Problem Set 5 - Due Tuesday, 4:15 pm, October 29, 2013

Note the unusual due date. I am shifting it up a day to better separate this due date from Thursday's midterm.

1. Write a regular expression for (a) the language A of binary strings whose length is divisible by three; (b) the language B of all binary strings that do not contain two consecutive 1's.
2. Determine which of the following relations \sim are: reflexive, symmetric, and transitive.
(a) $x \sim y$ if x and y are people who were born on the same day.
(b) $x \sim y$ if x and y are strings which contain a common character.
(c) $x \sim y$ if x and y are people and there exists a country C such that x has been to country C and y has been to country C.
(d) $x \sim y$ if x and y are real numbers which are equidistant to the origin.
3. For $a, b \in \mathbb{R}$ define $a \sim b$ if $a-b \in \mathbb{Z}$.
(a) Prove that \sim defines an equivalence relation on \mathbb{Z}.
(b) What is the equivalence class of 5 —meaning, clearly describe the set $[5]=\{y: 5 \sim y\}$. (Here, [5] is just the name of a set.) Similarly: what is the equivalence class of 5.5?
4. Let $f(x)=x \lg x$ (by $\lg x$ we mean $\log _{2} x$. Compute $f^{-1}(10)$ to at least three decimal places of accuracy. Explain how you did this. Note: for a function $f: A \rightarrow B$ for which there is exactly one point a that maps to each point $b \in B, f^{-1}(y)$ means: the unique x such that $\left.f(x)=y\right)$.

Note: it looks like I wrote this in an old dialect of C; nowadays, eg, declarations combined with initialization appear to be disallowed or deprecated.

