
AN ABSTRACT OF THE THESIS OF

Ahmed Al Faresi for the degree of Master of Science in

Electrical & Computer Engineering presented on June 13, 2005.

Title: Hardware Realization of OCB mode for Efficient Authenticated Encryption.

Abstract approved.

cetin Kaya Koc

Authenticated-Encryption modes of operation have recently received great atten-

tion amongst researchers. Such modes of operation provide both privacy and authentic-

ity. A proposed mode in this category is the Offset Codebook mode (OCB) by Rogaway

et al. This mode shows great substantial advantages over conventional modes. In the

past when one wanted a shared-key mechanism that provided both privacy and authen-

tication one would first encrypt separately and then use a Message Authentication Code

(MAC). The cost of such a mechanism is equal to the cost of encryption plus the cost

of producing the MAC, usually done with different keys for each operation. The OCB

mode however uses one key and provides privacy and authenticity simultaneously and

with lower costs and higher speed then conventional methods.

Since this mode is relatively new, the proposed work provides a synthesizable

hardware implementation of the OCB encryption algorithm. Furthermore an efficient

hardware realization of the Advanced Encryption Standard (AES) to be incorporated

in the OCB mode is provided. The architectural designs presented are analyzed and

synthesized in terms of performance and overall throughput. The results are evaluated

against other conventional modes in this area.

Signature redacted for privacy.

©Copyright by Ahmed Al Faresi

June 13, 2005

All Rights Reserved

Hardware Realization of OCB mode
for Efficient Authenticated Encryption

by

Ahmed Al Faresi

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 13, 2005
Commencement June 2006

Master of Science thesis of Ahmed Al Faresi presented on June 13, 2005

APPROVED:

Major Professor, representing Electrical & Computer Engineering

Director of the School of Electrical Engineering & Computer Science

Dean of the

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

I

ua e School

Ahmed Al Faresi, Author

Signature redacted for privacy.

Signature redacted for privacy.

Signature redacted for privacy.

Signature redacted for privacy.

ACKNOWLEDGMENTS

In the name of Allah, the All merciful, the All compassionate. All praise is due to

Allah. I would like to thank my parents for their support during my studies overseas.

I would like to thank my advisor Dr Koc for giving me the opportunity to work on

this interesting project. Dr Koc,'s directions, reviews and valuable comments helped me

accomplish this work.

Last but not least I would like to thank my brothers and sisters and my friends,

who supported me all the way through.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1. Advanced Encryption Standard (AES) 2

1.1.1. Hardware Implementation 3

1.1.2. Encryption versus decryption 3

1.1.3. Potential for instruction-level parallelism 4

1.2. Authentication Code (MAC) 5

1.3. Authenticated Encryption Scheme 7

1.3.1. Notion of authenticated encryption 7
1.3.2. Generic Composition 8

1.4. Thesis Outline 12

2. OVERVIEW OF GOAL 14

2.1. Encryption Modes with Almost Free Message Integrity 14

2.2. Fast Encryption and Authentication: XCBC Encryption and XECB Au-
thentication Modes 15

2.3. OCB Mode: Parallelizable Authenticated Encryption and PMAC: A
Parallelizable Message Authentication Code 17

3. OCB MODE 19

3.1. OCB Algorithm 19

3.1.1. OCB security properties 20
3.1.2. Notation and Basic Operations 21

3.2. OCB Scheme 22

3.2.1. Key setup 23
3.2.2. OCB encryption 24
3.2.3. OCB decryption 25

TABLE OF CONTENTS (Continued)

Page

4. IMPLEMENTATION CRITERIA 29

4.1. Proof of Concept 29

4.2. OCB Implementation Considerations 29

4.2.1. Parallelism 30
4.2.2. Pipelining 30
4.2.3. Simplicity 31
4.2.4. Efficiency 31
4.2.5. Other Factors 32

4.3. Hardware vs. Software Implementations 33

4.4. OCB Applications 34

5. IMPLEMENTATION RESULLTS AND ANALYSIS 35

5.1. Design methodology 35

5.2. Overall Architectural Design 35

5.3. Control Blocks 39

5.4. Offset Initialization and Generation Architecture 39

5.4.1. The Offset Initialization Block 40
5.4.2. The L_generate Block 41

5.5. Cipher Computation Architecture 43

5.5.1. AES Engine 43
5.5.2. The Cipher Computation Block 45

TABLE OF CONTENTS (Continued)

Page

5.6. Synthesis and Timing Results 48

5.6.1. Area and Timing results for FPGA & ASIC Implementations 48

5.7. Comparison with Generic Authenticated-Encryption Modes 49

5.8. Discussion 52

5.9. Conclusion & Future work 53

BIBLIOGRAPHY 56

LIST OF FIGURES

Figure Page

1.1 AES Encryption and Decryption [1]. 4

1.2 Basic Uses of Message Authentication Code (MAC) [1]. 6

3.1 OCB Encryption Scheme [2]. 23

5.1 System Level Diagram of OCB-AES Encryption Engine 36

5.2 Implemented Block Diagram of OCB-AES Encryption Engine 38

5.3 Architectural Design of the Offset_initialization Block 40

5.4 L Sz ntzi Computational Block 42

5.5 RTL Schematic of the Lplusl Output 42

5.6 A top level system design of the AES engine 44

5.7 System Level Design of an AES Round 45

5.8 Architectural Design of The aes2 Engine 46

5.9 Implemented Block Diagram of OCB-AES Encryption Engine 47

LIST OF TABLES

Table Page

1.1 Summary of security results, under the assumption that the MAC scheme
is weakly unforgeable [3] 10

1.2 Summary of security results, under the assumption that the MAC scheme
is strongly unforgeable [3] 10

3.1 Summary of OCB properties [2] 28

4.1 Characteristic features of implementations of cryptographic transfor-
mations in ASICs, FPGAs and software [4] 34

5.1 Functional Operation of Priority Encoder 41

5.2 Timing Report for The Virtex 2 Pro FPGA 48

5.3 Device Utilization Results 0.5u ASIC 49

5.4 Summary of results in area, maximum clock rate, throughput, latency
of an OCB-AES encryption 50

5.5 Experimental Results of AES on an FPGA, from David Zier[5] 51

5.6 Performance results, in cycles per byte (cycles per 16-byte clock) on a
Xilinx Virtex-II Pro FPGA 52

5.7 Performance results, in cycles per byte (cycles per 16-byte clock) on a
Pentium III. The Block cipher is AES128 [6] 53

HARDWARE REALIZATION OF OCB MODE
FOR EFFICIENT AUTHENTICATED ENCRYPTION

1. INTRODUCTION.

With the advent of new block ciphers, such as the Advanced Encryption Standard

(AES), there is a need to update long-standing modes of operation and an opportu-

nity to consider the development of new modes [7]. Highly motivated by NIST (Na-

tional Institute of Research and Technology) researchers had a great strive to achieve an

authenticated-encryption scheme that is low in cost and high in efficiency. In the past

the primary form of authenticated-encryption was actually the one of generic composi-

tion, where one would encrypt a message and compute a message authentication code

(MAC) separately. With such a scheme the cost is calculated to be the cost to encrypt

plus the cost to MAC. Such schemes suffered weaknesses and eventually where misused.

Recently two schemes that offered a low cost authenticated-encryption have been pro-

posed by Jutla [8], namely Integrity aware cipher block chaining (IACBC) and Integrity

aware parallelizable mode (IAPM). A refinement of IAPM gave birth to the OCB (offset

codebook mode) proposed by Rogaway [2]. This mode provides both authenticity and

privacy at a cost almost equivalent to getting privacy alone. Moreover OCB is fully par-

allelizable a feature that would show great promise in hardware implementation. One

other important feature of this algorithm is its ability to process a message of arbitrary

length, meaning the message size need not be known in advance.

This thesis presents an attempt to provide a hardware realization of the OCB-

AES encryption engine. The design will target high efficiency and performance while

maintaining the ability of the online feature that is the ability to read variable length

messages. This work will describe the scalable hardware design and analyze the synthesis

results. The results are compared to other proposed authenticated-encryption designs.

2

The comparison is done in terms of performance (bits/cycle), total computational time,

throughput and complexity.

This chapter is further divided into 4 sections. In the first section I describe the

AES standard as an example of the block cipher of choice in this study. The next

section describes the message authentication codes and provides a brief introduction to

authenticity. The third section gives a general description of authenticated-encryption

schemes as a form of literature background to this thesis. The fourth and last section

details the outline for the rest of the thesis.

1.1. Advanced Encryption Standard (AES)

OCB is a block-cipher mode of operation. Where mode of operation, or mode, for

short, is an algorithm that features the use of a symmetric key block cipher algorithm to

provide an information service, such as confidentiality or authentication [7]. The OCB

mode requires the use of a block cipher, and gives freedom of choice of the block cipher

to be incorporated. AES seems to be the logical choice, with a key of 128 bits as the

minimum recommended in todays cryptographic applications. It is worth mentioning

that choosing a block length of less than 128 bits could result in a lower security bound.

Furthermore it would seem illogical to use a modern algorithm with an old block cipher

such as DES. The implementation in the thesis is made with AES being the block cipher

of choice; therefore we would like to give a brief description of the AES algorithm.

AES refers to an algorithm proposed by Rijndael and accepted by NIST as the

new standard to replace DES. Rijndael then became attributed to the algorithm of AES.

AES is designed for use with keys of length s 128, 192 and 256 bits. Since the implemen-

tation uses a 128-bit key we will explain the algorithm in terms of this key choice. The

algorithm consists of 10 rounds. Each round has a round key, derived from the original

key. A round starts with an input of 128 bits and produces an output of 128 bits [9].

There are four basic steps, called layers that are used to form the rounds:

The ByteSub Transformation: This non-linear layer is for resistance to differential

and linear cryptanalysis attacks.

The ShiftRow Transformation: This linear mixing step causes diffusion of the bits

over multiple rounds.

The MixColumn Transformation: This layer has a purpose similar to ShiftRow.

AddRoundKey: The round key is X0Red with the result of the above layer [9].

The algorithm is depicted in Figure 1.1. One can see how the plaintext is processed

through the 4 layers to produces the corresponding ciphertext. There are basic features

that should be considered when implementing the Rijndael AES.

1.1.1. Hardware Implementation

Hardware implementations can be optimized for speed and size. In hardware most

often increase in size means higher cost, which is a feature that may not be in that

advantage of parallel implementations. Rijndael shows the second highest throughput

for none feedback modes like OCB. However for fully pipelined implementations the area

requirement increases but the throughput remains unaffected.

1.1.2. Encryption versus decryption

The encryption and decryption functions in Rijndael differ. FPGA study reports

that the implementation of both encryption and decryption takes about 60 percent more

space than the implementation of encryption alone. Rijndael's speed does not vary

significantly between encryption and decryption, although the key setup performance is

slower for decryption than encryption [I].

3

1.1.3. Potential for instruction-level parallelism

This refers to the ability to exploit ILP features in current and future processors.

IAdd round key

Shift rows

-
I Mix columns

4
I Add round key pi

4

Substitute bytes

4
Shift rows

I Add round key rl
4

1._Substitute bytes

4
Shift rows

4
I Add round key

Ciphertext

(a) Encryption

010, 3) Add round key

w[4, 71

Inverse shift row

I Inverse mix cols I

I Add round key I

1'
jnverse sub bytes I I

[Inverse shift rows

w[* 391 Add round key

Inverse sub bytes

w[40, 431

Inverse shift rows

Add round key

Ciphertext

(b) Decryption

FIGURE 1.1: AES Encryption and Decryption [1].

4

Key PlaintextPlaintext

1.2. Authentication Code (MAC)

In an authenticated-encryption scheme, the privacy factor is given by encryption

and the MAC provides the authenticity factor. In contrast the OCB mode uses the AES

block cipher to supply the privacy factor, the authenticity is provided by a TAG value,

which will be further discussed in detail. A brief introduction of the MAC would pave

the way to understand the authenticity factor in the OCB later on.

A MAC, also known as a cryptographic checksum, is generated by a function C of

the form: MAC=CK(M), where M is a variable-length message, K is a secret key shared

only by the sender and receiver, and CK(M) is the fixed-length authenticator. The

MAC is appended to the message at the source at a time when the message is assumed

or known to be correct. The receiver authenticates that message by re-computing the

MAC [1].

A MAC function is similar to encryption. One difference is that the MAC algorithm

need not be reversible, as it must for decryption. In general, the MAC function is a many-

to-one function. The domain of the function consists of messages of some arbitrary

length, whereas the range consists of all possible MACs and all possible keys. If an n-bit

MAC is used, then there are 2' possible MACs, whereas there are N possible messages

with N>> 2 [1].

In Fig1.2 (a) and 1.2 (b) the first cases the MAC is calculated with the message as

input and is then concatenated to the message. The entire block is then encrypted. In

the second case, the message in encrypted first. Then the MAC is calculated using the

resulting ciphertext and concatenated to the ciphertext to form the transmitted block.

Earlier in the introduction we stated that authenticated-encryption schemes relied

on separately encrypting and then MACing to get both privacy and authenticity, however

such schemes would prove costly and inefficient since each operation incurs its own cost.

The idea of combining privacy and authenticity raised some concerns. There was a great

concern among researchers that a scheme that provides a privacy-authenticity combo

5

ER:4Ni

CrilEx(31)]
8age authenbcation and ottlidentiality authentication ttect to etp1rtxt

Como

FIGURE 1.2: Basic Uses of Message Authentication Code (MAC) [1].

may lack the expected degree of authenticity. This concern was driven by the countless

failed attempts to correctly add authenticity to encryption schemes. However OCB

provides privacy and authenticity more like in an encapsulation scheme.

Authenticity in the context of an encapsulation scheme is a more general concept

than that of a MAC. A MAC makes explicit a particular mechanism, namely the at-

tachment of a tag to the transmission. (The tag, computed using the key, is created

by the sender and checked by the receiver.) An encapsulation scheme may use a MAC,

or may not, and consideration of authenticity for such a scheme cannot make assump-

tions about the presence of any type of mechanism. But there is a deeper difference

between a MAC and a general authentication scheme. In formalizing the security of a

MAC the adversary makes a number of queries to a MAC-generation oracle, with each

Compare

6

.4-Source A D sif nation B

Ithentication mut confidentiality; ant .nu.c.a n tied to Oa t tMessage

7

query mapping the message M its tag ti. After that the adversary has to come up

with a new message M and a tag t such that the receiver will deem (M; t) authentic. In

particular, the adversary must "know" the message M that is being forged, insofar as the

adversary outputs it along with t. In contrast, an adversary attacking an authentication

scheme in the general sense we are defining wins even if he/she does not know what is

the message M which is being forged. All that is required is that there is such a message

underlying C -that is, the receiver will recover something in the message space M (and

not an indication that C is bogus) [10].

1.3. Authenticated Encryption Scheme

This section provides insight into authenticated encryption schemed. We start by

defining the concept then we go on to describe the current approaches applied to obtain

authenticated encryption and we conclude with a justification for choosing OCB as the

candidate for this goal.

1.3.1. Notion of authenticated encryption

The concept of authenticated encryption thats is namely combining privacy with

authenticity is one of traditional nature and has been misunderstood in the cryptographic

arena for some time. The approach of the problem was incorrect and was leading to many

miserable failures in trying to achieve the goal of privacy + authenticity. Afterwards the

concept of trying to combine privacy with authenticity was rendered unsafe, due to the

fear that such scheme would not provide an efficient amount of authenticity. However

this problem was in large due to the common belief amongst security scientists that

redundancy added in encryption schemes implied authenticity as well. The misunder-

standing comes from the idea that enciphering was thought to equal encrypting, which

is not true!

8

Enciphering is applying a permutation Pk on a plaintext M where k is a shared key.

However in order to achieve good encryption that is encryption in the semantic sense,

(i.e. encryption that could withstand a chosen plaintext attack and beyond) enciphering

is rendered insufficient. Only when a message has enough entropy in it then maybe

enciphering will do the trick and can achieve a close value of semantic encryption.

I quote the following paper that justifies some old intuition to the problem At

some level it would seem to be folklore that enciphering strings which employ nonces

or redundancy makes for good encryption. In the security literature one sees many

statements to the effect that we assume that messages to be encrypted employ adequate

redundancy, or we avoid replay attacks by including a nonce in the messages we encrypt.

Our results help formalize what such authors may have had in mind, since the statements

above become meaningful and true when encryption means enciphering and when the

roles of nonces and redundancy are formally defined [10].

1.3.2. Generic Composition

The term authenticated encryption scheme refers to a shared-key based transform

whose goal is to provide both privacy and authenticity of the encapsulated data. In such

a scheme the encryption process applied by the sender takes the key and a plaintext to

return a ciphertext, while the decryption process applied by the receiver takes the same

key and a ciphertext to return either a plaintext or a special symbol indicating that it

considers the ciphertext invalid or unauthentic.

The design of such schemes has attracted a lot of attention historically. The early

schemes were typically based on adding redundancy to the message before encrypting,

and many of these schemes were broken. Today authenticated encryption schemes con-

tinue to be the target of design and standardization efforts. A popular modern design

paradigm is to combine MACs with standard block cipher modes of operation. The goal

of symmetric encryption is usually viewed as privacy, but an authenticated encryption

9

scheme is simply a symmetric encryption scheme meeting additional authenticity goals

[3].

In order to analyze the security of authenticated encryption schemes, we need

consider the two notions of authenticity for symmetric encryption namely integrity of

plaintexts and integrity of cipher-texts.

Integrity of plaintext: It is computationally impossible to produce a cipher-text

that decrypts to a message never encrypted by the sender.

Integrity of ciphertext: It is computationally impossible to produce a ciphertext

that was not produced previously by the sender.

Generic composition is making a black-box use of a given symmetric encryption scheme

and a given MAC. The following are the required tools to achieve this goal.

Encryption schemes for privacy.

Message authentication schemes for authenticity.

Provable security analysis.

Combining the above tools achieves the goals of authenticated encryption. Following is

an account of the symmetric key based encryption scheme:

Constructions: CBC-mode encryption, CTR-mode encryption, OFB mode.

Security notions: Authenticity and Privacy.

Authenticity: Integrity of both plaintexts and ciphertexts.

Privacy: Indistinguishability and Non-malleability under either chosen- plaintext

attacks or adaptive chosen-ciphertext attacks where those are defined as follows:

Chosen plaintext attack To gain further secretive information by choosing

arbitrary plaintexts to be encrypted and obtaining the corresponding

ciphertexts.

Adaptive chosen-ciphertext attack To choose subsequent ciphertexts based

on the information received from previous requests

10

TABLE 1.1: Summary of security results, under the assumption that the MAC scheme
is weakly unforgeable [3].

TABLE 1.2: Summary of security results, under the assumption that the MAC scheme
is strongly unforgeable [3].

We consider three composition methods where E is an encryption function; T is a

tagging algorithm for some message authentication scheme. K, is a key for encryption

and Km is a key for message authentication, and where I I denotes appending.

Encrypt-and-MAC

EKexin(M) = EKe(M)IITI-fm (M)

MAC-then-Encrypt

EKe,Km(M) = EKe(M)IITKm (M)

Encrypt-then-MAC

Encrypt-and-MAC Insecure Insecure Insecure Secure Insecure
MAC-then-Encrypt Secure Insecure Insecure Secure Insecure
Encrypt-then-MAC Secure Insecure Insecure Secure Insecure

Encrypt-and-MAC Insecure Insecure Insecure Secure Insecure
MAC-then-Encrypt Secure Insecure Insecure Secure Insecure
Encrypt-then-MAC Secure Secure Secure Secure Secure

Privacy Integrity
Composition Method IND-CPA GIND-CCA NM-CPA INT-PTXT INT-CTXT

Privacy Integrity
Composition Method IND-CPA GIND-CCA NM-CPA INT-PTXT INT-CTXT

EKe,Km(M) = EKe(M)IITKm(EK,(M))

Observing the results from Tables 1.1 and 1.2 it seems Encrypt-then-MAC is the

most secure method provided that the MAC scheme is strongly unforgeable. Formal

security goals for authenticated encryption

Authenticity: Integrity of ciphertexts (INT-CTXT), Integrity of plaintext (INT-

PTXT)

Privacy: Indistinguishability and non-malleability each of which can be considered

either under chosen-plaintext or (adaptive) chosen-ciphertext attacks (IND-CPA,

IND-CCA, NM-CPA, NM-CCA)

Secure: The composite encryption scheme is secure, assuming:

The component encryption scheme is IND-CPA secure and the base MAC scheme

is UF-CMA (Unforgeable under chosen-message attack) secure.

Insecure: The composite scheme is insecure:

The exists some IND-CPA secure symmetric encryption and some MAC UF-CMA

such that the composite scheme based on them does not meet the security require-

ment in question

Any pseudorandom function is a strongly unforgeable MAC, and most practical

MACs seem to be strongly unforgeable. Therefore, analyzing the composition methods

under this notion is a realistic and useful approach. The use of a generic composition

method secure in the above sense is advantageous from both performance and of security

architecture point of view. The performance benefit arises from the presence of fast

MACs such as HMAC and UMAC.

The architectural benefits arise from the stringent notion of security being used.

To be secure, the composition must be secure for all possible secure instantiations of

11

12

its constituent primitives. If it is secure for some instantiations but not others, we

declare it insecure. An application can thus choose a symmetric encryption scheme

and a message authentication scheme independently and then appeal to some fixed and

standard composition technique to combine them. No tailored security analysis of the

composed scheme is required [11].

Generic composition is one of many approaches for authenticated encryption de-

signs. Other general approaches include encryption with redundancy that is redundancy

is appended to the message and then passes through a block cipher mode of operation

for encryption. However such schemes where under so many attacks that eventually they

got broken. Another form of encryption with redundancy in the style of [10] involves

adding randomness/redundancy and then enciphering instead of encrypting, which has

proven to work, provided that has a variable-length pseudorandom permutation, which

is very expensive. Another scheme is the RPC mode of [12] however it inefficient in

terms of space and performance compared to generic composition. Another scheme is

IACBC mode of Jutla [8] and a refinement of Julta's work is an elegant mode namely

OCB by Rogaway [2] which uses [IMI/n] + 2 block cipher invocations. Implementation

and testing of that scheme is the scope of this thesis, as it is required to compare its

speed with that of generic composition methods that use fast MACs (cf. [13, 14, 15]).

1.4. Thesis Outline

Chapter 2 describes the alternative options and implementations of authenticated

encryption. Chapter 3 describes the OCB mode in terms of features, notation, and

properties. Then there will be an elaborate description of the encryption scheme itself.

Chapter 4 describes the security considerations of OCB and the implementation options

available. Then it describes the challenges and the application of such a mode. Chapter

5 deals with the implementation results and analysis. There we present the summary

13

of findings and display a comparison of these findings with other hardware implemented

authenticated-encryption designs, in addition recommendations for future work are given.

2. OVERVIEW OF GOAL

NIST plans to develop new standard modes that address symmetric block cipher

algorithms, which need to be independent in terms of key size and block length. In

addition the four DES modes (ECB, CBC, ECB, OFB) that were defined in Federal

Information Processing Standard (FIPS) 81. are to be included. The goal arises because

new modes are required to address block ciphers such as AES, which are replacing DES

in many applications.

2.1. Encryption Modes with Almost Free Message Integrity

Charanjit Jutla of IBM presented two new modes, each of which provides both

confidentiality and message integrity: Integrity Aware Cipher Block Chaining Mode

(IACBC) and Integrity Aware Parallelizable Mode (IAPM) [8]. He asserted that almost

all encryption applications need message security; the new modes provide the additional

service at a much smaller cost in performance than can be achieved when encryption

and message integrity are provided separately.

Both IACBC and IAPM modes have proofs of security for both confidentiality

and message integrity, assuming that the underlying block cipher algorithm is secure.

The proofs of integrity are equivalent to those available for the CBC mode, and the

proofs of message integrity are equivalent to those available for CBC-MAC, which is

a message authentication code (MAC) based on the CBC mode. A paper containing

these proofs is available at the ePrint archive at [16]. IACBC is a non-parallelizable

mode that is similar to the CBC mode, except that IACBC also specifies whitening of

the output blocks with a pairwise independent random sequence. Two methods for

generating this random sequence are provided in the paper. An implementation of

IACBC using a DES engine had a throughput of over 90 percent of the throughput of

15

a standard CBC implementation. Thus, the cost of message integrity is relatively small

compared to the cost of supplementing the CBC mode with a separate MAC. IAPM is

a parallelizable mode that specifies both input and output whitening with a pairwise

independent sequence. Thus, IAPM is similar to the ECB mode in its form, but similar

to CBC in its proofs of security, which are not available for the ECB mode. Although the

IAPM mode has not yet been implemented, similar performance is expected for serial

implementation as that achieved for the IACBC mode. [17]

2.2. Fast Encryption and Authentication: XCBC Encryp-
tion and XECB Authentication Modes

Virgil Gligor of VDG, Inc. presented two papers written by himself and Pom-

piliu Donescu. In the first paper, On Message Integrity in Symmetric Encryption, [18]

different notions of message integrity for block-oriented symmetric encryption are ex-

plored, along with their relationships. These notions are expressed as a combination

of integrity goals (e.g., protection against existential forgery and assurance of plaintext

integrity) to be achieved in the face of different types of attacks (e.g., chosen-plaintext

and ciphertext-only attacks). The integrity notions are partially ordered by a dominance

relation. Defining the notions of integrity in terms of this dominance relation enables a

characterization of the relative strengths of various symmetric encryption modes.

In the second paper, Fast Encryption and Authentication: XCBC and XECB Au-

thentication Mode, two mode types are proposed: the XCBC mode and the XECB-MAC

mode. These families of modes are similar to the IACBC and IAPM modes discussed

in Section 2.2, but the whitening sequences are not required to be pairwise indepen-

dent; this allows better performance at the cost of relaxing the security bounds that can

be proven. The XCBC modes provide both confidentiality and integrity protection in

a single pass over the data. These modes detect integrity violations at a low cost in

performance, power and implementation, and can be executed in a parallel or pipelined

16

manner. The performance and security of these modes depends on the performance and

security of the underlying block cipher algorithm (e.g., AES). Both stateful and stateless

variants are provided. In addition to message integrity, these modes have the following

properties:

Support for real-time message authentication.

Support for multiple encryption modes (i.e., modes other than CBC could be used).

Support for interleaved-parallel or pipelined encryption.

Incremental updates of encrypted data (i.e., the incremental update of data struc-

tures is possible).

Support for architecture-dependent parallel encryption, since there is no ciphertext

chaining or requirement for an a priori knowledge of the number of processors.

Resistance to key attacks can be implemented, if required, in a manner similar to

that of DESX.

The paper also provides evidence for the security of the XCBC modes against both

adaptive chosen-plaintext and message-integrity attacks. The performance of the XCBC

modes in software implementations is only minimally degraded in comparison to the

CBC mode, and is superior to the CBC mode and other similar modes that are used to

provide message integrity. The XECB-MAC modes provide message authentication, can

be operated in a fully parallel or pipelined manner, and support incremental updates

and out-of-order verification. These modes are intended for use either stand-alone to

protect the integrity of plaintext messages, or with encryption modes that have similar

properties, whenever separate secret keys are used to provide confidentiality and in-

tegrity. Both stateless and stateful variants of XECB-MAC are provided. XECB-MACs

properties include:

The XECB-MAC modes are intended to be secure against adaptive chosen-plaintext

attacks.

17

Parallel or pipelined operation is possible.

The XECB-MAC modes are incremental with respect to block placement.

Verification of the authentication code can proceed even if the blocks are received

out of order.

The number of block encryption computations for XECB-MAC is the same as the

number of block encryption computations for CBC-MAC. In sequential implementations,

the performance of XECB-MAC is slightly lower than that of CBC-MAC because of

additional processing. On the other hand, the ECB-MAC mode can take advantage of

parallelism or pipelining to improve its performance. A third mode was presented: the

PM-XOR mode. This mode is a stateless fully parallel mode that is similar to Jutlas

IAPM mode (see Section 2.2); however, the Si elements are not pairwise independent

[17].

2.3. OCB Mode: Parallelizable Authenticated Encryption
and PMAC: A Parallelizable Message Authentication
Code

Phillip Rogaway of the University of California at Davis proposed two new modes:

the Offset Codebook Mode (OCB) and the Parallelizable MAC mode. The OCB mode

is based on the work of Jutla (see Section 2.2) and Gligor and Donescu (see Section 2.3).

This mode provides both confidentiality and integrity in a manner that is parallelizable

(i.e., different blocks can be processed at the same time). Other properties of this mode

include:

The data to be processed need not be an even multiple of the block length (e.g., if

AES is used, the block length is 128 bits; the data need not be forced to a multiple

of 128 bits in length).

18

Only two extra cipher calls beyond that needed for encryption alone are required

to process the data.

While a non-repeating nonce is required, it need not be unpredictable (e.g., a simple

counter may be used).
-

The offset (i.e., the whitening) values used in the OCB mode depends only on the

key it only needs to be computed once at the beginning of a keys crypto period.

Only a single key is used for this mode, as opposed to separate keys for encryption

and authentication, as is done in current systems.

Three variants of this mode are possible.

Proofs of the security properties of the OCB mode are under construction. PMAC

is similar to the XECB mode proposed by Gligor and Donescu (see Section 2.3). This

mode also uses an offset. The PMAC mode is fully parallelizable and achieves existential

unforgeability under an adaptive chosen-plaintext attack; a proof of this security claim

is currently being prepared. Other properties of this mode include:

No nonces or random values are required.

A minimum number of invocations of the block cipher algorithm are required: one

per data block.

The length of the data need not be a multiple of the block size of the cipher

algorithm.

Only one key is required.

Only one invocation of the block cipher algorithm is required to compute the initial

offset.

Three variants of this mode are possible.

Rogaway indicated that the algorithm descriptions for OCB and PMAC are in-

tended to allow for various implementation tricks [17].

3. OCB MODE

3.1. OCB Algorithm

OCB stands for offset codebook, the name gives evidence to the operational de-

scription inside the mode. One starts with a number of message blocks, these blocks are

offset, and then the block cipher is applied after which the result is offset again. OCB is

fully parallelizable and packs excellent features some of which follows:

Arbitrary-length messages + minimal-length cipher-texts. Any string M E {0, 1}

can be encrypted; 'MI need not be a multiple of the block length n. What is more,

plaintexts are not padded to strings of length a multiple of n, and thus cipher-texts

are as short as possible.

Nearly optimal number of block-cipher calls: OCB uses 11 M I /nl + 2 block-cipher

invocations. (This count does not include a block-cipher call assumed to be made

during session setup.) It is possible to make do with Ilml in] ± 1, but such alterna-

tives scheme would be more complex or would require a random IV. Keeping low

the number of block-cipher calls is especially important when messages are short.

In many domains, short messages dominate.

Minimal requirements on nonces: Like other encryption modes, OCB requires a

nonce. The nonce must be non-repeating (the entity that encrypts chooses a new

nonce for every message with the only restriction that no nonce is used twice)

but it does not have to be unpredictable. Requiring of a nonce only that it be

non-repeating is less error prone, and often more efficient, than requiring it to be

unpredictable.

Improved offset calculations: As with [8, 18], we require a sequence of offsets. We

generate these in a particularly cheap way, each offset requiring just a few machine

20

cycles. We avoid the use of extended-precision addition, which would introduce

endian dependency and might make the scheme less attractive for dedicated hard-

ware.

Single underlying key: The key used for OCB is a single block-cipher key, and

all block-cipher invocations are keyed by this one key, saving space and key-setup

time.

The above features are achieved since they where addressed from the start to make

OCB work where other modes have failed [19].

3.1.1. OCB security properties

OCB is proven to be secure, in the sense of reduction-based cryptography. Specif-

ically, its proved in terms of indistinguishability under chosen-plaintext attack and au-

thenticity of cipher-texts as shown in [20], this combination implies indistinguishability

under the strongest form of chosen-ciphertext attack (CCA) (which, in turn, is equiva-

lent to nonmalleability under CCA. The proof of privacy assumes that the underlying

block cipher is good in the sense of a pseudorandom permutation (PRP), while the proof

of authenticity assumes that the block cipher is a strong PRP. The actual results are

quantitative; the security analysis is in the concrete security paradigm. The proofs use

standard techniques, but pushed quite far. OCB has stronger security properties than

standard modes. In particular, non-malleability and indistinguishability under CCA are

not achieved by CBC, or by any other standard mode, but these properties are achieved

by OCB. We believe that the lack of strong security properties has been a problem for

the standard modes of operation, because many users of encryption implicitly assume

these properties when designing their protocols. For example, it is common to see proto-

cols, which use symmetric encryption in order to bind together the parts of a plaintext,

or which encrypt related messages as a way to do a handshake. Standard modes do not

21

support such practices. This fact has sometimes led practitioners to invent or select

peculiar ways to encrypt (a well-known example being the use of PCBC mode. It is

believed that a mode like OCB is less likely to be misused in applications because the

usual abuses of privacy-only encryption become correct cryptographic techniques [19].

3.1.2. Notation and Basic Operations

The following are the basic notations, which are used to describe the OCB algorithm

throughout this document:

String: is a finite sequence of symbols, each symbol being 0 or 1, where {0,1}*

Defines the set of all strings.

ntz(i) is the number of trailing 0-bits in the binary representation of i where i > 1.

If L E {0, 1}* then ILI denotes the length of L, in bits, while I ILI = max{1, [ILI/n]}

denotes the length of L in n-bit blocks, where the empty string counts as one block.

Len (i) is the integer i written in binary as an n bit string.

zpadn(L) or LO* define the number of minimum number of 0-bits padded to L to

get a length of 128 bits provided ILI < n, n being the block length.

L>> 1 is a right shift of L by 1 bit.

L < 1 is a left shift of L by 1 bit.

If A, B E {0, 1}* then A ED B is the bitwise xor of A [first/ bits] and B [first 1 bits],

where 1 = min{lAl, IBI} so, for example, 1001 ED 11 = 01.

To multiply a E {0, 1}n by x over the field G F (2n) where n = 128

ax=

a x-=---1 1 a > 1

3.2. OCB Scheme

OCB requires the use of a block cipher and a tag length. The block cipher is an

encryption function typically AES. The n value which refers to the block length must

be < 64 although n < 128 is highly discouraged. The tag length is an integer T E [0..n].

This means an adversary would be able to forge a valid ciphertext with probability 2-T.

[2] suggests using a default tag length of T -= 64. OCB-X denotes OCB mode with an X

block cipher for AES 128 the naming becomes OCB AES128. If a tag length is specified

the notation becomes OCB [X, r]. In addition to the above, the OCB mode requires the

use of a nonce. The nonce need not be secret or random however its use is only limited

during one single session. The session being the time period in which the encryption

key is used. A good example of a nonce is a counter. The responsibility lies in the

hands of the user, to not repeat the nonce during a session. If a nonce is repeated the

authenticity for all future messages will be broken and the privacy of messages that used

the repeated nonce will be broken too. It is the user's responsibility to communicate

the nonce to the party that will decrypt but the notable thing in that feature it could

be communicated in the clear. The OCB mode scheme is depicted in Figure 3.1. The

OCB mode encrypts-and- authenticates a non-empty message M{0, 1}* using [I

1

a < 1 if firstbit(a)= 0

(a < 1) ED 012010000111 if firstbit(a) = 1

To multiply a E {0, 1}n by x over the field GF(2n) where n = 128

if firstbit(a)= 0

(a > 1) e 01201000011 if firstbit(a) = 1

22

Mini +2
block-cipher invocations. The first and last steps namely the computation of the offset R

et r

FIGURE 3.1: OCB Encryption Scheme [2].

3.2.1. Key setup

The key is randomly generated and made available for both the encryption and

decryption parties. For both parties the necessary key setup associated to block-cipher

enciphering and deciphering is made. The following would be the operations preformed

to create string values that will be used to create the offset values i.e. the Z[1], , Z[m]

depicted in Figure 3.1. we define the sting L (i) to be L.xi for L E {0, 1}71 and i > 1.

Let m denote the maximum number n-bit blocks a message can have. Do the following

23

and the tag T denotes the 2-block cipher invocations required. The in between parallel

steps are determined by the size of the message.

Define a string L by applying Ek to a fixed string On, L Ek(On)

L i- L(0)

Let ii, <- log2mf ori E [1 ... bt], compute L(1)..L(p,), where L(i) 4- L(i) x is

computed using a shift and a conditional xor as described in section 3.2

Compute L(-1) <- Lx-1- using a shift and a conditional xor

Store the values L(-1), L(0), L(1), . . . (u)

OCB makes use of the canonical Gray code -y = -yn constructed by 71 = (01) and for

1 > 0. Where for i = 0 we have -yi = 1 = L and for i > 2 we have

yi L = (yi_i L) ED L(ntz(i))

Example:

72 L = (72-1 L) ED (L(ntz(2))) =?

We know (72-1 - L) = (71 L) = 1 L = L and ntz (2) is the number of trailing

zeros in the binary representation of 2 which is 1. Therefore, we have 72 L=LEDL(1)

so that means the ith word is obtained by xoring the previous word with L(ntz(i)).

3.2.2. OCB encryption

To encrypt a message M E {0, 1}* with a key K and Nonce N E {0, 1}n obtaining a

ciphertext C, follow the below algorithm [2].

24

Algorithm OCB.EncK (N,M)

Partition M into MN... M[m]

L 4-- EK(071)

R 4- EK(N ED L)

for i 1 to m do Z[i] = -yi ED R

for i < 1 to m 1 do C[i] < EK(M[i] e Z[i]) e Z[i]

X[m] < len(M[m]) ED L x-1 e Z[m]

Y[m] < EK(X[rn])

C[m] 4- Y[m] ED M[m]

C4 C[1] ... C[m]

Checksum < M[1] ED ... ED M[m 1] e C[m]0* ED Y[m]

T < EK(Checksum e Z[m]) [first 'T bits]

return CIIT

25

The algorithm refers to Figure 3.1 in terms of the procedure. First the message M

is partioned into m blocks where m = max{1, [Iml/n]} and n is the block size in bits.

The string value L is computed by encrypting 0 n bits using the block cipher of choice

in the OCB mode. The offset R is then computed by xoring the nonce N with the string

value L. Offset Z[1] = L ED R and for any i > 2, Z[i] = Z[i 1] ED L(ntz(i)). By C[m]0*

we mean C[m] padded with zero bits to the right to get to length n.

3.2.3. OCB decryption

To decrypt a message C{0,1}* with a key K and Nonce N E {0, 1}7/ obtaining a

plaintext M do the reverse process of section 3.3.1, making sure that the presented Tag

is as expected (if not, regard the presented ciphertext as invalid). The below algorithm

[2] depicts the decryption process.

Algorithm OCB.DecK (N,M)

Partition C into C[1] ... C[m]

L-- E-(On)

R < EK(N ED L)

for i <- 1 to m do Z[i] =y L ED R

for i < 1 to m 1 do M[i] 4- Ekl (M[i] e Z[i]) e Z [i])

X[m] 4- len(M[m]) e L x-1 @ Z[m]

Y[m] *--- EK (X[m])

M[m] 4- Y[m] ED C[m]

M 4- M[1] ... M[m]

Checksum < M[1] e ... e M[m 1] ED C[m]0* ED Y[m]

T 4- EK(Checksum e Z[m]) [first T bits]

if T = T" then return M else return INVALID

OCB properties

OCB was designed to address certain properties, which makes it one of the most

efficient authenticated-encryption schemes. These properties seem to be what many

such attempts lacked in creating a high performance authenticated encryption. Some

properties of OCB taken from [2] are listed below. The summary of these properties are

depicted in table 3.1.

Arbitrary-length messages and no ciphertext expansion

Any message M can be encrypted, yielding a ciphertext C of length IMI ± 'T. That

is, the length of the ciphertext namely the portion C = C[1] ... C[m] of the ciphertext

that excludes the tagis the same as the length of the message M. This is better, by up

to n bits, than what one gets with conventional padding.

26

Single block-cipher key

OCB makes use of just one block-cipher key, K. Thus only one block-cipher key

needs to be setup, saving on storage space and key-setup time.

Weak nonce requirements

Modes of operation that requires a random IV are error-prone. As an example,

consider CBC mode, where C[i] = EK (M[i] ED C[i l]) and C[0] = /V. It is sometimes

suggested that a mode, which needs a random IV, is preferable to one that needs a nonce.

First, a random value of sufficient length can always be used as a nonce, but a nonce

cannot be used as a random value. Second, the manner in which systems provide random

IVs is invariably stateful anyway: unpredictable bits are too expensive to harvest for each

IV, so one does this rarely, using state to generate pseudorandom bits from unpredictable

bits harvested before. Third, the way to generate pseudorandom bits needs to use

cryptography, so the prevalence of non-cryptographic pseudorandom number generators

routinely results in implementation errors. Next, nonce-based schemes make it possible

for the receiver to implement replay-detection with no added cryptography. Finally,

nonces can be communicated using fewer bits, without any additional cryptography.

On-line

OCB encryption and decryption are on line in the sense that one does not need

to know the length of the message in advance of encrypting or decrypting it. Instead,

messages can be processed as one goes along, using constant memory, continuing until

there is an indication that the message is over. An incremental interface (in the style

popular for cryptographic hash functions) would be used to support this functionality.

27

TABLE 3.1: Summary of OCB properties [2].

28

Security Function Authenticated encryption. Provides both privacy and authentic-
ity. It achieves a strong form of privacy: what cryptographers call
"indistinguishability under chosen-ciphertext attack" and "non-
malleability under chosen-ciphertext attacks". These strong prop-
erties make OCB easier to correctly use in protocols than standard
privacy modes.

Error
Propagation If the ciphertext is corrupted in any manner then the received

ciphertext will almost certainly (probability 1 - 2-t) be rejected.
Synchronization Optional. If the nonce N is transmitted along with each ciphertext,

there are no synchronization requirements. If it is not sent (to save
transmission bits) the receiver must maintain the corresponding
value.

Parallelizability Fully parallelizable. Both encryption and decryption are fully
parallelizable. Thus it will have ever faster implementations as
machines offer up more and more parallelism, and it is good for
encrypting messages in hardware at the highest network speeds.

Keying Material One block-cipher key. One needs a single key, K, which keys all
invocations of the underlying block cipher.

Ctr/IV/Nonce
Requirements

Single-use nonce. The encrypting party must supply a new nonce
with each message it encrypts. The nonce need not be unpre-
dictable or secret. The nonce is n bits long (but it would typically
be communicated using fewer bits, as determined by the applica-
tion).

Memory
Requirements Any bit string allowed. Any string M 0, 1 may be encrypted,

including the empty string and strings which are not an integral
number of bytes. The length of the string does need not be known
in advance.

Ciphertext
Expansion Minimal possible (for a scheme meeting the desired privacy no-

tion). Expansion is On bits for the tag plus On bits for the nonce.
The former depends on a user-specified parameter t, with 3280
bits being typical. Messages, which are not a multiple of the block
size, do not receive additional expansion due to padding.

Other Character-
istics

Efficiency: Uses [M /n] ± 2 block-cipher calls and very effi-
cient offset calculations. Endian neutrality: Can be implemented
equally efficiently on big-endian and little-endian machines. Prov-
able security: The mode provably meets its goals, assuming the un-
derlying block cipher meets now-standard cryptographic assump-
tions.

4. IMPLEMENTATION CRITERIA

4.1. Proof of Concept

The goal of this thesis is to develop a functional OCB-AES encryption engine in

hardware. The OCB mode requires a block cipher mode, and AES 128 is the candidate

chosen. Furthermore to fully produce a high performance and low cost implementation it

becomes then necessary to also implement a fast Rijnadel-AES engine for that purpose.

OCB is a fairly new algorithm and the only available implementation is written in C

code, which is for illustration purposes only. I have yet to come across an implementation

of OCB in hardware for either ASIC or FPGAs, this to me seems to be the first attempt

in doing so.

4.2. OCB Implementation Considerations

With network speeds on the rise, pushing the envelope so high that we are currently

witnessing many products operating at speeds of 10-gigabits and much faster ones under

development, it becomes inevitable to create a standard for high-speed authenticated

encryption. Encrypting data at such high speeds in unachievable in current personal

computers and requires the use of hardware accelerators. However current cryptographic

standards do not provide methods to secure traffic at such high rates. Many standard

block cipher modes have fundamental performance limitations and require the use of

message authentication codes to achieve authenticity goals. In recognition of this OCB

was designed as a candidate of high performance authenticated encryption that could

be used to secure traffic at such high speeds. The features in OCB make it the most

prominent amongst its caliber. It utilizes high parallelism, which translates to higher

speeds when allowed by the environment. Pipelining is also a very important feature

30

that could give rise to higher performance. We present certain criteria that provides for

a high performance authenticated-encryption mode.

4.2.1. Parallelism

Parallelism can be found in the encryption algorithm when certain transforma-

tions can be preformed simultaneously. It can also be exploited outside the algorithm by

augmenting a number of processing units to work simultaneously on independent blocks.

Parallelizability is important for obtaining the highest speeds from special-purpose hard-

ware, and it may become useful on commodity processors. For special-purpose hardware,

one may want to encrypt-and-authenticate at speeds near 10 Gbits/second an impossible

task, with todays technology, for modes like CBC encryption and the CBC MAC. (One

could always create a mode that interleaves message blocks fed into separate CBC en-

cryption or CBC MAC calculations, but that would be a new mode, and one with many

drawbacks. For commodity processors, there is an architectural trend towards highly

pipelined machines with multiple instruction pipes and lots of registers. Optimally ex-

ploiting such features necessitates algorithms with plenty to do in parallel [2].

4. 2. 2. Pipelining

Pipelining is critical to efficiency at high speeds. OCB gives the freedom of choice

to use any block cipher mode. However AES is highly encouraged. A pipelined imple-

mentation of AES consists of ten separate rounds. At each clock cycle, plaintext data

enters the first round, the intermediate data moves from one round to the next, and

ciphertext data leaves the final round. While it takes ten clock cycles to encrypt any

given plaintext, the circuit completes one encryption per clock, once the pipeline is full.

In a mode of operation that requires block chaining (such as CBC, CBC-MAC, OFB,

and CFB), each block of input to AES depends on the previous block of output. These

31

modes cannot be pipelined, and thus suffer either a factor of ten reduction of speed or a

similar increase in circuit size [21].

4.2.3. Simplicity

Simplicity has been a central design goal. Some of OCB's characteristics that

contribute to simplicity from [2] are

Short and full final-message-blocks are handled without making a special case: the

treatment of all messages is uniform, regardless of their length.

Only the simplest form of padding is used: append a minimal number of 0-bits

to make a string whose length is a multiple of n. This method is computationally

fastest and helps avoid a proliferation of cases in the analysis.

Only one algebraic structure is used throughout the algorithm: the finite field

GF(2n).

In forming the sequence of offsets, Gray-code coefficients are taken monotonically,

starting at 1 and stopping at m. One never goes back to some earlier offset, uses

a peculiar starting point, or forms more offsets than there are blocks.

4.2.4. Efficiency

A significant criterion that has been neglected in many authenticated encryption

modes but was addressed from the start in OCB is the number of Block-cipher invoca-

tions. Reducing this number increases the efficiency of the whole algorithm. It may not

seem much to shave off a few block-cipher invocations making for shorter cipher-texts,

but most of many cryptographic applications deal with short messages. Roughly a third

of the messages on the Internet backbone are 43 bytes big [2]. Encrypting messages of

32

such length makes it even trickier to deal with message expansion and computational

overhead, since comparatively the inefficiencies could be large. Another efficacy mea-

sure is the circuit depth of an encryption scheme as measured in terms of blockcipher

gates. For OCB encryption, this number is three: a call to form R; calls to form the

ciphertext core; and a call to compute the tag. Block-cipher circuit-depth serves as a

lower bound for latency in an aggressively parallel environment. Reducing the block-

cipher circuit-depth to one or two is possible, but the benefit does not seem worth the

associated drawbacks. Depending on padding conventions and the optional processing

done to the final block in order to ensure security across messages of varying lengths. So

the total will be as few as 2 [IMI/n] + 1 or as many as 2 [(I M I + 1)/n] + 4 block-cipher

calls. Thus OCB saves between [IMI/n] 1 and [IMI/n] +3 block-cipher calls compared

to separate CBC encryption and CBC MAC computation. As with any mode, there is

overhead beyond the block-cipher calls. Per block, this overhead is about four n-bit xor

operations, plus associated logic. The work for this associated logic will vary according

to whether or not one precomputed L(i)-values and many additional details [2].

4.2.5. Other Factors

There are other important goals for an authenticated encryption mode suitable

for use at high data rates. It should be possible to use the same pipeline to process

successive data packets without stalling. There should be a minimal circuit depth to the

algorithm, so that the per-packet pipeline stall is minimal or nonexistent. Of course, the

algorithm should also be implemental in as small a circuit as possible. The overhead

of the message authentication component should be small relative AES counter mode.

Additionally, while hardware requirements are paramount for high-speed cryptography,

the need for interoperability dictates that software performance should also be good [21].

4.3. Hardware vs. Software Implementations

Cryptographic applications or products can be implemented in both hardware

and software. However the determining factor is the desired speed and cost of the

encryption/decryption implementations.

Software implementations have become wide spread, thats due to its accessibility,

ease of use and low cost. It is also not labor consuming, since people could achieve correct

implementations with basic skills in programming. Most software implementations are

done in high programming languages such as C, C++ and Java and are made to operate

on personal computers or smart cards. Software implementations are ideal for low power,

speed and security requirements. However in order to achieve higher speeds the use of

hardware implementations is inevitable.

Hardware implementations are usually designed and coded using hardware de-

scription languages, such as VHDL and Verilog or using schematic capture. There are

currently two major implementation approaches for hardware designs, one being Applica-

tion Specific Integrated Circuits (ASIC) and Field Programmable Gate Arrays (FPGA).

Application Specific Integrated Circuits (ASIC)

This approach requires the design from the behavioral description to the physical

layout

Cost and time consuming

High manpower

Field Programmable Gate Arrays (FPGA)

Reconfigurable to perform different functions

Comparatively cheap since they are purchased off-the-shelf

Not optimal and slower then ASIC

33

Every type of implementation has its advantages and disadvantages. Their basic

features are summarized in table 4.1 [4].

4.4. OCB Applications

The IEEE is actually defining a brand new encapsulation protocol. This new pro-

tocol is expected to use a stronger cipher the Advanced Encryption Standard (AES) in

Offset Codebook (OCB) mode. It has been stated that OCB-AES does not have the

weaknesses that RC4, the current WEP encryption, has.This could mean that OCB will

be able to provide the industrial-strength data integrity and privacy for 802.11 wirelesses.

AES-OCB is touted as being much stronger than WEP/TKIP [22].

Other applications of the OCB mode include Internet security many popular In-

ternet protocols rely on authenticated encryption schemes for privacy and authenticity.

Examples of these include: SSL, TLS, SKI, IPSEC. Other applications on the Internet

require both privacy and integrity examples of these include: online banking, retail, and

auctions, secure file transfer.

TABLE 4.1: Characteristic features of implementations of cryptographic
transformations in ASICs, FPGAs and software [4].

34

ASICs FPGAs Software
Speed Very fast Fast Moderately fast
Design Cost Very expensive Moderately expen-

sive
Inexpensive

Design Cycle Long Moderately long Short
Design Tools Very expensive Inexpensive Inexpensive
Maintenance and
Upgrades

Expensive Inexpensive Inexpensive

Tamper Resistance Strong Limited Weak
Key Protection Strong Limited Weak
Algorithm Agility No Yes Yes

5. IMPLEMENTATION RESULLTS AND ANALYSIS

This Chapter describes the design process followed in order to achieve the hardware

realization of the OCB-AES mode. The architecture and logic design are described in

detail presenting the functional blocks, and the results of our findings.

5.1. Design methodology

The Algorithmic description of OCB [2] served as the basis of our hardware design.

It was thoroughly analyzed in an attempt to exploit the features in it. The algorithm was

divided into portions and each tackled separately, considering many data path options

and settling on the efficient routes foreseen. One important feature was the use of AES

as our block cipher. It was then necessary to do a literature review on Rijndael AES

and find the most efficient way to implement it, since its performance will be vital to

the whole design. Once the architecture was specified the components of the design

where described in VHDL code. The design was simulated in ModelSim for Functional

correctness. Later the design was synthesized targeting Virtex 2 Pro-ff896 family FPGA

and an ASIC ammi05_typ auto (0.5p CMOS with hierarchy presrved) as the target

technologies.

5.2. Overall Architectural Design

The top-level architectural design of the OCB-AES encryption engine is shown

in Figure 5.1. The implemented version is depicted in Figure 5.2. The main functional

blocks are Generate_offset & Offsetinitialization, cipher_computation and two other con-

trol blocks.

FIGURE 5.1: System Level Diagram of OCB-AES Encryption Engine

36

The AES block in Figure 5.1 refers to the Rijndael encryption engine. There are

three major inputs: M[i] which is a 128-bit block of the plaintext, nonce, and the key.

37

The nonce is xored with a stride L and then is fed through a mux into the AES engine

to produce the initial offset. Since the computation of the initial offset would be done

just once for that encryption session, it seems wasteful to dedicate one AES block just

for that purpose, since it adds to the area unnecessarily. The L(i) values required to

produce the intermediate offsets for the remaining blocks are pre-computed and saved

in a table. This is done by a shift register and an xor. The values then are saved to the

ntzi table. This implementation alleviates the need to compute L by using block ciphers

lots of different times. Once the offset is generated it passes through the section where

the cipher texts are computed. Here another instance of the AES engine is implemented.

The key along with the offset and the message block are processed to produce the cipher

text block for that message. The last block of the plaintext is computed once a signal

indicating that the block before the last in the message was done. Once the last block

is processed it is used to compute the checksum. The final round is when the checksum

passes through the AES engine to produce the Tag. As you can observe the design uses

minimum instances of the AES block, hence reducing area dramatically. Further more

the checksum could not be produced until the value C[m] (last 128-bit cipher block) is

computed. This means a parallel structure dedicating a sole AES engine for that purpose

would be deemed unresourceful.

The interface of the overall design is as follows:

Input: clock, reset_n

Control: encrypt, no_block_minusl

Data: Plain_text, Key, nonce

Output: Cipher_text, done

An JO Sz Memory block provides the interface between the user and the memory

elements for the operands and the sparsing of the message. I did provide a C++ software

code as an interface. For hardware the requirement would be to meet the timing spec-

ifications of the Generate_offset Offsetinitialization block. There are many different

encrypt D

clock

reset_n

key

generate_offset

Offsetinitialization

nonce no_block_minusl

dpher_computation

cipher text

FIGURE 5.2: Implemented Block Diagram of OCB-AES Encryption Engine

flexible solutions to implement this block, depending on the target system requirements

in which it will be integrated. Therefore, the architecture of this functional unit is out

of scope of this work. The input takes in serial data, that are passed through a counter.

The counter then outputs the iteration round value which in turn is passed to the sm1

block where it is compared against the value of no_block_minus1 (the block before the

last) if the iteration round is smaller or equal to the no_block_minus1 value, it triggers

a signal doing_iteration = 1, that is it keeps processing more rounds until the value of

the counter reaches the last block, then it triggers a signal after_iteration =1 indicating

the phase of encrypting the last block of data. We also use an active low asynchronous

reset.

38

After the computation of the L strings and the offset values they are passed to the

cipher_compuation block, responsible for creating the C[1] C[m] values of the cipher

5.4. Offset Initialization and Generation Architecture

39

text and computing the tag. A data block of 128 bits can be processed every 13-clock

cycles since that is the number of cycles that the AES encryption engine can operate at.

The total operation takes 26 clock cycles once we start encryption, we have 26 because

we need first 13 clock cycles for computing L[0] and pre-computing other values of L, and

the 13 clock cycles is for computation of offset_initialization. The cipher computation for

each block from there on takes 13 clock cycles. The number of clock cycles to encrypt

m blocks = (3 + m) x 13.

The data path of the overall design is mainly split into two sub-blocks one is

generate_offset and other is AES 2. The control blocks are also divided further. We

present an account of the function of each of these blocks in detail.

5.3. Control Blocks

Sml and Ebl depicted in Figure 5.2 are small control blocks, Ebl is a state machine

which makes a transition from state and indicates generation of cipher (C[1],..., C[m-

1]), cipher_ last(C[m]), tag followed by a done state. It also generates the three control

signals: doing_iteration when in state cipher, after_interation when in state cipherlast

and done in state done. Sml on the other hand handles the control signals for the

Rijndael system. Sml and ebl combined together forms the control block on higher

level internally we split each block (offset_initaliztion and AES2 block) and they have

their own control section. So in this regards our control structure is distributed rather

than centralized. It is worth mentioning that the generation of the no_block_minus_l

value is done via a software interface that we implemented in C++ code.

This functional design of this block is to generate the offset values to be used

for offsetting the message blocks before and after encryption. The design is further

Ld

128 zero bits

KEY

Vaild_offset_init

Load_offset_tegister

init

LflZm

Table

Offset

FIGURE 5.3: Architectural Design of the Offsetinitialization Block

40

subdivided into blocks or tasks. The first task is to generate the initial offset from the

nonce this is the offset_intialization sub-block. The other sub-block is the generation of

the L string values. The detailed description of these sub-blocks follows.

5.4.1. The Offset Initialization Block

This block computes initial value of offset in-order to start the encryption. This

block also computes the intermediate values of offset based on iteration level. Figure 5.3

displays the architectural design of this unit.

542. The L_generate Block

This block from the value of L [0], pre-computes all the values of L i.e. L[1], L[2],

... , L[9]. We are limiting the number of block to m = 210 1 (based on assumption

that each file is of size less than 10 MB) Hence we compute only until L [9]. Also based

on iteration round which is computed using the increment counter, which increments

its output whenever the input to its incr signal goes high. This iteration count input is

then passed on through a 10 to 4 bit priority encoder whose functional operation is as

depicted in Table 5.1.

41

TABLE 5.1: Functional Operation of Priority Encoder

Since we cannot have a 0th iteration the condition where the counter's output is

all zeros is insignificant, hence that one selection does not really effect the design. The

incr signal goes high whenever aes2 produces a done signal. Figure 5.4 depicts the L &

ntzi computational block. Shown in the figure, 3 blocks, namely the priority encoder we

just described along with the incr-counter and the ntzi generator.

Input bit position Output In dec-
imal

Output in binary bit
position

L[ntzi]

9 8 7 6 5 4 3 2 1 0 3210
0 0 0 0 0 0 0 0 0 0 0 0000 L[0]
xxxxxxxxxl 0 0000 L[0]
xxxxxxxx 10 1 0001 L[1]
xxxxxxx 100 2 0010 L[2]
xxxxxx 1000 3 0011 L[3]
xxxxx 10000 4 0100 L[4]
xxxx 100000 5 0101 L[5]
xxx 1000000 6 0110 L[6]
xx 10000000 7 0111 L[7]
x 100000000 8 1000 L[8]
1 0 0 0 0 0 0 0 0 0 9 1001 L[9]

1_0(127:0) D

load_l_O D

reset_n D

clock D
increment D

d_in(9:0) d_out(3:0)

priority_encoder_10to4

clock

1_0_31_0(31.0)

_0_63_32(31:0)

_0_95_64(310) l_minus1(127. 0)

_0_127_96(31:0) l_ntzi(127: 0)

oat 1_0

ntzi(3:0)

reset_n

clock

incr d_out(9:0)

reset_n

l_ntzi_generete

Incr_counter_1

FIGURE 5.4: L ntzi Computational Block

We compute L [i + 1] using the following function:

Outputl _plusl =
J< L(i)(Le f t shift) when the MSB of input is zero

< L(i) XOR with MSB of 87 otherwise

The above function is translated using the RTL schematic depcited in Figure 5.5.

The XOR gate here is nothing but a MUX translation of the above function.

I 31 0(3

1.163_32(31:

1 1_95 64(31:0)

Li 1 _96(31:0)

FIGURE 5.5: RTL Schematic of the Lplusl Output

Eminusl is computed using the following binary operation:

D _minus1(127: 0)

D l_ntzi(127:0)

Diteration_round(9:0)

42

1(127:0)

1 _minus1(127 DOW NT 07) 1_0(0)1&1_0(127 DOW NT 08)

1 _minus1(6DOW NT00) 1_0(7 DOW NT 01)W H EN (1_0(0) =' 0')ELSE

1_0(7DOW NT01)X0R" 1000011";

Outputl _minusl =

5.5. Cipher Computation Architecture

The functional design of this block is to produce the ciphertexts and the tag value

from the plaintext and the offset values. This design includes an implementation of a

Rijndael AES core engine and some xors and muxes to produce the required results.

5.5.1. AES Engine

The architectural strucure of the Rijndael AES engine is depicted in Figure 5.6.

The design features a more serial approach by cloning only necessary units. Many

criteria where taken into consideration when developing this Implementation. The key

generation was produced in parallel with the encryption round, rather than recomposing

the keys in advance this method provides better efficiency and saves a vast amount of

buffer space. One set of round key is computed per round.

A module containing S-Box, ShiftRow, MixColumn, and AddRoundKey was de-

signed and the same components were reused each round. All the necessary computations

required are computed in only one cycle. The main operations preformed in our AES

encryption engine implementation are as follows:

S-Box : Designed as a lookup table with 8-bit address input and 8-bit output. 16

copies of S-Boxes are duplicated to meet the one clock cycle specification.

43

1

> L(0)(Right shift) when the LSB of L(0) is zero

>> L(i)) NOT L(MSB) and L(0) XOR LSB_43 otherwise

Control

entrypt

Date_reg_mux_s

1,04data

Ltt key

Reg_mux_sei
to-

Round_value

Piaintext

a1joind. mLix._se

Key Sheduler

KEY

Rounds

Key 0

Rotind_O

Round_1-10

FIGURE 5.6: A top level system design of the AES engine

Shift Row : Using a shift register

Mix Column : This is implemented by simple shift and/or xor operations. For

results of more than 8-bits, irreducible polynomial 100011011 is used to reduce the

result.

Key Schedule : Four S-Boxes are duplicated such that computations for each round

complete in one clock cycle. The next round's sub-key can be derived from buffering

each sequence of sub-keys

Add Round Key : Composed of xor gates.

t xt

44

45

Control : A finite state machine, which provides register loads and multiplexer

select signals. Moreover, round constants are stored in a lookup table and provided

to the key schedule block.

There are a total of 13 rounds, out of which 3 rounds are for initialization, loading

inputs and output generation. The aechitectural process of one round of AES encryption

is depicted in Figure 5.7. Each round takes one clock cycle to execute. Making the total

of cycles from when we start encryption till we get the results 13 clock cycles.

ejr(127:0)
sel

FIGURE 5.7: System Level Design of an AES Round

5.5.2. The Cipher Computation Block

This block is responsible for computing the ciphertexts and the tag value. AES 1

refers to the instance of the Rijndael encryption engine used to produce the offset values.

Whereas aes2 refers to an instance of the same engine used to compute all cipher text

blocks along with the tag. Figure 5.8 depicts the architectural structure of aes2 where

as 5.9 depicts the implemented Logic diagram of the aes2 engine.

out

After ileration

[rn-ii T,ag

FIGURE 5.8: Architectural Design of The aes2 Engine

KEY

46

control
contrl

FIGURE 5.9: Implemented Block Diagram of OCB-AES Encryption Engine

5.6. Synthesis and Timing Results

The designs where synthesized in two environments. The first using the Xilinx

package software the second, is that for the ASIC using Leonardo synthesis tool. It is

worth mentioning that latter synthesis environment is intended for educational purposes

and do not reflect the same environment for commercial ASICs. However it provides a

reasonable environment for comparison between designs.

5.6.1. Area and Timing results for FPGA & ASIC Implementations

Table 5.2 depicts the synthesis results for the Xilimc target technology. The first

section describes the area usage of the chip. The bottom part gives the maximum clock

frequency that our OCB-AES engine can operate at. The same results where obtained

for the 0.5 u CMOS ASIC desgin after synthesis.These values are provided in Table 5.3.

48

TABLE 5.2: Timing Report for The Virtex 2 Pro FPGA

Observing the values in the above tables we find the ASIC Implemnation to con-

sume a large number of gates. The clock frequency is also slower on the ASIC desgin

wich is usually not the case since ASIC's tend to be faster. In the case of ASIC desgins

Device Utilization for 2VPX20ff896
Resource Used Avail Utilization
IOs 524 556 94.24%
Global Buffers 2 16 12.50%
Function Generators 9951 18560 53.62%
CLB Slices 4976 9280 53.62%
Dffs or Latches 940 20228 4.65%
Timing Report
Clock Frequency 145.138 MHz

TABLE 5.3: Device Utilization Results 0.5u ASIC

every additional flip-flop or latch introduced to the circuit requires additional resources.

However in FPGA technology that is not the case. Neverthless the size and speed ratio

seems reasonable from chips of that callibar. Since most other AES modes opearte at

almost half such frequency.

5.7. Comparison with Generic Authenticated-Encryption
Modes

Every digital circuitry can be implemented differently. Depending on the design

goal. Since the objective is to demonstrate that OCB is both lower in cost and higher

in speed than generic authenticated-encryption modes, it becomes essential then to take

these requirements into consideration. Area most of the time effects cost. We tried to

balance both area and speed in the design, in order to provide a suitable architecture in

terms of both cost and operational speed. Throughput is a good measure of the circuit

speed. One way to increase throughput is to use high-speed circuitry, thats why it was

essential in the desgin to implement a fast Rijndael AES engine.

Another way to increase speed is to exploit parallelism. I do believe there is large

amount of parallelism that could be exploited form the algorithm however it was hindered

by the fact that the message processing circuitry would be complex. In order to process

49

ASIC ami_0.5
Number of ports 526
Number of netss 47569
Number of instances 46782
Number of references to this view 0

Total accumulated area
Number of gates 167802
Number of accumulated instances 46782
Clock Frequency 89.2 MHz

TABLE 5.4: Summary of results in area, maximum clock rate, throughput, latency of
an OCB-AES encryption

The critical path of the OCB architecture is determined by the cipher_compuataion

block. After the first 13 clock cycles The AES implemented has a latency of 13 clock

cycles. The circuit depth of OCB is essentially 3 times that of the block cipher, a call to

form the initial offset; calls to form the ciphertext core, and a call to compute the tag.

Reducing the block-cipher circuit-depth to one or two is possible, but the benefit does

not seem worth the associated drawbacks. Throughput is defined by the following

throughput =
block size

clock period x number of clock cycles

50

a message of arbitrary length that would require large amounts of memory and probably

the use of timing multiplexer. This translates into higher costs.

The design takes on an iterative architecture permitting only one block data at

a time. In some design computing one block of data takes almost the same number of

clock cycles as the number of cipher rounds. However in this design this is not the case.

Since we are computing offsets "whitening keys", the relation here is the that number

of clock cycles is indicated by the number of total rounds required for encryption .A

summary of results in area, maximum clock rate, throughput, latency of an OCB-AES

are depicted in Table 5.4

Summary of The OCB Implemenation Results
Technology Area (gates) Clock rate (Mhz) Throuhput (Mbps) Latency (cycles)
FPGA 4976 CLBS 145 10.8 13
ASIC 167802 89.2 6.2 13

The OCB architecture reaches a throughput of 10 Mbps

145MHz x 128bits
10Mbps =

For comparison purposes we report the area and timing results of a fast AES

implementation using a Xilinx FPGA from [5] in Table 5.5. This AES implementation

intended to be used with CCM mode (CBC-MAC), this implmenation was done on a

Xilinx Spartan TIE, running on 50 MHz platform. The implementation is not that of a

CBC-MAC rather of a fast AES to be used in CCM mode. The throuhphut achieved in

that design is about 11 Mbps, where as our design produced almost the same throuhput

with additional authentication goals !

1703cc

TABLE 5.5: Experimental Results of AES on an FPGA, from David Zier[5].

51

Device Utilization Summary
Selected Device 2s200pq208-5

Number of Slices
Number Slice Flip Flops

Number of 4 input LUTs
Number of bonded IOBs

Number of GCLKs

2035 out of 2352 86 percent
787 out of 4704 16 percent
3921 out of 4707 8 percent
24 out of 144 16 percent
1 out of 4 25 percent

Timing Report
Speed Grade

Minimum Period
Maximum Frequency

Minimum input arrival
time before clock

Maximum output required
time after clock

Maximum combinational
path delay

-5
23.075ns
43.337 MHz

16.783ns

16.756ns

No path found

TABLE 5.6: Performance results, in cycles per byte (cycles per 16-byte clock) on a
Xilinx Virtex-II Pro FPGA

In contrast to the above results fast AES implementation on small FPGAs is

restricting. Larger chips could provide for faster AES implementations. Reducing the

clock cycle time is always an architectural aim for faster processes. By instancing more

AES engines we could produce a faster design, however that would results in higher

costs, since these FPGAs are small in comparison to high-end ones. I do believe our

results show high throughput in terms of cost endured.

5.8. Discussion

Performance of an architectural design can be evaluated in many ways, depending

on the target environment for its use. The general consensus is that the faster a design

performs the better it is. However many applications that regard low power and small

chip size of major importance, we find that area x time is a great measure for the

application performance. There is always this compromise in order to deal with the

specifics of the goals intended. The overall speed of the architecture in this work is

dependant on the number of clock cycles needed to perform an encryption in the OCB

mode for a given message size, but also on the clock period that can be achieved. The

number of cycles required to process an m-bits using OCB is C(m) = [[m/n] + 3] x 13

at a clock rate of 145 MHz, where n is the block size (128). The number of cycles for

different size message was computed and the summary of these calculations are depicted

in Table 5.6.

52

Algorithm Message Size
64B 256B 1 KB

OCB encrypt 5.68 (91) 15.4 (247) 53 (851)

TABLE 5.7: Performance results, in cycles per byte (cycles per 16-byte clock) on a
Pentium III. The Block cipher is AES128 [6].

It is actually quite difficult to compare the results of our implementation to the ones

above sine the environment is not unified. These values are produced via a Pentium III,

optimized assembly implementation. Nevertheless our results show a vast improvement

in the encryption of short messages, however when messages get larger the efficiency

drops dramatically. This in large was expected as a serial implementation does not

handle high volumes of data like a parallel architecture would. However such variations

in the way the OCB should be implemented should be dictated by the goals of the target

applications that need it. Future improvements could show higher promise for OCB.

5.9. Conclusion & Future work

Certain criteria constrict the exploitation of the parallelism present in the OCB

algorithm. The online feature where the input could be a message of an arbitrary length

hinders the implementation from exploiting the parallel features in the algorithm. Space

in hardware is limited; to be able to process a message of any length we face the task

of saving such a message in hardware. This Requires the message be saved in memory

until there is an indication the message is over. Since memory is always limited and

53

For the sake of comparison we report in Table 5.7, some experimental results by

Helger Lipmaa on a Pentium III [6].

Algorithm 64 B 256 B 1 KB 4 KB
OCB encrypt 24.7 (395) 18.5 (296) 16.9 (271) 16.7 (267)
ECB encrypt 15.1(241) 15.0 (239) 14.9 (238) 14.9(238)
CBC encrypt 15.9 (254) 15.9 (254) 15.9 (255) 15.9 (256)
CBC mac 19.2 (307) 16.3 (261) 15.5 (248) 15.3 (246)

54

retrieving data from and to memory presents amounts of delay, it seems an inefficient

method to deploy. A serial process in this case makes more sense since the message gets

processed with no limitations on length as we go along. Another constriction in saving

the message in memory is the addressing of the data, which requires that the number of

blocks in the message be known in advance. Where the number of blocks is defined as

follows: m = max{ 1, [IMIln]} and n is the block size in bits. We where able to produce

software to compute the number of blocks in a message however we found difficulty in

doing so in hardware. We attempted to use a counter to count the number of bits in

order to compute the number of blocks and then created a 640 x 128bit memory unit

to store the message into 128-bit vectors, however this took cycle time and space so the

whole process seemed inefficient. The limited numbers of inputs in hardware also created

an obstacle in achieving the parallelism inherit in the algorithm. To have m processes

execute at the same time where m is the number of blocks means we require m inputs

plus any additional inputs for the design. Since the m value depends on the length of

the message it means we have an upper bound in the number of simultaneous processes

achieved in hardware. This translates into a limited exploitation of parallelism meaning

we actually could not process a message of arbitrary length in the absolute sense of the

manner but we could process a range of arbitrary messages. That is certainly the case

in a parallel implementation however a serial implementation exonerates itself from such

limitations.

A novel architecture for OCB-AES encryption has been proposed. Unfortunately

it is hard to target any performance or efficiency measures, since there arent any previous

architectural implementations to compare to. However based on the throughput values

achieved and the clock cycles per byte computations, it is safe to assume that the results

show higher speeds and lower costs then most generic composition architectures that

serve the same purpose.

Although the design is still in its early stages and there are plenty of improve-

ments needed to reach peak performance. The objective was to present that OCB-AES

55

implementation that could provide a better throughput and lower cost than generic com-

position models of the same category. I believe the objective was met and the results

do testify. The architecture has been implemented in VHDL, synthesized and tested

successfully. The design takes on a more serial approach, however a parallel approach

may or may not provide a better throughput. The challenge in the parallel approach

is reducing the delay form the message preprocessing and trying to achieve a low area

implementation.

The architecture presented in this thesis is an early prototype and there are some

issues to be addressed to further better performance:

1 investigate the AES engine if we can improve its current limitation of handling

one block for 13 clock cycles which increases latency of OCB and reduces the

throughput.

2 Further optimization in-terms of area and maximum operating frequency.

3 Try to develop the complete interface of accepting input data and be able to save

the cipher on-fly.

BIBLIOGRAPHY

W. Stallings, Cryptography and network security: principles and practice, Pren-
tice-Hall, Inc., Upper Saddle River, NJ 07458, USA, third edition, 2002.

P. Rogaway, M. Bellare, J. Black, and T. Krovetz, "OCB: a block-cipher mode of
operation for efficient authenticated encryption.," in ACM Conference on Computer
and Communications Security, 2001, pp. 196-205.

M. Bellare and C. Namprempre, "Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm," in ASIA CRYPT '00:
Proceedings of the 6th International Conference on the Theory and Application of
Cryptology and Information Security, London, UK, 2000, pp. 531-545, Springer-
Verlag.

P. R. Chodowiec, "Comparison of the Hardware Performance of the AES Candi-
dates Using Reconfigurable Hardware," Master thesis, George Mason University,
Fairfax, VA,USA, 2002.

K. Vu and D. Zier, "FPGA implementation aes for ccm mode encryption using
xilinx spartan-ii," Tech. rep., Oregon State University, April 2003.

H. Lipmaa, "Personal communications," Jul 2001, www.tcs.hut.fi/ helger.

"Modes of operation," 2005, http://csrc.nist.gov/CryptoToolkit/modes.

C. S. Jutla, "Encryption modes with almost free message integrity," in EURO-
CRYPT '01: Proceedings of the International Conference on the Theory and Ap-
plication of Cryptographic Techniques, London, UK, 2001, pp. 529-544, Springer-
Verlag.

L. C. Washington and W. Trappe, Introduction to Cryptography: With Coding
Theory, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2002.

M. Bellare and P. Rogaway, "Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient cryptography," in ASIA CRYPT
'00: Proceedings of the 6th International Conference on the Theory and Application
of Cryptology and Information Security, London, UK, 2000, pp. 317-330, Springer-
Verlag.

C. Namprempre , "Thesis slides: Relations among notions and analysis of the
generic composition paradigm," 2005, http://www.nr.no.

J. Katz and M. Yung, "Unforgeable encryption and adaptively secure modes of
operation," Fast Software Encryption00, Lecture Notes in Computer Science, vol.
??, 2000.

56

57

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, "A concrete security treatment of
symmetric encryption," in FOGS '97: Proceedings of the 38th Annual Symposium
on Foundations of Computer Science (FOGS '97), Washington, DC, USA, 1997, p.
394, IEEE Computer Society.

C. Dwork, D. Dolev, and M. Naor, "Non-malleable cryptography," in STOC '91:
Proceedings of the twenty-third annual ACM symposium on Theory of computing,
New York, NY, USA, 1991, pp. 542-552, ACM Press.

0. Goldreich, S. Goldwasser, and S. Micali, "How to construct random functions,"
J. ACM, vol. 33, no. 4, pp. 792-807, 1986.

E. Petrank and C. Rackoff, "CBC MAC for real-time data sources," Cryptology
ePrint Archive, Report 1997/010, 1997, http://eprintiacr.org/.

NIST, National Institute for Standards and Technology, "Symmetric key block
cipher modes of operation workshop," Tech. rep., FIPS PUB, October 2000.

V. Gligor and P. Donescu, "Fast encryption and authentication: XCBC encryption
and XECB authentication modes," Contribution to NIST, Oct 2000.

P. Rogaway, M. Bellare, J. Black, and T. Krovetz, "OCB: a block-cipher mode of
operation for efficient authenticated encryption.," in ACM Conference on Computer
and Communications Security, 2001, pp. 196-205.

M. Bellare, J. Kilian, and P. Rogaway, "The security of the cipher block chaining
message authentication code," Journal of Computer and System Sciences, vol. 61,
no. 3, pp. 362-399, 2000.

D. A. McGrew, J. Viega, and R. Housley, "The need for speed: authenticated
encryption and gcm," work in progress, Network Working Group, October 2004.

Ars Technica, "Wireless Security Blackpaper," arstechnica, July 2002.

