Quiz 1

Your name:

Think. Be precise. Be careful. It is always easy to get things wrong.

1. Complete the following definition, following the conventions of lecture and your text: A DFA is a five-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where Q is a finite set, Σ is an alphabet, $q_{0} \in Q$, $F \subseteq Q$, and δ is a function having domain \square and range \square
2. Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we let $\delta^{*}(q, \varepsilon)=q$ and $\delta^{*}(q, a x)=\delta^{*}(\delta(q, a), x)$. We then said that M accepts x if \square . [mathematically rigorous statement involving $\left.\delta^{*}\right\}$ We defined $L(M)=\left\{x \in \Sigma^{*}:\right.$ \square
3. Circle the correct answer.
(a) True or False: An efficient algorithm is known to decide if map can be colored with three colors (adjacent regions getting distinct colors).
(b) True or False: If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F=Q$ then $L(M)=\Sigma^{*}$.
(c) True or False: If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F=\emptyset$ then $L(M)=\emptyset$.
(d) True or False: If A and B are DFA-acceptable then so is $A \cap B$.
(e) True or False: If there's a 10-state DFA that accepts L then there's a 20 -state DFA that accepts L.
(f) True or False: $\emptyset^{*}=\emptyset$.
(g) True or False: The concatenation of an infinite language and a finite language is always infinite.
(h) True or False: If L is finite then there is a DFA that accepts L.
(i) True or False: It is possible to write $\{0,1\}^{10}=\left\{x_{0}, x_{1}, \ldots, x_{1023}\right\}$ in such a way that $\Delta_{i}=x_{i} \oplus x_{i+1}$ (where \oplus denotes characterwise xor) has nine 0 's and one 1 for all $0 \leq i<1024$.
4. Draw a DFA for the following language. Make your DFA as small as possible. $L_{4}=\{0,1\}^{*}-\{0,01\}^{*}$.
5. List, in lexicographic order, the first five strings of L_{4}.
