Quiz 1

Your name:

Think. Be precise. Be careful. It is always easy to get things wrong.

- 1. Complete the following definition, following the conventions of lecture and your text: A **DFA** is a five-tuple $M = (Q, \Sigma, \delta, q_0, F)$ where Q is a finite set, Σ is an alphabet, $q_0 \in Q$,
- $F \subseteq Q$, and δ is a function having domain and range .
- 2. Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$, we let $\delta^*(q, \varepsilon) = q$ and $\delta^*(q, ax) = \delta^*(\delta(q, a), x)$. We then said that M accepts x if _______. [mathematically rigorous statement involving δ^*] We defined $L(M) = \{x \in \Sigma^* : [] \}$.
- 3. Circle the correct answer.
 - (a) **True** or **False**: An efficient algorithm is known to decide if map can be colored with three colors (adjacent regions getting distinct colors).
 - (b) **True** or **False**: If $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA and F = Q then $L(M) = \Sigma^*$.
 - (c) **True** or **False**: If $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA and $F = \emptyset$ then $L(M) = \emptyset$.
 - (d) **True** or **False**: If A and B are DFA-acceptable then so is $A \cap B$.
 - (e) **True** or **False**: If there's a 10-state DFA that accepts L then there's a 20-state DFA that accepts L.
 - (f) **True** or **False**: $\emptyset^* = \emptyset$.
 - (g) **True** or **False**: The concatenation of an infinite language and a finite language is always infinite.
 - (h) **True** or **False**: If L is finite then there is a DFA that accepts L.
 - (i) **True** or **False**: It is possible to write $\{0, 1\}^{10} = \{x_0, x_1, \ldots, x_{1023}\}$ in such a way that $\Delta_i = x_i \oplus x_{i+1}$ (where \oplus denotes characterwise xor) has nine 0's and one 1 for all $0 \le i < 1024$.
- 4. Draw a **DFA** for the following language. Make your DFA as small as possible. $L_4 = \{0,1\}^* - \{0,01\}^* .$

5. List, in lexicographic order, the first **five** strings of L_4 .