ECS 120 Final - Spring 2004

Hints for success:

Please read the questions carefully; maybe they ask something different from what you expect. If you don't understand what a question means, ask.
Make your writing legible, logical, and succinct. Definitions and theorem statements should be complete and rigorous.

Final grades should be ready by June 20. I will post them to the web.
Have a great summer. Do something interesting! -Phil Rogaway

Name:

Signature:

On problem	you got	out of
1		27
2		26
3		20
4		20
5		20
Σ		113

1 Short Answers

[27 points]

1. Complete the following definition:

A context free language L is inherently ambiguous if ...
2. Complete the following definition:

A language A polynomial time reduces to a language B, written $A \leq_{\mathrm{P}} B$, if
3. Using the procedure given in class and in the book (the "subset construction"), convert the following NFA into a DFA for the same language.
4. Give a CFG with a minimum number of rules for the language:

$$
L=\left\{x x^{R}: x \in\{a, b\}^{*}\right\}
$$

5. Prove that the following language is not context free.

$$
L=\left\{x x: \quad x \in\{a, b\}^{*}\right\}
$$

6. Give a (deterministic) procedure to accept
$L=\{\langle M\rangle: M$ is a TM with alphabet $\Sigma=\{0,1\}$ that accepts some palindrome $\}$.
7. Describe a procedure that decides

$$
L=\{\langle G\rangle: G=(V, \Sigma, R, S) \text { is a CFG and } L(G)=\Sigma\}
$$

8. Draw a DFA with a minimal number of states that accepts $L=\left\{x \in\{1,2\}^{*}\right.$: x has exactly two 2's\}
9. If $x \in\{0,1\}^{*}$ let x^{c} denote the bitwise complement of x (so $1001^{c}=0110$, for example). For $L \subseteq\{0,1\}^{*}$, let $L^{c}=\left\{x^{c}: x \in L\right\}$. Given an n-state NFA M_{1} and an n-state NFA M_{2}, what is the smallest NFA you can provide for $\left(L\left(M_{1}\right) \cup L\left(M_{2}\right)\right)^{c}$?

2 True or False

Put an \mathbf{X} through the correct box. No justification is required.

1. If Π is decidable then $\Pi \leq_{m}\{0,1\}$.

True False
2. Every subset of a DFA-acceptable language is DFA-acceptable.

True False
3. $L^{*}=\left(L^{*}\right)^{*} . \quad$ True False
4. If G is a CFG grammar in CNF (Chomsky Normal Form) and string x has an m step derivation under G, and x also has a different, n-step derivation under G, then $m=n$.

True False
5. The language $L=\left\{1^{a_{1}} \# 1^{a_{2}} \# \cdots \# 1^{a_{n}}: a_{i}=a_{i+1}\right.$ for some $\left.1 \leq i<n\right\}$ is context free.

True False
6. If L is context free and \bar{L} is also context free then L is regular.

True
False
7. There are infinitely many languages over the alphabet $\Sigma=\{1\}$ for which $L=L^{*}$.
True False
8. The class P is closed under complement.
True False
9. $\{\langle G, w\rangle: G$ is a CFG and $w \in L(G)\} \in P$.

True \quad False
10. Context-free languages are closed under intersection.
11. The r.e. languages are closed under intersection.

True \quad False
12. Every subset of a regular language is regular.
True False
13. Let $M=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ be a DFA and suppose $\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)$. Then $x \in L(M)$ iff $y \in L(M)$.

True False

3 Language Classification

[20 points]
Classify as: $\left\{\begin{aligned} \text { decidable } & \text { decidable (recursive) } \\ \text { r.e. } & \text { Turing-acceptable (recursively enumerable) but not decidable } \\ \text { co-r.e. } & \text { co-Turing-acceptable but not decidable } \\ \text { neither } & \text { neither Turing-acceptable nor co-Turing-acceptable }\end{aligned}\right.$
No explanation is required.

1. $\{\langle M\rangle: M$ is a TM and $L(M)$ is finite $\}$

2. $\{d$: the digit d appears infinitely often in the decimal expansion of $\pi=3.14159 \cdots\}$

3. $\left\{\langle G\rangle: G\right.$ is a CFG and $\left.L(G)=\{0,1\}^{*}\right\}$

4. $\left\{\langle\alpha\rangle: \alpha\right.$ is an regular expression and $\left.L(\alpha)=\{0,1\}^{*}\right\}$ \square
5. $\{\langle M\rangle: M$ is a TM and M accepts some palindrome $\}$ \square
6. An undecidable language L for which $L \leq_{\mathrm{m}} A_{\mathrm{TM}}$. \square
7. $\{\langle P\rangle: P$ is a C-program and P halts on input of itself $\}$. \square
8. $\left\{\left\langle M, M^{\prime}\right\rangle: M\right.$ and M^{\prime} are TMs and $\left.L(M)=L\left(M^{\prime}\right)\right\}$. \square
9. $\left\{\langle G\rangle: G=(V, \Sigma, R, S)\right.$ is a CFG and $\left.L(G)=\Sigma^{*}\right\}$. \square
10. $\{\phi: \phi$ is a satisfiable Boolean Formula $\}$ \square

4 Mapping Reductions

Let $L=\{\langle M\rangle: M$ is a TM and $L(M)=\{\varepsilon\}\}$.
Part A. Prove that L is not r.e.

Part b. Prove that L is not co-r.e.

5 NP-Completeness

[20 points]

Let $B O T H=\left\{\langle\phi\rangle: \phi\right.$ is a Boolean formula and ϕ has some satisfying truth assignment t_{1} and some non-satisfying truth assignment $\left.t_{0}\right\}$.
Is BOTH NP-Complete? Prove your answer.

