Problem 1 Compute $17^{130} \bmod 100$. Do this without writing a computer program and without multiplying 17 by itself 129 times. Show your work. Your method should provide an efficient algorithm - polynomial time in the length of all numbers- to compute $a^{b} \bmod n$.

Problem 2 Use Euclid's algorithm to find $28^{-1}(\bmod 75)$. Show all your work.
Problem 3 Let $p=101$ and $q=113$ so $p q=n=11413$. Is $e=3$ a valid encryption exponent for RSA modulus n ? If so, find the corresponding decryption exponent d.

Problem 4 Recall that n is a 2-pseudoprime if $2^{n-1}=1(\bmod n)$ even though n is not prime. Write a program to find all 2-pseudoprimes less than 1000.

