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Abstract

Java provides a clean object-oriented programming model and allows for inherently system-
independent programs. Unfortunately, Java has a limited concurrency model, providing only
threads and remote method invocation (RMI).

The JR programming language extends Java to provide a rich concurrency model. JR
provides dynamic remote virtual machine creation, dynamic remote object creation, remote
method invocation, asynchronous communication, rendezvous, and dynamic process creation.
JR programs are written in an extended Java and then translated into standard Java programs.
The JR run-time support system is also written in standard Java.

This paper describes the JR programming language and its implementation. Some initial
measurements of the performance of the implementation are also included.

1 Introduction

Java [24] has proven to be a clean and simple language for object-oriented programming. Even so,
the standard Java concurrency model is rather limited. It provides threads, a primitive monitor-like
mechanism, and remote method invocation (RMI). Though these features are useful, they offer little
flexibility in the design and implementation of concurrent programs.

This research was supported in part by the National Science Foundation grant CCR-9527295.
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Our work provides a richer and more flexible concurrent programming model for Java. Our ap-
proach is to extend Java with the concurrency model provided by the SR concurrent programming
language [5, 4]. The result is a new language, a superset of Java, which we call JR. JR adapts the fol-
lowing features from SR: dynamic remote virtual machine creation, dynamic remote object creation,
remote method invocation, dynamic process creation, support for rendezvous, and asynchronous
message passing. JR takes a novel object-oriented approach to synchronization.

The contributions of this work are the overall design and implementation of JR and how JR
resolves the tension between inheritance and concurrency. JR has been designed to integrate the
SR concurrency model with Java in a manner that retains the “feel” of Java. We expect that JR
will be useful as a research and teaching tool. The results of this research will also be beneficial to
the future design and implementation of other concurrent programming languages. In particular,
we expect that JR’s object-oriented approach to synchronization should be useful.

The rest of this paper is organized as follows. Section 2 provides motivation and relevant back-
ground. Section 3 presents an overview of the JR programming language. Section 4 discusses
inheritance in JR. Section 5 discusses the implementation of our initial prototype of JR and Sec-
tion 6 evaluates its performance. Section 7 discusses related work. Finally, Section 8 covers future
work on JR and concludes this paper.

2 Motivation and Background

Often described as simple and elegant, the Java programming language [24] has quickly gained in
popularity due, in part, to its object-oriented programming model and system-independent nature.
It is also a (fairly) secure language with respect to its strong type checking and memory management.
Unfortunately, as noted above, Java’s concurrency model is not very flexible.

In this section, we describe in detail shortcomings in Java’s concurrency model. We then present
the SR programming language, which has a rich concurrency model, but lacks many of the features
that have made Java so popular. SR is not object-oriented∗, is not as secure, and is not as portable
as Java. Our research provides a richer and more flexible concurrent programming model for Java.
Our approach (Section 3) extends Java with the concurrency model provided by SR using a novel
object-oriented approach.

Our overall approach extends the Java language, rather than augmenting Java with library calls
for synchronization. This approach has potential advantages because synchronization is represented
as actual language primitives [10, 41]. This higher-level approach can reduce development time
for applications, increase portability, lead to better optimizations, and simplify reasoning about
programs (verification).

2.1 Shortcomings in Java’s Concurrency Model

Standard Java/RMI’s concurrency model has two significant shortcomings:

• It provides remote objects with limited support for dynamic creation.

• It provides only a single synchronization primitive — remote method invocation — for dis-
tributed programming.

∗SR is object-based: it does have dynamic modules (resources) accessed via pointers (capabilities), but it lacks
inheritance and virtual methods.
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Standard Java/RMI’s static virtual machine (VM) model allows a program to communicate
with any number of remote objects. Each of these remote objects must be initialized prior to
communication. These objects are typically initialized through some external means (i.e., manual
execution of a server program) often requiring a setup procedure before the program proper begins.
This static model means that programs cannot adapt themselves to their input. For example, one
might want to run a distributed Java RMI program for computing Fourier coefficients on a variable
number of processors. Unfortunately, that cannot be specified easily or automatically within a Java
RMI program. (Although it is possible to write such a program in Java RMI, it requires manual
interaction.)

Standard Java/RMI’s only synchronization primitive for distributed programming is the remote
method invocation. The limitations of languages that provide only one form of synchronization
mechanism have been widely discussed in the literature [39, 3, 31, 21, 23]. As one example, having
both synchronous and asynchronous message passing is desirable. Synchronous message passing
(such as RMI) is very useful, especially for programming client/server interactions in a familiar style
(e.g., procedure call syntax and semantics). However, asynchronous message passing is also useful.
First, it can be used to avoid remote delay in which a server, in processing a request, invokes an
operation in another server that might delay [31]. Asynchronous message passing can be used to
invoke the remote operation whenever it is necessary to prevent the first server from delaying. In
a language that provides only synchronous message passing, extra processes must be employed to
avoid remote delay; this often complicates problem solutions. Asynchronous message passing is also
useful whenever it is not necessary to delay the invoker of an operation. For example, it can be used
to program pipelines of filter processes, where it is most natural for the producer to continue after
sending a message to the consumer.

Several languages that incorporate multiple synchronization primitives have been designed and
implemented, e.g., Concurrent C [22], Lynx [40, 41], StarMod [16], and SR [5, 4]. Some work [7]
has shown that an implementation of such a language (in [7], SR) can provide several synchroniza-
tion mechanisms at a reasonable cost. Having multiple synchronization primitives proved useful
in programming different upcall program structures [6]. Additional work [36] has shown that hav-
ing asynchronous message passing is desirable — for simpler and faster code — even if a language
provides a rendezvous mechanism.

Note that Java does provide a primitive monitor-like mechanism in addition to RMI (although,
some contend that Java does not really support monitors [12]). Monitor methods can be invoked
remotely via RMI. However, this use of monitors would support (directly) only centralized servers
not other paradigms useful in distributed programming, such as replicated workers, bag of tasks,
probe/echo, broadcast, etc.[2]

2.2 The SR Concurrent Programming Language and its Concurrency

Model

The SR concurrent programming language [5, 4] provides a variety of mechanisms for writing parallel
and distributed programs. The notions of virtual machines, resources, and operations are central to
SR’s concurrency model. The notion of a virtual machine (VM) is used for distributing a program
onto physical machines. Each VM resides on one physical machine. VMs are created dynamically.
SR’s primary modular component is the resource. Instances of resources are dynamically created.
Processes execute within a particular resource instance and have (shared) access to variables and
operations within that instance. An operation can be considered a generalization of a procedure and
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enable processes to interact. Given that VMs, resources, and operations are created dynamically,
SR uses capabilities for each. A capability acts as a pointer and can be assigned to variables and
passed as parameters, thus permitting, for example, dynamic communication paths.

An operation (like a procedure) has a name, can take parameters, and can return a result. It can
be invoked in two ways: synchronously by means of a call statement or asynchronously by means
of a send statement. An operation can be serviced in two ways: by a procedure-like object called a
proc or by in statements. (SR’s in statement combines and generalizes aspects of Ada’s accept and
select statements.) This yields the following four combinations:

Invocation Service Effect
call proc procedure call
call in rendezvous
send proc dynamic process creation
send in message passing

A guard on an in statement can also contain a synchronization expression and a scheduling
expression. The former specifies which invocations are acceptable; the latter specifies the order in
which to service acceptable invocations. These expressions can reference the invocation parameters.
SR’s reply statement allows a servicing process to send an “early reply” to its invoker, after which
the invoking and servicing processes both continue their executions. SR’s forward statement defers
replying to an invocation and instead passes on this responsibility to another operation.

3 The JR Programming Language

To remedy the shortcomings of Java’s concurrency model discussed in Section 2.1, we have designed
a new language, a superset of Java, which we call JR. JR adapts the following features from SR
(see Section 2.2): dynamic remote virtual machine creation, dynamic remote object creation, remote
method invocation, dynamic process creation, support for rendezvous, and asynchronous message
passing. In JR, Java classes take the place of SR resources and Java methods take the place of SR
procs.

JR provides SR-like operations in a novel object-oriented fashion. Figure 1 shows the general
inheritance hierarchy of operation classes. As indicated in the figure, an operation is represented by
the (abstract) base class Op; this base class declares abstract methods for invoking and servicing
an operation (call, send, and in). The two possible ways to service invocations — via a proc or
via in statements — are, then, two classes, ProcOp and InOp, derived from the Op base class. The
ProcOp and InOp classes define the methods for invoking and servicing an operation. For example,
the InOp class defines these methods such that their actions apply to a queue of invocations declared
local to the class. Conceptually (as well as in the implementation, see Section 5), the JR statements
for invoking and servicing an operation are translated to invocations of methods in the operation’s
class.

The rest of this section describes the concurrent programming features provided by the JR pro-
gramming language. As a running example, we demonstrate a simple solution to the readers/writers
problem.

4



InOpProcOp

Op

Figure 1: General JR Operation Inheritance Hierarchy

3.1 Dynamic Remote Virtual Machine Creation

JR eliminates Java/RMI’s requirement for external setup and interaction with the program (see
Section 2.1). Instead, a JR program can dynamically create remote virtual machines upon which
remote objects can be instantiated.

To support the creation of remote virtual machines, JR provides a new data-type: virtual machine
capabilities. Remote virtual machine creation has the following form:

cap vm <vmName> = new cap vm() [on <machineName> | on <vmVar>];

The optional “on” clause can be used to specify the host on which the new virtual machine is to be
created. The default host is the physical machine of the instantiating process. Line 10 in Figure 2
demonstrates the creation of a virtual machine to house the server object in our readers/writers
solution.

3.2 Dynamic Remote Object Creation

JR provides the ability to populate remote virtual machines with new objects through dynamic
remote object creation. Remote objects are created using the familiar “new” expression provided by
Java. However, a reference to a remote object in JR is stored in a JRobject capability rather than
a standard Java reference. The instantiation of a remote object has the following general form:

cap JRobject <class name> <var name> = new cap JRobject

<class name>(<actual arguments>) [on vmRef];

An example of the creation of our remote readers/writers server can be seen on lines 11 and 12 in
Figure 2.

A JRobject capability provides the interface through which a remote object may be manipulated.
This interface is the set of operations defined by the object, e.g., lines 2-6 in Figure 4. Operations
are discussed in Section 3.3.

3.3 Operations and Operation Capabilities

In a standard RMI program, remote objects “export” a communication interface that defines the
methods that may be invoked remotely. In JR, a remote object’s communication interface is defined
through a general abstraction called an operation. The general form of an operation declaration is:

<modifiers> op <return type> <opname>(<formal argument list>) [exceptions];
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1 public class rwMain {

2 public static void main(String [] args) {

3 op void done(); // create a local op

4

5 // parse command line arguments to determine

6 // #readers, #writers and Server destination host

7 ...

8

9 // create on specified host

10 cap vm servVM = new cap vm() on args[0];

11 cap JRobject Server serv =

12 new cap JRobject Server() on servVM;

13

14 for (int i = 0; i < readers; i++)

15 new Reader(r_iters, serv, done);

16 for (int i = 0; i < writers; i++)

17 new Writer(w_iters, serv, done);

18

19 int waitfor = readers + writers;

20

21 // wait for each R and W to signal completion

22 while (waitfor > 0) {

23 receive done(); // abbreviated "in" statement

24 waitfor--;

25 }

26 }

27 }

Figure 2: Readers/Writers main class in JR
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1 public class Reader {

2 int iters;

3 cap JRobject Server serv;

4 cap void () done;

5

6 protected op void start();

7

8 public Reader(int iters,

9 cap JRobject Server serv,

10 cap void () done) {

11 this.iters = iters;

12 this.serv = serv; this.done = done;

13 send start(); // start the client thread

14 }

15

16 protected void start() {

17 while (iters > 0) {

18 iters--;

19 call serv.readRequest();

20 ... // read

21 call serv.readRelease();

22 }

23 // tell main this thread has finished

24 send done();

25 }

26 }

Figure 3: Reader class (Writer is similar)
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1 public class Server {

2 public op void readRequest();

3 public op void readRelease();

4 public op void writeRequest();

5 public op void writeRelease();

6 protected op void start();

7

8 public Server() {

9 // create a thread to execute the start method

10 send start();

11 }

12 protected void start() {

13 int nw = 0, nr = 0;

14

15 // on each iteration, service

16 // a R or W request or release

17 while (true) {

18 in readRequest() st (nw == 0) { nr++; }

19 [] writeRequest() st (nw == 0) && (nr == 0)

20 { nw++; }

21 [] readRelease() { nr--; }

22 [] writeRelease() { nw--; }

23 ni

24 }

25 }

26 }

Figure 4: Readers/Writers Server in JR
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In JR, an operation definition consists of an operation declaration and an implementation. An
operation declaration defines the signature (i.e., formal parameter types, return type, and exception
types) of the operation and adds the operation to the specification of the class. Unlike SR, JR allows
overloaded operations in much the same way that Java allows overloaded methods. An operation’s
implementation is defined by either a method with a matching signature or a set of in statements
that service the operation. An operation that is implemented by a method is called a ProcOp.
Each invocation of a ProcOp is “serviced” by executing the body of the method associated with the
ProcOp. In Figure 4, for example, the start operation declared on line 6 is implemented by the
method defined on line 12.

An operation that is implemented by a set of in statements is called an InOp. By default,
an operation that is declared without a corresponding method is considered to be an InOp. The
declaration of an InOp implicitly defines an implementation that consists of an invocation queue.
When an InOp is invoked, an invocation is placed in the operation’s invocation queue until an in

statement services the invocation. Each invocation is only serviced by a single in statement, which
executes the body of code that corresponds to the arm servicing the operation. As such, the actual
implementation of an InOp is provided by a set of in statements that service the operation. In
Figure 4, for instance, the in statement on lines 18 – 23 services invocations of the operations
defined in lines 2 – 5.

As in SR, operations in JR can be passed as arguments to methods, returned as results from
methods, and assigned to variables through the use of operation capabilities. A JR operation
capability is declared as follows:

cap <return type> ([<formal argument types>])

[throws <exception types>] <variable name list>;

An operation capability will typically refer to an operation with a matching signature. In general,
however, an operation capability may refer to an operation with less specific formal argument types
and a more specific return type†.

Recall that lines 2 – 6 in Figure 4 demonstrate the declarations of the set of operations supported
by the server object in our example. An explicit, although simple, use of an operation capability
can be seen on line 24 in Figure 3. This capability stores a reference to the done operation defined
on line 3 of the main class in Figure 2. The done operation is used by each of the reader threads
and writer threads to notify the main class that the thread has completed.

3.4 Asynchronous Message Passing

JR supports asynchronous communication via a send statement. If an operation invoked by send is
serviced by a method (i.e., the operation is implemented by a method), then a new thread is created
to execute the method. If the operation is serviced by an in statement, then a message is created
to store the arguments of the invocation. This message is then added to the invocation queue for
the corresponding in operation.

†Type α is less specific than type β if type β can be implicitly cast to type α
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4 Operations and Inheritance

In JR, a derived class may modify the implementation of its inherited specification by redefining
the implementation of its inherited methods and operations. An inherited method’s implementation
is modified, as in standard Java, by redefining the method. In general, JR allows a subclass to
redefine the implementation of an inherited operation as either a ProcOp or an InOp, regardless
of the operation’s implementation in the superclass. Redefinition of an operation’s implementation
requires an explicit redeclaration of the operation in the subclass only if the redefinition changes
the operation from an InOp to a ProcOp or vice-versa. Otherwise, an explicit redeclaration of the
operation is not required.

The notation Op1 → Op2 means that the superclass defines the operation as an Op1 and the
subclass is redefining the operation to be an Op2.

1. ProcOp → ProcOp

A redefinition from a ProcOp to a ProcOp corresponds directly to a method redefinition in
standard Java. The subclass can simply redefine the method associated with the operation.
Such a redefinition allows a subclass to specialize the operation implementation.

2. InOp → InOp

The implementation of an InOp is not actually redefined but rather extended. Any in state-
ments that “service” an inherited InOp are added to the set of in statements that implement
the operation. A subclass may explicitly redeclare an InOp as an InOp by explicitly redeclaring
the operation. This redeclaration allows a subclass to relax access restrictions but does not
create a separate invocation queue.

3. ProcOp → InOp

A ProcOp may be redefined as an InOp in a subclass by explicitly redeclaring the operation
and not defining a signature-compatible method. The signature-compatible method that would
have been inherited from the superclass is ignored.

Figure 5 shows a subclass that redefines a ProcOp to be an InOp. This example demonstrates
how such a redefinition can be used to distribute the servicing of the operation’s invocations
without changing the client. The subclass redefines the operation to be an InOp, creates
Worker objects, and passes a capability to the InOp (created automatically) to the init

method of each Worker object. Each Worker object repeatedly executes an in statement to
service invocations on the InOp’s queue. These Worker objects can be located on an arbitrary
set of physical machines as specified by the remoteHosts array.

4. InOp → ProcOp

An InOp may be redefined as a ProcOp in a subclass by both redeclaring the operation and
defining a signature-compatible method.

Figure 6 shows a subclass that redefines an InOp to be a ProcOp. This example demonstrates
how such a redefinition can be used to filter the invocations of the operation, reducing the
amount of work done by the Worker objects. Server defines the serv operation as an InOp
on line 3. FilterServer redefines the serv operation to be a ProcOp on lines 28 – 32.

Each invocation of the operation defined in the subclass is routed through the method asso-
ciated with the ProcOp to determine whether or not the invocation will be passed on to a
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1 public class Server {

2 // operation declaration

3 public op int serv(int i);

4

5 // signature-compatible method

6 public int serv(int i) {

7 // compute and return value

8 }

9 }

10

11 public class BagServer extends Server {

12 // redeclaration of operation

13 public op int serv(int i);

14

15 public BagServer(cap vm [] remoteHosts) {

16 // initialize Worker objects

17 for (int i = 0; i < remoteHosts.length; i++) {

18 cap JRobject Worker w =

19 new cap JRobject Worker() on remoteHosts[i];

20 send w.init(serv);

21 }

22 }

23 }

24

25 public class Worker {

26 // operation declaration

27 public op void init(cap int (int) server);

28 public op void init(cap int (int) server) {

29 while (true) {

30 in server(int i) {

31 // compute and return value

32 }

33 ni

34 }

35 }

36 }

Figure 5: Redefining an operation to distribute its implementation
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1 public class Server {

2 // operation declaration

3 public op long serv(int i);

4

5 public Server() {} // empty constructor

6 public Server(cap vm [] remoteHosts) {

7 // initialize Worker objects

8 for (int i = 0; i < remoteHosts.length; i++) {

9 cap JRobject Worker w =

10 new cap JRobject Worker() on remoteHosts[i];

11 send w.init(serv);

12 }

13 }

14 }

15

16 public class Worker {

17 // operation declaration

18 public op void init(cap long (int) server);

19 public op void init(cap long (int) server) {

20 while (true) {

21 in server(int i) { /* compute and return value */ } ni

22 }

23 }

24 }

25

26 public class FilterServer extends Server {

27 // redeclaration of operation

28 public op long serv(int i);

29 public long serv(int i) {

30 if (filter(i)) return DEFAULT; // or exception

31 else forward super.serv(i); // forward to Worker objects

32 }

33

34 boolean filter(int i) { // simple filter

35 return (i < 0);

36 }

37

38 public FilterServer(cap vm [] remoteHosts) {

39 super();

40 // initialize Worker objects

41 for (int i = 0; i < remoteHosts.length; i++) {

42 cap JRobject Worker w =

43 new cap JRobject Worker() on remoteHosts[i];

44 // reuse super operation

45 send w.init(super.serv);

46 }

47 }

48 }

Figure 6: Redefining an operation to serialize invocations through a filter
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Worker object. If the invocation is not rejected by the filter, then the subclass uses a forward

statement to pass responsibility for servicing the operation to the InOp defined in the parent
class (Server). Each Worker object repeatedly executes an in statement to service the InOp
defined in the Server class; this is the operation that is passed to the init method of the
Worker object on line 45 in Figure 6.

5 Implementation

The current JR implementation extends the Java compiler available in SUN’s JDK, Version 1.2.1.
The JR translator converts JR programs into standard Java programs that are supported by the
JR run-time system. The JR run-time system is also implemented in standard Java. This section
discusses the implementation of each of the features provided by JR.

5.1 JR Virtual Machines

In the current implementation of JR, remote virtual machines are created by contacting a centralized
virtual machine manager called JRX. JRX uses rsh to contact the remote host and execute the JR
virtual machine (jrvm) program. The JR virtual machine is a small Java program that implements
an interface with which other jrvm’s communicate to create objects on the physical machine.

5.2 Remote Objects

JRobject capabilities are implemented as Serializable objects that contain references to operations.
These references are operation capabilities that also implement the Serializable interface. A JRobject
capability contains an operation capability for each operation in the class’ interface. JRobject
capabilities mimic the inheritance hierarchy of the classes with which they are associated.

5.3 Operations and Operation Capabilities

Figure 7 shows the actual inheritance hierarchy of operation classes in JR. This hierarchy is a
specialization of the inheritance hierarchy in Figure 1.

Each proc operation is implemented as a separate ProcOp object defined within the class that
declares the operation. This is done so that a ProcOp object may be associated with a private
method within the class definition. Invocations of the operation are translated into invocations of
the appropriate method (i.e., call, send, etc.) in the ProcOp object.

An in operation is implemented as an InOp object that contains a message queue to store the
arguments for each invocation. An invocation of an InOp is translated into an appropriate method
invocation on the corresponding object. All operations implement the RMI Remote interface so that
the methods can be invoked from remote hosts.

5.4 Asynchronous Message Passing

The current implementation of the JR run-time system is built using RMI. As such, the send
statement is not truly asynchronous in the traditional sense. A send is implemented as an RMI
invocation of the send method in the object that corresponds to the operation being invoked. An
InOp’s send method places a message containing the actual arguments into the invocation queue
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Figure 7: Actual JR Operation Inheritance Hierarchy

and then returns. A ProcOp’s send method spawns a new thread to execute the method associated
with the ProcOp and then returns, releasing the invoking process.

5.5 Inheritance

In Java, a method invocation causes a dynamic lookup to determine the actual method to invoke.
However, this lookup is not done when accessing a data field. Each operation in JR is implemented
by a signature-specific Op object, so the generated Java code must provide support for dynamic
lookup of operations. This support is provided by access methods used to retrieve the appropriate
operation object.

5.6 Remote Class Loading

The dynamic class loading described in the Java RMI specification [42] allows for class files to be
loaded from either the local CLASSPATH or from a predefined URL. The JR run-time system
requires only that necessary class files for the program be accessible through the CLASSPATH at
the originating host (where the program is initially executed). When a remote object is created,
the necessary class files are retrieved from the JRX object on the originating host through a custom
class loader. This reduces the amount of setup required by the user and eliminates the need for a
web server to provide file access.

6 Performance Results

Though performance has not been a primary goal in this initial phase of the JR project, our per-
formance results demonstrate that method invocations in JR incur little overhead compared with
equivalent invocations in standard RMI. Each of the following experiments was conducted on a
cluster of 350 MHz Intel Pentium II workstations connected with a 10 Mbps Ethernet network. All
experiments were conducted using the Linux port of SUN’s JDK, Version 1.2.2.
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The first experiment, taken from [29], demonstrates the time needed to invoke an empty method
in a remote object. Table 1 shows the results of repeatedly invoking an empty ProcOp in JR and an
empty method using standard RMI. The remote method takes as an argument a single object that
contains an array of a specified number of integers.

Object Size (ints) 1 1k 10k 100k

JR (ms) 3.03 6.18 52.4 489.7
JDK RMI (ms) 2.72 5.54 52.3 493.6

Table 1: Time to invoke an empty proc operation in JR and an empty method using standard RMI.

The performance differences demonstrated in Table 1 are attributable to method invocation
overhead inherent in the current implementation of JR. A remote method invocation begins by
invoking the call method of the operation capability. The operation capability call method invokes
the call method of the ProcOp. This invocation transmits the parameters to the remote host using
RMI. At the remote host, the ProcOp call method invokes the actual user-defined method.

R/W/RI/WI 20/10/3/3 50/15/3/3 100/30/3/5

JR (ms) 4349.3 6691.1 11925.4
JDK RMI (ms) 4232.6 5499.4 10033.0

Table 2: Time to complete execution of all iterations (RI and WI) for all readers (R) and writers
(W).

Table 2 shows the results of multiple executions of the readers/writers program using both JR
and RMI. As Figure 4 shows, the readers/writers server uses in statements to service invocations of
the different InOps associated with requesting and releasing read/write access.

The overhead associated with invocations of an InOp can be attributed primarily to object
creation. In order to support return statements within the body of an in statement arm, there must
be a mechanism to return the value to the invoker. Each invocation of an InOp currently requires
that an object be created to support this return statement. In addition, a message object is created
to place the invocation arguments into the message queue.

Table 3 compares the performance results of the standard sequential version of the Java Grande
Fourier Benchmark [17] against distributed versions written in JR and RMI.

The distributed versions of the program divide the computation equally among the available
servers. The JR program uses asynchronous message-passing to initiate each computation and then
collects the results using an in statement. The RMI version uses threads to concurrently initiate
invocations of the remote method and to collect the results. Similar speedup trends were seen in
experiments run on a larger network of SGI O2’s.
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Number of coefficients 10000 100000

Sequential Java (s) 119.2 1138.9
JR (1 Server) (s) 142.1 1482.6
JR (2 Servers) (s) 70.1 740.8
JDK RMI (1 Server) (s) 123.7 1309.1
JDK RMI (2 Servers) (s) 64.2 660.0

Table 3: Time to calculate the first n coefficients of the function (x + 1)x defined on the interval
[0,2].

7 Related Work

Other extensions to Java have modified its concurrency model to include, for example, asynchronous
communication, distributed shared memory, and active agents. None of these extensions provide the
flexibility of operations, capabilities, and in statements. Moreover, many of the previous extensions
still require the user to manually start remote programs.

Ajents [29] provides remote object creation, asynchronous RMI, and object migration through a
collection of Java classes. The Ajents project makes no modifications to the Java programming lan-
guage or the run-time system. Creation of remote objects and invocation of methods within remote
objects (both synchronous and asynchronous) is done through the Ajents class. The arguments
to Ajents.new(), Ajents.rmi(), and Ajents.armi() include a String specifying the type of the
object to create or the method to invoke. Without a preprocessor, it is not possible to statically
determine if an object can be created or if the method being invoked actually exists.

JavaParty [37] extends Java through the addition of the remote keyword to provide transparent
remote objects. JavaParty includes a translator that converts JavaParty programs into standard
Java programs. This translation includes converting the remote classes into the corresponding
RMI support classes simplifying the work of the programmer.

In [34], Java is extended to include a remotenew expression that allows for the instantiation
of remote objects on specified hosts. The remotenew keyword is mapped to a new opcode which
requires an extended virtual machine. The implementation restricts remote method arguments to
primitive types whereas JR allows any Serializable or Remote object as an argument.

Asynchronous remote method invocations are provided by [38] by using the armic stub/skeleton
generator instead of the standard rmic. Unfortunately, all remote method invocations are asyn-
chronous. The programmer is provided access to return values through a mailbox.

A socket implementation of asynchronous message passing is discussed in [26]. This implemen-
tation allows a single object to be passed as a message between two threads and provides support
for a conditional receive (a very limited in statement). Support for rendezvous is provided via a
blocking request at the “client” and a request/reply pair at the “server”.

Both Java/DSM [43] and Charlotte [8] extend Java to include mechanisms for distributed shared
memory. Javelin [15], SuperWeb [1], and ParaWeb [11] seek to exploit the potential for parallel
computation using the World Wide Web. Communicating Java Threads [27] extends the concur-
rency model of Java by providing communication between threads based on the CSP [28] paradigm.
Support for data-driven objects in Java is discussed in [30].
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The current JR implementation uses but does not rely upon RMI. As such, future JR implemen-
tations can take advantage of improved or optimized communication frameworks. For example, [32]
and [35] discuss more efficient versions of Java’s RMI.

Java-SR [33] adds SR operations, asynchronous message passing, and dynamic resource creation
to Java. Though a good initial effort, Java-SR has several shortcomings. Java-SR uses a preprocessor
to translate programs into standard Java but adds little to the Java syntax. The result is a mix of
syntactic extensions to define operations and exposed implementation details for interacting with
operations. Java-SR does not truly integrate the SR concurrency model (e.g., no VMs) and Java.
Java-SR does not address the extension of the SR constructs in terms of the Java programming
language.

More generally, numerous concurrent object-oriented languages have been proposed, e.g., as dis-
cussed in a recent survey [13]. These languages have various concurrency models, ways of expressing
synchronization, etc. Some concurrent object-oriented languages take an object-oriented approach to
synchronization (as does JR), including Simtalk [9], Actalk [14], GARF [25, 18], and BAST [19, 20].
SimTalk, for example, derives different kinds of monitor classes from a common base class. Although
JR shares some features with some concurrent object-oriented languages, JR differs in its overall
approach of building synchronization via the operation abstraction, its overall concurrency model,
and its definition as an extension of Java.

Furthermore, the survey classifies the different approaches in object-oriented concurrent pro-
gramming into three coarse categories [13]. The three categories are: the library approach, the
integrative approach, and the reflective approach. The library approach provides class libraries that
encapsulate concurrency components (e.g., Java threads are represented as objects). The integrative
approach unifies concurrency concepts with object-oriented concepts (e.g., merging the notion of
object and process to create the notion of an active object). The reflective approach uses reflection
mechanisms to provide concurrency components at the meta-level.

JR takes an integrative approach in defining its concurrency model. JR provides operations as a
general communication abstraction. Operations are defined as part of an object and each operation
is associated with a specific object. Using operations, a JR programmer can create active objects,
synchronized objects, and distributed objects. An object can be made active by using the process
keyword to create a thread within the object. A JR programmer can use Java’s synchronized

keyword or InOps to synchronize invocations. As discussed in Section 3.2, JR provides dynamic
remote object creation and JRobject capabilities to facilitate the distribution of objects.

8 Conclusion

The JR programming language integrates the SR concurrency model and the Java programming lan-
guage. It does so via a novel approach that resolves the tension between inheritance and concurrency.
JR provides a more flexible way to program distributed applications without great performance costs.

Further work will complete the integration of the SR concurrency model and the Java program-
ming language. We are investigating a more generalized form of the in statement that will allow
more control over the order in which invocations are serviced. We are also extending Java’s ex-
ception model to handle exceptions that occur during asynchronous communication. This includes
exceptions that are thrown by a method or in statement invoked via send, as well as exceptions
thrown after a reply or forward statement (Section 2.2) has been executed.

Our goal for the initial implementation of the JR system has been to improve the concurrency
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model provided in an extended Java. Performance has not been a primary concern. Though the
current implementation adds little overhead to RMI equivalent method invocations, future work will
further optimize the JR run-time system. Performance can be improved by further tuning the JR
run-time system but greater performance gains will come from optimizations done through static
code analysis and specialized translations. Additional work will study the use of communication
frameworks other than RMI to improve performance.
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[25] Rachid Guerraoui, Benôıt Garbinato, and Karim R. Mazouni. Garf: A tool for programming
reliable distributed applications. IEEE Concurrency, 5(4):32–39, October/December 1997.

[26] S. J. Hartley. Concurrent Programming: The Java Programming Language. Oxford University
Press, 1998.

[27] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers. Communicating Java Threads. In
WoTUG 20, pages 48–76, 1997.

19



[28] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–
677, 1978.

[29] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an environment for parallel, distributed
and mobile Java applications. In ACM 1999 Java Grande Conference, pages 15–24, 1999.
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