n / 4)+4\left(\frac{n}{2}\right)^{2} \log n / 2+n^{2} \log n \\
& =16 T(n / 4)+n^{2} \log n / 2+n^{2} \log n \\
& =\ldots
\end{aligned}
$$

$$
\begin{aligned}
T(n) & =n^{2} \log n+n^{2} \log n / 2+n^{2} \log n / 4+\ldots+n^{2} \log n /\left(2^{\log n}\right) \\
& =n^{2}(\log n+\log n / 2+\log n+4+\ldots) \\
& =n^{2}\left(\log n \cdot n / 2 \cdot n / 4+\ldots+n /\left(2^{\log n}\right)\right) \quad(\text { Transforming } \operatorname{logs}) \\
& =n^{2}\left(\log 2^{\log n}\right) \quad(\text { Using geometric series }) \\
& =n^{2} \log n \quad\left(\text { Using } 2^{\log n}=n\right)
\end{aligned}
$$

Thus, $T(n)=n^{2} \log n$.

