
Student Scribe for ECS 20, Lecture 3 – October 2, 2008 – Alex Chan-Kai 

 

Today:   o Sentential Logic (continued) 

Review: 

 Definition of a well formed formula (for sentential logic, over same set of proposition 
symbols P) is:   

1. 0 and  1 are WFF        (formal symbols, not truth values) 
2. every P in P is a WFF 
3. If α and β are WFF, then so are (α ^ β), (α v β), (¬ α ), (α  β), and  (α <-> β) . 

 
Let L be the language of WFFs (over some understood set of proposition symbols P) 

 
 “Order of Precedence”  

 
¬      binds most tightly 
^ 
v 
-> 
<->  binds least tightly 
Parenthesis can change the default order.  Within a given precedence, the usual convention is 
that things group right-to-left. 
 
We can associate any WFF to a tree where the leaves are the proposition symbols and constants 
0 and 1 and the internal nodes are marked with logical operators. Given a truth assignment, 
which was described last time, you can propagate up truth value to every node.  We showed how 
to do this an example.  Now we’d like to get more formal with what is going on when we do this. 
We could get more formal using the language of trees, but it is simpler to do so recursively, 
which is what we turn towards now. 
 
 
Giving semantics to WFFs: 
 

 Recall that a truth assignment is a function t:  P  {0,1}   (from the predicate symbols 
to binary truth values). 

 Extending a  truth assignment: define from t a function t*:  L   {0,1} defined by: 
      (Prof. Rogaway used a t with a bar over it, but I’ll just use a t* because it’s easier to 
       type). 
1. t*(0) = 0   t*(1) = 1 
2. t*(P) = t (P) for all P in P. 
3. t*((α ^ β)) = 1 if t*(α)= t* (β)=1,     and 0 otherwise 

                           



 
     t*((α v β)) = 1 if t*(α) = 1 or t*(β)=1,   and 0 otherwise 

t*((¬ α))  =  1 if t*(α) = 0,   and 0 otherwise 
t*((α  β)) = 0 if t*(α) = 1 and  t*(β)=0,   and  1 otherwise 
t* ((α <-> β)) = 1 if t*(α) = β,  and 0 otherwise 

 
 
Some practice designing formulas …. and circuits, too 

 
Exercise 1 Who won the fight?  
 
Two fighters, A and B. Three judges, each votes “0” if he thinks A won and “1” if he things B won. We 
want to create a Boolean formula that computes who won, according to majority vote. 
 
Majority(P,Q, R) = 1 iff at least two of P,Q,R are 1, and 0 otherwise. 
 
First write out a truth table for what you want: 
 
P Q R Y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 
 
 
Disjunctive normal form (DNF) – The formula is the OR of terms, and each term is the AND of 
variables or their complements.  We can take ANY truth table and “read it out” as DNF. Above, 
we get 
 

(¬P)QR v P(¬Q)R v PQ(¬R) v (PQR) 
 

We can simplify this a bit by “factoring out” QR from the first and forth disjunct giving a term 
(¬P v P)QR = 1QR=QR: 

QR v P(¬Q)R v PQ(¬R)  
 
In class Prof. Rogaway then drew it as a circuit, using AND, OR, and NOT games, which I show 
in the notes below. 

 
 
Exercise 2: Find WFF that is 1 if exactly one of A, B, C, and D, are true.   

 



For exactly one of these variables to be true, we need that at least one of the variables is true and 
at most one of the variables is true. The first is easy to translate into sentential logic: 
 

A v B v C v D 
 
The second is a little trickier: we want to say if A is true, for example than B must be false, that 
is, A  ¬B; and A  ¬C, and so forth: 
 
(A  ¬B) (A  ¬C) (A  ¬D)  (B  ¬A) (B  ¬C) (B  ¬D)  (C  ¬A) (C  ¬B) (C  
¬D) (D  ¬A) (D  ¬B) (D  ¬C). 
 
So and this formula and the prior one and you are done.  More generally, to say that exactly one 
of X1, …, Xn are true, we could use a formula of the form 
 

                  (   ∨i   Xi   )  ∧   ∧i≠j ( Xi  →    ¬Xj ) 
 
 

Logical completeness.   By virtue of the “DNF algorithm” that turns any truth table to a WFF 
that corresponds to the functionality, we know that any Boolean formula—or any truth table—
can be represented using only the logical connectives {^,v, ¬}.  We say that this set of 
connectives are logically complete. 
 
In fact, we can use a smaller set of connectives, eliminating or by using the identity:  

      
     P ∨ Q    ≡    ¬(¬P  ^  ¬Q) 
 

which is known as DeMorgan’s law.  We could, alternatively, eliminate and by using the 
DeMorgan law: 
 

P ^ Q    ≡    ¬(¬P  ∨  ¬Q). 
 

So we have show that 
 
• ^ & ¬    are  logically complete, 
• v & ¬    are logically complete.   In addition,  
• NAND, all by itself,  is logically complete, because we can rewrite ^ and ¬  using NAND 

(tie the inputs of the NAND together to make an inverter) and  
• NOR, all by itself, is logically complete, because we can rewrite v and ¬  using NOR (tie 

the inputs of NOR together to make an inverter). 
 
 

Exercise 3: Find a circuit to add up two 8-bit binary numbers. 
 
Here is a diagram for how to use a full adder, and then a circuit for the adder.   (In class we first 
wrote out the truth table for the full adder.) 



 

 

 
 
 
 
Tautologies, satisfiability, and logical equivalence 

 
 

Definitions: 
 

Given WFF’s α and β,  
 

• α is a tautology if t(α) = 1 for all truth assignments t 
• α is satisfiable if there exists a truth assignment t s.t.  t(α)=1 
• α is a contradiction if t(α) = 0 for all truth assignments t. 
• α and β are (logically) equivalent if t(α)=t(α) for all truth assignments t. 

 
Gates Diagrams: 
 

Type Distinctive shape Truth table 

AND

 

INPUT OUTPUT

A B A AND B

0 0 0 

0 1 0 

1 0 0 

1 1 1 

http://en.wikipedia.org/wiki/Image:4-bit_ripple_carry_adder.svg
http://upload.wikimedia.org/wikipedia/commons/a/a9/Full-adder.svg
http://en.wikipedia.org/wiki/Image:AND_ANSI.svg
http://en.wikipedia.org/wiki/AND_gate


 

OR

  

INPUT OUTPUT

A B A OR B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

NOT

 
 

INPUT OUTPUT

A NOT A 

0 1 

1 0 

NAND

 

INPUT OUTPUT 

A B A NAND B

0 0 1 

0 1 1 

1 0 1 

1 1 0 

NOR

 

INPUT OUTPUT

A B A NOR B

0 0 1 

0 1 0 

1 0 0 

1 1 0 

XOR

 

INPUT  OUTPUT

A  B  A XOR B

0  0  0 

0  1  1 

1  0  1 

1  1  0 

 

http://en.wikipedia.org/wiki/Image:OR_ANSI.svg
http://en.wikipedia.org/wiki/Image:NOT_ANSI.svg
http://en.wikipedia.org/wiki/Image:NAND_ANSI.svg
http://en.wikipedia.org/wiki/Image:NOR_ANSI.svg
http://en.wikipedia.org/wiki/Image:XOR_ANSI.svg
http://en.wikipedia.org/wiki/OR_gate
http://en.wikipedia.org/wiki/NOT_gate
http://en.wikipedia.org/wiki/Sheffer_stroke#NAND_gate
http://en.wikipedia.org/wiki/NOR_gate
http://en.wikipedia.org/wiki/XOR_gate

