Problem Set 2 - Due Friday, April 12, 2013

Problem 1 Draw a smallest DFA M_{1} for $L_{1}=\left\{w \in\{a, b\}^{*}:|w| \equiv 1 \quad(\bmod 3)\right\}$. Draw a smallest DFA M_{2} for $L_{2}=\left\{w \in\{a, b\}^{*}: w\right.$ ends in ' $a a$ ' $\}$. Applying the product construction, draw the machine M whose language is $L_{1} \cup L_{2}$. To make your method clear, name the states of M_{1}, M_{2}, and M. What would change if you wanted a machine for $L_{1} \cap L_{2}$?

Problem 2 Given a mapping $\delta: Q \times \Sigma \rightarrow Q$, we defined $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ by asserting that $\delta^{*}(q, \varepsilon)=q$ and $\delta^{*}(q, a x)=\delta^{*}(\delta(q, a), x)$. Prove that $\delta^{*}(q, x y)=\delta^{*}\left(\delta^{*}(q, x), y\right)$ for all $q \in Q$ and $x, y \in \Sigma^{*}$. Carefully justify each step.

Problem 3 State whether the following propositions are true or false, proving each answer.
(a) Every DFA-acceptable language can be accepted by a DFA with an even number of states.
(b) Every DFA-acceptable language can be accepted by a DFA whose start state is never visited twice.
(c) Every DFA-acceptable language can be accepted by a DFA no state of which is ever visited more than once.
(d) The language $L=\left\{x \in\{a, b\}^{*}: x\right.$ starts and ends with the same character $\}$ can be accepted by a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for which $\delta^{*}\left(q_{0}, w\right)=q_{0}$ for some $w \neq \varepsilon$. Assume an alphabet of $\Sigma=\{a, b\}$.

Problem 4 A homomorphism is a function $h: \Sigma \rightarrow \Gamma^{*}$ for alphabets Σ, Γ. Given a homomorphism h, extend it to strings and then languages by asserting that $h(\varepsilon)=\varepsilon, h\left(a_{1} \cdots a_{n}\right)=h\left(a_{1}\right) \cdots h\left(a_{n}\right)$ (for $a_{1}, \ldots, a_{n} \in \Sigma$), and $h(L)=\{h(x): x \in L\}$.
(a) Prove: for any homomorphism h, if L is DFA-acceptable, then so is $h(L)$.
(b) Disprove: for any homomorphism h, if $h(L)$ is DFA-acceptable, then so is L.

Problem 5 Prove that five states are necessary and sufficient to recognize the language $L=\{x \in$ $\{a, b\}^{+}: x$ starts and ends with the same character $\}$.

Problem 6. As mentioned in class, the names of states - what we choose as points for the set Q-is unimportant for defining what are DFA-acceptable languages. Re-formalize the syntax of a DFA so that there is no named state set (use consecutive numbers instead). With the new convention, a DFA will be some sort of 4 -tuple. Give the formal definition for each of its components. Then describe something we have done in class that will look more complex using your new formulation.

