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2 B. Y. MAN ET AL.

SUMMARY

The global quiescence of a distributed computation (or distributed termination
detection) is an important problem. Some concurrent programming languages and
systems provide global quiescence detection as a built-in feature so that programmers
do not need to write special synchronization code to detect quiescence. This paper
introduces partial quiescence (PQ), which generalizes quiescence detection to a specified
part of a distributed computation. Partial quiescence is useful, for example, when
two independent concurrent computations that both rely on global quiescence need to
be combined into a single program. The paper describes how we have designed and
implemented a PQ mechanism within an experimental version of the JR concurrent
programming language, and have gained experience with several representative
applications. Our early results are promising qualitatively and quantitatively.

1. Introduction

In distributed programs, multiple processes cooperate to perform some task and communicate
via messages to exchange information. One important, and well-studied, problem for such
programs is to determine when the program’s computation has completed, i.e., it has
terminated normally or deadlocked. This quiescence problem is challenging because each
process has only local information, but to solve the problem requires information about all
processes (i.e., global state information). More formally, global quiescence (GQ) is defined as
the state in which each process has terminated or deadlocked and there are no messages in
the communication channels [2]. Quiescence detection, then, is the mechanism used to detect
such a state in a distributed system. Many solutions to this problem have been proposed (e.g.,
[3, 4, 5, 6, 7, 8]).

Some programming languages and systems provide GQ detection as a built-in feature. That
is, programmers do not need to write special synchronization code to detect quiescence. Instead,
they can focus on writing application code. When quiescence is reached, the program can
perform various actions such as simply terminating the program, outputting final results,
gathering statistics from the overall computation, or initiating a new phase of the program,
which might involve a new, corresponding phase of quiescence detection.

Although useful, GQ is limited to dealing with the state of all processes in a program. A
more general, but more difficult to detect, property would define when a specified part of the
program has become quiescent. For example, suppose we have two programs that use GQ and
we want to combine them into a single program in which we want to perform different actions
when each part of it becomes quiescent. This motivation led us to explore partial quiescence

(PQ).

This paper proposes possible ways of defining PQ. It then discusses the particular definition
selected and implemented in an experimental version of the JR concurrent programming
language. (JR extends Java [9] with a richer concurrency model [10, 11, 12].) The definition
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PARTIAL QUIESCENCE 3

of PQ and its implementation in JR apply to truly distributed programs. The paper also
shows how PQ leads to a different programming style for some problems. We compare the
performance of using PQ detection and GQ detection. PQ might be a useful feature for other
languages and libraries that define process or thread groups, as many do, and especially useful
for those languages and libraries that already provide GQ detection.

Our work involves detecting quiescence (GQ or PQ) dynamically, i.e., during the actual
execution of a concurrent program. An alternative approach involves statically determining
various properties of concurrent programs, e.g., determining whether a concurrent program is
deadlock-free. For example, [13] describes how to statically determine whether a given Ada
program is deadlock-free and [14, 15, 16] describe how to statically verify that a program
in notations such as process calculus with communication channels or timed automata with
shared variables is partial-deadlock free. Partial deadlock means that a specified part of the
program deadlocks. For example, [14] places restrictions on how processes communicate over
channels and shows that the part of the program that uses “reliable” communication channels
does not deadlock. The key difference between our approach and the static approaches, besides
when the checking is performed, is that our approach treats quiescence as a normal part of
program execution; the program itself is aware of its own quiescence and can react to quiescence
as it desires.

The rest of this paper is organized as follows. Section 2 provides background on the general
definition of GQ and how it has been incorporated as a built-in feature in some programming
languages and systems; it describes how GQ is defined and implemented in JR and presents
examples of programs that use GQ. Section 3 discusses different ways of defining PQ. Section 4
discusses the definition of PQ we chose to provide in JR and gives examples of programs that
use PQ. Section 5 describes our implementation and Section 6 discusses its performance.
Section 7 reflects on our work. Finally, Section 8 concludes. Further details appear in [17].

2. Background

This section presents background on the general definition of global quiescence in context
of previous work on distributed termination detection. It then describes how GQ has been
incorporated as a built-in feature in some programming languages and systems; it focuses on
how GQ is defined and implemented in JR and presents example JR programs that use GQ.

2.1. Distributed Termination Detection (DTD)

As noted in Section 1, detecting the termination of a distributed computation is an important
and challenging problem, which has been well-studied over the years. A nice survey [2] describes
DTD as follows. A distributed system consists of a collection of processes such that processes
communicate with each other by sending activation messages via some communication
channels. An activation message is used not only for communication purposes among processes,
but also for creation of a new process. A process can be either in an active or a passive state.
A process is active if it is working on some computation or processing activation messages
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4 B. Y. MAN ET AL.

addressed to it. A process is passive if it is waiting for an activation message or termination.
All processes in the system behave based on the following rules [2][7][8]:

1. Activation messages can be generated only by active processes.
2. An active process may change its state to passive at any time.
3. A passive process may change its state to active only if it receives an activation message.

The above rules ensure that no further activation messages can be created in a system where
all processes are passive: messages cannot be generated spontaneously. When the system has
reached such a state, i.e., all processes are passive and no activation messages are in transit,
then the system is quiescent. Or equivalently:

Quiescence of a system of processes is defined as the state in which (1) there are
no messages in the system in transit and (2) all processes have terminated or are
waiting for a message.

Quiescence detection is defined as the mechanism used to detect the state in which there are
no messages in transit and all processes are waiting [2]. This definition generalizes that of DTD
to both detecting termination as well as deadlock: i.e., sensing when the system is in a state
from which it can no longer continue.

The quiescence detection algorithm is conceptually (and often in practice) a separate activity
that runs concurrently with, but without interfering with, the underlying computation of the
system. Thus, in addition to activation messages, control messages are used for system related
activities such as detecting quiescence. All active and passive processes can participate in the
detection activity via control messages while keeping their active or passive status unchanged.

Two main categories of DTD algorithms, as classified in [2], are wave (or network topology)
algorithms (e.g., [4, 3, 5, 8, 6]) and credit distribution and recovery algorithms (e.g., [7]).

A wave algorithm for DTD makes use of the system’s topology for detecting quiescence.
An example of this category is the termination detection algorithm for “diffusing
computations” [4], which imposes a spanning tree upon the computation (A similar view is
taken by the probe-echo algorithm for network topology [18].) Initially in the quiescent state,
the system contains a source process (the root), which starts the underlying computation by
sending (diffusing) activation messages to generate new processes. The new processes then
keep track of which source activated them and continue with the protocol. When receiving
a message, the activated process sends an acknowledgment message to the sending process.
A process also needs to maintain a deficit counter to keep track of the number of its own
sent messages that have not been acknowledged. When the deficit counter becomes zero, i.e.,
there are no more unacknowledged messages, and the process is locally quiescent such that
it is no longer processing any other activation messages, then the process transforms back to
the passive state and sends an acknowledgment to its activator. Thus, a tree model is formed
based on the processes in the system, where the parent is the process that sends an activation
message to generate a child process. The tree grows as activation messages are sent to create
new processes and is pruned as leaf processes becomes locally quiescent. At the point when
only the root of the tree remains, the “diffusion” is done and the quiescence detection process
terminates [4, 2, 6, 19].
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PARTIAL QUIESCENCE 5

A credit distribution and recovery algorithm for DTD begins with the the system having
a credit of total value one. The termination detection distributes this credit amongst active
processes and activation messages [7]. When a process generates an activation message, it splits
its credit equally between itself and the message. If the activation message is sent to a passive
process, then the credit of the message is transferred to the process. Otherwise, if the activation
message is sent to an active process, the credit goes to the quiescence detection process. The
credit of a process is returned to the detection process only when it becomes passive. When
the detection process regains the whole credit of one, the system reports quiescence.

2.2. Tools and Systems with Support for Termination Detection

In some languages and systems (e.g., Ada [20], Java [9], MPI [21], and Pthreads [22]),
programs that reach a deadlock state wait indefinitely for the user to terminate them manually.
However, in some cases, tools can assist in such detection. For example, Umpire [23] and MPI-
CHECK 2.0 [24] detect deadlocks for MPI programs.

Some other programming languages or systems provide GQ detection as a built-in feature.
GARLIC [25] extends Ada 95 with distributed programming features; it detects termination
based on the algorithm proposed in [26]. JR [10, 11], SR [27, 28], and Charm [8] allow a
quiescent program to output final results, gather statistics from the overall computation, or
simply terminate the program. In this regard, JR and Charm are similar: when a program
quiesces, it can initiate new computation, for which the quiescence feature can be used again.
SR’s quiescence feature is not as powerful: it is intended only for the program to clean up and
terminate, and programs cannot use quiescence repeatedly.

2.2.1. Brief Overview of JR

Since this paper deals with adding partial quiescence for JR, this section gives a very brief
overview of the JR concurrent programming language. JR extends Java [9] with a richer
concurrency model [10, 11, 12], based on that of SR [27, 28]. Of specific interest here is that
JR extends Java with synchronous and asynchronous message passing (of which semaphores
are a special case).

A distributed program in JR consists of a group of “virtual machines” (VMs). Each VM
represents an address space, or unit of program distribution, and contains several processes,
which can share variables within that address space or send message to other processes on
that VM or to processes on other VMs. Such a model of computation is also used in SR and
Java programs that use RMI (remote method invocation). Typically, the number of VMs is
not very large, but it varies as the program executes.

JR, as mentioned previously, provides a global quiescence feature. The next section illustrates
this feature with several examples.

2.2.2. Example JR Programs Using GQ

The program in Figures 1 and 2 (from [11]) performs matrix multiplication. Its MMMain class
reads in two N × N matrices, instantiates a MMMultiplier object, and registers the operation
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6 B. Y. MAN ET AL.

public class MMMain {

private static MMMultiplier m;

public static void main(String [] args) {

double [][] A, B; int N; // A and B are NxN

// read in NxN arrays A and B

...

m = new MMMultiplier(A, B, N);

// register done as the quiescence operation

JR.registerQuiescenceAction(done);

}

private static op void done() { m.print(); }

}

Figure 1. Matrix multiplication using GQ – MMMain class.

public class MMMultiplier {

double [][] A, B, C; int N; // A, B, and C are NxN

public MMMultiplier(double [][] A, double [][] B, int N) {

this.A = A; this.B = B; this.N = N; C = new double [N][N];

}

process compute ( (int r = 0; r < N; r++), (int c = 0; c < N; c++) ) {

// compute the inner product for C[r,c]

C[r][c] = 0.0;

for (int k = 0; k < N; k++) { C[r][c] += A[r][k] * B[k][c]; }

}

public void print() { /* output C */ ... }

}

Figure 2. Matrix multiplication using GQ – MMMultiplier class.

done as the quiescence operation. (Technically, the registration needs to be within a try/catch

block.) Its MMMultiplier class contains the processes that perform the actual computation.
These processes begin execution after MMMultiplier’s constructor completes its execution. GQ
is used to determine when these compute processes have finished their tasks. Once GQ has been
detected, the registered operation done is invoked and its code outputs the resulting matrix.
Without GQ detection, the programmer would need to write additional code to determine
when the computation has terminated.

If no GQ operation is registered, then the program simply terminates when it quiesces. The
quiescence operation can initiate new activity and can re-register the GQ operation (either the
same or different operation), which will be invoked when the newly initiated activity quiesces.
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public class AQ {

private static final int N = 20; // number of workers

private static op void bag(double, double, double, double);

private static op void result(double);

private static final double Epsilon = 0.001; // convergence test

private static double f(double x) {

return Math.pow(x,3.0); // some function to integrate

}

private static double area = 0.0;

// administrator and worker processes appear in next figure

public static void main(String [] args) {

// register done as the quiescence operation

JR.registerQuiescenceAction(done);

}

private static op void done() {

System.out.println("computed area = "+area);

}

}

Figure 3. Adaptive quadrature using bag-of-tasks using GQ.

Of course, GQ is not required to achieve the overall outcome from the matrix multiplication
program. Instead, as each compute process completes its computation, it can atomically
increment a shared counter and test whether that counter equals the number of processes
created. If so, that process (the last one to finish) can print out the entire result matrix.
Similarly, other synchronization (barrier-like) strategies can be used. For example, an
additional coordinator process can delay until it has received a notification of completion from
each compute process. The coordinator can then print out the entire result matrix. However,
these approaches, require additional programming effort.

A more interesting example is adaptive quadrature using the bag-of-tasks paradigm. The
program in Figures 3 and 4 (from [11]) computes the approximate area under a curve over
some interval. Each task in the bag represents a subinterval over which to compute the area.
The bag is represented as a shared operation, whose invocations correspond to the tasks and
on which workers compete to receive invocations. Each worker takes a task and approximates
the area under the curve for the subinterval in two ways: using a single rectangle and using the
sum of two rectangles. If the two areas differ by less than some predefined value Epsilon, then
the worker returns the second area as its result. Otherwise, more work is required to compute
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8 B. Y. MAN ET AL.

private static process administrator {

double part;

double l = 0.0, r = 4.0;

send bag(l,r,f(l),f(r)); // put initial task (whole interval) in bag

while (true) {

receive result(part); // receive back area for subinterval

area += part; // and add it into overall area

}

}

private static process worker( (int i = 1; i <= N; i++) ) {

double a, b, m, fofa, fofb, fofm;

double larea, rarea, tarea, tarea2, diff;

while (true) {

receive bag(a,b,fofa,fofb);

m = (a+b)/2; fofm = f(m);

// compute tarea, larea, rarea, and tarea2 using trapezoidal rule

tarea = (b - a) * (fofa + fofb) / 2.0;

larea = (m - a) * (fofa + fofm) / 2.0;

rarea = (b - m) * (fofm + fofb) / 2.0;

tarea2 = larea + rarea;

diff = Math.abs(tarea - tarea2);

if (diff <= Epsilon) { // diff small enough -- send back area

send result(tarea2);

}

else { // diff > Epsilon // diff too large -- split into 2 tasks

send bag(a, m, fofa, fofm);

send bag(m, b, fofm, fofb);

}

}

}

Figure 4. Adaptive quadrature using bag-of-tasks using GQ – administrator and worker processes.

the area in this subinterval, so the worker puts back into the bag two subproblems. In either
case, the worker continues by taking another task out of the bag.

GQ is used to determine when the computation has finished. Once GQ has been detected,
the registered operation done is invoked and its code outputs the computed area. Without
GQ detection, the programmer would need to write additional code to determine when the
computation has terminated: the bag is empty and all workers have blocked (waiting to take
a task from the bag). That termination condition is not so simple to express directly in a
program.
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PARTIAL QUIESCENCE 9

One approach is to modify the code to use a credit distribution and recovery algorithm
(Section 2.1). The administrator keeps track of total part of the interval for which it needs
a response, WidthLeft. When WidthLeft becomes zero, the administrator can terminate
the workers with a special message. When workers send the area back to the administrator,
they also include the interval width in the message, which the administrator subtracts
from WidthLeft. (This approach ignores potential problems with roundoff errors in the
computations involving WidthLeft.)

A second approach is to have the administrator count the number of outstanding tasks
remaining to be computed, TasksLeft. When TasksLeft becomes zero, the administrator can
terminate the workers. This approach requires extra messages. A worker sends a new message
to the administrator just before the worker splits an interval. When the administrator receives
such a message, it increments TasksLeft. When the administrator receives a result message,
it decrements TasksLeft. In a sense, this solution can be viewed as a diffusing computation
(Section 2.1). However, the style of computation is different. Each worker may perform any part
of the overall computation instead of a specific part within some hierarchical decomposition.
Moreover, the administrator acts as a central site of “parental responsibility” [4], instead of
having that role distributed.

2.2.3. Implementation of Quiescence in JR

The implementation of quiescence in JR† uses an approach that differs from the general
distributed termination detection algorithms described in Section 2.1 because of JR’s particular
model of computation (Section 2.2.1).

2.2.3.1. JR Virtual Machines and Centralized Manager As the information contained in a
standard Java VM is not sufficient by itself to implement quiescence detection, JR creates
its own virtual machine (JRVM), which provides a thin layer over the standard Java VM.
JR virtual machines (JRVMs) are created during run-time. A JRVM, then, is able to record
information, such as the number of active processes and messages that are in transit, that
is essential in determining the quiescent state of the program. Having JRVMs allows the JR
implementation to run on any standard Java VM.

As mentioned in Section 2.1, the distributed termination detection problem is a challenging
one, because it requires global state information for the system. JRX is the centralized manager
of JR. It possesses the global state information of the system. JRX is created when a JR
program executes; there is one JRX per each JR program’s execution. JRX also provides
communication to other physical hosts when creating JRVMs. When a new JRVM is to be
created, the thread notifies JRX, which is responsible for contacting the specified physical host
and initiating a JRVM on that host. When a JRVM is created, it registers itself with JRX
and informs JRX that it is ready to receive requests through using RMI (remote method
invocation). Thus, JRX contains a record of all JRVMs that is necessary for quiescence

†JR’s implementation of quiescence extends SR’s implementation of quiescence to provide the additional
functionality described in Section 2.2.
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10 B. Y. MAN ET AL.

detection as well as other services, such as executing an explicit exit from the program code,
which needs to shut down all JRVMs.

2.2.3.2. GQ Detection JR’s implementation of distributed termination detection involves
the RTS (run-time system) on each JRVM and the centralized manager, JRX. Moreover, JRX
creates an “idler” thread to assist with quiescence detection.

Figure 5 depicts the interaction between JRX and all JRVMs, which is as follows. When a
JR program creates a process or performs an asynchronous method invocation, the JR code is
translated into Java code that creates a thread. Then, in the generated Java code, a “thread
birth” is logged by calling a method in JRVM. Whenever this thread is blocked or terminates,
a “thread death” is logged in the same manner. When a JRVM can make no further progress
(i.e., all of its threads have terminated or are waiting to receive a message), it sends an idle
message to JRX. This message contains the number of messages this JRVM has sent to each
other JRVM and the number of messages this JRVM has received from each other JRVM. JRX
then determines whether all JRVMs are idle, i.e., it has received an idle message from each
JRVM. If so, it will awaken the “idler” thread to perform a final confirmation of idleness of
all JRVMs and check that no messages are in transit, specifically: for each VM JRV Ma, the
number of sends from JRV Ma to each other JRVM, JRV Mb, matches the number of receives
from JRV Ma reported by JRV Mb, If so, then the system is globally quiescent. Additional
information about the GQ implementation appears in [17].

3. Definition of Partial Quiescence (PQ)

Although GQ is useful, it requires the detection to determine the quiescent state of all processes
in a given program. Some notion of PQ, which addresses the quiescence of part of the program,
would be useful. We want, for example, to combine two programs (i.e., two independent
concurrent computations) that use GQ into a single program in which we want to perform
different actions when each part of it becomes quiescent.

The first step is to define what PQ means. A natural approach is to apply quiescence to a
group of processes in a program. Modifying the definition of quiescence from Section 2.1 to
apply to a specific group of processes yields:

Quiescence of group A is defined as the state in which (1) there are no messages in
the system in transit to group A and (2) all processes in group A have terminated
or are waiting for a message.

Because PQ deals with the interactions of groups of processes, it is, in general, more difficult to
detect. This definition fits well if the process group is “closed” [29], i.e., only processes in group
A send messages to processes in group A. However, this definition is not realistic if the process
group is “open” [29], i.e., a message for a process in group A can be generated by a process
outside of the group; such a message appears, from within group A, to have been generated
“spontaneously”. More concretely, a detection mechanism could detect that all processes in
group A are passive and no message in transit is destined for group A, and so it would decide
that group A is partially quiescent. However, that decision could be followed by a process
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Figure 5. JRX and JRVMs interaction for global quiescence detection.
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12 B. Y. MAN ET AL.

outside group A sending a message to a process in group A. (In contrast, such spontaneous
message generation is not possible for GQ (Section 2.1).)

A definition of PQ can deal with this spontaneous generation problem in various ways.
One way would be to alter the above definition with a third clause, e.g., “and (3) no process
outside of group A can possibly send to a process in group A”. However, such a definition
might not be useful: just because a process outside of group A can send a message to a process
in group A does not guarantee that it ever actually will. Moreover, in general, keeping track
of such information in a system where communication paths between processes is determined
dynamically would be costly.

Therefore, we choose a more restrictive definition of partial quiescence, namely one that
modifies clause (1) from the previous definition:

Quiescence of group A is defined as the state in which (1) there are no messages
in the system from group A in transit to group A and (2) all processes in group A

have terminated or are waiting for a message.

This definition fits well for closed process groups; the next sections illustrate that it is practical
for open process groups.

4. JR Extended for Partial Quiescence

We have extended JR to support PQ. Now, JR programs can define groups of related processes
and can register, for each process group, a partial quiescence operation. This section begins
with examples to illustrate how PQ in the extended JR works, discusses key aspects of the
various mechanisms, and presents additional mechanisms to facilitate programming with PQ.

4.1. Expository Examples of PQ in JR

4.1.1. Multiple Matrix Multiplications

The main program in Figure 6 shows how to use PQ to perform two simultaneous matrix
multiplications. A nice attribute of our PQ approach is that the same MMMultiplier class
from Figure 2 works here. The main program creates two process groups, one for each matrix
multiplication. It uses JR.changeCreationGroup to specify the group in which newly created
processes will be placed for each new matrix computation. (There is one default process group.)
The main program then registers the PQ operation for each process group. When either group
quiesces, its PQ operation will be invoked and that code outputs the results.

In contrast, consider a variant of the original main program in Figure 1 that starts two
matrix multiplications and that uses GQ. It would wait for both computations to finish before
outputting the result from either.

In Figure 6, two process groups might quiesce at about the same time, in which case the
outputs from their quiescence operation might be interleaved. Their outputs can be serialized
by deleting the present code for done1 and done2 (but keeping their op declarations) and
adding the code in Figure 7 to the end of the main method. This code uses JR’s multi-way
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PARTIAL QUIESCENCE 13

public class MMMain {

private static MMMultiplier m1, m2;

public static void main(String [] args) {

double [][] A1, B1, A2, B2; int N; // A1, B1, A2, B2 are NxN

// read in NxN arrays A1, B1, A2, B2

...

ProcessGroup m_g1 = new ProcessGroup("Multiply Group1");

ProcessGroup m_g2 = new ProcessGroup("Multiply Group2");

JR.changeCreationGroup(m_g1); // processes within m1 will be in m_g1

m1 = new MMMultiplier(A1, B1, N);

JR.changeCreationGroup(m_g2); // processes within m2 will be in m_g2

m2 = new MMMultiplier(A2, B2, N);

// register partial quiescence operation for each process group

JR.registerPartialQuiescenceAction(m_g1, done1);

JR.registerPartialQuiescenceAction(m_g2, done2);

}

private static op void done1() { m1.print(); }

private static op void done2() { m2.print(); }

}

Figure 6. Multiple matrix multiplications using PQ – MMMain class.

for (int i = 0; i < 2; i++) {

inni void done1() {m1.print();}

[] void done2() {m2.print();}

}

Figure 7. Code to serialize output from the multiple matrix multiplications.

receive statement (inni) to wait for an invocation of either of the PQ operations; it services
one at a time, thus serializing their outputs.

4.1.2. Barrier Synchronization

PQ, as noted earlier for GQ, allows JR programs to re-register a quiescence operation. Consider
the program in Figure 8 (from [11]). It shows a group of worker processes synchronizing
their iterations via a barrier, implemented with semaphores.‡ The program also contains a

‡In JR, the semaphore primitives P and V are just special cases of the message passing primitives receive and
send.
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public class Barrier {

private static final int N = 10; // number of workers

private static sem done = 0;

private static cap void () proceed[] = new cap void()[N];

static { for (int i = 0; i < N ; i++) { proceed[i] = new sem; } }

private static process worker( (int i = 0; i < N; i++) ) {

while (...) { // iterations remain

// code to implement one iteration of task i

...

// barrier

V(done); // tell coordinator "I did iteration i"

P(proceed[i]); // wait for coordinator to say "continue"

}

}

private static process coordinator {

while (...) { // iterations remain

for (int w = 0; w < N; w++) { P(done); }

for (int w = 0; w < N; w++) { V(proceed[w]); }

}

}

public static void main(String [] args) {

}

}

Figure 8. Barrier synchronization using semaphores.

coordinator process that controls when workers begin their next iteration. The program uses
an array of semaphores, proceed (one for each worker), rather than a single semaphore, to
prevent a fast worker from “stealing” the message intended for a slow worker. With a single
semaphore, a slow worker might be context switched after V(done) and before the P(proceed),
which would allow a fast worker to finish its iteration and get past the P(proceed). (See [11]
for details.)

This program can be rewritten using PQ and fewer semaphores, as shown in Figure 9. Worker
processes no longer need to tell the coordinator that they are done (via the done semaphore);
instead PQ will detect that. The role of the coordinator is no longer performed by a separate
process. It is now the PQ operation that is invoked when all worker processes quiesce. Also,
the proceed array of semaphores is now replaced with a single proceed semaphore: a fast
worker cannot overtake a slow worker since all workers must quiesce before the coordinator
operation is invoked and tells any worker it may proceed.
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public class Barrier {

private static final int N = 10; // number of workers

private static sem proceed;

private static ProcessGroup WG;

static { // all worker processes will belong to process group WG.

WG = new ProcessGroup("Worker Group");

JR.changeCreationGroup(WG);

}

private static process worker( (int i = 0; i < N; i++) ) {

while (...) { // iterations remain

// code to implement one iteration of task i

...

// barrier

P(proceed); // wait for coordinator to say "continue"

}

}

// coordinator is no longer a process -- it’s now invoked on PQ.

private static op void coordinator() {

for (int w = 0; w < N; w++) { V(proceed); }

if (...) // iterations remain

JR.registerPartialQuiescenceAction(WG, coordinator);// re-reg PQ op.

}

public static void main(String [] args) {

JR.registerPartialQuiescenceAction(WG, coordinator);// register PQ op.

}

}

Figure 9. Barrier synchronization using partial quiescence.

4.1.3. Distributed Barrier Synchronization

The barrier synchronization example (Section 4.1.2) can be extended to be a distributed
program. Figures 10 and 11 present such a program, in which instances of BW (“barrier
worker”) objects are created so that worker processes are located on different VMs. As shown
in Figure 11, after each worker process completes one iteration of its work task, it blocks on
a capability, which references the proceed semaphore located remotely in the main program
(Figure 10). The program uses partial quiescence to detect that worker processes in all VMs
belonging to the WG group are blocked. When the program detects partial quiescence, the
coordinator in the main program performs the same actions as in Figure 9 to awaken all
workers on different VMs.
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public class Main {

// number of worker processes in each BW object

private static final int N = 10;

// two BW objects:

private static remote BW w1, w2;

private static sem proceed;

private static ProcessGroup WG;

public static void main(String [] args) {

// instantiate process group WG

WG = new ProcessGroup("WG");

// change default process group to WG,

// so that all worker processes will belong to process group WG.

JR.changeCreationGroup(WG);

// create virtual machines vm1 and vm2,

// and create a remote worker on each

vm vm1 = new vm(); vm vm2 = new vm();

w1 = new remote BW(N, proceed) on vm1;

w2 = new remote BW(N, proceed) on vm2;

JR.registerPartialQuiescenceAction(WG, coordinator);

}

public static op void coordinator() {

for (int w = 0; w < 2*N; w++) { V(proceed); }

if(...) // iterations remain

JR.registerPartialQuiescenceAction(WG, coordinator);

}

}

Figure 10. Barrier synchronization with distributed workers using PQ – Main class.

4.2. Key Aspects of Partial Quiescence

As seen in the examples in the previous section, process groups allow the programmer to specify
parts of the program for separate PQ detection. The names of process groups, specified by the
string argument to the ProcessGroup constructor, are in a global namespace. For example, in
a multi-VM program (Section 4.1.3), processes created in process group "WG" on two different
VMs are in the same process group. Similarly, there is one PQ operation for a process group,
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public class BW {

private final int N; // number of processes

private cap void () proceed;

private ProcessGroup WG;

public BW(int N, cap void() proceed) {

this.N = N;

this.proceed = proceed;

// instantiation of the "WG" group

// having the same identifier as in the main program

WG = new ProcessGroup("WG");

}

private process worker( (int i = 0; i < N; i++) ) {

while (...) { //iterations remain

// code to implement one iteration of task i

...

// barrier: wait for coordinator

// in the main program to say "continue"

P(proceed);

}

}

}

Figure 11. Barrier synchronization with distributed workers using PQ – BW class.

even if the process group is distributed across different VMs. The programmer can create a
process group specific to a VM by using a per-VM unique identifier in the name.

PQ detection for a process group does not begin until the PQ operation has been registered.
This avoids the following “startup problem”. Suppose a process group has just been created,
but no processes have yet been created within that group. For example, suppose that the
main program in Figure 6 registered its PQ operations before instantiating the MMMultiplier

objects. Then, PQ detection would detect that the group has quiesced, which would not be
likely what the programmer wanted.

Just as for a GQ operation, a PQ operation can start up new activity and can re-register
another (or the same) PQ operation. As seen in Figure 9, for example, the re-registration of
the PQ operation occurs after the worker processes are awakened to avoid the startup problem.
Note that even if all the workers execute and quiesce before the PQ operation is re-registered,
quiescence detection will detect that (because detection for the group began anew when the
PQ operation was invoked) and invoke the PQ operation when it is re-registered.

The precise definition of PQ for JR differs slightly from that given in Section 3. The reason
is that in JR a message is sent to an operation. Operations can be shared and serviced by
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processes that might belong to different process groups. Exactly which processes services which
operations is determined as the program executes (not statically) [30]. The PQ definition for
JR, therefore, modifies clause (1) of the earlier definition to be more specific with respect to
serviceablility: “(1) there are no messages in the system from group A in transit to an operation

serviceable by a process in group A”.
How the definition of PQ deals with messages in transit can introduce additional

nondeterminism into a program. For example, a message from outside a process group might
be sent either before or after PQ is detected for that process group, thus affecting program
behavior. However, such nondeterminism does not occur in the examples in this paper (or other
practical examples we have written so far). It remains to be seen whether such nondeterminism
is a problem in further practice.

PQ is an extension to, not a replacement for, GQ. A program is globally quiescent when all
parts of it have become partially quiescent and the remaining processes not associated with
any group have terminated or deadlocked, and no messages are in transit.

4.3. Additional PQ Programming Features

The extended JR provides four additional PQ features for more complicated programming
situations.

First, the program can disable or enable PQ detection features during execution. This feature
allows the programmer to pause the detection of partial quiescence of a specific process group.
It is useful in some programs when waiting for some desired processes to be added to the
process group. (Section 7 mentions another example.)

Second, an optional argument to the ProcessGroup constructor can specify the number of
processes expected in the group. Quiescence of the group occurs when that number of processes
have terminated or deadlocked. This feature can be used to avoid the “startup problem”
discussed in Section 4.2 even if a PQ operation is registered before the desired processes
have been created in the process group. Of course, this feature is not always useful because
it requires advance knowledge of the number of processes in the process group. It also might
reduce information hiding. For example, suppose the MMMultiplier class in Section 4.1.1 chose
to create, say, N/2 processes, each computing a strip of results (instead of N × N processes).
That information would now need to be known outside of that class.

Third, a process can change its process group in the middle of execution. This feature is
useful, for example, when processes of one object instance are to belong to different process
groups. In this case, calling the method JR.changeCreationGroup() before instantiation of
the object is impractical, because all processes created in that object instance would belong
to the same process group. Another use of this feature is when a process wants to move
to another process group when some conditions are met. As a concrete example, consider a
program modeling a tennis tournament. The program represents each tennis player as a process
and the players (processes) in each round of competition form a distinct process group. Each
tennis player initially belongs to a process group representing the first round of competition.
When all players have finished playing the first round, the process group quiesces (and outputs
statistics of all the winners and the losers). The winning players then continue to the next round
of competition and change their process group to the process group for the second round; as

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 00:1–7
Prepared using cpeauth.cls



PARTIAL QUIESCENCE 19

PQ op
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Figure 12. Process groups structure in a tennis tournament program.

before, statistics are output when the process group of the second round quiesces. The program
continues in the same manner to the final round until a player becomes the final champion.
Figure 12 illustrates the overall structure of process groups in this tennis tournament example.
The code for this program appears in [17].

Fourth, process groups can be hierarchical. A parent group is defined to have become
partially quiescent only when all of its child process groups and its own processes have become
quiescent. To organize process groups into a hierarchy, the ProcessGroup constructor takes
as an optional argument an array of child process groups. As a concrete example, consider
a program modeling a bus stop. The program represents buses and passengers as processes.
The program simulates a scenario in which there are some buses waiting in line to pick up
some passengers who are also waiting in line. The program uses a process group for each bus
to represent the passengers who board it and a hierarchical process group for the bus stop to
represent all the buses. PQ provides a relatively straightforward solution for this simulation
problem to determine critical activities:

• when each bus has finished picking up its passengers, i.e., partial quiescence of each bus
process group, and

• when all buses have left the bus stop, i.e., partial quiescence of the bus stop process
group, which contains each bus process group as a child.

The code for this program appears in [17].
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5. Implementation of Partial Quiescence

Our current implementation of PQ is built on JR version 1.00061, which is based on
Java 1.4. It has also been ported to JR version 2.00002, which is based on Java 1.5. The
implementation of PQ adapts the centralized manager implementation of GQ described in
Section 2.2.3. The implementation of PQ for closed process groups (Section 3) could follow
the GQ implementation rather directly, but with message counts specific to process groups.
However, our general implementation of PQ is different to account for open process groups.

5.1. JRThread and Process Group

In existing JR, the generated code for creating a JR process creates a Java thread. To
provide the partial quiescence detection feature in our extended JR, we introduce a new class,
JRThread, which extends Java’s Thread class. JRThread is used instead of Java Thread so that
a JR process can change its process group in the middle of its execution; in Java, once a thread
is associated with a thread group (which occurs when the thread is created), its thread group
attribute can never be changed. So, JRThread contains a (modifiable) attribute to represent
the current group to which the thread belongs. It also contains a (modifiable) creation group
attribute, which represents the process group for the JR processes that a JRThread creates.

Java also provides thread groups to organize a group of threads for management and security
purposes. However, Java’s ThreadGroup class does not provide the necessary support for partial
quiescence detection in JR. The JR implementation of PQ uses the ProcessGroup class, which
extends Java ThreadGroup. By extending Java ThreadGroup, we can organize JR processes
into process groups by simply including an extra parameter for the JRThread’s constructor
during JR code translation (which invokes the constructor of its superclass, Java Thread, at
runtime), so that a ProcessGroup object can be passed in to the constructor at runtime. The
ProcessGroup class contains features that are useful to PQ detection, such as keeping a counter
for the number of active processes, notifying JRX of its idle state, and logging “thread birth”
and “thread death” (similar to the features provided in JRVM, as mentioned in Section 2.2.3.1,
that are used in GQ detection).

5.2. The Centralized Manager and PQ Detection

As in the implementation of GQ (Section 2.2.3), the centralized manager (JRX) plays a
significant role in PQ detection. In the GQ implementation, JRX contains the global state
information such as the references to all VMs that are created in the application, and their
idle states. In the PQ implementation, JRX contains additional information, which includes
a record of process group identifiers, the lists of VMs on which each process group has been
created, and a capability for the PQ operation.

More concretely, when a process group is created on a VM, the RTS (run-time system) on
the VM sends a message to the manager. The manager uses the process group name as the key
into a hashtable; the hashtable entry contains the list of VMs on which the process group has
been created and a capability for the PQ operation. When the PQ operation is registered, it is
sent by the RTS to the manager. The manager then creates a thread (the “PGIdler” thread,
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which works in a similar way as the “idler” thread in global quiescence detection) to handle
quiescent messages for this group (if such a thread has not already been created). The thread
executes until the group becomes quiescent (as described in the following paragraph), at which
point the thread invokes the PQ operation and terminates. If the PQ operation is re-registered,
a new “PGIdler” thread is created. Exactly when the thread is created is important so that
the thread does not detect quiescence before the operation has been (re-)registered, i.e., to
avoid the “startup problem” mentioned in Section 4.2.

Figure 13 depicts the interaction between the process groups in each VM and the centralized
manager, JRX, when detecting partial quiescence, which is as follows. Each time a process of
a particular group is created, a “thread birth” is logged by calling a method in the process
group instance specific to the VM in which the process is located. Likewise, when a process
is blocked or terminates, a “thread death” is logged by calling a method in the same process
group instance. Whenever a process changes its group in the middle of the execution, a “thread
death” is logged in its old process group and a “thread birth” is logged in its new process group.
When the RTS on a VM detects that a process group on that VM becomes quiescent (i.e., all of
its processes have terminated or are waiting to receive a message), it sends an idle message to
the manager. The manager then determines whether all process groups (with the same name)
in different VMs are idle, i.e., it has received an idle message from each VM that contains this
process group. If so, it will awaken the “PGIdler” thread that is managing the process group.
The thread then sends a message to all VMs to confirm that each VM is indeed idle. If the
manager receives such confirmation, then the process group is quiescent. Otherwise, it waits for
idle messages from those VMs who reported they were not idle before it attempts confirmation
again. Note that in the re-confirmation phase, the thread sends messages not only to the VMs
that have previously reported non-idle, but to all VMs, including those who have previously
reported idle. This second, confirmation phase to all VMs is necessary to account for one VM
reporting that the process group is idle just after it sends a message to another process within
the same process group on another VM that already reported that it was idle. Now, as the
confirmation phase also checks for the idleness of a VM that has previously reported idle, the
confirmation phase ensures the proper detection of a VM becoming non-idle again, i.e., to
implement the modified PQ definition in Section 4.2.

6. Performance

Because PQ is a new language feature, we have no direct basis of comparison to assess the
performance of our implementation. However, we have compared the performance of PQ in
several programs with the performance of GQ in roughly comparable programs. (The data are
from our implementation of extended JR that is built on JR version 1.00061, which is based
on Java 1.4.)

The results gathered were measured in elapsed execution time (in seconds), based on Linux’s
time command. For each test, we measured the result five times (the variance was insignificant),
and calculated an average elapsed time, which is presented in the subsequent tables. We also ran
the entire group of tests multiple times and observed that the results were nearly identical. We
ran our tests on various PCs (1.4GHz, 2.0GHz, and 3.0GHz uniprocessors; 2.4GHz and 2.8GHz
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Figure 13. JRX and JRVMs interaction for partial quiescence detection.
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Table I. Average elapsed execution time (in seconds) for the non-distributed matrix
multiplication program.

1.4GHz uniprocessor 2.8GHz dual-processor
Average Average

Elapsed Time Elapsed Time
Size GQ PQ Overhead Size GQ PQ Overhead
5×5 3.266 3.314 1.5% 5×5 2.010 2.010 0.0%

10×10 3.330 3.366 1.1% 10×10 2.010 2.034 1.2%
20×20 3.552 3.602 1.4% 20×20 2.070 2.094 1.2%
50×50 4.854 4.916 1.3% 50×50 2.514 2.550 1.4%

dual-processors) running Linux. Specific results, of course, varied according to platform, but
the overall trends were the same.

6.1. Multiple Matrix Multiplications

We compared the performance of both the non-distributed version and the distributed version
of the PQ matrix multiplication program against those that use GQ.

Specifically, we compared the PQ matrix multiplication program in Section 4.1.1 (Figure 6)
with a variant of the original GQ matrix multiplication program in Section 2.2.2 (Figure 1)
that starts two matrix multiplications. Both programs are non-distributed: each executed on
a single VM. Table I shows that over a range of different sized matrices (5×5, 10×10, 20×20,
and 50×50) PQ required only from 0% to 1.5% additional time. These overheads of the PQ
programs were the results of the process group creations that required RMI interactions with
the centralized manager (JRX), the PQ detection activity that took place in JRX, and the
additional logging for each thread in the process groups.

We also compared the elapsed time of the distributed versions of these matrix multiplication
programs. These programs each create two MMMultiplier objects on two different VMs that
are located on the same physical machine. Table II shows that over a range of different sized
matrices (5×5, 10×10, 20×20, and 50×50) PQ required only from 0.5% to 1.8% additional
time.

To observe the performance of PQ vs. GQ further in the distributed environment, we
compared the elapsed time of programs similar to the previous two, but executed on different
numbers of VMs, with each VM created on a different physical host. Table III presents the
different average elapsed times for computing a range of different sized matrices (5×5, 10×10,
20×20, and 50×50) over a range of different numbers of VMs (1, 2, 4, and 8). The results show
that PQ required from 0.4% to 4.1% additional time.

The additional time of the distributed PQ programs over the distributed GQ programs are
due to the same factors as mentioned for the non-distributed version. However, the overheads
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Table II. Average elapsed execution time (in seconds) for the distributed matrix
multiplication program using the same physical machine.

1.4GHz uniprocessor 2.8GHz dual-processor
Average Average

Elapsed Time Elapsed Time
Size GQ PQ Overhead Size GQ PQ Overhead
5×5 5.822 5.902 1.4% 5×5 3.326 3.342 0.5%

10×10 5.884 5.978 1.6% 10×10 3.308 3.344 1.1%
20×20 6.088 6.196 1.8% 20×20 3.392 3.426 1.0%
50×50 7.514 7.638 1.7% 50×50 3.860 3.918 1.5%

Table III. Average elapsed execution time (in seconds) for the distributed matrix
multiplication program using different physical machines.

3.0GHz uniprocessor
# of VMs = 1 # of VMs = 2
Average Average

Elapsed Time Elapsed Time
Size GQ PQ Overhead Size GQ PQ Overhead
5×5 2.966 2.996 1.0% 5×5 3.838 3.878 1.0%

10×10 3.100 3.166 2.1% 10×10 3.994 4.043 1.2%
20×20 3.768 3.836 1.8% 20×20 4.564 4.600 0.8%
50×50 7.294 7.548 3.5% 50×50 7.826 8.150 4.1%

# of VMs = 4 # of VMs = 8
Average Average

Elapsed Time Elapsed Time
Size GQ PQ Overhead Size GQ PQ Overhead
5×5 5.897 5.922 0.4% 5×5 9.780 9.928 1.5%

10×10 6.098 6.122 0.4% 10×10 9.906 9.976 0.7%
20×20 6.942 7.008 0.9% 20×20 10.722 10.815 0.9%
50×50 11.438 11.750 2.7% 50×50 15.694 16.065 2.4%

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 00:1–7
Prepared using cpeauth.cls



PARTIAL QUIESCENCE 25

Table IV. Average elapsed execution time (in seconds) for the non-distributed barrier
synchronization program.

Number of rounds registered = 3
1.4GHz uniprocessor 2.8GHz dual-processor

Average Average
Elapsed Time Elapsed Time

# of # of
workers GQ PQ % diff. workers GQ PQ % diff.

10 4.160 4.044 -2.8% 10 2.286 2.298 0.5%
20 4.436 4.394 -0.9% 20 2.610 2.622 0.5%
50 5.102 5.098 -0.1% 50 3.346 3.414 2.0%

100 5.660 5.754 1.7% 100 4.014 4.086 1.8%

Number of rounds registered = 6
1.4GHz uniprocessor 2.8GHz dual-processor

Average Average
Elapsed Time Elapsed Time

# of # of
workers GQ PQ % diff. workers GQ PQ % diff.

10 4.600 4.584 -0.3% 10 2.516 2.526 0.4%
20 4.614 4.574 -0.9% 20 3.042 3.054 0.4%
50 5.636 5.804 3.0% 50 3.954 4.002 1.2%

100 8.342 8.440 1.2% 100 5.144 5.250 2.1%

imposed on the distributed programs are slightly higher than those imposed on the non-
distributed ones, because, in addition to creating the process groups in the main program
(which resides in the main JRVM), process groups with the same names are also created in
the JRVMs where the remote objects are created. These additional process group creations
require extra RMI interactions with JRX. Furthermore, there are also extra RMI interactions
for a process group in each VM to notify JRX about its idleness and, in turn, for JRX to
confirm that the process group in each VM is in fact idle. Although there are overheads in
our PQ implementation, we can see from Table III that the percentages of overhead did not
increase as the number of VMs increases, which shows the impact of using more VMs in a PQ
program is insignificant.

6.2. Barrier Synchronization

For the non-distributed barrier, we compare the barrier program that uses PQ in Section 4.1.2
(Figure 9) with a similar barrier program that uses GQ. We measured the average elapsed
times over a range of different numbers of workers (10, 20, 50, and 100) as well as different
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Table V. Average elapsed execution time (in seconds) for the distributed barrier
synchronization program using the same physical machine.

Number of rounds registered = 3
1.4GHz uniprocessor 2.8GHz dual-processor

Average Average
Elapsed Time Elapsed Time

# of # of
workers GQ PQ % diff. workers GQ PQ % diff.

10 8.102 7.678 -5.2% 10 4.170 3.990 -4.3%
20 8.960 8.702 -2.9% 20 4.752 4.470 -5.9%
50 10.526 10.072 -4.3% 50 6.648 6.380 -4.0%

100 13.080 13.904 6.2% 100 8.882 8.394 -5.5%

Number of rounds registered = 6
1.4GHz uniprocessor 2.8GHz dual-processor

Average Average
Elapsed Time Elapsed Time

# of # of
workers GQ PQ % diff. workers GQ PQ % diff.

10 9.226 8.664 -6.1% 10 4.626 4.352 -5.9%
20 10.378 9.734 -6.2% 20 5.698 5.294 -7.1%
50 12.266 12.300 0.3% 50 8.028 7.464 -7.0%

100 16.126 15.766 -2.2% 100 12.088 11.492 -4.9%

numbers of rounds for PQ or GQ registration. Table IV shows that the times for the two
versions were always within 3% of each other. We also compared the PQ barrier program in
Section 4.1.2 (Figure 9) with the original (GQ) semaphore program in Figure 8. Over the same
ranges of workers, the PQ version took 4-10% more time than the GQ program.

6.3. Distributed Barrier Synchronization

For the distributed barrier, we compare the barrier program that uses PQ in Section 4.1.3
(Figures 10 and 11) with a barrier program that uses GQ. Each of these programs uses two
VMs that are located on the same physical machine. Again, the elapsed times are measured
for various numbers of workers (10, 20, 50, and 100) as well as various numbers of rounds for
PQ or GQ registration. Table V shows that the average elapsed times for the two versions
were always within 7% of each other.

We further extended the performance evaluation for the distributed barrier synchronization
program to include different numbers of worker processes that are located on different VMs
and different physical machines. The total number of workers varies from 16, 40, and 80 and
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Table VI. Average elapsed execution time (in seconds) for the distributed barrier
synchronization program using different physical machines.

3.0GHz uniprocessor
Number of rounds registered = 3

# of VMs = 1 # of VMs = 2
Average Average

Elapsed Time Elapsed Time
# of # of

workers GQ PQ % diff. workers GQ PQ % diff.
16 3.416 3.534 3.5% 16 4.456 4.342 -2.6%
40 4.166 4.188 0.5% 40 5.488 5.334 -2.8%
80 5.282 5.133 -2.8% 80 7.238 7.208 -0.4%

# of VMs = 4 # of VMs = 8
Average Average

Elapsed Time Elapsed Time
# of # of

workers GQ PQ % diff. workers GQ PQ % diff.
16 7.158 6.856 -4.2% 16 25.724 25.826 0.4%
40 9.238 8.778 -5.0% 40 33.674 32.230 -4.3%
80 13.098 12.612 -3.7% 80 41.530 40.453 -2.6%

are distributed equally among different number of VMs (1, 2, 4, and 8). Table VI shows that
the average elapsed times for the two programs were within 5% of each other, and they do not
change drastically when the number of VMs increases.

Tables IV, V, and VI show that the costs of PQ in the barrier programs are not significant.
Yet, in some cases, PQ programs have average elapsed times that are lower than those for
GQ programs. Table VII shows the average number of RMI calls the distributed barrier
synchronization program makes. As we can see, the PQ barrier programs often make fewer RMI
calls than the GQ ones. This shows that the GQ program usually requires more interactions
between each VM and the centralized manager (JRX) when detecting quiescence. In the GQ
implementation, these RMI calls are generated when a process is blocked on a receive or P

waiting for a message that is located on another VM. When the process attempts to acquire
a “lock” for this message queue, it registers itself as a “thread death” on the VM on which it
is located and registers itself as a“thread birth” on the VM on which the message queue for
the operation is located. The loggings of these “thread deaths” in one VM might, at times,
causes it to notify JRX about its idleness. At this point, the VM on which the message queue
is located might have already reported its idleness (before the new “thread birth” is logged
there). This causes JRX to sends messages (via RMI) to confirm the idleness of all VMs.
However, in the PQ implementation, even though all VMs might have reported to JRX that
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Table VII. Average number of RMI calls in the distributed barrier synchronization program
using different physical machines.

3.0GHz uniprocessor
Number of rounds registered = 3

# of VMs = 1 # of VMs = 2
# of RMIs # of RMIs

# of # of
workers GQ PQ workers GQ PQ

16 1172 1023 16 1755 1377
40 3256 3134 40 4447 3760
80 7923 5788 80 9076 8721

# of VMs = 4 # of VMs = 8
# of RMIs # of RMIs

# of # of
workers GQ PQ workers GQ PQ

16 2350 1614 16 3580 2280
40 6701 5357 40 10930 7633
80 14343 10558 80 24492 17725

they are idle, JRX would not perform RMIs to confirm the idleness of all VMs yet, as there is
still a “PGIdler” thread for each process group executing in JRX to detect partial quiescence.
As the VM on which JRX is located has not reported idle yet, JRX would not perform the
confirmation phase to verify the idle states of all other VMs, which reduces the number of
RMIs as compared to the GQ programs. Since RMIs are costly, the additional RMIs in the
GQ programs cover the costs of process group creations and the additional bookkeeping for
partial quiescence in the PQ programs.

In the matrix multiplication program, since processes never block or wait for a message, it
does not make these additional RMI calls and thus, we did not observe a case when a PQ
matrix multiplication program would perform better than a GQ one.

7. Discussion

Our definition of PQ seems to work well in the examples seen in Section 4.1. In the matrix
multiplication example (Section 4.1.1), the process groups are closed. In the barrier examples
(Sections 4.1.2 and 4.1.3), the process groups are open: the proceed messages are sent from the
coordinator operation, which is outside of group WG, to the worker processes in group WG. Yet,
this example illustrates that the definition we chose is still practical for open process group.
Although messages are generated from outside the group, these messages are all guaranteed to
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have been generated before the next partial quiescence operation is registered; that is, before
the program begins the next phase of partial quiescence detection.

Also in the barrier examples, global quiescence can be used instead of partial quiescence to
obtain the same effect of barrier synchronization. However, if barrier synchronization is used
only as a component of a larger application in which there are separate processes that do
not require barrier synchronization, only partial quiescence is effective to achieve the desired
synchronization, as global quiescence would cause the workers to delay their next iteration
of tasks until the separate processes unrelated to barrier synchronization have also become
quiescent. Similar comments apply if the program requires multiple barriers.

The barrier examples also illustrate one aspect of our work on PQ that is not entirely
satisfying. The code assumes that the workers do not quiesce for any other reason, such
as waiting for a message while interacting with some other worker (or any other process)
for purposes unrelated to the barrier. If they do, then quiescence could be detected early
(incorrectly, based on the programmer’s intent). The program can be changed to avoid such
problems, e.g., by disabling and enabling PQ (Section 4.3) around the non-barrier interactions.
However, that seems cumbersome. We plan to investigate this issue in future work.

Our notion of process groups is not new. Beside Java thread groups, many other systems
(such as Horus, ISIS, MPI, and PVM) provide support to organize groups of processes [29].
However, their process groups were not designed for the purpose of quiescence detection.
For example, process groups in MPI are used for collective communication purposes, such as
sending a message to a group of processes.

Our definition of PQ (or even the general definition of GQ) is aimed at message passing
languages and systems. As such, it seems that PQ could be adapted to other message passing
notations, such as Ada [20], Java with RMI [9], or MPI [21]. The details of how to implement PQ
for one of these other systems will vary according to the specific system and its implementation,
but the general ideas described in Section 5, such as using idle messages, should carry over. PQ
(or GQ) could also be applied to distributed applications that use message oriented middleware
for their communications. In theory, PQ (or even GQ) could be adapted for systems where
synchronization is based more on shared variables such as OpenMP [31] or systems that effect
conditional critical regions. In practice, however, that would likely entail more significant
changes to overall design of the implementation. Whether such changes would be feasible is
unclear. For example, consider a program that busy waits waiting for a global variable to equal
some value. The straightforward implementation of PQ (or GQ) might instrument the busy
wait loop with additional code to see whether PQ has been reached. Such code could adversely
affect the program’s performance.

Our definitions of PQ (or GQ) assume that the underlying distributed system is free from
faults. For example, we assume that nodes do not fail and that messages will be delivered. If the
system is susceptible to such faults, then our definition (and corresponding implementation)
will not work. An interesting question is how fault tolerance might be combined with quiescence
detection in such a way that is useful for the programmer. That remains an avenue for future
work.
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8. Conclusion

This paper introduced the notion of partial quiescence and showed how it can be incorporated
into a programming language, in our case, JR. Having such a PQ mechanism can lead to
a different style of programming, which in some cases can lead to programs that might be
considered simpler, for example, as seen in the barrier example in Section 4.1.2. This paper also
discussed the implementation of PQ and its performance, which differs only slightly from GQ’s
performance. We feel that our early results are promising both qualitatively and quantitatively.
However, further experience is needed with using PQ mechanisms to see whether this style
of programming is a good one and whether other applications might benefit from using PQ
mechanisms. Also, it would be interesting to investigate whether PQ can be applied to other
concurrency mechanisms.
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