Practice Final Solutions (Fall 1995 Final)

1 Recall...

[30 points]
A. Complete the following definition:

Let $A, B \subseteq\{0,1\}^{*}$. We say that A polynomial-time mapping reduces to B, written $A \leq_{\mathrm{P}} B$, if \ldots
there exists a polynomial-time computable function f such that $x \in A$ iff $f(x) \in B$.
B. Complete the following definition:

A language L is NP-Complete if ...
(1) $L \in \mathrm{NP}$, and
(2) for all $A \in \mathrm{NP}, A \leq_{\mathrm{P}} L$.
C. State the Cook/Levin Theorem:

Theorem [Cook/Levin]:
There is an NP-Complete language. In fact, SAT is NP-complete.
D. Complete the following statement of the pumping lemma for context free languages:

Theorem. If a language L is context free then there exists a number K such that ...
for all $s \in L$ such that $|s| \geq K$ there exists u, v, x, y, z such that $s=u v x y z$ and $|v x y| \leq K$ and $|v y| \geq 1$ and $u v^{i} x y^{i} z \in L$ for all $i \geq 0$.
E. In a sentence or two, state the "Church-Turing Thesis:"

Turing machines exactly capture our intuitive notion of what is effectively computable.
F. State Rice's Theorem (which says that a certain class of languages is undecidable).

Theorem [Rice]:

If P is a non-trivial property of the r.e. languages then $\{\langle M\rangle: L(M)$ has property $P\}$ is undecidable.

2 True/False

Mark the correct box by putting an "X" through it. No justification required.

1. For every i, the language $L_{i}=\left\{a^{i} b^{i} c^{i}\right\}$ is context free. True
2. Assume L is a regular language and let L_{1101} be the subset of L which contains the strings that end in a 1101. Then L_{1101} is regular. True
3. If L^{*} is decidable then L is decidable. False
4. Every enumerable language can be accepted by a TM whose head only moves to the right. False
5. For any language L, the language L^{*} is infinite. False
6. Let $\langle M\rangle$ be the encoding of a Turing machine M. Let $P(\langle M\rangle)=0$ if M on ε halts in an even number of steps, 1 otherwise. Then P satisfies the condition of Rice's theorem: it is a nontrivial property of enumerable languages. False
7. The language $L=\{\langle M\rangle: L(M) \in \mathrm{NP}\} \in \mathrm{NP}$. False
8. Suppose $3 S A T \leq_{\mathrm{P}} L$ and $L \in \mathrm{P}$. Then $\mathrm{P}=\mathrm{NP}$. True
9. A_{TM} is NP-complete. False
10. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \leq_{\mathrm{P}} L_{1}$, then $L_{1}=L_{2}$. False

3 Language Classification.

[20 points]
Classify as: $\left\{\begin{aligned} \text { decidable } & \text { decidable } \\ \text { r.e. } & \text { enumerable but not decidable } \\ \text { co-r.e. } & \text { co-enumerable but not decidable } \\ \text { neither } & \text { neither enumerable nor co-enumerable }\end{aligned}\right.$
No explanation is required.

1. $\{\langle M\rangle: M$ is a $T M$ which accepts some palindrome $\}$. r.e.
2. $\{\langle M\rangle: M$ is a TM which accepts some string of length $\geq|\langle M\rangle|\}$. r.e.
3. $\{d$: the digit d appears infinitely often in the decimal expansion of $\pi=3.14159 \cdots\}$. decidable
4. $\{\langle G\rangle: G$ is a regular grammar and $L(G)$ contains an even-length string\} decidable
5. $\left\{\langle G\rangle: G\right.$ is a CFG and $\left.L(G)=\Sigma^{*}\right\}$ co-r.e.
6. $\{\langle G, k\rangle: G$ is a graph containing no clique of size $k\}$. decidable
7. A language L for which $L_{\Sigma^{*}}=\left\{\langle M\rangle: L(M)=\Sigma^{*}\right\} \leq_{\mathrm{m}} L$. neither
8. $\{\langle t\rangle: t$ is an instance of the tiling problem for which you can tile the plane using 10 or fewer tile types.\}. Omit this; we did not cover the tiling problem this term.

4 A Tight Bound on DFA Size

Let $L_{5}=\{111\}$ be the language over $\{0,1\}$ which contains only the string 111 .
(A) Show that L_{5} can be recognized by an 5-state DFA.

Just draw the five-state DFA that accepts L_{5}.
(B) Prove that L_{5} can not be recognized by a 4-state DFA.

Assume for contradiction that there exists a four state DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L_{5}. Consider the five states $q_{i}=\delta^{*}\left(q_{0}, 1^{i}\right)$ for $0 \leq i \leq 4$. We claim that all five of these states must be distinct, contradicting the pigeonhole principle. To see this, note that if $q_{i}=q_{I}$ for $0 \leq i<I \leq 4$ then $\delta^{*}\left(q_{0}, 1^{i}\right)=\delta^{*}\left(q_{0}, 1^{I}\right)$ so $\delta^{*}\left(q_{0}, 1^{i} 1^{3-i}\right)=\delta^{*}\left(q_{0}, 1^{I} 1^{3-i}\right)$ so $\delta^{*}\left(q_{0}, 1^{3}\right)=\delta^{*}\left(q_{0}, 1^{I+3-i}\right)$ which is absurd, because the first state must be final and the second state must not be.

5 A Decision Procedure

If α is a regular expression, we write α^{2} for the regular expression $\alpha \alpha$. Show that the following language is decidable (ie., exhibit a decision procedure for this language):

$$
L=\left\{\langle a, b, c\rangle: a, b \text { and } c \text { are regular expressions and } a^{2} \cup b^{2}=c^{2} .\right\}
$$

Using the procedure given in class, convert the regular expression $a a \cup b b$ into an NFA, and then a DFA, M_{1}. Using the procedure given in class, convert the regular expression $c c$ into an NFA, and then a DFA, M_{2}. Using the product construction, construct a DFA M the language of which is $L\left(M_{1}\right) \oplus L\left(M_{2}\right)$. Using the procedure given in class, look to see if $L(M)$ is empty. If it is, answer yes; otherwise, answer no.

6 Mapping Reductions

[20 points]
Recall that, if $w=a_{1} \cdots a_{n} \in \Sigma^{n}$ is a string, $w^{R}=a_{n} \cdots a_{1}$ is the "reversal" of w. If $L \subseteq \Sigma^{*}$ is a language, $L^{R}=\left\{w^{R}: w \in L\right\}$. Let

$$
\begin{aligned}
A_{\mathrm{TM}} & =\{\langle M, w\rangle: M \text { accepts } w\} \\
A_{R} & =\left\{\langle M\rangle: L(M)=(L(M))^{R}\right\}
\end{aligned}
$$

A. Show that $A_{\mathrm{TM}} \leq_{\mathrm{m}} A_{R}$.

We must map $\langle M, w\rangle$ into $\left\langle M^{\prime}\right\rangle$ such that M accepts w iff $L\left(M^{\prime}\right)=\left(L\left(M^{\prime}\right)\right)^{R}$. The map must be Turing-computable. So let M^{\prime} on input x behave as follows:

If $x=01$ then accept.
Run M on w
If M accepts w, then accept
If M rejects w, then reject
Now if M accepts w then $L\left(M^{\prime}\right)=\Sigma^{*}$ so $L\left(M^{\prime}\right)=\left(L\left(M^{\prime}\right)\right)^{R}$; while if M does not accept w then $L\left(M^{\prime}\right)=\{01\}$ so $L\left(M^{\prime}\right) \neq\left(L\left(M^{\prime}\right)\right)^{R}$.
B. Show that $\overline{A_{\mathrm{TM}}} \leq{ }_{\mathrm{m}} A_{R}$.

We must map $\langle M, w\rangle$ into $\left\langle M^{\prime}\right\rangle$ such that (a) if M does not accept w then $L\left(M^{\prime}\right)=\left(L\left(M^{\prime}\right)\right)^{R}$, and (b) if M does accept w then $L\left(M^{\prime}\right) \neq\left(L\left(M^{\prime}\right)\right)^{R}$. The map must be Turing-computable. So let M^{\prime} on input x behave as follows:

> Run M on w
> If M accepts w and $x=01$ then accept
> Reject

Now if M does not accepts w then $L\left(M^{\prime}\right)=\emptyset$ so $L\left(M^{\prime}\right)=\left(L\left(M^{\prime}\right)\right)^{R}$; while if M does accept w then $L\left(M^{\prime}\right)=\{01\}$ so $L\left(M^{\prime}\right) \neq\left(L\left(M^{\prime}\right)\right)^{R}$.

7 NP-Completeness

[20 points]

Let $G=(V, E)$ be a graph. We say that $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a vertex-induced subgraph of G if $V^{\prime} \subseteq V$ and E^{\prime} is all the edges of G both endpoints of which are in V^{\prime}. Now suppose each edge $e \in E$ as an integer weight, $w(e)$. Then the weight of the subgraph G^{\prime} is just $\sum_{e^{\prime} \in E^{\prime}} w\left(e^{\prime}\right)$.

Show that the following language of graphs with heavy vertex-induced subgraphs is NP-Complete.

$$
\begin{gathered}
\text { HVIS }=\{\langle G, w, B\rangle: G=(V, E) \text { is a graph, } w: E \rightarrow \mathrm{Z} \text { specifies an integer weight, } \\
w(e), \text { for each } e \in E \text {, and } B \in \mathrm{Z} \text { is an integer; and } G \text { has some } \\
\text { vertex-induced subgraph of weight at least } B .\}
\end{gathered}
$$

First we show that HVIS \in NP. Given $\langle G, w, B\rangle$, just "guess" a subset of vertices $V^{\prime} \subseteq V$ and verify that the total weight of the subgraph induced by V^{\prime} is at least B. That is, the certificate identifies the induced subgraph.

Now we show that CLIQUE \leq_{P} HVIS. Given a graph $G=(V, E)$ and a number k we must map it into a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and a weight function w and a bound B such that G has a clique of size k if and only iff G^{\prime} has an induced subgraph of weight at least B, relative to w. So given $G=(V, E)$ and k, where $n=|V|$, let $G^{\prime}=\left(V, E^{\prime}\right)$ be the complete graph on n-node. Let $w(e)$ to be 1 if $e \in E$ and $w(e)=-n^{2}$ otherwise. Let $B=\binom{k}{2}=k(k-1) / 2$. Then if G has a k-clique W then W names a vertex-induced subgraph of weight $\binom{k}{2}$ and so the instance of HVIS we have generated is a yes-instance. Conversely, if G^{\prime} has a vertex-induced subgraph of weight $B=\binom{k}{2}$ then the vertices of this subgraph must comprise a clique of size at least k because it can contain no non-edges of E, as even one such edge would result in the weight of the induced subgraph being negative. The transformation is clearly polynomial time, so we are done.

