Practice Final Solutions (Fall 1995 Final)

1 Recall ...

[30 points]

 $\textbf{A.} \ Complete \ the \ following \ definition:$

Let $A, B \subseteq \{0, 1\}^*$. We say that A polynomial-time mapping reduces to B, written $A \leq_{\mathbf{P}} B$, if ...

there exists a polynomial-time computable function f such that $x \in A$ iff $f(x) \in B$.

B. Complete the following definition:

A language L is NP-Complete if ...

- (1) $L \in NP$, and
- (2) for all $A \in NP$, $A \leq_P L$.
- C. State the Cook/Levin Theorem:

Theorem [Cook/Levin]:

There is an NP-Complete language. In fact, SAT is NP-complete.

D. Complete the following statement of the pumping lemma for context free languages:

Theorem. If a language L is context free then there exists a number K such that ...

for all $s \in L$ such that $|s| \ge K$ there exists u, v, x, y, z such that s = uvxyz and $|vxy| \le K$ and $|vy| \ge 1$ and $uv^ixy^iz \in L$ for all $i \ge 0$.

E. In a sentence or two, state the "Church-Turing Thesis:"

Turing machines exactly capture our intuitive notion of what is effectively computable.

F. State Rice's Theorem (which says that a certain class of languages is undecidable).

Theorem [Rice]:

If P is a non-trivial property of the r.e. languages then $\{\langle M \rangle : L(M) \text{ has property } P\}$ is undecidable.

2 True/False

Mark the correct box by putting an "X" through it. No justification required.

- **1.** For every *i*, the language $L_i = \{a^i b^i c^i\}$ is context free. **True**
- **2.** Assume L is a regular language and let L_{1101} be the subset of L which contains the strings that end in a 1101. Then L_{1101} is regular. **True**
- **3.** If L^* is decidable then L is decidable. False
- 4. Every enumerable language can be accepted by a TM whose head only moves to the right. False

- 5. For any language L, the language L^* is infinite. False
- 6. Let $\langle M \rangle$ be the encoding of a Turing machine M. Let $P(\langle M \rangle) = 0$ if M on ε halts in an even number of steps, 1 otherwise. Then P satisfies the condition of Rice's theorem: it is a nontrivial property of enumerable languages. False
- 7. The language $L = \{ \langle M \rangle : L(M) \in NP \} \in NP$. False
- 8. Suppose $3SAT \leq_{\mathbf{P}} L$ and $L \in \mathbf{P}$. Then $\mathbf{P} = \mathbf{NP}$. True
- 9. $A_{\rm TM}$ is NP-complete. False
- **10.** If $L_1 \leq_{\mathrm{P}} L_2$ and $L_2 \leq_{\mathrm{P}} L_1$, then $L_1 = L_2$. False

3 Language Classification.

No explanation is required.

- **1.** $\{\langle M \rangle : M \text{ is a TM which accepts some palindrome}\}$. **r.e.**
- **2.** $\{\langle M \rangle : M \text{ is a TM which accepts some string of length } \geq |\langle M \rangle|\}$. **r.e.**
- **3.** {d : the digit d appears infinitely often in the decimal expansion of $\pi = 3.14159\cdots$ }. decidable
- 4. $\{\langle G \rangle : G \text{ is a regular grammar and } L(G) \text{ contains an even-length string} \}$ decidable
- 5. $\{\langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^*\}$ co-r.e.
- **6.** { $\langle G, k \rangle$: G is a graph containing no clique of size k}. decidable
- 7. A language L for which $L_{\Sigma^*} = \{\langle M \rangle : L(M) = \Sigma^*\} \leq_{\mathrm{m}} L$. neither
- 8. $\{\langle t \rangle : t \text{ is an instance of the tiling problem for which you can tile the plane using 10 or fewer tile types.}\}$. Omit this; we did not cover the tiling problem this term.

4 A Tight Bound on DFA Size

Let $L_5 = \{111\}$ be the language over $\{0, 1\}$ which contains only the string 111.

(A) Show that L_5 can be recognized by an 5-state DFA.

Just draw the five-state DFA that accepts L_5 .

(B) Prove that L_5 can not be recognized by a 4-state DFA.

Assume for contradiction that there exists a four state DFA $M = (Q, \Sigma, \delta, q_0, F)$ that accepts L_5 . Consider the five states $q_i = \delta^*(q_0, 1^i)$ for $0 \le i \le 4$. We claim that all five of these states must be distinct, contradicting the pigeonhole principle. To see this, note that if $q_i = q_I$ for $0 \le i < I \le 4$ then $\delta^*(q_0, 1^i) = \delta^*(q_0, 1^I)$ so $\delta^*(q_0, 1^{i_1} 3^{-i_1}) = \delta^*(q_0, 1^{I_1} 3^{-i_1})$ so $\delta^*(q_0, 1^3) = \delta^*(q_0, 1^{I_1} 3^{-i_1})$ which is absurd, because the first state must be final and the second state must not be.

[20 points]

5 A Decision Procedure

If α is a regular expression, we write α^2 for the regular expression $\alpha\alpha$. Show that the following language is decidable (i.e., exhibit a decision procedure for this language):

 $L = \{ \langle a, b, c \rangle : a, b \text{ and } c \text{ are regular expressions and } a^2 \cup b^2 = c^2 \}$

Using the procedure given in class, convert the regular expression $aa \cup bb$ into an NFA, and then a DFA, M_1 . Using the procedure given in class, convert the regular expression cc into an NFA, and then a DFA, M_2 . Using the product construction, construct a DFA M the language of which is $L(M_1) \oplus L(M_2)$. Using the procedure given in class, look to see if L(M) is empty. If it is, answer *yes*; otherwise, answer *no*.

6 Mapping Reductions

Recall that, if $w = a_1 \cdots a_n \in \Sigma^n$ is a string, $w^R = a_n \cdots a_1$ is the "reversal" of w. If $L \subseteq \Sigma^*$ is a language, $L^R = \{w^R : w \in L\}$. Let

$$A_{\text{TM}} = \{ \langle M, w \rangle : M \text{ accepts } w \}$$
$$A_R = \{ \langle M \rangle : L(M) = (L(M))^R \}$$

A. Show that $A_{\text{TM}} \leq_{\text{m}} A_R$.

We must map $\langle M, w \rangle$ into $\langle M' \rangle$ such that M accepts w iff $L(M') = (L(M'))^R$. The map must be Turing-computable. So let M' on input x behave as follows:

If x = 01 then accept. Run M on wIf M accepts w, then accept If M rejects w, then reject

Now if M accepts w then $L(M') = \Sigma^*$ so $L(M') = (L(M'))^R$; while if M does not accept w then $L(M') = \{01\}$ so $L(M') \neq (L(M'))^R$.

B. Show that $\overline{A_{\mathrm{TM}}} \leq_{\mathrm{m}} A_R$.

We must map $\langle M, w \rangle$ into $\langle M' \rangle$ such that (a) if M does not accept w then $L(M') = (L(M'))^R$, and (b) if M does accept w then $L(M') \neq (L(M'))^R$. The map must be Turing-computable. So let M' on input x behave as follows:

Run M on wIf M accepts w and x = 01 then accept Reject

Now if M does not accepts w then $L(M') = \emptyset$ so $L(M') = (L(M'))^R$; while if M does accept w then $L(M') = \{01\}$ so $L(M') \neq (L(M'))^R$.

[20 points]

7 NP-Completeness

Let G = (V, E) be a graph. We say that G' = (V', E') is a vertex-induced subgraph of G if $V' \subseteq V$ and E' is all the edges of G both endpoints of which are in V'. Now suppose each edge $e \in E$ as an integer weight, w(e). Then the weight of the subgraph G' is just $\sum_{e' \in E'} w(e')$.

Show that the following language of graphs with heavy vertex-induced subgraphs is NP-Complete.

 $HVIS = \{ \langle G, w, B \rangle : G = (V, E) \text{ is a graph, } w : E \to \mathsf{Z} \text{ specifies an integer weight,} \\ w(e), \text{ for each } e \in E, \text{ and } B \in \mathsf{Z} \text{ is an integer; and } G \text{ has some} \\ vertex-induced subgraph of weight at least } B. \}$

First we show that $\text{HVIS} \in \text{NP}$. Given $\langle G, w, B \rangle$, just "guess" a subset of vertices $V' \subseteq V$ and verify that the total weight of the subgraph induced by V' is at least B. That is, the certificate identifies the induced subgraph.

Now we show that CLIQUE \leq_{P} HVIS. Given a graph G = (V, E) and a number k we must map it into a graph G' = (V', E') and a weight function w and a bound B such that G has a clique of size k if and only iff G' has an induced subgraph of weight at least B, relative to w. So given G = (V, E) and k, where n = |V|, let G' = (V, E') be the complete graph on n-node. Let w(e) to be 1 if $e \in E$ and $w(e) = -n^2$ otherwise. Let $B = {k \choose 2} = k(k-1)/2$. Then if G has a k-clique W then W names a vertex-induced subgraph of weight ${k \choose 2}$ and so the instance of HVIS we have generated is a yes-instance. Conversely, if G' has a vertex-induced subgraph of weight $B = {k \choose 2}$ then the vertices of this subgraph must comprise a clique of size at least k because it can contain no non-edges of E, as even one such edge would result in the weight of the induced subgraph being negative. The transformation is clearly polynomial time, so we are done.