Quiz 2

Your name:

Think. Be careful, clear, and precise.

1. Complete the following narrative, following the conventions of lecture and your text.

A DFA was defined as a five-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where Q is a finite set, Σ is an alphabet, $q_{0} \in Q, F \subseteq Q$, and $\delta: Q \times \Sigma \rightarrow Q$.
To define an NFA M^{\prime} we modified the conventions above to say that an NFA is a 5 tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where Q, Σ, q_{0}, F were as before, but now δ has a domain of
\qquad and range \square .
We showed that DFAs and NFAs accept the same class of languages. For the "easy" direction of this, we said that, informally, every DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA. But that's not formally true, because the transition functions have different signatures. So, formally, given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ you need to construct an NFA $M^{\prime}=$ $\left(Q, \Sigma, \delta^{\prime}, q_{0}, F\right)$, where $L\left(M^{\prime}\right)=L(M)$, by saying that $\delta^{\prime}(q, a)=\square$ when $a \in \Sigma$, and $\delta^{\prime}(q, \varepsilon)=\square$.
For the nontrivial direction, we are given an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$. We saw how to eliminate the ε-arrows, so we can assume, without loss of generality, that $\delta(q, \varepsilon)=\emptyset$ for all $q \in Q$. Construct from M a DFA $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ where $Q^{\prime}=\square$ and, additionally, $\delta^{\prime}(S, a)=$ \square (for $S \in Q^{\prime}, a \in \Sigma$), $q_{0}^{\prime}=\left\{q_{0}\right\}$, and, $F^{\prime}=$ \qquad
2. You are given a first DFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ with $|Q|=10$ states, $|F|=5$ of them final. You are given a second DFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ with $|Q|=10$ states, $|F|=5$ of them final. Suppose you use the product construction to make a DFA $M=(Q, \Sigma, \delta, s, F)$ for $L\left(M_{1}\right) \cup L\left(M_{2}\right)$. It will have $|Q|=$ \qquad states and $|F|=$ \qquad of them will be final.
3. Similarly, suppose you mindlessly convert $0 \cup 10^{*}$ into an NFA M using the procedures shown in class and in the book. Then M will have \square states.
4. Suppose $L \subseteq \Sigma^{*}$ is accepted by an n-state DFA. For any pair of strings $x, y \in \Sigma^{*}$, say $x \sim y$ if for every $z \in \Sigma^{*}, x z \in L \Leftrightarrow y z \in L$. Say something interesting about the number of equivalence classes, m, of this relation. \square
Please turn the page over!
5. Circle the correct answer. Missing answers will be treated as wrong, so if you don't know an answer, please guess.
(a) True or False: There exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that no function $F: \mathbb{N} \rightarrow \mathbb{N}$ that upperbounds it ${ }^{1}$ can be computed.
(b) True or False: If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $F=Q$ then $L(M)=\Sigma^{*}$.
(c) True or False: If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA and $F=Q$ then $L(M)=\Sigma^{*}$.
(d) True or False: If A and B are regular then so is $A \cap B$.
(e) True or False: If L^{*} is regular then L is regular.
(f) True or False: If L is finite then L is regular.
(g) True or False: Every subset of a regular language is regular.
(h) True or False: A regular expression is a string.
(i) True or False: We have seen that the pumping lemma is a useful tool for proving languages regular.
(j) True or False: An efficient procedure ${ }^{2}$ is known that takes a regular expression α and a word w and decides if $w \in L(\alpha)$.

[^0]
[^0]: ${ }^{1} F$ upperbounds f if $F(x) \geq f(x)$ for all x.
 ${ }^{2} \mathrm{Eg}$, linear, quadratic, or cubic time in $|\alpha|+|w|$.

