Problem Set 5 – Due Friday, May 3, 2013

Problem 1. Given an NFA $M=(Q,\Sigma,\delta,q_0,F)$, define $\Lambda(M)=\{x\in\Sigma^*: \delta^*(q_0,x)\subseteq F\}$. In clear English, explain what is $\Lambda(M)$. Then prove that L is regular iff there is a machine M such that $L=\Lambda(M)$.

Problem 2. Specify a CFG for the language

 $L = \{x \in \{a, b, c\}^* : x \text{ contains an equal number of two different characters}\}.$

Make your CFG as simple as possible. (If it isn't obviously right to the TA, it isn't right.)

Problem 3. Specify a CFG for $L = \{x \neq y : x, y \in \{0,1\}^+ \text{ and } x \neq y\}$. With diagrams or clear English, explain how your grammar works.

Problem 4. Specify a PDA for the language of problem 2.

Problem 5. Consider the following CFG $G = (V, \Sigma, R, STMT)$:

```
\begin{array}{llll} {\rm STMT} \to {\rm ASSIGN} & | & {\rm IFTHEN} & | & {\rm IFTHENELSE} \\ {\rm IFTHEN} \to {\bf if} & {\bf condition} & {\bf then} & {\rm STMT} \\ {\rm IFTHENELSE} \to {\bf if} & {\bf condition} & {\bf then} & {\rm STMT} & {\bf else} & {\rm STMT} \\ {\rm ASSIGN} \to {\bf a}{:=}1 \end{array}
```

with V being the variables in CAPS and Σ being the tokens in **bold**. We explained in class why G (or something just like it) is ambiguous. Provide an unambiguous CFG G', the simplest you can find, where L(G') = L(G). Explain why G' is unambiguous.

Problem 6.

Part A. Prove that every regular language is context free. Do this by converting a DFA $M = (Q, \Sigma, \Delta, q_0, F)$ into a CFG $G = (V, \Sigma, R, S)$ for the same language.

Part B. Prove that every regular language is generated by an unambiguous CFG.

Part C. Prove that every nonempty CFL is generated by an ambiguous CFG.

 $^{^1}L\subseteq\{0,1,\neq\}^*;$ the first " \neq " is the definition of L is just a formal symbol.