Problem 1 Let oracle \mathcal{X} be an oracle that, on input x, returns a random integer in [1..10] other than x. Let \mathcal{Y} be an oracle that, on input x, returns a random integer in [1..10]. Define the advantage of an adversary A is as $\operatorname{Adv}(A)=\operatorname{Pr}\left[A^{\mathcal{X}}=1\right]-\operatorname{Pr}\left[A^{\mathcal{Y}}=1\right]$. For each $q \geq 0$ define an adversary A_{q} that achieves maximal advantage. Compute the advantage of adversary A_{100}.

Problem 2 Fix an encryption scheme $\Pi=(\mathcal{E}, \mathcal{K}, \mathcal{D})$. Let M_{1}, \ldots, M_{10} be fixed messages. Suppose you have an efficient adversary A that, given C_{1}, \ldots, C_{10}, C determined by $C_{i} \stackrel{\&}{\leftarrow} \mathcal{E}_{K}\left(M_{i}\right), M \stackrel{\S}{\leftarrow}\{0,1\}^{8}, C \stackrel{\&}{\leftarrow} \mathcal{E}_{K}(M)$, has an 10% chance to compute M. Describe an efficient adversary B that attacks Π and lower bound its advantage (in the indsense).

Problem 3 Consider the following block cipher $E:\{0,1\}^{3} \times\{0,1\}^{2} \rightarrow\{0,1\}^{2}$:

key	0	1	2	3
0	0	1	2	3
1	3	0	1	2
2	2	3	0	1
3	1	2	3	0
4	0	3	2	1
5	1	0	3	2
6	2	1	0	3
7	3	2	1	0

(The eight possible keys are the eight rows, and each row shows where points 0,1 , 2 , and 3 map to.) Compute the maximal advantage an adversary can get, in the prp-sense, if A uses (a) one query, (b) two queries, and (c) four queries. Justify your answers.

