Problem Set 4 – Due Wednesday, October 23, 2013

- 1. Prove or disprove: for every $N \ge 1$, there is a punctured $N \times N$ grid (that is, an N by N grid with one cell removed) that can be tiled by (L-shaped) trominos.
- 2. Considered a lucky number, the Thai government decides to issue coins of 9 baht. Show that, for all sufficiently large numbers N you can make N baht using only 9 baht and 10 baht coins.
- 3. Prove that $n^3 + 2n$ is divisible by 3 for every $n \ge 1$.
- 4. Prove that $(1 + 1/2)^n \ge 1 + n/2$ for every $n \ge 1$.
- 5. Prove that $2^n > 10n^2$ for all sufficiently large integers n.
- 6. Prove that for any integer $n \ge 1$, if x_1, \ldots, x_n are distinct real numbers, then, no matter how the parentheses are inserted into their product, the number of multiplications used to compute the product is n-1.
- 7. My uncle Joe says he's 1/3 American Indian. When I asked him to explain how that was possible, he told me that his mom and dad were also 1/3 American Indian. Is this a correct proof, by induction, for Joe's possible ancestry?
- 8. Suppose that A, B and C are sets. For each of the following statements either prove it is true or give a counterexample to show that it is false.
 - (a) $A \in B \land B \in C \implies A \in C$
 - (b) $A \subseteq B \land B \subseteq C \implies A \subseteq C$
 - (c) $A \subsetneqq B \land B \gneqq C \implies A \gneqq C$
 - (d) $A \in B \land B \subseteq C \implies A \in C$
- 9. Which of the following conditions imply that B = C? In each case, either prove or give a counterexample.
 - (a) $A \cup B = A \cup C$
 - (b) $A \cap B = A \cap C$
 - (c) $A \oplus B = A \oplus C$