The CYK Algorithm

David Rodriguez-Velazquez
 CS - 6800
 Summer I-2009

The CYK Algorithm

- The membership problem:
- Problem:
- Given a context-free grammar \mathbf{G} and a string \mathbf{w}
- $\mathbf{G}=(\mathrm{V}, \Sigma, \mathrm{P}, \mathrm{S})$ where
" V finite set of variables
" \sum (the alphabet) finite set of terminal symbols
" P finite set of rules
" S start symbol (distinguished element of V)
" V and Σ are assumed to be disjoint
$-\mathbf{G}$ is used to generate the string of a language
- Question:
- Is win L(G)?

The CYK Algorithm

- J. Cocke
- D. Younger,
- T. Kasami
- Independently developed an algorithm to answer this question.

The CYK Algorithm Basics

- The Structure of the rules in a Chomsky Normal Form grammar

- Uses a "dynamic programming" or "table-filling algorithm"

Chomsky Normal Form

- Normal Form is described by a set of conditions that each rule in the grammar must satisfy
- Context-free grammar is in CNF if each rule has one of the following forms:
$-A \rightarrow B C \quad$ at most 2 symbols on right side
$-A \rightarrow a$, or terminal symbol
$-S \rightarrow \lambda \quad$ null string
where $B, C \in \vee-\{S\}$

Construct a Triangular Table

- Each row corresponds to one length of substrings
- Bottom Row - Strings of length 1
- Second from Bottom Row - Strings of length 2
- Top Row - string 'w'

Construct a Triangular Table

- $\mathbf{X}_{\mathrm{i}, \mathrm{i}}$ is the set of variables A such that $A \rightarrow w_{i}$ is a production of G
- Compare at most n pairs of previously computed sets:
$\left(X_{i, i}, X_{i+1, j}\right),\left(X_{i, i+1}, X_{i+2, j}\right) \ldots\left(X_{i, j-1}, X_{j, j}\right)$

Construct a Triangular Table

Table for string ' \mathbf{w} ' that has length 5

Construct a Triangular Table

Looking for pairs to compare

Example CYK Algorithm

- Show the CYK Algorithm with the following example:
- CNF grammar G
- $S \rightarrow A B \mid B C$
- $A \rightarrow B A \mid a$
- $\mathrm{B} \rightarrow \mathrm{CC} \mid \mathrm{b}$
- $\mathrm{C} \rightarrow \mathrm{AB} \mid \mathrm{a}$
- w is baaba
- Question Is baaba in $L(G)$?

Constructing The Triangular Table

Calculating the Bottom ROW

Constructing The Triangular Table

- $X_{1,2}=\left(X_{i, i}, X_{i+1, j}\right)=\left(X_{1,1}, X_{2,2}\right)$
- $\rightarrow\{B\}\{A, C\}=\{B A, B C\}$
- Steps:
- Look for production rules to generate BA or BC
- There are two: S and A
$-X_{1,2}=\{S, A\}$

$$
\begin{aligned}
& S \rightarrow A B \mid B C \\
& A \rightarrow B A \mid a \\
& B \rightarrow C C \mid b \\
& C \rightarrow A B \mid a
\end{aligned}
$$

Constructing The Triangular Table

Constructing The Triangular Table

- $X_{2,3}=\left(X_{i, i}, X_{i+1, j}\right)=\left(X_{2,2}, X_{3,3}\right)$
$\rightarrow\{A, C\}\{A, C\}=\{A A, A C, C A, C C\}=Y$
- Steps:
- Look for production rules to generate Y
- There is one: B
$-X_{2,3}=\{B\}$

$$
\begin{aligned}
& S \rightarrow A B \mid B C \\
& A \rightarrow B A \mid a \\
& B \rightarrow C C \mid b \\
& C \rightarrow A B \mid a
\end{aligned}
$$

Constructing The Triangular Table

Constructing The Triangular Table

- $X_{3,4}=\left(X_{i, i}, X_{i+1, j}\right)=\left(X_{3,3}, X_{4,4}\right)$
- $\rightarrow\{A, C\}\{B\}=\{A B, C B\}=Y$
- Steps:
- Look for production rules to generate Y
- There are two: S and C
$-X_{3,4}=\{S, C\}$

$$
\begin{aligned}
& S \rightarrow \mathrm{AB} \mid \mathrm{BC} \\
& \mathrm{~A} \rightarrow \mathrm{BA} \mid \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{CC} \mid \mathrm{b} \\
& \mathrm{C} \rightarrow \mathrm{AB} \mid \mathrm{a}
\end{aligned}
$$

Constructing The Triangular Table

\{S, A\}	\{B\}	\{S, C $\}$		
\{B\}	\{A, C \}	\{A, C $\}$	\{B\}	\{A, C $\}$

Constructing The Triangular Table

- $X_{4,5}=\left(X_{i, i}, X_{i+1, j}\right)=\left(X_{4,4}, X_{5,5}\right)$
- $\rightarrow\{B\}\{A, C\}=\{B A, B C\}=Y$
- Steps:
- Look for production rules to generate Y
- There are two: S and A
$-X_{4,5}=\{S, A\}$

$$
\begin{aligned}
& S \rightarrow A B \mid B C \\
& A \rightarrow B A \mid a \\
& B \rightarrow C C \mid b \\
& C \rightarrow A B \mid a
\end{aligned}
$$

Constructing The Triangular Table

Constructing The Triangular Table

- $X_{1,3}=\left(X_{i, i}, X_{i+1, j}\right)\left(X_{i, i+1}, X_{i+2, j}\right)$

$$
=\left(X_{1,1}, X_{2,3}\right),\left(X_{1,2}, X_{3,3}\right)
$$

$\rightarrow\{B\}\{B\} \cup\{S, A\}\{A, C\}=\{B B, S A, S C, A A, A C\}=Y$

- Steps:
- Look for production rules to generate Y
- There are NONE: S and A
$-X_{1,3}=\varnothing$

$$
\begin{aligned}
& S \rightarrow A B \mid B C \\
& A \rightarrow B A \mid a \\
& B \rightarrow C C \mid b \\
& C \rightarrow A B \mid a
\end{aligned}
$$

- no elements in this set (empty set)

Constructing The Triangular Table

\emptyset				
\{S, A\}	\{B\}	$\{\mathrm{S}, \mathrm{C}\}$	\{S, A\}	
\{B\}	\{A, C \}	\{A, C $\}$	\{B\}	\{A, C $\}$

Constructing The Triangular Table

- $X_{2,4}=\left(X_{i, i}, X_{i+1, j}\right)\left(X_{i, i+1}, X_{i+2, j}\right)$

$$
=\left(X_{2,2}, X_{3,4}\right),\left(X_{2,3}, X_{4,4}\right)
$$

$\rightarrow\{A, C\}\{S, C\} \cup\{B\}\{B\}=\{A S, A C, C S, C C, B B\}=Y$

- Steps:
- Look for production rules to generate Y
- There is one: B
$-X_{2,4}=\{B\}$

$$
\begin{aligned}
& S \rightarrow A B \mid B C \\
& A \rightarrow B A \mid a \\
& B \rightarrow C C \mid b \\
& C \rightarrow A B \mid a
\end{aligned}
$$

Constructing The Triangular Table

\emptyset	\{B\}			
\{S, A\}	\{B\}	\{S, C $\}$	\{S, A	
\{B\}	\{A, C \}	\{A, C $\}$	\{B\}	\{A, C $\}$

Constructing The Triangular Table

- $X_{3,5}$

$$
\begin{aligned}
& =\left(X_{i, i}, X_{i+1, j}\right)\left(X_{i, i+1}, X_{i+2, j}\right) \\
& =\left(X_{3,3}, X_{4,5}\right),\left(X_{3,4}, X_{5,5}\right)
\end{aligned}
$$

- $\rightarrow\{A, C\}\{S, A\} \cup\{S, C\}\{A, C\}$

$$
=\{A S, A A, C S, C A, S A, S C, C A, C C\}=Y
$$

- Steps:
- Look for production rules to generate Y
- There is one: B

$$
-X_{3,5}=\{B\}
$$

$$
\begin{aligned}
& S \rightarrow A B \mid B C \\
& A \rightarrow B A \mid a \\
& B \rightarrow C C \mid b \\
& C \rightarrow A B \mid a
\end{aligned}
$$

Constructing The Triangular Table

Final Triangular Table

\{S, A, C $\}$	$\leftarrow \mathrm{X}_{1,5}$			
\varnothing	$\{\mathrm{S}, \mathrm{A}, \mathrm{C}\}$			
\emptyset	$\{\mathrm{B}\}$	\{B\}		
$\{\mathrm{S}, \mathrm{A}\}$	\{B\}	$\{\mathrm{S}, \mathrm{C}\}$	\{S, A\}	
\{B\}	\{A, C \}	\{A, C $\}$	\{B\}	\{A, C

- Table for string 'w' that has length 5
- The algorithm populates the triangular table

Example (Result)

- Is baaba in $\mathrm{L}(\mathrm{G})$?

Yes

We can see the S in the set $X_{1 n}$ where ' n ' $=5$ We can see the table
the cell $\mathrm{X}_{15}=(\mathrm{S}, \mathrm{A}, \mathrm{C})$ then
if $S \in X_{15}$ then baaba $\boldsymbol{\epsilon} \mathbf{L}(\mathbf{G})$

Theorem

- The CYK Algorithm correctly computes X_{ij} for all i and j; thus w is in $L(G)$ if and only if S is in $X_{1 n}$.
- The running time of the algorithm is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.

References

- J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Second Edition, Addison Wesley, 2001
- T.A. Sudkamp, An Introduction to the Theory of Computer Science Languages and Machines, Third Edition, Addison Wesley, 2006

Question

- Show the CYK Algorithm with the following example:
- CNF grammar G
- $S \rightarrow A B \mid B C$
- $\mathrm{A} \rightarrow \mathrm{BA} \mid \mathrm{a}$
- $\mathrm{B} \rightarrow \mathrm{CC} \mid \mathrm{b}$
- $\mathrm{C} \rightarrow \mathrm{AB} \mid \mathrm{a}$
$-\mathbf{w}$ is ababa
- Question Is ababa in L(G)?
- Basics of CYK Algorithm
- The Structure of the rules in a Chomsky Normal Form grammar
- Uses a "dynamic programming" or "table-filling algorithm"
- Complexity O(n3)

