ECS 120 Final — Spring 2004

Hints for success:

Please read the questions carefully; maybe they ask something different from what you expect. If you don't understand what a question means, ask.

Make your writing legible, logical, and succinct. Definitions and theorem statements should be complete and rigorous.

Final grades should be ready by June 20. I will post them to the web.

Have a great summer. Do something interesting! —Phil Rogaway

Name:

Signature:

On problem	you got	out of
1		27
2		26
3		20
4		20
5		20
Σ		113

1 Short Answers

[27 points]

1. Complete the following definition:

A context free language L is **inherently ambiguous** if ...

2. Complete the following definition:

A language A polynomial time reduces to a language B, written $A \leq_{\mathrm{P}} B,$ if

3. Using the procedure given in class and in the book (the "subset construction"), convert the following NFA into a DFA for the same language.

4. Give a CFG with a minimum number of rules for the language:

$$L = \{xx^R : x \in \{a, b\}^*\}$$

5. Prove that the following language is *not* context free.

$$L = \{xx : x \in \{a, b\}^*\}$$

6. Give a (deterministic) procedure to **accept**

 $L = \{ \langle M \rangle : M \text{ is a TM with alphabet } \Sigma = \{0, 1\} \text{ that accepts some palindrome} \}.$

7. Describe a procedure that **decides**

 $L = \{ \langle G \rangle : G = (V, \Sigma, R, S) \text{ is a CFG and } L(G) = \Sigma \}$

8. Draw a DFA with a minimal number of states that accepts $L = \{x \in \{1, 2\}^* : x \text{ has exactly two 2's} \}$

9. If $x \in \{0,1\}^*$ let x^c denote the bitwise complement of x (so $1001^c = 0110$, for example). For $L \subseteq \{0,1\}^*$, let $L^c = \{x^c : x \in L\}$. Given an *n*-state NFA M_1 and an *n*-state NFA M_2 , what is the smallest NFA you can provide for $(L(M_1) \cup L(M_2))^c$?

2 True or False

Put an \mathbf{X} through the **correct** box. No justification is required.

1.	If Π is decidable then $\Pi \leq_{\mathrm{m}} \{0, 1\}$.	True	False
2.	Every subset of a DFA-acceptable language is DFA-acceptable	9.	
		True	False
3.	$L^* = (L^*)^*.$	True	False
4.	If G is a CFG grammar in CNF (Chomsky Normal Form) and step derivation under G, and x also has a different, n-step derivation m = n.	d string x has a variant of x has a variant of x has a variant of x begin to x begin the formula of x begin to x begin the formula of x begin to	as an m - G , then False
5.	The language $L = \{1^{a_1} \# 1^{a_2} \# \cdots \# 1^{a_n} : a_i = a_{i+1} \text{ for some free.} \}$	$1 \le i < n$ } is True	context False
6.	If L is context free and \overline{L} is also context free then L is regular	r. True	False
7.	There are infinitely many languages over the alphabet $\Sigma = \{1, 2\}$	} for which True	$L = L^*.$ False
8.	The class P is closed under complement.	True	False
9.	$\{\langle G, w \rangle : G \text{ is a CFG and } w \in L(G)\} \in P.$	True	False
10.	Context-free languages are closed under intersection.	True	False
11.	The r.e. languages are closed under intersection.	True	False
12.	Every subset of a regular language is regular.	True	False
13.	Let $M = (Q, \{0, 1\}, \delta, q_0, F)$ be a DFA and suppose $\delta^*(q_0, x)$ $x \in L(M)$ iff $y \in L(M)$.	$\delta t = \delta^*(q_0, y)$ True). Then False

4

[26 points]

decidable (recursive)

Classify as: $\begin{cases} \text{r.e. Turing-acceptable (recursively enumerable) but not decidable co-r.e. co-Turing-acceptable but not decidable neither neither Turing-acceptable nor co-Turing-acceptable No explanation is required.$ $1. {<math>\langle M \rangle : M$ is a TM and L(M) is finite} 2. {d : the digit d appears infinitely often in the decimal expansion of $\pi = 3.14159\cdots$ } 3. { $\langle G \rangle : G$ is a CFG and $L(G) = \{0, 1\}^*$ } 4. { $\langle \alpha \rangle : \alpha$ is an regular expression and $L(\alpha) = \{0, 1\}^*$ } 5. { $\langle M \rangle : M$ is a TM and M accepts some palindrome} 6. An undecidable language L for which $L \leq_m A_{TM}$. 7. { $\langle P \rangle : P$ is a C-program and P halts on input of itself}.

8. {⟨M, M'⟩: M and M' are TMs and L(M) = L(M')}.
9. {⟨G⟩: G = (V, Σ, R, S) is a CFG and L(G) = Σ*}.
10. {φ: φ is a satisfiable Boolean Formula}

3 Language Classification

decidable

[20 points]

4 Mapping Reductions

[20 points]

Let $L = \{ \langle M \rangle : M \text{ is a TM and } L(M) = \{ \varepsilon \} \}.$

Part A. Prove that L is *not* r.e.

Part b. Prove that *L* is *not* co-r.e.

5 NP-Completeness

Let $BOTH = \{ \langle \phi \rangle : \phi \text{ is a Boolean formula and } \phi \text{ has some satisfying truth assignment } t_1 \text{ and some non-satisfying truth assignment } t_0 \}.$

Is BOTH NP-Complete? Prove your answer.

[20 points]