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Abstract

Implementation in one FPGA of the AES-Rijndael in Offset Codebook (OCB) and Electronic Codebook (ECB) modes of operation was

developed and experimentally tested using the Insight Development Kit board, based on Xilinx Virtex II XC2V1000-4 device. The circuit

was designed to provide simultaneous data privacy and authenticity in applications which require small area such as wireless LANs, cellular

phones, and smart cards. The experimental clock frequency was equal to 50 MHz and translates to the throughputs of 493 Mbit/s for block

size and key size of 128 bits, respectively. The circuit combines the efficiency of OCB authentication with the high security of Rijndael

encryption/decryption algorithms, offering an authenticated encryption/decryption scheme.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cryptography plays a very important role in the security

of data information. In September 1997 the National

Institute of Standards and Technology (NIST) issued a

request for possible candidates for a new Advanced

Encryption Standard (AES) to replace the Data Encryption

Standard (DES). In October 2000, the Rijndael algorithm

[1,2] developed by Joan Daemen and Vincent Rijmen was

selected as the winner of the AES development race.

Rijndael proved to be one of fastest and most efficient

algorithms and can be easily implemented on a wide range

of platforms.

Offset Codebook (OCB) [3] is a new proposal by Phillip

Rogaway at University of California Davis and is a block

cipher mode of operation that provides both authenticity and

privacy when combined with encryption/decryption algor-

ithms. OCB is contained in the draft NIST Federal
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Information Processing Standards (FIPS) for the modes of

operation for the symmetric key block ciphers and OCB-

AES has been implemented in the IEEE wireless LAN

standard 802.11i.

Several papers [4–18] dealing with implementation in

FPGA of the AES have been published so far. There are no

other AES hardware designs including the OCB mode of

operation published until now. However, software design

exists and are available at Rogaway’s home page.

This paper evaluates the AES-Rijndael implementation

in OCB/ECB modes of operation from the viewpoint of its

hardware mapping into high performance Xilinx FPGA. An

FPGA implementation can be easily upgraded to incorpor-

ate any protocol changes without the need for expensive and

time consuming physical design, fabrication, and testing as

required for ASICs. This paper is organized as follows. A

brief overview of OCB mode of operation and its basic

building blocks is given in Section 2. Section 3 outlines the

design of the pipelined OCB-AES implementation. Per-

formance results and the test setup are given in Section 4.

Finally, in Section 5, possible future work is described and

concluding remarks are made.
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2. AES-OCB Encapsulation

2.1. AES algorithm

Rijndael is a symmetric block cypher with a variable key

size and a variable input/output block size. Our implemen-

tation supports only one key size of 128 bits and is limited to

the block size of 128 bits, which is the only block size

required by AES. Implementing other block sizes, specified

in the original, non-standardized description of Rijndael is

not justified from the economical point of view, as it would

substantially increase circuit area and cost without any

substantial gain in the cipher security.

Implementation of the encryption round of Rijndael

requires realization of four component operations: Substi-

tution, ShiftRow, MixColumn, and KeyAddition. Implemen-

tation of the decryption round of Rijndael requires four

inverse operations: InvSubstitution, InvShiftRow, InvMix-

Column, and KeyAddition.

Substitution and InvSubstitution operate on each byte of

the state using substitution tables.

ShiftRow and InvShiftRow change the order of bytes

within a 16 byte (128 bit) word. Both transformations

involve only changing the order of signals, and therefore can

be implemented using routing only.

The MixColumn transformation as well as InvMixCol-

umn can be expressed as a matrix multiplication in the

Galois Field GF(28). The InvMixColumn transformation has

a longer critical path compared to the MixColumn

transformation, and therefore the entire decryption is more

time consuming than encryption.

KeyAddition is a bitwise XOR of two 128 bit words.

2.2. OCB mode of operation

Today, OCB is a draft standard for IEEE 802.11, a norm

for wireless LANs. OCB is also at proposal for the NIST in

the USA as mode of operation for block ciphers in general.
Fig. 1. Illustration of OCB encryption. The message is M[1]M[2].M[mK1]M[m]
The algorithm is quite simple and elegant and the proof for

its security is mathematically well defined. These are

reasons why OCB might be popular in the future,

considering its ease of implementation and the expansion

of wireless technologies. Actually there is no concurrence

from any other mode when using big amounts of data.

OCB illustrated in Fig. 1 is a combined encryption and

authentication mode which so far survived analysis. OCB

assumes a fixed length block cipher (such as AES). In this

case the input plaintext is 128 bits, the output ciphertext is

128 bits, and the block cipher requires a 128 bit key.

The setup procedure for OCB encryption is performed as

follows. First, an all zero vector is encrypted producing L.

Next, the XOR of L and nonce N is encrypted to get the

value R. L and R are used to produce the offsets Z[i] for each

message block M[i]. In the encryption process, the message

block M[i] is XOR-ed with a constant derived from L and R,

namely Z[i]. Then the block is encrypted and the result is

XOR-ed with Z[i] to get the ciphertext block C[i]. Each

message block M[i] is encrypted in the same way (with

different offsets Z[i]), for 1%i%mK1, where M[m] is the

last block of M. In practice, Z[i] is computed as follows:

Z[1]ZL4R, and, for iR2, Z[i]ZZ[iK1]4L(ntz(i)) If iR1

is an integer then ntz(i) is the number of trailing 0-bits in the

binary representation of i (equivalently, ntz(i) is the largest

integer z such that 2z divides i).

The encryption scheme described is only good for the

first mK1 blocks. To deal with the last block M[m], and

produce ciphertext that has the same length as the plaintext,

OCB does the following.

The length of M[m] is represented with 128 bits, the size

of a regular block. The length is XOR-ed with another full-

length constant L[K1], then the result is XOR-ed with Z[m].

The ciphertext C[m] is calculated as a XOR between the

plaintext and Y[m]. The last block can be shorter than usual,

or full-length. The ciphertext C[m] has the same length as

the original message M[m].
and the nonce is N. The resulting ciphertext is C[1]C[2].C[mK1]C[m]T.
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We define t to be the authentication tag length, where

0%t%128. The number of bits necessary for the tag varies

according to the application. To get the Checksum we

compute M[1]4M[2]4.4M[mK1]4C[m]0*4Y[m].

The tag T is the result of encryption of the XOR between

the Checksum and Z[m]. Appending an authentication tag

to the ciphertext has several advantages. With this scheme,

the size of the tag controls the level of authentication. To

verify the signature (authentication tag), the decryptor can

recompute the checksum, then recompute the tag, and

finally check that is equal to the one that was sent. If the

ciphertext passes the test, then OCB produces the plaintext

normally.

In review, OCB has the following features:
†
 Encryption and decryption of arbitrary length messages.
†
 Single key for confidentiality and authentication.
†
 Nonce used once, no randomness required.
†
 Achieves a nearly optimal number of block cipher calls.
†
 Has provable security.
Fig. 2. Upper: architecture of the circuit. L
3. Architecture of the circuit

The architecture proposed for the circuit is based on

small area. The organization of the hardware implemen-

tation of the circuit is shown in Fig. 2 and includes the

following units:
†

ow
EncDecCombined (Encryption and Decryption Com-

bined), used to encipher and decipher input blocks of

data. The controller EncDecCombinedFSM has a latency

of 11 clocks.
†
 KeySchedule (Key Scheduling), used to compute a set of

internal cipher keys based on a single external key. The

controller KeyScheduleFSM has a latency of 11 clocks.
†
 RAMSubKeys (RAM memory) of internal keys, used to

store internal keys computed by the KeySchedule, or load

the initial key to the FPGA through the Key Entry Interface.
†
 Input (Input Interface), used to load blocks of input data

and to store input blocks awaiting encryption/decryption.

The controller InputFSM has a latency of eight clocks.
er: pipelined mode of operation.
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†
 KeyEntry (Key Entry Interface), used to load the external

key. The controller KeyEntryFSM has a latency of eight

clocks.
†
 Output (Output Interface), used to temporarily store

output from the encryption/decryption unit. The con-

troller OutputFSM has a latency of eight clocks.
†
 Offset (Offset Calculation), used to generate the offsets

ZCurrent(Z[iK1]), ZNext(Z[i]) necessary for the OCB

mode of operation. The Offset also calculates the

Checksum to get the authentication tag T. The latency

of the controller OffsetFSM varies between 1 and 13

clocks due to the calculation of L(ntz(i)), where

1%i%4095 is the number of packages transmitted in

wireless LAN communications.
†

Fig. 4. SubByte module block diagram.

Fig. 3. KeySchedule block diagram.
MainFSM (Main Control Finite State Machine), used to

generate control signals for all other units. The top level

controller MainFSM communicates through handshaking

protocols with all other FSMs.

Pipelining is a general method of increasing the

amount of data processed by a circuit in a unit of time.

The flow of data through the pipeline is shown in Fig. 2.

The pipeline is divided in five sequences and the number

of iterations is n in this example. In the first sequence, an

external key is loaded and the signal NewKey is set active.

The second and third sequences are used for the

initialization phase necessary for the OCB mode of

operation. SingleIn and SingleEnc are active for loading

the constants L and R, respectively. During the fourth

sequence, StartPipeline is active, the data is entered into

pipeline, and encryption or decryption is performed.

Finally, in the last sequence, all data is processed by

setting FinishPipeline active. The worst case situation

occurs when OffsetFSM reaches the maximum latency of

13 clocks which determines the latency of the circuit.

As mentioned in the abstract, we selected 128 bit size for

the key as being commonly usable while being more

compact than other implementations. Additionally, since

fewer rounds are required, it offers greater performance

when compared with longer key lengths. On this implemen-

tation, KeyEntry loads the key and KeySchedule produces

subkeys of 128 bits. The block diagram of KeySchedule is

shown in Fig. 3. Initially, the selection signal selRound for

the multiplexer is set to 0 in a clock cycle for the initial

round. For the next clock cycles, selRound is set to 1. In a

clock cycle, one transformation round is executed and, at the

same time, the appropriate subkey for the next round is

calculated. The whole process reaches the end when ten

rounds of transformation are completed.

The subkey pieces are passed and stored into the RAM

memory RAMSubKeys. The memory has 11 locations: 10

locations are for the subkeys and one for the key. It is

important to store the initial key since is used in the

decryption process. It should be noticed that the subkeys

are pre-calculated before encryption/decryption since the

circuit contains a RAM memory.
Substitution/InvSubstitution is usually implemented by

look-up tables. Each S-box/Inverse S-box needs a look-up

table of 256!8 bit and each round needs 16 S-boxes/In-

verse S-boxes, so the area for look-up tables becomes huge.

Because the area is critical for the circuit presented, a joint

implementation [19,20] of the SubByte and InvSubByte

transformations has been proposed. This implementation

requires small area for look-up tables, but has longer delay.

The block diagram of the SubByte module is shown in

Fig. 4. The SubByte module is a non-linear byte substitution

that acts on every byte of the state to produce a new byte
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value using a substitution table MulInvTable. During

encryption, SubByte is constructed by composing two

transformations [21]:
†
 First the multiplicative inverse MulInvTable in the finite

field (with element zero mapped to itself).
†
 Second the affine transformation AffineTransByte over

GF(28) defined by:

b0
i Zbi4bðiC4Þmod84bðiC5Þmod84bðiC6Þmod84bðiC7Þmod84ci

for 0%i%8 where bi is bit i of the byte and ci is bit i of a

byte c with the value 63 h or 01100011b. In matrix form

this translates to:

b0
7

b0
6

b0
5

b0
4

b0
3

b0
2

b0
1

b0
0

2
666666666666666664

3
777777777777777775

Z

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

2
6666666666666664

3
7777777777777775

b7

b6

b5

b4

b3

b2

b1

b0

2
6666666666666664

3
7777777777777775

C

0

1

1

0

0

0

1

1

2
6666666666666664

3
7777777777777775

During decryption, SubByte is constructed by composing

two transformations:
†
 First the inverse affine transformation InvAffineTrans-

Byte over GF(28) defined by:

b0
i Z bðiC2Þmod84bðiC5Þmod84bðiC7Þmod84di
Fig. 5. One quarter of the MixColumn block diagram
for 0%i%8 where bi is bit i of the byte and di is bit i of a

byte d with the value 05h or 00000101b. In matrix form

this translates to:

b0
7

b0
6

b0
5

b0
4

b0
3

b0
2

b0
1

b0
0

2
666666666666666664

3
777777777777777775

Z

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

2
6666666666666664

3
7777777777777775

b7

b6

b5

b4

b3

b2

b1

b0

2
6666666666666664

3
7777777777777775

C

0

0

0

0

0

1

0

1

2
6666666666666664

3
7777777777777775
†
 Second the multiplicative inverse MulInvTable in the

finite field (with element zero mapped to itself).

ShiftRow and InvShiftRow change the order of bytes

within a 16 byte (128 bit) word. Both transformations

involve only changing the order of signals, and therefore

they can be implemented using routing only, and do not

require any logic resources, such as Configurable Logic

Blocks (CLBs) or dedicated RAM.

MixColumn/InvMixColumn influences usually the cipher

area very much. Therefore, we proceeded further with the

resource sharing for these blocks. In order to significantly

decrease the area of MixColumn/InvMixColumn, a joint

implementation described in detail in the Ref. [19] is

proposed in Fig. 5. The four inputs and four outputs
representing one column in the state.



Fig. 7. Test vectors for OCB mode of operation.

Fig. 6. EncDecCombined block diagram.
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represent single bytes. Four identical blocks like that one

shown in Fig. 5, constitute the MixColumn block diagram.

KeyAddition is a bitwise XOR of two 128 bit words.

The implementation of the encryption and decryption

combined unit is shown in Fig. 6. It requires realization of

five component operations: Substitution, ShiftRow, InvShif-

tRow, MixColumn, and KeyAddition. The values of the

selection signals selEncDec, selData, selMode, and selReg

for the multiplexers are also described. The architecture

shown in Fig. 6 is very compact and is based on the resource

sharing for two blocks Substitution and MixColumn in order

to achieve minimum area of the circuit. It has been proven

from simulations and further on from implementation that

by using the resource sharing of these blocks the area of the

circuit is with 16% less. ShiftRow and InvShiftRow do not

require any logic resources in FPGA implementation.
4. Test setup

The Rijndael cipher in OCB/ECB modes of operation

was first described in Verilog, and his description verified

using the Verilog-XL simulator from Cadence Design

Systems. Test vectors from the reference software

implementations were used for debugging and verification

of Verilog codes. The revised Verilog code became an input

to Xilinx ISE Series 4.1 i software performing the logic

synthesis, mapping, placing, and routing. In order to fit the

whole circuit in one FPGA device Virtex II XC2V1000-4,

the option for the Xilinx ISE Series 4.1 i software was set to

small area and the design has been flatten. These tools

generated reports describing the area and speed of

implementation, a netlist used for timing simulations, and

a bitstream to be used to program the FPGA device Virtex II

XC2V1000-4 [22].



Fig. 8. Timing simulation in Cadence Verilog-XL at 50 MHz clock frequency showing the pipeline with data encrypted.

Table 1

Results of FPGA implementation

Target FPGA device Virtex II XC2V1000-4

Maximum clock frequency 50 MHz

Encryption/decryption throughout

OCB mode

493 Mbit/s

Encryption/decryption throughout

ECB mode

6400 Mbit/s

Area

CLB slices 3552

Block ROMs 21

Block RAMs 1

Percentage occupied in device 69%

Fig. 9. Experimental testing using Agilent 16702B Logic Analysis System at 50 MHz clock frequency showing the pipeline (upper) and eight clock cycles of

C[1] (lower) with data encrypted.
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The software [23] used to provide test vectors for OCB

mode of operation was written in C and CCC and is

available at Rogaway’s home page. The test vectors as well

as the variables of a pipeline with five inputs (nZ5 in Fig. 3)

containing 74 blocks of data encrypted in OCB are

represented in Fig. 7. For simplicity, key, nonce, and

plaintext are all set to zero.

The timing simulation results of the test vectors were

performed with the key KeyIn[0:15] and the input

Input[0:15] set to zero, as shown in Fig. 8. ModeOperation

and EncDec are ‘1/0’ logic for OCB/ECB and encryption/

decryption, respectively. Length[4:0] shows the number of

remaining blocks of data and Counter[11:0] displays the

number of packages. The maximum number of packages

transmitted in WLANs is 4095 and therefore 12 bits are

needed for coding. NewKey is ‘1’ logic whenever is desired

to load an external key. The reset of the circuit is

synchronous through reset while start and done are part of

the handshaking protocol.

In order to program the FPGA, a SUN workstation was

connected to the Insight Virtex II Development Kit board

[24]. The board was connected to the Logic Analysis

System Agilent 16702B [25] which provided and displayed
signals during measurements. The experimental results are

shown in Fig. 9.

The results of the FPGA implementation are summarized

in Table 1. The throughput of the circuit in OCB mode is

given by:

Throughput Z ð128 bits=13 clocksÞ50 MHz

where 13 clocks is the circuit latency in the worst case

situation, as explained in Section 3. In Electronic Codebook

(ECB) mode, the throughput is 6400 Mbit/s as a result of
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128 bits multiplied by 50 MHz assuming one encrypted/de-

crypted block of data exiting the pipeline once the latency

has been met.
5. Conclusions

In this paper we have evaluated the Rijndael cipher in

OCB/ECB modes of operation from the point of view of its

implementation in FPGA. The circuit presented combined

the OCB mode with AES-Rijndael algorithm to provide

efficient high security functionality for a wide range of

operations.

The new architecture presented allows the implemen-

tation of the Rijndael cipher in OCB/ECB modes of

operation with encryption and decryption. Specific appli-

cations for this circuit are in wireless LANs, cellular phones

and smart cards. For instance, this circuit can be success-

fully used for wireless LAN in which the maximum

throughput required is of 128 Mbit/s, lower than the

throughput obtained from measurements. The experimental

procedure demonstrated that the total encryption and

decryption throughput of 493 Mbit/s can be achieved

using a single FPGA device. Only up to 69% of resources

of this single FPGA are required by all cryptographic

modules.

The OCB mode of operation is considered secure for

transmission of large volumes of data.
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