Problem Set 4 - Due Wednesday, October 23, 2013

1. Prove or disprove: for every $N \geq 1$, there is a punctured $N \times N \operatorname{grid}$ (that is, an N by N grid with one cell removed) that can be tiled by (L-shaped) trominos.
2. Considered a lucky number, the Thai government decides to issue coins of 9 baht. Show that, for all sufficiently large numbers N you can make N baht using only 9 baht and 10 baht coins.
3. Prove that $n^{3}+2 n$ is divisible by 3 for every $n \geq 1$.
4. Prove that $(1+1 / 2)^{n} \geq 1+n / 2$ for every $n \geq 1$.
5. Prove that $2^{n}>10 n^{2}$ for all sufficiently large integers n.
6. Prove that for any integer $n \geq 1$, if x_{1}, \ldots, x_{n} are distinct real numbers, then, no matter how the parentheses are inserted into their product, the number of multiplications used to compute the product is $n-1$.
7. My uncle Joe says he's $1 / 3$ American Indian. When I asked him to explain how that was possible, he told me that his mom and dad were also $1 / 3$ American Indian. Is this a correct proof, by induction, for Joe's possible ancestry?
8. Suppose that A, B and C are sets. For each of the following statements either prove it is true or give a counterexample to show that it is false.
(a) $A \in B \wedge B \in C \Longrightarrow A \in C$
(b) $A \subseteq B \wedge B \subseteq C \Longrightarrow A \subseteq C$
(c) $A \varsubsetneqq B \wedge B \varsubsetneqq C \Longrightarrow A \varsubsetneqq C$
(d) $A \in B \wedge B \subseteq C \Longrightarrow A \in C$
9. Which of the following conditions imply that $B=C$? In each case, either prove or give a counterexample.
(a) $A \cup B=A \cup C$
(b) $A \cap B=A \cap C$
(c) $A \oplus B=A \oplus C$
