
AUTHENTICATED ENCRYPTION IN HARDWARE

by

Milind M. Parelkar
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University

in Partial Fulfillment of the
the Requirements for the Degree

of
Master of Science

Electrical and Computer Engineering

Committee:

Dr. Kris Gaj, Thesis Director

Dr. William Sutton

Dr. Peter Pachowicz

Andre Manitius, Chairman, Department
of Electrical and Computer Engineering

Lloyd J. Griffiths, Dean, School of
Information Technology and Engineering

Date: Fall 2005
George Mason University
Fairfax, VA

Authenticated Encryption in Hardware

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Milind M. Parelkar
Bachelor of Engineering

University of Mumbai(Bombay), India, 2002

Director: Dr. Kris Gaj, Associate Professor
Department of Electrical and Computer Engineering

Fall 2005
George Mason University

Fairfax, VA

ii

Copyright c© 2005 by Milind M. Parelkar
All Rights Reserved

iii

Acknowledgments

I would like to thank Dr. Kris Gaj for helping me throughout the course of this
research. Special thanks to Pawel Chodowiec, without whose help, it would have
been very difficult to come up with good results, on time.

iv

Table of Contents

Page

Abstract . xii

1 Authenticated Encryption - Introduction and Motivation 1

1.1 Cryptographic Goals . 1

1.2 What is Authenticated - Encryption? 2

1.3 Target Applications for Authenticated - Encryption 7

1.3.1 Encryption and Authentication of FPGA Bitstream 7

1.3.2 Authenticated - Encryption in 802.11 Wireless LANs 11

1.4 Authentication Techniques . 12

1.4.1 Hash Functions . 12

1.4.2 Message Authentication Codes (MACs) 13

1.4.3 Authenticated-Encryption using Modes of Operations of Block

Ciphers . 16

1.5 Need and Criteria for Comparison of Hardware Implementations . . . 17

1.6 Previous Work . 19

2 Methodology for Comparison of Authentication Techniques 20

2.1 Scope of this Research . 20

2.1.1 Implementation Goals for Modes of Operations 22

2.2 Tools, Design Process and Synthesis Parameters 24

3 Authentication with Keyed HMACs . 27

3.1 Secure Hash Standard - SHA . 27

3.1.1 Hardware Implementation of SHA-1 28

3.2 Keyed-Hash Message Authentication Code (HMAC) 34

3.2.1 Hardware Implementation of HMAC SHA-1 36

4 OCB Mode of Operation . 39

4.1 Introduction . 39

4.1.1 OCB Encryption and Decryption 39

v

4.2 Hardware Implementation of OCB Mode 42

4.2.1 Datapath Design . 43

4.2.2 Design of Control Logic . 51

5 CCM Mode of Operation . 54

5.1 Introduction . 54

5.1.1 CCM Encryption and Decryption 54

5.2 Hardware Implementation of CCM Module 58

5.2.1 Datapath Design . 58

5.2.2 Design of Control Logic . 63

6 EAX Mode of Operation . 66

6.1 Introduction . 66

6.1.1 EAX Encryption and Decryption 66

6.1.2 Modified OMAC Operation 68

6.2 Hardware Implementation of EAX mode 70

6.2.1 Datapath Design . 71

6.2.2 Design of Control Logic . 75

7 Implementation Results . 76

7.1 Throughput Computations for Modes of Operations and Generic Com-

position Schemes . 76

7.1.1 ECB Mode of Operation . 77

7.1.2 OCB Mode of Operation . 78

7.1.3 CCM Mode of Operation . 79

7.1.4 EAX Mode of Operation . 79

7.1.5 Generic Composition Schemes - AES + HMAC 80

7.2 FPGA Implementation Results . 81

7.2.1 Implementation of Modes with AES 81

7.2.2 Implementation of Modes with Twofish 84

7.2.3 Implementation of Modes with Serpent 86

7.2.4 Implementation of Generic Composition Schemes 86

7.3 ASIC Synthesis Results . 88

7.3.1 Implementation of Modes with AES 90

7.3.2 Implementation of Modes with Twofish 94

7.3.3 Implementation of Modes with Serpent 94

vi

7.3.4 Implementation of Generic Composition Schemes - AES + HMAC 97

8 Analysis of Results . 103

8.1 Analysis of Results of FPGA Implementations 103

8.1.1 Comparison of Authenticated-Encryption Modes of Operation

with Generic Composition Schemes 103

8.1.2 Comparison of Modes of Operations Based on Different Ciphers 106

8.1.3 Comparison of Throughput/Area Ratio for FPGA Implemen-

tations . 106

8.2 Analysis of Results of ASIC Synthesis 108

8.2.1 Comparison of Authenticated-Encryption Modes of Operation

with Generic Composition Schemes 110

8.2.2 Comparison of Modes of Operations Based on Different Ciphers 113

8.2.3 Comparison of Throughput/Area Ratio for ASIC Synthesis . . 113

9 Modifications, Optimizations and Future Work 116

9.1 Modifications for Improving Throughput 116

9.2 Modifications for Reducing the Circuit Area 119

9.3 Projected Benefits from Optimizations 121

9.4 Summary . 122

10 Summary . 123

Bibliography . 126

vii

List of Tables

Table Page

3.1 Comparison of Secure Hash Algorithms 27

4.1 Truth Table for Priority Encoder ntz 8 48

5.1 CCM Block Types and Operations 56

5.2 CCM Nonce Format . 61

5.3 CCM Block B[0] Format . 62

5.4 CCM Flags Format . 62

5.5 First Associated Data Frame Format (Block B[1]) 62

5.6 Order of Operations in Hardware Implementation of CCM 65

7.1 Number of Rounds and Pipeline Stages per Round used in the Hard-

ware Implementations of Block Ciphers 77

7.2 FPGA Implementation Results for Modes of Operation with AES . . 82

7.3 Comparison of FPGA Implementation Results - AES-ECB and AES-

OCB . 82

7.4 Comparison of FPGA Implementation Results - AES-ECB and AES-

CCM . 83

7.5 Comparison of FPGA Implementation Results - AES-ECB and AES-

EAX . 83

7.6 FPGA Implementation Results for Modes of Operation with Twofish 84

7.7 Comparison of FPGA Implementation Results - Twofish-ECB and

Twofish-OCB . 84

7.8 Comparison of FPGA Implementation Results - Twofish-ECB and

Twofish-CCM . 85

7.9 Comparison of FPGA Implementation Results - Twofish-ECB and

Twofish-EAX . 85

7.10 FPGA Implementation Results for Modes of Operation with Serpent 86

viii

7.11 Comparison of FPGA Implementation Results - Serpent-ECB and Serpent-

OCB . 87

7.12 Comparison of FPGA Implementation Results - Serpent-ECB and Serpent-

CCM . 87

7.13 Comparison of FPGA Implementation Results - Serpent-ECB and Serpent-

EAX . 87

7.14 FPGA Implementation Results for Generic Composition Schemes . . 88

7.15 Comparison of FPGA Implementation Results - AES-ECB and AES+HMAC

SHA-1 . 89

7.16 Comparison of FPGA Implementation Results - AES-ECB and AES+HMAC

SHA-512 . 89

7.17 ASIC Synthesis Results for Modes of Operation with AES (90 nm) . 90

7.18 Comparison of ASIC Synthesis Results - AES-ECB and AES-OCB (90

nm) . 91

7.19 Comparison of ASIC Synthesis Results - AES-ECB and AES-CCM (90

nm) . 91

7.20 Comparison of ASIC Synthesis Results - AES-ECB and AES-EAX (90

nm) . 92

7.21 ASIC Synthesis Results for Modes of Operation with AES (130 nm) . 92

7.22 Comparison of ASIC Synthesis Results - AES-ECB and AES-OCB (130

nm) . 92

7.23 Comparison of ASIC Synthesis Results - AES-ECB and AES-CCM

(130 nm) . 93

7.24 Comparison of ASIC Synthesis Results - AES-ECB and AES-EAX (130

nm) . 93

7.25 ASIC Synthesis Results for Modes of Operation with Twofish (90 nm) 94

7.26 Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-

OCB (90 nm) . 95

7.27 Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-

CCM (90 nm) . 95

7.28 Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-

EAX (90 nm) . 95

ix

7.29 ASIC Synthesis Results for Modes of Operation with Twofish (130 nm) 96

7.30 Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-

OCB (130 nm) . 96

7.31 Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-

CCM (130 nm) . 96

7.32 Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-

EAX (130 nm) . 97

7.33 ASIC Synthesis Results for Modes of Operation with Serpent (90 nm) 97

7.34 Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-

OCB (90 nm) . 98

7.35 Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-

CCM (90 nm) . 98

7.36 Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-

EAX (90 nm) . 98

7.37 ASIC Synthesis Results for Modes of Operation with Serpent (130 nm) 99

7.38 Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-

OCB (130 nm) . 99

7.39 Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-

CCM (130 nm) . 99

7.40 Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-

EAX (130 nm) . 100

7.41 ASIC Synthesis Results for Generic Composition Schemes(90 nm) . . 101

7.42 Comparison of ASIC Synthesis Results - AES-ECB and AES+HMAC

SHA-1(90 nm) . 101

7.43 Comparison of ASIC Synthesis Results - AES-ECB and AES+HMAC

SHA-512(90 nm) . 101

7.44 ASIC Synthesis Results for Generic Composition Schemes(130 nm) . 102

7.45 Comparison of ASIC Synthesis Results - AES-ECB and AES+HMAC

SHA-1(130 nm) . 102

7.46 Comparison of ASIC Synthesis Results - AES-ECB and AES+HMAC

SHA-512(130 nm) . 102

x

List of Figures

Figure Page

1.1 ECB Mode of Operation . 5

1.2 CBC Mode of Operation . 5

1.3 Types and examples of MACs . 6

1.4 FPGA Bitstream Security . 9

1.5 Hash Function . 13

1.6 MAC Computation in CBC-MAC . 15

1.7 Keyed-Hash Message Authentication Code (HMAC) 16

2.1 Top-Level View of Modes of Operation Wrapper with Input and Out-

put FIFOs and Bus-Width Converters 21

2.2 FPGA Design Flow . 26

2.3 ASIC Synthesis Design Flow . 26

3.1 Block Diagram of SHA Function . 29

3.2 SHA-1 Message Scheduling Unit . 30

3.3 SHA-1 Message Digest Unit . 32

3.4 HMAC Dataflow . 35

3.5 HMAC Datapath . 37

4.1 OCB Encryption and Decryption . 41

4.2 OCB Datapath . 44

4.3 Alternate Design for Datapath at Input Side of the Cipher 45

4.4 OCB Checksum . 46

4.5 Modified priority encoder for computing ntz(i) (i ≤ 8) 48

4.6 Cascaded priority encoders for computing ntz(i) (i ≤ 64) 49

4.7 Computation of iteration constant (Z[i]) 50

5.1 CCM Encryption . 55

5.2 CCM Datapath . 59

5.3 Counter Mode Input Processing in CCM Mode 61

xi

6.1 EAX Mode of Operation (Encryption - Signature Generation) 68

6.2 EAX Mode of Operation (Decryption - Verification) 69

6.3 One-Key CBC MAC (OMAC) . 70

6.4 EAX Datapath . 71

8.1 Throughput Comparison for FPGA Implementation – Authenticated-

Encryption Modes of Operation and Generic Composition Schemes . 104

8.2 Comparison of Resource Utilization for FPGA Implementation – Authenticated-

Encryption Modes of Operations and Generic Composition Schemes . 105

8.3 Throughput Comparison for FPGA Implementation – Authenticated-

Encryption Modes of Operation based on Different Ciphers 107

8.4 Throughput/Area Ratio for FPGA Implementation of Authentication

Schemes . 108

8.5 Total Cell Area for ASIC Synthesis - Modes of Operations and Generic

Composition Schemes (90 nm) . 109

8.6 Total Cell Area for ASIC Synthesis - Modes of Operations and Generic

Composition Schemes (130 nm) . 110

8.7 Throughput for ASIC Synthesis - Modes of Operations and Generic

Composition Schemes (90 nm) . 112

8.8 Throughput for ASIC Synthesis - Modes of Operations and Generic

Composition Schemes (130 nm) . 112

8.9 Total Cell Area for ASIC Synthesis - Modes of Operations (90 nm) . 113

8.10 Total Cell Area for ASIC Synthesis - Modes of Operations (130 nm) . 114

8.11 Throughput/Area Ratio for ASIC Synthesis of Authentication Schemes

(90 nm) . 115

8.12 Throughput/Area Ratio for ASIC Synthesis of Authentication Schemes

(130 nm) . 115

Abstract

AUTHENTICATED ENCRYPTION IN HARDWARE

Milind M. Parelkar

George Mason University, 2005

Thesis Director: Dr. Kris Gaj

Traditionally, authenticated encryption was achieved using an independent algo-

rithm for encryption, and a separate one for authentication. Recently, in response to

the NIST’s solicitation, new modes of operation of block ciphers have been developed.

These modes allow for a joint implementation of encryption and authentication. This

feature is especially beneficial in case of hardware implementations, as it allows for

the substantial decrease in the circuit area and power compared to the traditional

schemes.

In this thesis, three new modes of operation, OCB, CCM and EAX, and two ver-

sions of the traditional scheme, based on AES for encryption, and HMAC-SHA1 and

SHA-512 for authentication, have been compared from the point of view of efficiency

of hardware implementations. All schemes have been implemented targeting Xilinx

Virtex 4 family of FPGAs and a standard-cell ASIC based on 90 nm and 130 nm

technology. All schemes have been compared from the point of view of the circuit

area, implementation speed, inclusion in the current generation of standards, and a

potential for future improvements.

Two potential applications of the authenticated encryption have been analyzed in

detail: FPGA bitstream security, and authenticated-encryption in wireless networks.

In both cases, all authenticated encryption schemes seemed to be easily meet the

current speed requirements. As a result, circuit area was used as a primary criterion

for comparison.

The obtained results indicate that out of all five schemes, the CCM mode of

operation has the smallest area requirements, and outperforms the traditional scheme

based on AES and HMAC-SHA-1 by a factor of 2 in ASICs, and by a factor of 1.2

in FPGAs. For other applications, which require higher speed and optimization for a

high speed to area ratio, the OCB mode of operation seems to offer the best potential

for efficient hardware implementations.

Chapter 1: Authenticated Encryption -

Introduction and Motivation

1.1 Cryptographic Goals

There are four security objectives which form the framework of cryptographic security

services. These objectives are –

1. Confidentiality

2. Data Integrity

3. Authentication

4. Non-repudiation

Confidentiality is a service used to keep the content of information from all but

those authorized to have access to it. Confidentiality is ensured if no one but the

sender and the receiver is able to read the message. Data integrity is related to

prevention of unauthorized alteration of data. In order to ensure data integrity, one

must be able to detect modification of data. Data modifications include insertion

of bits, deletion of bits or substitutions. Authentication of data or message source

verifies that the data actually originates from the person who is purporting to be the

sender. Non-repudiation of a message is a service which prevents both communicating

parties from denying sending or receiving the message [1].

1

2

It is assumed that the authentication of the source of data provides message

integrity also as a part of the service. Similarly, non-repudiation provides authenti-

cation and extends it with protection against cheating by any of the communicating

parties [2].

1.2 What is Authenticated - Encryption?

The focus of this thesis is on authenticated encryption algorithms. In order to explain

the details of such algorithms, some cryptographic concepts regarding encryption and

authentication are explained below.

Historically, it was confidentiality of data that got most attention and authenti-

cation was considered a fringe issue. This was partly because no amount of message

integrity or authentication will give you confidentiality. It is only message encryption

which can protect data from eavesdroppers. Message encryption might provide some

kind of authentication, but it is usually very weak and cannot be relied upon.

Various authentication techniques are explained in detail in Section 1.4. Typically,

confidentiality and authentication services have been implemented separately, by us-

ing different algorithms. Encryption algorithms are used to ensure confidentiality

while Message Authentication Codes (MACs) can be used to provide authentication.

When two separate algorithms are used to provide independent security services, it

is considered cryptographically secure to use separate keys for each algorithm [3].

Recently, techniques have been invented which can combine encryption and authenti-

cation into a single algorithm. Merging these two security services in hardware might

possibly provide the following advantages –

3

1. Area requirement for a single algorithm could be smaller as compared to two

separate algorithms. Reduction of real-estate requirement on chip translates

directly to reduction of costs.

2. Designs with a smaller implementation area tend to consume less power than

larger designs. This is an attractive solution for low-power applications like

handheld or battery-powered devices.

3. Another advantage is that the combined algorithm needs only a single key as

opposed to separate keys for authentication and encryption when separate algo-

rithms are used. Hence the combined algorithms have a slight advantage with

regards to key management and key storage issues over separate algorithms.

4. The newer algorithms have been designed with some target goals like speed,

speed-to-area ratio etc. Since all the combined schemes are based on block

ciphers, the designers have tried to be as efficient as possible with aspects such

as the number of block cipher calls required for getting both confidentiality and

authentication from the algorithm. Speed improvement cannot be guaranteed

for all combined schemes, but some schemes have a scope for parallelization and

can work at higher speeds than older techniques.

Confidentiality-Only Modes of Operations of Block Ciphers

A mode of operation of a block cipher is an algorithm that features the use of a

symmetric key block cipher algorithm to provide a cryptographic service such as

confidentiality or authentication. Previously standardized modes of operation provide

only confidentiality. These are as follows –

4

1. Electronic Code Book (ECB)

2. Cipher Block Chaining (CBC)

3. Cipher Feedback (CFB)

4. Output Feedback (OFB)

5. Counter Mode (CTR)

The most basic mode of operation of block cipher is known as Electronic Code

Book (ECB) mode. ECB mode of operation is shown in Fig. 1.1. The input message

is broken down into blocks of length equal to the block size of the cipher. Each

block is encrypted or decrypted independent of other blocks. As a result, if there are

identical input blocks, the ECB mode would produce identical ciphertext blocks when

encrypted with the same key. Thus, ECB reveals repetitions of data and patterns

within the message [3].

The insecurity of ECB mode of operation led to the use of chaining or feedback

modes of operation. Cipher Block Chaining (CBC) mode of operation is the most

common feedback mode used. This is shown in Fig. 1.2. Input to the block cipher

is xored with the ciphertext of the previous block. This reduces correlations between

plaintext and ciphertext.

Both ECB as well as CBC modes of operation provide only confidentiality. If the

encrypted message is changed during transit, then a part of the ciphertext would not

decrypt properly. Nonetheless, without human inspection, this improperly decrypted

message would be hard to detect using automated programs. Additionally, messages

may be of the form of executable or binary files which are not suitable for human

5

Figure 1.1: Encryption in ECB Mode of Operation – M [i]: ith message block; C[i]:

ith ciphertext block; K: Secret Key; EK : Encryption function

Figure 1.2: Encryption in CBC Mode of Operation – M [i]: ith message block; C[i]: ith

ciphertext block; K: Secret Key; IV : Initialization vector; EK : Encryption function;

(Please note that secret key, K is an input to all EK blocks)

6

Figure 1.3: Types and examples of MACs

inspection.

Message Authentication Codes(MACs)

Message Authentication Code (MAC) is an algorithm used to provide authentication

of messages. This algorithm generates an authentication tag, often referred to as a

MAC, which is a function of a secret key and a message. Since, tag verification also

requires possession of the secret key, only the intended recipient of the message can

check its authenticity [2].

MACs can be divided into four categories as shown in Fig. 1.3 –

1. Block Cipher Based MACs

2. Stream Cipher Based MACs

3. Hash Function Based MACs

4. Dedicated MACs

Detailed explanation of MACs is covered in Section 1.4.2.

7

Authenticated-Encryption Modes of Operation

Authenticated-Encryption modes of operation of block ciphers provide both encryp-

tion as well as authentication using the underlying block cipher. In other words,

the modes are designed in such a way that they produce a ciphertext as well as an

authentication tag which can be verified by the receiver. Also, both the ciphertext

as well as the tag are generated using the same key. Authenticated - Encryption is

a relatively recent concept and the impetus to it’s development was given by NIST’s

effort to standardize new Modes of Operations for block ciphers [4].

1.3 Target Applications for Authenticated - En-

cryption

The purpose of this research is to look at applications which would require a com-

bined authentication and encryption scheme and determine the factors which would

influence the selection of a particular mode of operation for that application. Two

applications were selected as the basis for analysis. These are –

1. Encryption and Authentication of FPGA Bitstream

2. Authenticated Encryption in IEEE 802.11 wireless LANs

1.3.1 Encryption and Authentication of FPGA Bitstream

Field Programmable Gate Arrays (FPGAs) provide the flexibility to change the con-

figuration after initial programming. In the past, FPGAs were used as glue-logic or

as design testing platforms before fabricating the ASIC. Nowadays, FPGAs are used

8

in applications where reconfigurability is a necessity. Advancement of FPGA tech-

nology has allowed FPGA manufacturers to allow a capability to reconfigure FPGAs

on the fly. This is known as dynamic reconfiguration. Also, there are techniques to

reconfigure only specific parts of the FPGA, which is known as partial reconfiguration.

Reconfiguration of FPGAs allows configuration updates in hardware which are

similar to software updates or patches. If a portion of the design is not optimal

or is no longer required, that part of the chip can be reconfigured with new logic.

This reconfigurability brings in the issue of remote reconfiguration. For example, an

FPGA array might be used on satellites, which can be remotely reconfigured as per

the requirements, without the need for physical access to the FPGA.

Remote reconfiguration gives rise to an issue of FPGA bitstream security. FPGAs

are configured by writing a bitstream to the internal configuration memory. In case of

remote configuration, the bitstream has to be sent over some communication channel,

which is probably insecure. In order to protect the Intellectual Property (IP) repre-

sented by the bitstream, confidentiality of the bitstream must be guaranteed. This

is done by encrypting the bitstream before it is transmitted [5]. Another required

security service is bitstream authentication. This is a requirement since the remote

FPGA must discard all bitstreams which did not originate from an authentic source,

or those which were damaged in transit [6].

In fact, an attacker might not only want to steal the IP but also might want to

take control over the remote FPGA. Similar to installation of hardware patches, the

attacker might try to install malicious spyware on the remote FPGA which could be

later used to steal sensitive data, secret keys, etc. [7].

Xilinx FPGAs have a 3-DES decryption engine on their Virtex II Pro family

9

Figure 1.4: FPGA Bitstream Security

of FPGAs [5][8], whereas the latest Virtex-4 family uses an AES decryption engine

with a 256-bit key. Currently, there is no secure bitstream authentication mechanism

on FPGAs. Xilinx FPGAs use a 32-bit CRC for the bitstream, which can provide

“limited” authentication. The main purpose of the CRC is to check for transmission

errors. The “limit” of authentication provided by a 32-bit CRC can be looked at

in this way - “The attacker would have to try only 232/2 bitstreams, on average,

in order to get one of the bitstreams to authenticate correctly.” On the other hand,

an approved authentication algorithm like, an HMAC would typically provide higher

order of authentication security. For example, HMAC used in IPSec has 96 bits of

security and this can be further increased by increasing the size of the authentication

tag. IPSec is a set of protocols developed by the IETF to support secure exchange of

packets at the IP layer.

10

Types of Security Engines on FPGAs

Selected families of current generation of FPGAs include decryption engines which

take care of decrypting the incoming bitstream. As suggested earlier integrity checking

engines must be added to the already existing engines for security. Currently available

decryption engines are implemented on the FPGA fabric and do not consume any

programmable FPGA resources. A few suggested implementations of authentication

engines are as follows –

1. Implementation on the FPGA fabric – This would seem to be the most apparent

technique if a combined encryption - authentication scheme is used. The entire

programmable area on the chip remains available to the user. Also, in terms of

security this type of authentication engine is the most secure since the integrity

of the engine can be guaranteed by the manufacturer. The downside is the

increase in cost. In fact, cost has been the main hindrance against adopting

proper security measures in FPGAs. The general argument is that only a small

percentage of users really care about security of designs and the remaining

section of the user base would not really like to share the increased cost for

security which they did no want in the first place.

2. Implementation using programmable FPGA resources – This option is suitable

for adding security features to older generations of FPGAs. The disadvantage

is that the available programmable area for the user reduces. This option is

more feasible from the cost perspective than the option of implementing the

engine on the FPGA fabric. Only users who need authentication would need

to pay for the additional IP core from the manufacturer. Security of such an

11

implementation is comparable to the security of the engine on the fabric only if

the integrity of the authentication engine can be guaranteed.

3. Implementation using Embedded Microprocessors on FPGA – This is an effi-

cient option for implementing authentication functionality on select versions of

FPGAs which have an on-chip embedded processor e.g. Xilinx Virtex II Pro.

Embedded processors on Xilinx FPGAs include soft-core processors like Xilinx

MicroBlaze or hardcore processors like PowerPC. Security is comparable to the

security of authentication engine using programmable resources. This is a rela-

tively better option if the design does not use any of the on-chip microprocessors

to implement logic functionality.

1.3.2 Authenticated - Encryption in 802.11 Wireless LANs

Communication over an unsecured network would require the use of encryption and

authentication. Wireless applications are justifiable candidates for authenticated-

encryption modes of operations since in most applications, both confidentiality as

well as authentication would be desired. Moreover, use of a combined authenticated

encryption technique would be an advantageous option because of its “smaller area”

appeal as opposed to a generic composition scheme using separate algorithms for en-

cryption and authentication. Smaller implementation area translates to lower power

which might be an appealing factor in battery operated devices.

Communication in wireless LANs has been selected as a case study since the IEEE

802.11i standard for wireless LANs is actually one of the first standards to incorporate

a combined authenticated - encryption mode of operation for data security. Another

security service sought in the 802.11i standard is protection against replay attacks.

12

IEEE 802.11i standard [9] for wireless LANs uses a variant of the CCM mode of

operation which is called as CCM Protocol (CCMP). Similar security measures would

also be required in wired networks.

1.4 Authentication Techniques

Some authentication techniques have been introduced in Section 1.2. These tech-

niques are explained in detail in this section along with some other techniques. As

mentioned earlier, the purpose of authentication is to provide a guarantee for the

receiver that the message originated from the person who claims to be the author.

Legacy authentication techniques include public key digital signatures and secret-key

Message Authentication Codes(MACs). Public key cryptography is an expensive op-

tion in terms of computational cost as well as circuit area and power. Hence the use

of MACs was the most common solution over the years.

1.4.1 Hash Functions

Cryptographically secure hash functions are widely used as components for MACs. A

hash function, H is a transformation that takes a variable size input, m and returns

a fixed-length string which is called the hash value, h (i.e. h = H(m)) [3]. The basic

requirements of cryptographic hash functions are –

• It should be able to handle an arbitrarily long input message.

• The output must be of a fixed length.

• H(x) is relatively easy to compute for any given x.

• H(x) is a one-way function.

13

Figure 1.5: Hash Function – m: Message input; H: Hash function; H(m): Message

digest

• H(x) is collision-free.

A hash function H is said to be one-way if it is hard to invert. More formally,

hard to invert implies that given a hash value h, it is computationally infeasible to

find any input x such that H(x) = h

If, given a message x, it is computationally infeasible to find a message y not equal

to x such that H(x) = H(y) then H is said to be a weakly collision-free hash function.

A strongly collision-free hash function H is one for which it is computationally

infeasible to find any two messages x and y such that H(x) = H(y).

As can be seen from Fig. 1.5, there is no secret parameter involved in hash compu-

tation. Hence, hash function cannot be used alone to provide message authentication.

1.4.2 Message Authentication Codes (MACs)

The concept of Message Authentication Codes was introduced in Section 1.2. Out of

the four types of MACs introduced earlier, only two types – Block Cipher based and

14

Hash Function Based MACs, are of importance to us.

Block Cipher Based MACs

Block cipher based MACs are also known as authentication-only modes of operation

of block cipher. An authentication-only mode of operation of block cipher generates

an authentication tag as its output. This authentication tag is used by the receiver to

check the authenticity of the message. CBC-MAC is a commonly used authentication-

only mode of operation. Referring to Fig. 1.6, if all output blocks, except the last one,

are discarded, then the last block can serve as an authentication tag. Each output

block depends upon the current input block as well as all previous inputs. hence,

even if a single bit of the input changes, the contents of the last block will change [2].

FIPS-113 standard for MACs specifies that the length of the MAC can be less than

the complete block. Alternately, the FIPS-113 MAC value can be further processed

as shown in Fig. 1.6 in order to generate an authentication tag.

Another authentication only mode of operation is One-Keyed MAC (OMAC)

which is a variant of CBC-MAC and has proven security properties for an arbitrary

sized message [10]. OMAC is a component of one of the authenticated-encryption

schemes, EAX, which has been implemented and is covered in greater detail in the

chapter on EAX mode of operation. Previously used block cipher based MAC schemes

include MDC-2, MDC-4 etc.

Hash Function Based MACs

Hash function based or keyed-hash message authentication code (HMAC), is a type of

message authentication code (MAC) computed using a cryptographic hash function

15

Figure 1.6: MAC Computation in CBC-MAC – M [i]: ith message block; K: Secret

Key; EK : Encryption function; E−1
K : Decryption function; (Please note that secret

key, K is an input to all EK blocks)

in combination with a secret key. HMACs were designed in order to use the speed

efficiency of hash functions. Software implementations of hash functions are faster

than block ciphers. Hence, HMACs which are based on hash functions are more

efficient in terms of speed as compared to block cipher based MACs like CBC-MAC.

Any hashing function could be used with HMAC. FIPS PUB 198 standard for

HMAC specifies its use only with cryptographically approved hash functions [11]. An

example of a secure hash function (which is commonly used in HMAC implementa-

tions) is SHA-1. Other common hashing functions include MD5 and RIPEMD-160.

Furthermore, there is a new generation of SHA hashing functions (SHA-256, SHA-

384, and SHA-512), which provides message digests of longer lengths and thereby

more security.

It would be worthwhile to point out the major difference between Fig. 1.5 and

16

Figure 1.7: Keyed-Hash Message Authentication Code (HMAC) – m: Input message;

K: Secret Key; HMAC(m): Message Authentication Code

Fig. 1.7 – the presence of a secret key in the case of HMAC. The secret key is a

necessary constituent in order to guarantee authentication.

1.4.3 Authenticated-Encryption using Modes of Operations

of Block Ciphers

Authenticated - Encryption modes of operation use a secure block cipher in a partic-

ular way to generate both the ciphertext and an authentication tag. Integrity Aware

Parallelizable Mode (IAPM) mode of operation developed by Charanjit Jutla from

IBM is supposed to be the first publicly described authenticated - encryption scheme

that combines confidentiality and authenticity at a small increment to the cost of

providing confidentiality alone [12].

Authenticated - Encryption schemes can be further classified into two categories –

1. Single Pass Schemes

2. Two Pass Schemes

17

Single Pass Schemes

Single pass schemes like OCB, IAPM and XCBC have been put forth as proposals

to NIST for standardization. The idea behind all these schemes is that a single pass

is needed through the underlying block cipher in order to achieve encryption as well

as perform some computations which can be used for integrity checking. The main

hurdle with these schemes is patent restrictions. Also, existing single pass schemes

do not provide authentication-only support for parts of a message; the entire message

needs to be encrypted and authenticated. This is particularly important when some

blocks of packet data like packet headers need not be encrypted.

Two Pass Schemes

Two pass Schemes like CCM, EAX etc. have become popular choices for authenti-

cated encryption. They are referred to as Two Pass Authenticated Encryption with

Associated Data (AEAD) schemes. In these schemes, authenticate-only data is called

Associated Data. Associated data is sent in the clear, but its integrity can be checked

at the receiver’s end since the entire data block is authenticated. CCM is a required

scheme in IEEE 802.11i Wireless LANs and IEEE 802.15.4 personal area networks.

1.5 Need and Criteria for Comparison of Hard-

ware Implementations

Most of the implementation data for the modes of operations available in open litera-

ture is related to software implementations. The specifications of the modes of oper-

ations also have performance estimates in software. The numbers related to software

18

implementations do not actually translate very well to hardware implementations of

these modes. Also, whatever little data regarding hardware implementations is avail-

able in open literature, is disjointed and it might not be prudent to compare such

disparate implementations and draw conclusions from those.

It is my belief that the results for hardware implementations of modes of operations

can be compared only if all implementations adhere to some guidelines. Sticking to

such guidelines generally ensures that the comparison is not subjective to a particular

style of hardware implementation.

Also, the comparison of various authentication options should take into consider-

ation the application. Each application has its own set of constraints. Suitability of

a particular scheme to a certain application might not guarantee its appropriateness

for some other application.

Let us take a look at the constraints to be considered for target applications men-

tioned in Section 1.3. There are two main constraints – implementation area and

throughput. In case of FPGA bitstream security, it would be attractive to have the

smallest possible footprint for the cryptographic circuit. Real estate on an integrated

circuit is expensive and would tend to increase the cost of the FPGA. But this crypto-

graphic unit must be able to provide the supported level of configuration throughput.

Currently, the maximum configuration throughput using JTAG interface is 30 Mbps

and using SelectMAP interface is 150 Mbps.

In case of network applications, selection would be based on the acceptable level

of throughput that can be provided by these cryptographic units. Contemporary

standards for wireless networks (802.11b/g) specify the maximum throughput with

the use of MACs as 54 Mbps. IEEE is targeting a throughput of 100+ Mbps in

19

the next generation of wireless LANs (802.11n). Another factor to be considered

is whether parallelization can be used in a particular mode of operation to increase

throughput beyond the value provided by non-parallelized implementation.

1.6 Previous Work

The authenticated - encryption schemes are comparatively new and there has been

very little previous work regarding analysis and comparison of hardware implemen-

tations of these schemes. Even if there has been research going on in this field, there

is very little information reported in open literature. Helion Technologies produces

commercial IP cores for AES with CCM and OCB modes of operations, but very

little implementation data is available for these implementations.

At the same time, there has been a significant research and analysis of stand-alone

authentication functions like HMAC. Implementation concepts and analysis of results

for HMAC is given in [13]. Hardware implementations of Secure Hash Algorithms

(SHA) are covered in [14] and [15].

Chapter 2: Methodology for Comparison of

Authentication Techniques

2.1 Scope of this Research

The range of applications for authenticated-encryption schemes is vast. Each of these

applications would have a slightly different constraint. It would be practically impos-

sible to perform an exhaustive search of probable applications and tailor the imple-

mentations depending upon the needs of that particular implementation. Hence, the

implementations have been limited to be optimal for the representative case studies

included in this research. The goal is to derive the necessary data for other applica-

tions from the currently available data generated during the course of this research.

Three authenticated-encryption modes of operations have been implemented. These

include Offset Code Book (OCB), Counter with CBC-MAC (CCM), and EAX. Also,

generic composition schemes using HMAC for authentication and AES for encryption

have been implemented in order to compare the feasibility of using the authenticated-

encryption modes of operations as opposed to older generic composition schemes.

Modes of operations are implemented with 3 underlying block ciphers, AES (Ri-

jndael), Twofish and Serpent. These block ciphers were designed by another student

from the same research group, Pawel Chodowiec, and used directly in the implementa-

tions of the modes of operation wrapper without any modifications. The block cipher

implementations were designed in order to meet a certain clock frequency. Hence,

20

21

Figure 2.1: Top-Level View of Modes of Operation Wrapper with Input and Output

FIFOs and Bus-Width Converters

each cipher has been designed with a different number of pipeline stages.

The following explanation is with reference to the design structure shown in

Fig. 2.1. The innermost entity is the block cipher. The block cipher is surrounded

by a wrapper which is specific to a particular mode of operation. The wrapper is

interfaced to the outside world using 32-bit wide FIFOs. Since Data and IV/Nonce

ports of the wrapper are 128 bits wide and the Key port is 64 bits wide, bus width

converters have to be introduced on all input and output ports in order to connect

to 32-bit wide FIFOs.

The implementations have been restricted with regards to the following criteria –

1. Pre-processing assumed to be done externally – Some modes of operation like

22

CCM have an input data format consisting of numerous parameters. It is ex-

tremely difficult and area inefficient to process plain input data inside the wrap-

per. Looking at typical requirements in the representative applications, it is safe

to assume that such pre-processing can be practically implemented, external to

the mode of operation wrapper, in software.

2. Padding of partially full blocks done externally – Each mode of operation has

its own padding convention with regards to partially filled data blocks. It is

assumed that all necessary padding is done externally.

3. Modes of operation wrappers built around a single block cipher instantiation –

In all mode of operation wrappers only a single instantiation of the underlying

block cipher is used in order to limit the implementation area. For modes

of operation which are parallelizable, parallelization is implemented using the

internal block cipher pipeline.

4. Limited use of block cipher pipeline – The block ciphers are designed in such a

way that they can process only a single data block at a time. This adversely

affects the throughput when there are more pipeline stages.

5. Extra space for non-required functionality – Both encryption as well as de-

cryption functionality has been implemented in the block cipher design. There

is no easy way to remove the decryption functionality from the block cipher

implementation even for modes of operation which do not require decryption.

2.1.1 Implementation Goals for Modes of Operations

The following implementation goals influenced design decisions –

23

1. The mode of operation wrappers must be implemented in such a way that it

should be easy to replace one block cipher with another by making minimal

number of changes to the wrapper design. This requires that all block ciphers

be exactly same in terms of top-level pin-out configurations and timing require-

ments of input and output ports.

2. The mode of operation wrappers must be designed in such a way that it should

be easy to replace one mode of operation with the another without making

any changes to the wrapper-cipher interfaces. This requires that all modes of

operation wrappers be exactly similar in terms of pin-out configuration at the

top-level and at the wrapper-cipher interface.

3. It should be easy to add multiple modes of operation to a higher level wrapper

and select a particular mode of operation on-the-fly using a control input. This

requirement arises from the fact that a sender might want to encrypt and au-

thenticate a packet using one mode of operation, while he might want to use a

different mode of operation to process the next packet. This requires designing

a top-level wrapper which has the ability to accept individual wrapper plug-ins

without any modifications whatsoever to the individual wrapper design.

4. It would also be favorable to have 32-bit interfaces to and from the wrapper

instead of having 128-bit interfaces as required by the block ciphers. This

necessity arises from the fact that there are only a limited number of I/O pins

on the FPGA.

24

2.2 Tools, Design Process and Synthesis Parame-

ters

All implementations have been coded in VHDL. I have coded all the designs at the

RTL level, wherever possible, in order to implicitly guide the synthesis tools to in-

fer the correct netlist from my VHDL code. I have implemented two versions of all

designs, one is platform independent and the other is FPGA specific. In the FPGA

specific design, I have refrained from using Xilinx primitive components unless it is

absolutely unavoidable. This is done in order to maintain inter-platform compati-

bility with regards to various FPGA families. Xilinx primitives have been used for

describing the following components –

1. Distributed RAM using Look-up Tables (LUTs)

2. Block RAMs

3. Variable length Shift Registers using LUTs (SRL16s)

Coding at the RTL level is considered to be optimal for synthesis. Also, limited use

of Xilinx specific primitives leaves some scope for the synthesis tools to optimize the

design.

Tools used in the Design Process

Aldec Active HDL 6.3 was used for design entry. This tool has a built-in text editor,

a VHDL compiler and a simulator. It allowed me to test the designs using both

functional and timing simulation under the control of testbenches.

For FPGA synthesis, I used Synplicity Synplify Pro 8.0. It has excellent support

25

for Xilinx primitives and from my experience, produces better results than its coun-

terpart, Xilinx XST. I did use Xilinx XST for synthesis of codes with a large number

of Xilinx primitives, but in general the results from Synplify Pro were always better

or at least equivalent to Xilinx XST. I set no other constraint except the clock period

in Synplify Pro. I tried to get the designs to run at their maximum potential and

hence had to make more than a few passes through the tool to get the optimal clock

frequency. In some cases, I also tagged some paths in the design as multi-cycle paths

and false paths in order to guide the synthesis tool into making favorable decisions

regarding placement and routing.

For implementation, I used Xilinx ISE 7.1 which is extremely user friendly in

terms of setting design parameters and optimization options. In order to get basic

implementation results, I did not set any optimization option other than the desired

clock frequency. I used the Static Timing Analyzer tool included in Xilinx ISE in

order to get timing information about the designs. Static Timing Analyzer gives

detailed information about the worst paths in the circuit including fan-out of each

net and routing as well as logic delays for all components and nets along the path.

For ASIC synthesis, I used Synopsys Design Compiler. I performed synthesis for

both 90 nm and 130 nm technologies. I used Tcl scripts to perform synthesis. I did

not set any other constraints except the desired clock frequency. I used the platform

independent version of the codes for performing ASIC synthesis. Design Compiler

returned results about the implementation area and timing. Wireload model was used

for estimation of routing delays. The ASIC synthesis design flow is shown in Fig. 2.3.

26

Figure 2.2: FPGA Design Flow

Figure 2.3: ASIC Synthesis Design Flow

Chapter 3: Authentication with Keyed HMACs

3.1 Secure Hash Standard - SHA

Cryptographic authentication techniques are based on two primitives, hash functions

and message authentication codes (MACs). FIPS 180-2 publication specifies crypto-

graphically secure hash functions. These form the basis of the Secure Hash Standard.

All the SHA functions mentioned in the FIPS 180-2 standard [16] are similar in terms

of the concept and construction. Table 3.1 shows comparison of the four secure hash

algorithms.

These algorithms differ significantly in the level of security they provide. The level

of security is directly related to the size of the message digest. In the context of hash

functions, security refers to the fact that a birthday attack on a message digest of

size n produces a collision with a work factor of approximately 2n/2. Collision is said

to occur when multiple messages hash to the same value. In general, a hash function

which produces a message digest of n bits has a security of n/2 bits [3].

Table 3.1: Comparison of Secure Hash Algorithms

Maximum supported Size of Message Security
message size (bits) Digest (bits) (bits)

SHA-1 < 264 160 80
SHA-256 < 264 256 128
SHA-384 < 2128 384 192
SHA-512 < 2128 512 256

27

28

Each of the Secure Hash Algorithms is described in 2 stages – Preprocessing and

Hash Computation. Preprocessing involves padding a message, parsing the padded

message into m-bit blocks, where m is the block size of the hash function and setting

initialization vectors to be used during hash computation. The hash computation

stage involves creation of a message schedule from the padded message and use of

the message schedule along with functions, round constants and word operations to

iteratively generate a series of hash values. The final hash value generated by the

hash computation stage is the message digest.

3.1.1 Hardware Implementation of SHA-1

Hardware implementation of SHA-1 is the easiest to explain among all the SHA

functions. Other SHA functions have a similar structure and can be easily described

in a similar way. Fig. 3.1 shows a high-level block diagram for SHA-1. Explanation

of various blocks is provided with reference to SHA-1.

Design of Message Scheduler Unit

Message Scheduler Unit in SHA-1 can be optimized very efficiently for FPGA imple-

mentations. This follows from the particular structure of the scheduler unit.

The Message Scheduler operates according to the conditions specified below and

outputs a single 32-bit word, Wt per clock cycle, where t denotes the round number.

Since the message digest in SHA-1 is computed over 80 rounds, the value of t ranges

from 0 to 79. Mt denotes the 32-bit message word which is input to the scheduler in

round t. ROTL1 rotates its argument left by 1 bit position. Wt−x denotes the 32-bit

word which was input to the scheduler x rounds before the current round. Details of

29

Figure 3.1: Block Diagram of SHA Function – w: Word Size; n: Size of Message

Digest

SHA-1 can be found in [16].

Wt =

{
Mt, for0≤t≤15
ROTL1(Wt−3⊕Wt−8⊕Wt−14⊕Wt−16), for16≤t≤79

The diagram for message scheduler unit of SHA-1 is shown in Fig. 3.2. The data

path is 32 bits wide, and the unit consists of 16 registers. Hence, the block size which

can be handled by SHA-1 is 32*16=512 bits. In other words, SHA-1 accepts 512 bits

of data at a time and compresses it down to 160-bits. These 160 bits act as initial

values to registers A through E for hashing the next 512 bit block.

The multiplexer selects between the incoming message words and the words com-

puted by the message scheduler unit. For the first 16 rounds, the multiplexer selects

the message word as the input to the register bank. In the remaining rounds, inter-

nally generated words are fed back to the register bank. Accordingly, proper control

30

Figure 3.2: SHA-1 Message Scheduling Unit – Mt: Message word; Wt: Output word

from Message Scheduling Unit; SRL16: LUT Shift Register primitive to selected

Xilinx FPGA families

signal is generated for the multiplexer by the control unit depending upon the round

number. The generation of the feedback word is a simple combinational logic with

an XOR operation and bit rotation.

An optimization used for FPGA implementation can be seen in Fig. 3.1. Instead

of using 16 registers in the message scheduler, a sequence of registers is grouped

together and implemented as a shift register. Further performance improvement is

possible by using primitive components specific to Xilinx family of FPGAs. Xilinx

Virtex and Spartan families have a primitive variable length shift register based on

LUTs. This specific shift register is named SRL16 and is a component in the Xilinx

UNISIM library. The obvious advantage of using SRL16s instead of registers is in

a situation where a small device is being targeted and there are limited number of

flip-flops available. Generally, this will not be the case for any reasonable sized FPGA

31

device. The main drawback of using a dedicated flip-flop is that the LUT which feeds

the flip-flop might be utilized as a route-though thereby making it unavailable as a

logic resource. Hence, the resource utilization on an FPGA for utilizing one FF might

actually be the FF and one LUT.

A route-through LUT is used any time an external signal needs to reach a slice

resource that can only be reached by using a LUT. The most common case is when

it’s necessary to reach a FF D-pin when the direct connection BX/BY is already used

for something else, such as CIN or F5/F6MUX select [17].

Design of Message Digest Unit

SHA-1 Message Digest Unit is shown in Fig. 3.3. The unit includes five working

registers, A, B, C, D, E and five output registers H0 .. H4. Each of these registers

is 32 bits wide. The final value stored in the output registers is the message digest.

Hence, in case of SHA-1, the size of message digest is 5*32=160 bits. Initially, the

five working registers are initialized by the pre-processing unit. During every hash

computation, the message digest unit takes a 512-bit input and processes it over 80

rounds. During each round, the contents of the working registers are updated. The

final contents of the output registers after 80 rounds is the hash value for that 512-bit

block. For processing the next 512-bit block, the hash value generated by the previous

block is used as the initialization value. This process goes on till all input data blocks

have been processed. The final contents of the output registers is the hash value for

the entire message.

ROTLx operation does not require any logic resources, since it can be accom-

plished by using only routing resources. Wt is the output word generated by the

32

Figure 3.3: SHA-1 Message Digest Unit – Kt: Round constant; Wt: Output word

from Message Scheduling Unit; ROTLx: Rotate left by x bit positions; Hb
a: Hash

word a, block b

message scheduling unit. Kt is a round dependent constant. This is implemented

using a 4:1 multiplexer with inputs hardwired to proper values. A particular input

of the multiplexer is selected according to the round number. Function ft selects the

output of one of three combinatorial logic functions, Ch, Maj and Parity depending

upon the round number. Ch, Maj and Parity are simple functions of variables B, C

and D. Please refer to [16] for details of operations.

As can be seen from Fig. 3.3, the critical path of the circuit passes through a

sequence of adders. In order to reduce the critical path in the circuit, design method-

ology of the adders is critical. In this case, there are 5 operands to be added. Various

implementations of adders were studied, and a comparative analysis influenced the

decision to use ripple carry adders. An interesting alternative is to use a carry save

adder tree in order to reduce the number of operands to be added from 5 to 3.

33

Three operands can then be reduced to two by using another carry save adder. To

add two operands, fast adders based on parallel prefix networks like Brent-Kung or

Kogge-Stone could be used. Implementation results show that there is no substantial

performance improvement after using this scheme. Also, the use of fast adders to

improve timing results in an increase in circuit area.

In case of an FPGA implementation, the use of ripple carry adders provides an

added advantage. Xilinx family of FPGAs have dedicated resources for performing

fast additions. These include carry chain logic and a dedicated AND gate per CLB

slice [17]. The synthesis tool can recognize certain VHDL constructs as adders, and

it uses carry chain logic in order to speed up the ripple addition.

Another interesting design consideration was the placement of adders required

to find the final hash. This placement dictates a trade-off between number of clock

cycles required to compute the output and the period of each clock cycle. If these

adders are placed outside the loop, then they are used for addition after 80 rounds

have been completed. In this case, the entire iteration of computing the hash takes

81 clock cycles. The number of clock cycles can be reduced to 80 if the adders are

placed inside the loop. A control circuit is required which forces one of the inputs of

the adders to a zero for all but the last cycle. The length of the critical path increases

only slightly in this case. The control circuit uses up a little more area than the

first option. Both the options are comparable in terms of performance, and it was

arbitrarily chosen to use the adders outside the loop [14].

34

Design of Control Logic

The control unit for SHA-1 is extremely simple to design and is quite intuitive to

understand. All major selections in the algorithm, depend upon the round in which

the decision has to be taken. As stated earlier, the hash is computed over 80 rounds.

These rounds are separated into 4 blocks, with each block consisting of 20 rounds.

The control logic is based on a round counter, which counts from 0 to 79 and flips

back to 0 in order to prepare for the next data block to be hashed. The output of the

counter denotes the current round number and this round number is used to generate

enable signals for the registers and select signals for the multiplexers in modules

producing Kt and ft.

The hash function is designed in such a way that it expects the first word passed

to it to be the length of the message in bytes. This is necessary because the control

logic has to make a decision about when to stop the computations and determine the

correct MAC. This control is implemented using another counter, which keeps track

of the index of the data block passed to the hash function.

3.2 Keyed-Hash Message Authentication Code

Message Authentication Codes (MACs) are used to authenticate both the source of

the message and its integrity. MACs based on cryptographic hash functions are known

as Keyed-Hash Message Authentication Codes (HMACs). HMAC function is used by

the sender to compute an authentication tag (MAC) that is a complex function of the

secret key and message input. The MAC is typically sent along with the message to

the receiver. The receiver can then recompute the MAC value using the message and

35

Figure 3.4: HMAC Dataflow – K: Secret key; ipad: Inner pad; opad: Outer pad;

H: Underlying hash function; t: Number of bytes of MAC; ‖ indicates concatenation

of strings

the secret key. The MAC value computed at the receiver’s side is then compared with

the MAC value sent by the sender. If the MAC values match, then the receiver is

assured that the message has come from the right sender and has not changed during

transmission in the network.

Dataflow diagram for HMAC is shown in Fig. 3.4. Please refer [11] for details

of HMAC computations. Two constants, named as inner pad (ipad) and outer pad

(opad) are used in order to ensure that the inner and outer hashes behave as if they

were different functions. The constants, ipad and opad are strings, 0x36 and 0x5C

respectively repeated B times, where B is the block size of the hash function used.

The shaded operations in Fig. 3.4 are hash computations. It would be worthwhile to

note the following with respect to HMACs –

• The procedure to generate the internal key K0 from user key K depends upon

36

the length of the user key. Let B be the block size of the hash function, and

l(K) be the length of the user key.

1. If l(K) = B, then K0 = K.

2. If l(K) < B, then B − l(K) zeros are appended to K in order to generate

K0.

3. If l(K) > B, then K is hashed to get an L byte string. B − L zeros are

appended to the hash to get K0.

• The first hash operation takes an arbitrary length message as input, but the

length of the input to the second hashing operation is constant for a given hash

function and length of the key.

• The length of the HMAC is variable and depends upon a user defined parameter

t. If t < B, then leftmost t bytes of the second hash are used as the MAC value.

3.2.1 Hardware Implementation of HMAC SHA-1

Hardware implementation of HMAC SHA-1 is shown in Fig. 3.5. The HMAC wrapper

is designed in such a way that it can interface with any secure hash algorithm designed

according to the specifications.

The user key is read 64 bits at a time and stored in a register. Padding signals

are generated by xoring the key with parameters, ipad and opad of proper length.

Data passed to the hash function must be scheduled in the correct sequence. The

hash function expects the first data word which is passed to it to be the length of

the message. The actual message begins from the second word onwards. As can be

seen in Fig. 3.4, the input to the first hash operation is the message appended to a

37

Figure 3.5: HMAC Datapath – ipad: Inner pad; opad: Outer pad; l(m): Length of

the message; B: Block size of hash function; l(H): Non-truncated output size of hash

function

string which has length equal to the length of ipad. The length of ipad is determined

by the block size, B of the hash function. Hence the message length to the first

hash operation increases by B bytes over the length of the original message. For the

second hashing operation, the hash generated by the first hash operation is appended

to a string derived from opad. Hence, the length of the message to the second hash

operation is denoted as l(H) + B, where l(H) is the length of the non-truncated

output of the hash function. Following the message length block, padding blocks are

passed to the hash function. These blocks are followed by the message which has

to be hashed. The output of the MAC register can be truncated to include only

the leftmost t bytes, where t is a user parameter. The control logic for the HMAC

wrapper is a simple state machine based on a counter. The counter keeps track of

38

the index of words being passed to the hash function. Control signals are generated

from the state of the counter.

Chapter 4: OCB Mode of Operation

4.1 Introduction

Offset CodeBook (OCB) is a shared-key encryption mechanism which simultaneously

provides both encryption and authentication. The OCB mode of operation can be

used in conjunction with any 128 bit block cipher. It is classified as a single-pass

authenticated-encryption scheme since only a single pass is required through the un-

derlying block cipher in order to provide both the security services.

The keyspace is determined by the keyspace of the underlying block cipher. For

a M -bit long message and cipher block size of n-bits, OCB requires only dM/ne+ 2

block cipher invocations. This is particularly important for short messages since there

is minimal overhead in terms of initialization block cipher calls. Another important

feature of OCB is that it is parallelizable [18].

4.1.1 OCB Encryption and Decryption

A block diagram representation of OCB mode is shown in Fig. 4.1. OCB mode of

operation uses two mutually invertible operations –

1. Encryption and Authentication Tag Generation

2. Decryption and Authentication Tag Verification

OCB encryption and tag generation uses only the forward (encryption) function-

ality of the underlying block cipher, while decryption and tag verification process uses

39

40

both forward (encryption) as well as reverse (decryption) functionality of the cipher.

This aspect of OCB is not optimal when it is used with block ciphers like AES which

have a significantly different encryption and decryption function.

Important features of OCB mode of operation can be summarized as follows –

• Message Partitioning – The input message is partitioned into blocks of size

128-bits. These are denoted as M [1],M [2], . . .M [m] in Fig. 4.1.

• Initialization – Two block cipher calls are necessary to initialize the state of the

OCB mode. The first block cipher call generates a parameter L by encrypting

a string of n zeros, where n is the block size of the cipher. This block is denoted

as 0n in Fig. 4.1. The second block cipher call generates a parameter R which

is an encryption of the value N⊕L, where N is a nonce known to both sender

and receiver, and typically transmitted in clear.

• Computing Iteration Constants – Each block cipher invocation in OCB

after the first two invocations uses a constant Z[i] which is xored with the the

message input M [i]. Similarly, the output of the block cipher is also xored with

Z[i]. Z[i] is a 128-bit block which is referred to as iteration constant in this

document.

• Handling the last message block correctly – The last message block is

handled differently than other blocks in the OCB mode. This situation arises

from the condition that the last block might not be completely full. The length

of the block is computed and represented as a 128-bit value. This is denoted

as l(M [m]) in Fig. 4.1. This length field is then xored with iteration constant

Z[m] and (L · x−1) which is denoted as L inverse. The resulting block is then

41

Figure 4.1: (a) OCB Encryption and Tag Generation; (b) OCB Decryption and Tag

Verification; EK : Encryption function of Block Cipher; E−1
K : Decryption function of

Block Cipher; L, R: OCB parameters; L inverse: OCB parameter derived from L;

N : Nonce; M [i]: ith message block; M [m]: Last message block; C[i]: ith ciphertext

block; C[m]: Last ciphertext block; Z[i]: ith iteration constant; l(M [m]): Length of

last message block encoded as a 128-bit string; l(C[m]): Length of last ciphertext

block encoded as a 128-bit string; τ : Length of the authentication tag requested by

the user

42

encrypted. At the output of the cipher, the original message block is xored with

the cipher output to generate a block of the same length as the last message

block.

• Checksum – OCB mode generates a ciphertext and an authentication tag as

the output. In order to generate the authentication tag, checksum is computed

by successively xoring message blocks. In case of an incomplete last block, it

is padded with trailing zeros before xoring. The computed checksum is then

xored with an iteration constant and encrypted to get a 128-bit authentication

block. Authentication tag consists of the leftmost τ bits of the authentication

block, where τ is a user input. τ determines the security measure of the OCB

scheme.

• Modifications for Decryption – As can be seen from Fig. 4.1, the only dif-

ference between encryption and decryption for OCB mode of operation is the

use of reverse cipher functionality (decryption) during block cipher invocations

for all message blocks except first two initialization blocks, last message block

and the checksum block. Specifically, in Fig. 4.1(b) note that some block cipher

invocations use EK blocks (encryption) while others use E−1
K blocks (decryp-

tion).

4.2 Hardware Implementation of OCB Mode

A generic OCB wrapper was designed which can be interfaced with any 128-bit block

cipher designed according to the certain specifications. This particular implementa-

tion assumes that all input blocks are completely full. Processing of partially filled

43

input blocks is not supported by this design.

4.2.1 Datapath Design

The datapath design is shown in Fig. 4.2. There are two main factors which affect

the datapath design in this mode.

1. Input message blocks are processed differently depending upon the type of the

block. Various types of blocks and their features are listed below.

• Initialization blocks are passed to the block cipher without any additional

processing.

• Message blocks (except the last block) are handled in a specific way. Mes-

sage block M [i] is xored with an iteration constant Z[i] before it is passed

to the cipher.

• The last message block, M [m] is handled differently from other message

blocks, as can be seen from Fig. 4.1.

• Checksum is processed in the same way as message blocks. But since the

source of checksum and the message blocks is not the same a separate path

has to be designed for passing the processed checksum to the cipher.

2. Output data from the block cipher must be handled differently depending upon

the type of block which produced that particular output.

• Encryptions of initialization blocks are not passed to the output of the

OCB wrapper. Such blocks must be stored internally in the wrapper and

used for further processing.

44

Figure 4.2: OCB Datapath – N :Nonce; M [i]:ith message block; M [m]:Last mes-

sage block; Z[i]:Iteration constant; Z[m]:Iteration constant for last message block;

L,R:OCB Initialization parameters; L inverse: OCB Parameter derived from L;

C[i]:ith block of ciphertext; T :OCB Authentication Tag; 0n:Block of n zeros; n:block

size of cipher=128 bits

45

Figure 4.3: Alternate Design for Datapath at Input Side of the Cipher

• Block cipher outputs for non-initialization blocks (message and ciphertext)

must be xored with iteration constant, Z[i] before the blocks can exit the

wrapper.

• The encrypted checksum block produces a 128-bit tag field. This has to

be further truncated depending upon the size of the user input τ .

Datapath Design at Input Side of the Cipher

As can be seen from Fig. 4.2, the datapath at the input of the block cipher consists

of a sequence of multiplexers. Each of these multiplexers is controlled using select

signals generated by the control logic. The data block which is to be passed to the

block cipher propagates through the set of multiplexers and arrives at the input of

the cipher. The checksum could possibly be handled using multiplexer ‘b’ instead

of using multiplexer ‘d’ but this would have required additional multiplexer at the

input of multiplexer ‘b’. The alternate design is shown in Fig. 4.3. In this design,

multiplexer ‘c’ feeds data to the block cipher instead of multiplexer ‘d’ as in Fig. 4.2.

46

Figure 4.4: OCB Checksum – M [i]: Input message block; C[i]: Output of register C[i]

(Please refer Fig. 4.2 for naming convention)

Also, multiplexers ‘b’ and ‘d’ can be combined together to form a 4-to-1 multiplexer.

The naming convention used in Fig. 4.2 represents encryption. For decryption, ci-

phertext should be given at the input denoted by M [i]. The output during decryption

is stored in the register denoted by C[i].

Design of Checksum Module

The module used for computing the checksum is shown in Fig. 4.4. The register stores

intermediate values of the checksum which are xored with the subsequent message

block. It should be noted that the OCB checksum is computed on the message blocks

(not input blocks) and hence during decryption data blocks fed to the checksum

module are not the input blocks to the OCB wrapper but the output blocks generated

by the cipher.

47

Design of Module for Computing Iteration Constants

Iteration constant, Z[i] is xored with corresponding message block, M [i]. Z[1] is

computed from OCB parameters, L and R. Subsequent values of Z[i] are computed

from Z[i− 1]. This can be represented using Eqn. 4.1 and 4.2.

Z[1] = (N ⊕ L) (4.1)

Z[i] = Z[i− 1]⊕ L(ntz(i)) . . . for i ≥ 2 (4.2)

In Eqn.4.2, ntz(i) denotes the number of trailing zeros in the integer i. The integer

i is the index used for numbering the message blocks. This design assumes that the

size of the message is less than 264 blocks i.e. the i can be represented using 64 bits.

If the design is used to target a known application, with an upper limit on message

size, i can be represented using lesser number of bits. This would improve the circuit

timing since it would reduce the size of an adder which increments i by one every

clock cycle. The basic building block for generating the value of ntz(i) is a priority

encoder as shown in Fig. 4.5 with an additional output all_0s. The truth table for

this component is shown in Table. 4.1. Input bit 0 has the highest priority. The

output all_0s is asserted LOW when all inputs are zeros. This output is used to

cascade the module in order to handle an input i with length greater than 8.

As can be seen in Fig. 4.6, the all_0s outputs of the first level (leftmost column)

of priority encoders acts as inputs to the next level. The encoder at the output side

generates the most significant three bits of the six bit output. The least significant

three bits are passed from the output of the appropriate first level encoder.

48

Figure 4.5: Modified priority encoder for computing ntz(i) (i ≤ 8)

Table 4.1: Truth Table for Priority Encoder ntz 8

Input Outputs
[7..0] Output[2..0] all_0s

0000 0000 000 0

XXXX XXX1 000 1

XXXX XX10 001 1

XXXX X100 010 1

XXXX 1000 011 1

XXX1 0000 100 1

XX10 0000 101 1

X100 0000 110 1

1000 0000 111 1

An alternate design implementing this functionality would be a memory which

stores the values of ntz(i) at address location i. For an n-bit index i, the size of

the memory required would be 2n−1 × n. The memory requirement is reduced by

half since odd indices have a value of 0 for number of trailing zeros. Implementation

using a memory would consume substantially more resources than the chosen design

method.

Also, L(i) is computed from L(i− 1) using a shift and conditional xor.

L(x) =

{
L(x− 1) ¿ 1, if msb{L(x− 1)} = 0
(L(x− 1) ¿ 1)⊕ 012010000111, if msb{L(x− 1)} = 1

49

Figure 4.6: Cascaded priority encoders for computing ntz(i) (i ≤ 64)

When ntz(i) is generated, in order to compute L(ntz(i)), the value of L(ntz(i)−1)

is required. Hence, all values of L(i) are stored in a memory rather than comput-

ing them on the fly. In this particular design a dual-ported BlockRAM is used for

implementing memory.

Fig. 4.7 shows the design of the module for computing values of Z[i]. Referring

to Fig. 4.2, it can be seen that the iteration constants are required for processing at

the input of the cipher and also at the output. A dual register pipeline holds the last

two values of Z.

50

Figure 4.7: Computation of iteration constant (Z[i])

Datapath Design at Output Side of the Cipher

The block cipher writes to four registers in the datapath at the output side of the

cipher . These are –

• Register L – This register stores the value of L(0), i.e. the encryption output

generated by an input consisting of a block of all zeros.

• Register R – This register stores the value of R, i.e. the encryption output

generated by an input block (N ⊕ L), where N is the nonce and L = L(0).

• Register C[i] – During encryption, this register is used to store the last generated

ciphertext block before it is accepted by the output fifo. The same register is

used to store the computed plaintext output during decryption.

51

• Register T – This register is used to store the complete 128-bit tag generated

from the checksum.

The ciphertext can be written directly to the output fifo instead of buffering it

in register C[i]. This would be feasible during encryption - tag generation operation.

During decryption, the OCB output (plaintext) needs to be xored successively with

partial checksum in order to compute the final checksum. Hence the output during

decryption needs to be buffered inside the wrapper instead of passing it directly to

the output fifo.

4.2.2 Design of Control Logic

Control logic for OCB wrapper is designed as separate modules controlling specific

sections of the wrapper while exchanging minimal number of signals among control

modules. This is preferable to having a single logic for controlling the wrapper since

it infers a state machine with a large number of states. This in turn is difficult

to design perfectly since there might be some states which are unaccounted for. A

modular approach helps in this regard since smaller state machines can be completely

specified and are easier to debug.

Communication Control Logic

Communication control logic acts like a scheduler and passes data blocks in the correct

order to the block cipher. All communication between the wrapper and the block

cipher takes place via a two-signal handshake mechanism; an input signal to the

block cipher, valid is used to trigger the block cipher to read new data and the

cipher acknowledges the data read by a pulse on an output signal, read. It is the

52

job of the communication control logic to interpret the validity of the next scheduled

data block and generate a valid signal to the block cipher.

Encryption/Decryption Control Logic

In the OCB mode of operation, both forward (encryption) and reverse (decryption)

block cipher operations are required. Hence, the underlying block cipher has a control

signal (encr/decr) to select between encryption and decryption functions. Referring

to Fig. 4.1, it can be seen that during OCB encryption, only forward function of the

cipher is used. But, during OCB decryption, some blocks are processed by the cipher

using the forward function while some are processed using the reverse function. A

control module generates the encr/decr control signal depending upon the operation

being performed and the particular type of block being processed.

Design Simplification using Auxiliary Tags

A novel idea has been used to simplify the design of control logic for modes of opera-

tion. In order to distinguish among various block types, each type of block is marked

with an auxiliary tag which is passed to the cipher module via an independent port

along with the corresponding data block. The cipher does not process the tag but

just passes it through the internal pipeline so that the auxiliary tag for a particular

block exits the cipher at the same time as the encrypted/decrypted result. Also,

the cipher provides a look-ahead capability which allows the wrapper to look at the

exiting auxiliary tag up to three clock cycles before it appears at the cipher output.

This gives the wrapper additional time to get ready for processing the exiting data

block.

53

The control logic at the output reads the auxiliary tag exiting from the block

cipher and performs one of the control functions below –

1. Generates control signals to enable proper datapath registers at the output of

the block cipher.

2. Generates control signals at the output of the wrapper for output FIFO control

3. Generates indication signals at the wrapper output like Start of Frame (SOF)

and End of Frame (EOF) indications.

Chapter 5: CCM Mode of Operation

5.1 Introduction

Counter with Cipher Block Chaining - Message Authentication Code, abbreviated as

CCM is an authenticated-encryption mode of operation of block cipher. CCM can be

used in conjunction with any approved 128-bit block cipher like AES [19].

CCM is designed for use in a packet environment, where all the necessary data

is available in storage before CCM processing is applied to that data. This implies

that CCM is not online i.e. it cannot handle stream processing. Another useful

feature of CCM mode of operation is that it can handle associated data i.e. data

which must be authenticated but not encrypted. This might be particularly useful in

networking applications where data blocks like packet headers are usually sent in the

clear, but the receiver must be able to ascertain their source. CCM has been specified

in the draft IEEE 802.11i standard for wireless networks. It has also been specified

in IEEE 802.15 (Wireless Personal Area Networks) and 802.16 (Broadband Wireless

Metropolitan Area Networks) standards.

5.1.1 CCM Encryption and Decryption

CCM processing consists of two pairs of related processes: generation-encryption

and decryption-verification. These processes combine two cryptographic primitives,

encryption using counter mode and authentication using CBC-MAC. CCM provides

54

55

Figure 5.1: CCM Encryption – (a) Generation of CBC-MAC; (b)Encryption using

Counter Mode; (c)Final CCM processing; EK : Encryption function of block cipher;

B[i]: Processed CCM input block; Y [i]: CBC output blocks; Ctr[i]: ith input block in

Counter mode; S[i]: Output blocks in Counter Mode; P [i]: ith payload block

56

considerable advantage due to the fact that only the forward (encryption) function of

the block cipher is used. This is useful in case of block ciphers like AES which have

a significantly different forward and reverse function [20].

A block diagram representation of CCM Encryption is shown in Fig. 5.1. Naming

conventions in CCM are a little complicated since the mode is based on many param-

eters. Detailed information about CCM can be found in [19]. In the simplest sense,

CCM encryption processes two types of input blocks –

• Payload Block - This type of data block must be encrypted and authenticated.

These blocks are denoted as P [i].

• Associated Data Block - This type of data block must be authenticated but

not encrypted.

Table 5.1: CCM Block Types and Operations

Block Type Operations
Encryption Authentication

Payload Blocks X X
Associated Data Blocks X

The naming convention used throughout this chapter is consistent with Fig. 5.1.

Data blocks which are authenticated are denoted as B[i]. Hence blocks B include

blocks P and additional associated data blocks.

Important steps performs in CCM processing can be summarized as follows –

• Pre-processing of the Message – In this step, the message is arranged to

get it into a form suitable for CCM processing. The first block B[0] uniquely

determines the Nonce (N) and the length of the payload, l(m) [19]. If associated

57

data is present, the block(s) after B[0] will consist of associated data until there

is no more associated data left. If the last associated data block is not a complete

block, then it is padded with zeros. After the associated data blocks, payload

blocks follow.

• Computing CBC-MAC – Blocks B[i] are encrypted using CBC mode and

the output of final encryption is the Message Authentication Code (MAC) which

can be used for authentication. The CBC-MAC is denoted as Y [r] in Fig. 5.1.

• Encryption using Counter Mode – Payload blocks are encrypted using

Counter (CTR) Mode of operation. The initial value of counter variable (de-

noted as Ctr[0] in Fig. 5.1) is an Initialization Vector (IV) input to the CCM

wrapper. Subsequent values of counter variable are computed by incrementing

the current counter value by one.

• Processing Counter Mode Encryption – The blocks generated by Counter

Mode encryption are denoted as S[i] for corresponding Ctr[i] counter variable.

S[0] is processed differently than the following S[i] blocks.

• Computing Authentication Tag – Authentication tag (denoted as Tag in

Fig. 5.1) is generated by xoring S[0] with the computed CBC-MAC. The length

of the authentication tag to be output by the CCM mode wrapper can be set

by the user and it is just a truncation of the original 128-bit MAC.

• Computing the Ciphertext – Ciphertext is computed by xoring the result of

counter encryptions, S[i] with the corresponding payload blocks P [i], for i > 0.

The final output of the CCM mode of operation is C‖Tag, where ‖ indicates

58

concatenation of two strings.

5.2 Hardware Implementation of CCM Module

A generic CCM wrapper is designed which can be interfaced with any 128-bit block

cipher designed according to certain specifications. This particular implementation

assumes that all input data blocks are completely full. Partially filled blocks cannot

be handled by the CCM wrapper. Also, all preprocessing described in Section 5.1.1

is done outside the CCM wrapper.

5.2.1 Datapath Design

The design of datapath for CCM mode of operation is relatively straightforward but

controlling datapath elements is a complex task. Factors which affect CCM datapath

design are –

1. As shown in Table 5.1, some blocks passed to the CCM wrapper must be only

authenticated while others must be encrypted as well as authenticated. Authen-

tication is done using CBC mode of operation while encryption is done using

Counter mode. Depending upon the type of block, either of the two modes

must be selected.

2. Since only one instantiation of block cipher is used in order to limit the imple-

mentation area, the same block cipher has to be used in both CBC and Counter

modes. For blocks which must be authenticated as well as encrypted, alternate

invocations of the block cipher are necessary, once in the CBC mode and then

in the Counter mode.

59

Figure 5.2: CCM Datapath – B[i]: Pre-processed input block; S[0] = EK(Ctr[0]);

C[i]: ith block of ciphertext; CBC: Encryptions in CBC mode; T : Authentication

Tag

3. The first block encrypted using Counter mode is buffered for later use. Subse-

quent counter encryption outputs are xored with corresponding payload blocks

to produce CCM ciphertext.

4. Encryptions in CBC mode must be buffered since the output has to be later

xored with the next incoming message block before it is passed to the block ci-

pher. Also, consecutive CBC encryptions restrict paralellization of this scheme.

60

Datapath Design at the Input Side of the Cipher

As explained earlier, CCM processing involves two cryptographic primitives, encryp-

tion using Counter mode and authentication using CBC mode of operation. The

following explanation is with respect to Fig. 5.2. Multiplexer ‘b’ at the input of the

block cipher selects the mode in the sense that it passes proper inputs to the block

cipher depending upon required mode of operation. As such, the block cipher pro-

cesses all data in the same way. It is the wrapper which actually processes the inputs

and outputs of the block cipher that determines the mode of operation. The input to

multiplexer ‘b’ denoted as Counter value is passed to the cipher when the counter

mode of operation is to be invoked, otherwise data from the other input is passed to

the cipher. The XOR at the input of multiplexer ‘a’ handles chaining in the CBC

mode as shown in Fig. 5.1(a). The naming convention used in Fig. 5.2 represents

CCM encryption. For decryption, the pre-processed ciphertext is input through the

input B[0] and the output plaintext is buffered in register C[i].

Processing Counter Input to Block Cipher

In Counter mode of operation, the IV/Nonce input is used for the initial counter

invocation and for subsequent invocations, the previous IV is incremented by one.

A feature of CCM, which adds complexity to the design is support for variable size

nonces. The format for CCM IV/Nonce is shown in Table. 5.2. Valid values for L

are from 2 to 8. Therefore the size of the counter variable can range from 2 octets

to 8 octets. Depending upon the size of the counter, only a specific number of least

significant bits must be incremented. Rest of the IV remains the same throughout.

This is shown in Fig. 5.3.

61

Table 5.2: CCM Nonce Format

Octet No. 0 1 . . . 15− L 16− L . . . 15
Contents Flags Nonce N Counter Ctr[0]

Figure 5.3: Counter Mode Input Processing in CCM Mode – l(N): Length of Nonce

field; l(C): Length of Counter field; l(N) + l(C) + 1 = 16

Handling Associated Data Blocks

As mentioned earlier, if associated data is present in a frame then it should be passed

to the block cipher immediately after initialization block B[0]. After all associated

data blocks have been passed to the block cipher, only then payload blocks are passed.

In order to correctly handle data, the CCM wrapper must keep track of the number

of associated data blocks present in the frame. In order to determine the number of

associated data blocks, two control fields must be checked.

1. Bit no. 6 in the Flags byte in frame B[0]. This field is denoted as Adata in

62

Table 5.3: CCM Block B[0] Format

Octet No. 0 1 . . . 15− L 16− L . . . 15
Contents Flags Nonce N Length of the payload l(m)

Table 5.4: CCM Flags Format

Bit No. 7 6 5 4 3 2 1 0
Contents – Adata M L

Table. 5.4. This bit indicates whether associated data is present (Adata = 1)

or not. If associated data is present, then block B[1] must be checked in order

to determine the length of associated data.

2. The format for block B[1] is shown in Table. 5.5. The first two bytes of the

block denote the size of associated data blocks in terms of octets. It must be

mentioned here that specification for CCM mode of operation specifies variable

length formats for encoding l(Adata). The CCMP protocol specified in the

IEEE 802.11i standard, which is a variant of the original CCM mode, reserves

only the first two octets for specifying l(Adata). The CCM wrapper has been

designed to support this feature of the CCMP protocol.

Table 5.5: First Associated Data Frame Format (Block B[1])

Octet No. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Contents l(Adata) . . . Adata . . .

63

Once, the length information about associated data is extracted from the blocks

B[0] and B[1], it is straightforward to count the number of blocks being passed to

the block cipher and determine the end of associated data blocks.

Datapath Design at the Output Side of the Cipher

The block cipher writes to four registers in the datapath at the output side of the

block cipher as can be seen from Fig. 5.2. These are –

• Register S[0] - This register stores the encrypted output of Ctr[0].

• Register C[i] - This register stores the ith block of ciphertext/plaintext during

encryption/decryption.

• Register CBC - This register acts as intermediate storage for the output of

encryptions performed in CBC mode of operation.

• Register T - This register stores the 128-bit authentication tag which can be

later truncated to user-defined length.

5.2.2 Design of Control Logic

The control logic for CCM wrapper is designed as separate modules controlling spe-

cific portions of the wrapper. In case of CCM mode no control logic is required for

selecting between encryption and decryption functions, since CCM encryption as well

as decryption uses only forward (encryption) function of the block cipher. Simplifi-

cation of control logic design is achieved by using auxiliary tags for tagging different

types of input blocks to the block cipher. The concept of auxiliary tags is explained

in Section 4.2.2.

64

The design of control logic is based on Table. 5.6. The control logic acts as a

scheduler and controls the sequence of operations. The main aspect of designing the

control logic is to determine the optimal sequence of operations in hardware. The

order of operations represented by the software-based pseudocode presented in [19]

is shown in Fig. 5.1. The software-based pseudocode involves first performing a

CBC-MAC operation on the entire data block and then selectively encrypting the

payload. If the same order of operations is followed in the hardware implementation,

then storage equal to the size of the payload would be required in order to store all

payload blocks which have to pass through the cipher twice. The modification is to

get the same block to pass through the cipher twice in successive cipher invocations;

the first pass for encryption, the next for authentication.

65

Table 5.6: Order of Operations in Hardware Implementation of CCM – Auth: Authen-

tication; Encr : Encryption; Adata: Associated Data; n: Number of Adata Blocks;

m: Number of Payload blocks; r=m+n; All notations consistent with Fig. 5.1

Block Type Notation Input to Mode Operation
Block Cipher CBC CTR Auth Encr

Initialization Block B[0] B[0] X X
Adata Block[1] B[1] B[1]⊕ Y [0] X X
Adata Block[2] B[2] B[2]⊕ Y [1] X X

. .
Adata Block[n-1] B[n-1] B[n-1]⊕Y [n-2] X X
Adata Block[n] B[n] B[n]⊕Y [n-1] X X

Payload Block[1] P[1] X X
Ctr[0] X
Ctr[1] X

P [1]⊕Y [n] X
Payload Block[2] P[2] X X

Ctr[2] X
P [2]⊕Y [n+1] X

Payload Block[3] P[3] X X
Ctr[3] X

P [3]⊕Y [n+2] X
. .
. .

Payload Block[m-1] P[m-1] X X
Ctr[m-1] X

P [m-1]⊕Y [n+m-2] X
Payload Block[m] P[m] X X

Ctr[m] X
P [m]⊕Y [n+m-1] X

Chapter 6: EAX Mode of Operation

6.1 Introduction

EAX mode of operation is a two pass “Authenticated Encryption with Associated

Data” (AEAD) scheme based on any approved block cipher. EAX is an improvement

over CCM mode of operation which has a few drawbacks like complex parametrization

and inability to handle online data. EAX mode of operation supports streaming data

input and does not require data to be in storage before applying EAX processing.

EAX also avoids complex padding and pre-processing rules like CCM, thereby making

it more efficient from an implementation perspective [21].

EAX does not impose any restrictions on the block size of the underlying block

cipher. Message expansion is minimal; the length of the output is only τ bits more

than the length of the message, where τ is the length of the authentication tag. Fur-

thermore, implementation efficiency is improved by the fact that EAX uses only the

forward (encryption) functionality of the underlying block cipher. This is especially

appealing when EAX mode is used with block ciphers like AES (Rijndael) that have

a significantly different forward and reverse function [20].

6.1.1 EAX Encryption and Decryption

EAX mode of operation uses two mutually invertible processes –

1. Encryption and authentication tag generation

66

67

2. Decryption and authentication tag verification

EAX mode of operation uses three parameters - Nonce, Header and Message. This

combination is called a triple. Provable security is related to indistinguishability

from random bits and the inability of an attacker to produce a new but a valid

< nonce, header, ciphertext > triple.

The mode uses the underlying block cipher in CBC and CTR modes of operation.

Since both these modes need only the forward functionality of the cipher, it is sufficient

to implement only the encryption function of the block cipher, as stated earlier. An

interesting aspect of the mode is the tweaked version of OMAC implementation. It

utilizes multiplication over GF (2128). Parameter L is defined as L = EK(0n) where K

is the secret key of the underlying block cipher and n is the block size. The convention

0n indicates a string of n zeros. Parameters B and P are defined as – B = 2L and

P = 4L, where multiplication is carried out over GF (28). Multiplication by 2 over

GF (2128) is implemented as a single bit left shift and conditional XOR. A design

related security issue is that both these parameters must be calculated in constant

time in order to be secure against timing attacks.

Encryption and Authentication Tag Generation

Dataflow diagram for encryption and signature generation in EAX mode of operation

is shown in Fig. 6.1. Note the subtle change in font used to differentiate between the

input (normal font in caps) and output of OMAC function (italicized font in caps).

The EAX mode of operation uses the underlying block cipher in CBC (Cipher Block

Chaining) and CTR (Counter) modes of operation. CBC mode used is a variant of

OMAC (One-Keyed MAC) and is referred to as “tweaked” OMAC in [21].

68

Figure 6.1: Encryption - Signature Generation in EAX Mode of Operation – M:

Message; N: Nonce; H: Header; N = OMAC0
K(N); H = OMAC1

K(H); C= CTRK(M);

C = OMAC2
K(C); T= N⊕C⊕H; Ciphertext=C‖T

6.1.2 Modified OMAC Operation

One-key CBC MAC is an improvement over security flaws in CBC-MAC. Bellare,

Kilian, and Rogaway [22] proved the security of the CBC MAC for fixed message

length mn bits, where n is the block length of the underlying block cipher E. However,

it is well known that the CBC MAC is not secure unless the message length is fixed.

OMAC is proved to be secure for an arbitrary length message and uses a single secret

key, K [10].

The original OMAC algorithm has been “tweaked” a bit in order to incorporate

it in the EAX mode of operation [21]. As can be seen in Fig. 6.3, OMAC is similar to

CBC-MAC except for the processing of the last block. If the last block is completely

69

Figure 6.2: Decryption - Verification in EAX Mode of Operation – C: Ciphertext;

N: Nonce; H: Header; N = OMAC0
K(N); H = OMAC1

K(H); C = OMAC2
K(C);

T′ = N⊕C⊕H; T: Input Tag

full, then the last message block, M [m] is xored with ciphertext of previous block

and a constant, 2L, where L = EK(0). If the last block is not completely filled, then

it is padded with a string 10i, where i is the number of zeros required to completely

fill the block. The padded block, denoted as MPad in Fig. 6.3, is then xored with

the constant, 4L. The ciphertext generated by the last block, denoted as T , is the

output of OMAC.

In the specification of EAX mode of operation OMAC invocations are denoted as

M = OMACt
K(M), where K is the secret key for the block cipher, t is an integer

constant and M is the input message. Note the difference in the fonts used for denoting

the message (M) and the OMAC output (M).

70

Figure 6.3: One-Key CBC MAC (OMAC) – (a) OMAC operation completely filled

last block, (b) OMAC operation with partially filled last block; M [i] : ith message

block; L = EK(0) (with reference to EAX); T : Tag; MPad = M‖10i; K: Secret key;

EK : Encryption function of block cipher; ‖ denotes string concatenation

OMACt
K(M)= OMACK([t]n‖M),

where [t]n is the representation of integer t as a n-bit number, and n is the block size

of the block cipher.

6.2 Hardware Implementation of EAX mode

A generic EAX wrapper was designed which can be interfaced with any 128-bit block

cipher designed according to specifications. This particular implementation assumes

that all input data blocks are completely full. Partially filled blocks are not supported

71

Figure 6.4: EAX Datapath – M[i]: ith message block; C[i]: ith ciphertext block; N:

Input nonce; H: Input header; L=EK(0); B=2L; P=4L; T: Authentication tag

by this implementation.

6.2.1 Datapath Design

Datapath design for EAX is the most complex among the implemented authenticated

encryption modes of operation. This is because of the interleaved CTR and OMAC

invocations required in EAX mode. Factors which affect EAX datapath design are –

• EAX mode uses CTR mode for encryption and a variant of CBC mode for

authentication. Single block cipher instantiation is used in order to limit im-

plementation area.

72

• The design of the block which generates parameters B and P is quite straightfor-

ward. B and P are derived from the parameter L which is defined as L = EK(0),

where E is the underlying block cipher and K is the secret key. L ∈ GF (2128).

B = 2L and P = 4L, where B, P ∈ GF (2128). If parameters B and P are

computed on the fly then they must be computed in equivalent time in order

to prevent timing attack. Hence, B and P are pre-computed (in variable time)

and used in computations as required rather than computing them on the fly.

• Data processing using OMAC makes selections based on whether the last block

is completely full or not. Since, this implementation always assumes complete

data blocks, this decision is not required to be taken in hardware. Fig. 6.4 does

have reference to a parameter B/P which is used to indicate the OMAC choice

as stated in the original EAX specification.

Datapath Design at Input Side of the Cipher

Design aspects of EAX datapath are explained with respect to Fig. 6.4. Multiplexers

‘a’, ‘b’, ‘c’ and ‘d’ are used for implementation of OMAC mode. Referring to

Fig. 6.1, N = OMAC0
K(N). i.e N = OMACK([0]n‖N). Hence, in order to compute

N , two block cipher calls are required, assuming that the input nonce (N) is a 128-bit

string. The first block cipher call is for encryption of [0]n. The next block cipher call

is for encryption of L⊕B⊕N, where L=EK([0]n) and B=2L. In order to implement the

OMAC operation with input nonce, N as the argument, multiplexer ‘a’ first passes

the string [0]n. During the subsequent pass through the block cipher, the select line

for multiplexer ‘a’ is flipped and the string L⊕B⊕N is passed through it.

73

Multiplexer ‘b’ is used for processing OMAC2
K(C), while multiplexer ‘c’ pro-

cesses OMAC1
K(H). Multiplexer ‘d’ uses a 2-bit select line and selects either the

Nonce, Header or Ciphertext related blocks to be passed to the block cipher in the

correct sequence. Interleaved invocations of block cipher in CBC (OMAC is a CBC

MAC variant) and CTR modes is controlled by multiplexer ‘e’.

Processing Counter Input to Block Cipher

As can be seen from Fig. 6.1, N = OMAC0
K(N) acts as the IV for CTR mode

of operation. This requires that the nonce, N be processed before any input mes-

sage/ciphertext blocks can be processed in CTR mode. The processed nonce is stored

in Register N at the output side of the block cipher. After every CTR mode invoca-

tion, the value of Register N is incremented and made ready for processing the next

block in CTR mode.

Handling Message Header

Message Header, H is processed using OMAC algorithm. Header is analogous to

associated data in CCM mode of operation. Headers are only authenticated but not

encrypted.

Processing of header is independent of processing other blocks like nonce and

message. Thus there is no restriction on the sequence in which the message header

must be processed. The output of OMAC1
K(H), is stored in register H and used in

the final processing for computing the authentication tag, T.

74

Datapath Design at the Output Side of the Cipher

Output data from the block cipher is written to registers at the output side of the

cipher. These are –

• Register N : This register is used to store the intermediate as well as the final

value of the nonce processed using OMAC.

• Register L: As stated earlier, EAX mode of operation uses three parameters –

L, B and P. L is buffered since it is later used for computation of parameters,

B and P.

• Register H: This register is used to store intermediate as well as final values of

the header processed using OMAC.

• Register C[i]: In CTR mode of operation, encryption of ith CTR block is xored

with ith message block, M[i] in order to produce ith block of ciphertext, C[i].

This is the ciphertext output of the EAX mode. The same register is used to

store the output (plaintext) during decryption.

• Register C: This register is used to store the intermediate as well as final results

of OMAC processing for ciphertext stored in register C[i].

Calculating EAX parameters, B and P

EAX parameters, B and P are calculated from parameter L. Computation of L is de-

scribed in Section 6.2.1. Computations are performed over GF (2128). The irreducible

polynomial chosen for performing Galois Field computations is x127 +x7 +x2 +x+1.

75

Multiplication by 2 over GF (2n) is implemented as a single bit left shift and condi-

tional xor as expressed in the following equation.

B = 2L =

{
L ¿ 1, if msb(L) = 0
(L ¿ 1)⊕ 012010000111, if msb(L) = 1

Similarly, P = 4L is computed by multiplying B by 2 over GF (2128).

6.2.2 Design of Control Logic

Although the datapath for EAX mode of operation is more complex as compared

to other modes of operation, comprehensively defined auxiliary tags overcomes the

requirement for a complex control logic. The control logic in case of EAX mode of

operation acts like a task scheduler. It monitors the auxiliary tag entering the exiting

the block cipher and generates proper logic signals for multiplexers at the input side

of the block cipher and enable signals for registers at the output side of the cipher.

Additionally, EAX mode of operation uses only the forward (encryption) function of

block cipher. Therefore, no control is required for selecting between encryption and

decryption functions of the block cipher.

Chapter 7: Implementation Results

The results for hardware implementation of selected authentication techniques are

tabulated in this chapter. Area utilization and timing results are provided for FPGA

implementations as well as ASIC synthesis.

7.1 Throughput Computations for Modes of Op-

erations and Generic Composition Schemes

Selection of a particular authentication technique or mode of operation would depend

upon two main factors, implementation area and throughput. For authenticated-

encryption schemes, the throughput is not a static value for given parameters, but is

dependent on the length of the message. Derivation of formulas, along with appro-

priateness of approximation techniques used is described in this section.

Let us define some parameters that will be used for throughput computations.

L : Length of the message in terms of blocks (1 block=128 bits)

tp : Minimum clock period

nrounds : Number of rounds in the underlying block cipher

npipeline stages : Number of pipeline stages per round in the underlying block cipher

ncipher calls : Number of block cipher calls required for processing input data

nallowed blocks : Number of blocks allowed to pass through the internal pipeline of the

block cipher at a time

76

77

Table 7.1: Number of Rounds and Pipeline Stages per Round used in the Hardware

Implementations of Block Ciphers

Cipher nrounds npipeline stages Max. Clock Frequency
for ASIC Synthesis (90 nm)

AES-128 11 2 187.9 MHz
AES-192 13 2 187.9 MHz
AES-256 15 2 187.9 MHz
Twofish 16 8 157.5 MHz
Serpent 16 2 142.5 MHz

The general formula for throughput computation is as follows –

Throughput = Size of the message (in bits)
Time required to compute the output

∴ Throughput = 128×L
ncipher calls×nrounds×npipeline stages×tp

× nallowed blocks

Data about the number of rounds and pipeline stages per round in the hardware

implementations of the block ciphers is given in Table 7.1. Please note that initial

rounds are also considered as a complete round in case of AES.

In order to find the throughput values for individual modes of operation, it is

necessary to find the number of block cipher calls required by each mode of operation

to compute the output for a message consisting of L blocks. Also, in order to find

the maximum throughput supported by each mode, it is necessary to determine the

value of nallowed blocks. All throughput values given in the tables are for the basic case

i.e. assuming that only a single block is allowed to be present in the block cipher

pipeline at any time (nallowed blocks = 1).

7.1.1 ECB Mode of Operation

ECB mode of operation is the only mode considered here, that has a static throughput

for given parameters. This condition arises from the fact that processing a message

78

using ECB mode does not require any additional block cipher calls for pre-processing

or post-processing the message.

The number of block cipher calls required for ECB mode of operation is L.

Hence, the throughput for ECB mode of operation can be written as –

ThroughputECB = 128×L
L×nrounds×npipeline stages×tp

× nallowed blocks

7.1.2 OCB Mode of Operation

Throughput of OCB mode of operation is determined by the number of block cipher

calls and the clock frequency at which the wrapper can work. For a message of size

L blocks, OCB mode of operation requires L + 3 block cipher calls. Two of these

block cipher calls are for pre-processing OCB parameters and one is for processing

the checksum. The dependence of the throughput value on L is pronounced for

small values of L i.e. short messages. As L increases, the throughput saturates at

a particular value. Throughput values shown in the tables presented in this chapter

are for large messages.

Hence, the throughput for OCB mode of operation can be written as –

ThroughputOCB = 128×L
ncipher calls×nrounds×npipeline stages×tp

× nallowed blocks

∴ ThroughputOCB = 128×L
(L+3)×nrounds×npipeline stages×tp

× 1

∴ ThroughputOCB ≈ 128
nrounds×npipeline stages×tp

(. . . for long messages)

79

7.1.3 CCM Mode of Operation

For computing the throughput of CCM mode of operation, additional parameters

need to be defined. Assuming, that L is the length of the message, and A is the

length of additional associated data in terms of blocks, the number of block cipher

calls required for CCM mode are (L + 1) + (A + L) + 1. Typically, the length of

additional associated data, A would be very small as compared to L, i.e. A ¿ L.

Therefore, ncipher calls≈2L + 2.

Hence, the throughput for CCM mode of operation can be written as –

ThroughputCCM = 128×L
ncipher calls×nrounds×npipeline stages×tp

× nallowed blocks

∴ ThroughputCCM = 128×L
(2L+2)×nrounds×npipeline stages×tp

× 1

∴ ThroughputCCM = 128
2×nrounds×npipeline stages×tp

(. . . for long messages)

7.1.4 EAX Mode of Operation

For EAX mode of operation, we need to define two more parameters – H (Number

of blocks of Header) and N (Number of blocks of Nonce). Header is similar to

additional associated data, A in CCM mode of operation. For EAX, ncipher calls =

2L+(H+1)+(N+1). Assuming, H,¿L, we can approximate, ncipher calls = 2L+N+2.

Typically, N = 1; therefore, ncipher calls = 2L + 3

Hence, the throughput for EAX mode of operation can be written as –

ThroughputEAX = 128×L
ncipher calls×nrounds×npipeline stages×tp

× nallowed blocks

∴ ThroughputEAX = 128×L
(2L+3)×nrounds×npipeline stages×tp

× 1

∴ ThroughputEAX = 128
2×nrounds×npipeline stages×tp

× 1 (. . . for long messages)

80

7.1.5 Generic Composition Schemes - AES + HMAC

Throughput computation is based on sightly different parameters in case of generic

composition schemes compared to authenticated - encryption modes of operation.

Generic composition schemes considered here use AES for encryption and HMAC for

authentication. HMAC have been used with SHA-1 and SHA-512 as underlying hash

functions.

In the design of generic composition schemes, AES and HMAC are separate units

and have their own critical paths. For comparative purposes, they have been grouped

together as a single entity with all components inside the entity clocked with the

same master clock. Hence, the clock period of the design is taken as the larger clock

period among AES and HMAC. If HMAC has a greater clock period, it determines

the clock frequency at which the generic composition scheme can run. This in turn

also determines the throughput of the generic composition scheme.

Let us introduce additional parameters for deriving the throughput in case of

HMAC. Block size of underlying hash function (nhash block size) is the number of bits

that the hash function can process at a time. SHA-1 has a block size of 512 bits,

while SHA-512 has a block size of 1024 bits. Both SHA-1 and SHA-512 require 80

rounds for computing the output.

For n blocks of data, HMAC requires n+1 hash function calls. Hence, throughput

for HMAC can be formulated as –

ThroughputHMAC = nhash block size×n
(n+1)×nrounds×tp

For HMAC SHA-1, ThroughputHMAC SHA−1 = 512×n
(n+1)×80×tp

81

∴ ThroughputHMAC SHA−1 = 512
80×tp

(. . . for long messages)

For HMAC SHA-512, ThroughputHMAC SHA−512 = 1024×n
(n+1)×80×tp

∴ ThroughputHMAC SHA−512 = 1024
80×tp

(. . . for long messages)

7.2 FPGA Implementation Results

Devices from the Xilinx Virtex-4 family of FPGAs were targeted for all implemen-

tations. In particular, part number ‘xc4vlx60ff1148’ with a speed grade of ‘-11’

was used for all implementations [17]. Results are provided for all modes of opera-

tions implemented using a particular block cipher. Authenticated-Encryption modes

are compared with Electronic Code Book (ECB) mode of operation since ECB is

the basic block cipher implementation without any additions or feedback mechanism.

Also, results for generic composition schemes comprising of HMAC for authentication

and AES for encryption are provided.

7.2.1 Implementation of Modes with AES

FPGA Implementation results for all modes of operations with AES are shown in

Table 7.2. In case of AES, the number of rounds is different for different key sizes.

Therefore, there are different values for throughput for 128, 192 and 256 bit keys.

Number of rounds (including the initial rounds) for AES-128, AES-192 and AES-26

are 11, 13 and 15 respectively. Hardware implementation of AES has two pipeline

stages per round. It is worthwhile to reiterate that the underlying block ciphers have

been designed to handle only a single data block at a time.

82

Table 7.2: FPGA Implementation Results for Modes of Operation with AES

Mode of Operation
ECB OCB CCM EAX

CLB Slices 1,188 2,964 2,799 2,993
LUTs 2,072 3,523 3,308 3,128
Flip-Flops 881 3,100 2,830 2,775
BlockRAMs 14 18 14 14
Min Clock Period (ns) 8.2 9.6 11.4 10.1
Max Clock Freq. (MHz) 121.7 103.4 87.5 99.2
Throughput (Mbps)-AES 128 708 601 255 287
Throughput (Mbps)-AES 192 599 508 215 243
Throughput (Mbps)-AES 256 519 440 186 211

Table 7.3: Comparison of FPGA Implementation Results - AES-ECB and AES-OCB

Mode Increase % Increase
ECB OCB

CLB Slices 1,188 2,964 1,776 149.5
LUTs 2,072 3,523 1,451 70
Flip-Flops 881 3,100 2,219 251.8
BlockRAMs 14 18 4 28.6
Min Clock Period (ns) 8.2 9.6 1.4 17.7
Max Clock Freq. (MHz) 121.7 103.4 -18.3 -15
Throughput (Mbps)-AES 128 708 601 -107 -15.1
Throughput (Mbps)-AES 192 599 508 -91 -15.2
Throughput (Mbps)-AES 256 519 440 -79 -15.2

Implementation results for all modes of operation are compared with the basic

block cipher functionality i.e. the ECB mode of operation. Table 7.3 shows the

increase and percentage increase in the amount of resources and timing values for

OCB mode of operation as compared to ECB mode. Negative values indicate a

decrease in the corresponding parameter value. Similar comparisons of AES-ECB

with AES-CCM and AES-EAX are shown in Table 7.4 and Table 7.5 respectively.

83

Table 7.4: Comparison of FPGA Implementation Results - AES-ECB and AES-CCM

Mode Increase % Increase
ECB CCM

CLB Slices 1,188 2,799 1,611 135.6
LUTs 2,072 3,308 1,236 59.7
Flip-Flops 881 2,830 1,949 221.2
BlockRAMs 14 14 0 0
Min Clock Period (ns) 8.2 11.4 3.2 39
Max Clock Freq. (MHz) 121.7 87.5 -34.1 -28.06
Throughput (Mbps)-AES 128 708 255 -453 -64
Throughput (Mbps)-AES 192 599 215 -384 -64.1
Throughput (Mbps)-AES 256 519 186 -333 -64.2

Table 7.5: Comparison of FPGA Implementation Results - AES-ECB and AES-EAX

Mode Increase % Increase
ECB EAX

CLB Slices 1,188 2,993 1,805 151.9
LUTs 2,072 3,128 1,056 51
Flip-Flops 881 2,775 1,894 215
BlockRAMs 14 14 0 0
Min Clock Period (ns) 8.2 10.1 1.8 22.7
Max Clock Freq. (MHz) 121.7 99.2 -22.5 -18.5
Throughput (Mbps)-AES 128 708 287 -421 -59.5
Throughput (Mbps)-AES 192 599 243 -356 -59.4
Throughput (Mbps)-AES 256 519 211 -308 -59.3

84

Table 7.6: FPGA Implementation Results for Modes of Operation with Twofish

Mode of Operation
ECB OCB CCM EAX

CLB Slices 3,269 5,213 5,042 5,263
LUTs 4,444 6,224 6,091 5,869
Flip-Flops 1,896 4,065 3,795 3,962
BlockRAMs 2 6 2 2
Min Clock Period (ns) 10 13.2 13.2 13.4
Max Clock Freq. (MHz) 100 75.5 75.8 74.6
Throughput (Mbps) 100 75 38 38

Table 7.7: Comparison of FPGA Implementation Results - Twofish-ECB and

Twofish-OCB

Mode Increase % Increase
ECB OCB

CLB Slices 3,269 5,213 1,944 59.4
LUTs 4,444 6,224 1,780 40
Flip-Flops 1,896 4,065 2,169 114.4
BlockRAMs 2 6 4 200
Min Clock Period (ns) 10 13.2 3.2 32.5
Max Clock Freq. (MHz) 100 75.5 -24.5 -24.5
Throughput (Mbps) 100 75 -25 -25

7.2.2 Implementation of Modes with Twofish

FPGA implementation results for all modes of operation with Twofish as the under-

lying block cipher are shown in Table 7.6. Twofish consists of 16 rounds and the

hardware implementation of Twofish consists of 8 pipeline stages per round. The

throughput results shown in Table 7.6 assume that only a single block is allowed to

pass through the pipeline at a time.

85

Table 7.8: Comparison of FPGA Implementation Results - Twofish-ECB and

Twofish-CCM

Mode Increase % Increase
ECB CCM

CLB Slices 3,269 5,042 1,773 54.2
LUTs 4,444 6,091 1,647 37.1
Flip-Flops 1,896 3,795 1,899 100.1
BlockRAMs 2 2 0 0
Min Clock Period (ns) 10 13.2 3.2 32
Max Clock Freq. (MHz) 100 75.8 -24.2 -24.2
Throughput (Mbps) 100 38 -62 -63

Table 7.9: Comparison of FPGA Implementation Results - Twofish-ECB and

Twofish-EAX

Mode Increase % Increase
ECB EAX

CLB Slices 3,269 5,263 1,773 61
LUTs 4,444 5,869 1,647 32.1
Flip-Flops 1,896 3,962 1,899 109
BlockRAMs 2 2 0 0
Min Clock Period (ns) 10 13.4 3.2 34.1
Max Clock Freq. (MHz) 100 74.6 -24.2 -25.4
Throughput (Mbps) 100 38 -62 -62

86

Table 7.10: FPGA Implementation Results for Modes of Operation with Serpent

Mode of Operation
ECB OCB CCM EAX

CLB Slices 15,849 17,737 17,129 17,265
LUTs 13,484 15,185 15,080 18,879
Flip-Flops 4,500 6,703 6,466 10,358
BlockRAMs 0 4 0 0
Min Clock Period (ns) 13.2 15 14.9 14.4
Max Clock Freq. (MHz) 75.8 66.7 67.2 69.4
Throughput (Mbps) 303 266 134 139

7.2.3 Implementation of Modes with Serpent

FPGA Implementation results for all modes of operation with Serpent as the under-

lying block cipher are shown in Table 7.10. Implementation of Serpent requires more

resources as compared to AES and Twofish. This is because of the large number

of round keys required during cipher rounds. All the round keys for encryption as

well as decryption are stored in LUT-based memory on the FPGA. The memory for

storing keys is the primary reason for the large implementation size. As a result of

its inherently large size, the percentage increase in area for implementing the mode

of operation wrapper is much smaller. Comparison of Serpent implementation in

ECB mode of operation is compared with OCB, CCM and EAX modes in Table 7.11,

Table 7.12 and Table 7.13 respectively.

7.2.4 Implementation of Generic Composition Schemes

In this section, implementation results for generic composition schemes combining

HMAC for authentication and AES for encryption are provided. HMAC has been

implemented with two underlying hash functions, SHA-1 and SHA-512. Table 7.14

87

Table 7.11: Comparison of FPGA Implementation Results - Serpent-ECB and

Serpent-OCB

Mode Increase % Increase
ECB OCB

CLB Slices 15,849 17,737 1,888 11.9
LUTs 13,484 15,185 1,701 12.6
Flip-Flops 4,500 6,703 2,203 48.9
BlockRAMs 0 4 4 0
Min Clock Period (ns) 13.2 15 1.79 13.6
Max Clock Freq. (MHz) 75.8 66.7 -9.1 -11.9
Throughput (Mbps) 303 266 -37 -12.2

Table 7.12: Comparison of FPGA Implementation Results - Serpent-ECB and

Serpent-CCM

Mode Increase % Increase
ECB CCM

CLB Slices 15,849 17,129 1,280 8.1
LUTs 13,484 15,080 1,596 11.8
Flip-Flops 4,500 6,466 1,966 43.7
BlockRAMs 0 0 0 0
Min Clock Period (ns) 13.2 14.9 1.67 12.6
Max Clock Freq. (MHz) 75.8 67.2 -8.5 -11.2
Throughput (Mbps) 303 134 -169 -55.8

Table 7.13: Comparison of FPGA Implementation Results - Serpent-ECB and

Serpent-EAX

Mode Increase % Increase
ECB EAX

CLB Slices 15,849 17,265 1,416 8.9
LUTs 13,484 18,879 5,395 40
Flip-Flops 4,500 10,358 5,858 130.2
BlockRAMs 0 0 0 0
Min Clock Period (ns) 13.2 14.4 1.2 9.1
Max Clock Freq. (MHz) 75.8 69.4 -6.3 -8.3
Throughput (Mbps) 303 139 -164 -54.1

88

Table 7.14: FPGA Implementation Results for Generic Composition Schemes

Generic Composition Scheme
AES + HMAC SHA-1 AES + HMAC SHA-512

CLB Slices 3,076 4,246
LUTs 4,367 6,411
Flip-Flops 3,092 4,635
BlockRAMs 16 16
Min Clock Period (ns) 11.8 14.6
Max Clock Freq. (MHz) 84.8 68.3
Throughput (Mbps) 542 708

shows results for two generic composition schemes. The results for these individual

schemes are compared with the basic block cipher i.e. AES-ECB in Table 7.15 and

Table 7.16.

As mentioned earlier, AES as well as HMAC are clocked using the same master

clock. Also, the throughput of the combined system is the smaller of the individual

throughput values. For a combined scheme using AES and HMAC SHA-1, the indi-

vidual throughput values are 708 Mbps for AES and 542 Mbps for HMAC SHA-1.

Hence, the throughput of the combined scheme is the lesser of the two values, i.e 542

Mbps. On the other hand, for the scheme using AES and HMAC SHA-512, the limit

on throughput is set by the throughput of AES. The throughput of HMAC SHA-512

is 874 Mbps while the throughput of AES is only 708 Mbps. Hence, the resultant

throughput of the combined scheme is 708 Mbps.

7.3 ASIC Synthesis Results

ASIC synthesis was performed targeting both 90 nm and 130 nm technologies using

Synopsys Design Compiler. TSMC libraries were used for synthesis purposes. Imple-

mentation area as well as timing results are presented for both process technologies.

89

Table 7.15: Comparison of FPGA Implementation Results - AES-ECB and

AES+HMAC SHA-1

Scheme Increase % Increase
ECB AES+HMAC

SHA-1
CLB Slices 1,188 3,076 1,888 158.9
LUTs 2,072 4,367 2,295 110.8
Flip-Flops 881 3,092 2,211 250.9
BlockRAMs 14 16 2 14.3
Min Clock Period (ns) 8.2 11.8 3.6 43.6
Max Clock Freq. (MHz) 121.7 84.8 -37 -30.4
Throughput (Mbps) 708 542 -166 -23.5

Table 7.16: Comparison of FPGA Implementation Results - AES-ECB and

AES+HMAC SHA-512

Scheme Increase % Increase
ECB AES+HMAC

SHA-512
CLB Slices 1,188 4,246 3,058 8.9
LUTs 2,072 6,411 4,339 40
Flip-Flops 881 4,635 3,754 130.2
BlockRAMs 14 16 2 0
Min Clock Period (ns) 8.21 14.6 6.43 9.1
Max Clock Freq. (MHz) 121.7 68.3 -53.4 -8.3
Throughput (Mbps) 708 708 0 0

90

Table 7.17: ASIC Synthesis Results for Modes of Operation with AES (90 nm)

Modes of Operation
ECB OCB CCM EAX

Combinational Area 22,177 34,596 30,604 33,709
Non-Combinational Area 19,072 28,989 25,937 29,180
Total Cell Area 41,250 63,585 56,541 62,889
Min Clock Period (ns) 5.3 6.8 6.7 6.9
Max Clock Freq (MHz) 188 146.4 148.6 145
Throughput (Mbps)-AES 128 1,097 854 434 421
Throughput (Mbps)-AES 192 928 723 367 356
Throughput (Mbps)-AES 256 805 626 318 309

The unit for expressing area is a square micron.

7.3.1 Implementation of Modes with AES

Synthesis results for all modes of operation with AES as the underlying block cipher

are presented. Results for 90 nm and 130 nm technologies are tabulated in different

tables. Combined results for all modes synthesized targeting 90 nm and 130 nm

technologies are shown in Table 7.17 and Table 7.21 respectively. Also, results for all

modes of operation are compared with the basic block cipher functionality i.e. ECB

mode of operation.

Throughput computations presented in Section 7.1 are used to compute the through-

put values tabulated in the tables. These throughput values are for large messages,

thereby eliminating the influence of extra pre-processing and post-processing on the

throughput values.

91

Table 7.18: Comparison of ASIC Synthesis Results - AES-ECB and AES-OCB (90

nm)

Mode Increase % Increase
ECB OCB

Combinational Area 22,177 34,596 12,418 56
Non-Combinational Area 19,072 28,989 9,917 52
Total Cell Area 41,250 63,585 22,335 54.1
Min Clock Period (ns) 5.3 6.8 1.5 28.4
Max Clock Freq (MHz) 188 146.4 -41.5 -22.1
Throughput (Mbps)-AES 128 1,097 854 -243 -22.1
Throughput (Mbps)-AES 192 928 723 -205 -22
Throughput (Mbps)-AES 256 805 626 -179 -22.2

Table 7.19: Comparison of ASIC Synthesis Results - AES-ECB and AES-CCM (90

nm)

Mode Increase % Increase
ECB CCM

Combinational Area 22,177 30,604 8,426 38
Non-Combinational Area 19,072 25,937 6,865 36
Total Cell Area 41,250 56,541 15,291 37.1
Min Clock Period (ns) 5.3 6.7 1.4 26.5
Max Clock Freq (MHz) 188 148.6 -39.4 -21
Throughput (Mbps)-AES 128 1,097 434 -663 -60.4
Throughput (Mbps)-AES 192 928 367 -561 -60.4
Throughput (Mbps)-AES 256 805 318 -487 -60.5

92

Table 7.20: Comparison of ASIC Synthesis Results - AES-ECB and AES-EAX (90

nm)

Mode Increase % Increase
ECB EAX

Combinational Area 22,177 33,709 11,531 52
Non-Combinational Area 19,072 29,180 10,108 53
Total Cell Area 41,250 62,889 21,639 52.5
Min Clock Period (ns) 5.3 6.9 1.6 29.7
Max Clock Freq (MHz) 188 145 -43 -23
Throughput (Mbps)-AES 128 1,097 421 -676 -61.6
Throughput (Mbps)-AES 192 928 356 -572 -61.6
Throughput (Mbps)-AES 256 805 309 -496 -61.6

Table 7.21: ASIC Synthesis Results for Modes of Operation with AES (130 nm)

Modes of Operation
ECB OCB CCM EAX

Combinational Area 42,095 61,039 58,937 59,774
Non-Combinational Area 37,198 53,193 52,449 53,193
Total Cell Area 79,293 114,232 111,386 112,968
Min Clock Period (ns) 7.6 8.1 8.6 8.3
Max Clock Freq (MHz) 131.6 123.6 116 120
Throughput (Mbps)-AES 128 765 717 338 350
Throughput (Mbps)-AES 192 647 607 286 296
Throughput (Mbps)-AES 256 561 526 247 256

Table 7.22: Comparison of ASIC Synthesis Results - AES-ECB and AES-OCB (130

nm)

Mode Increase % Increase
ECB OCB

Combinational Area 42,095 61,039 18,943 45
Non-Combinational Area 37,198 53,193 15,994 43
Total Cell Area 79,293 114,232 34,938 44
Min Clock Period (ns) 7.6 8.1 0.5 6.5
Max Clock Freq (MHz) 131.6 123.6 -8 -6
Throughput (Mbps)-AES 128 765 717 -48 -6.2
Throughput (Mbps)-AES 192 647 607 -40 -6.2
Throughput (Mbps)-AES 256 561 526 -35 -6.2

93

Table 7.23: Comparison of ASIC Synthesis Results - AES-ECB and AES-CCM (130

nm)

Mode Increase % Increase
ECB CCM

Combinational Area 42,095 58,937 16,842 40
Non-Combinational Area 37,198 52,449 15,250 41
Total Cell Area 79,293 111,386 32,092 40.1
Min Clock Period (ns) 7.6 8.6 1 13.4
Max Clock Freq (MHz) 131.6 116 -15.6 -11
Throughput (Mbps)-AES 128 765 338 -427 -55.8
Throughput (Mbps)-AES 192 647 286 -361 -55.8
Throughput (Mbps)-AES 256 561 247 -314 -56

Table 7.24: Comparison of ASIC Synthesis Results - AES-ECB and AES-EAX (130

nm)

Mode Increase % Increase
ECB EAX

Combinational Area 42,095 59,774 17,679 42
Non-Combinational Area 37,198 53,193 15,994 43
Total Cell Area 79,293 112,968 33,674 42.5
Min Clock Period (ns) 7.6 8.3 0.7 9.5
Max Clock Freq (MHz) 131.6 120 -11.4 -8.7
Throughput (Mbps)-AES 128 765 350 -415 -54.3
Throughput (Mbps)-AES 192 647 296 -351 -54.3
Throughput (Mbps)-AES 256 561 256 -305 -54.4

94

Table 7.25: ASIC Synthesis Results for Modes of Operation with Twofish (90 nm)

Modes of Operation
ECB OCB CCM EAX

Combinational Area 66,856 79,252 76,786 79,388
Non-Combinational Area 62,411 72,367 69,689 72,534
Total Cell Area 129,268 151,620 146,476 151,923
Min Clock Period (ns) 6.4 7.4 7.4 7.5
Max Clock Freq (MHz) 157 135.1 135.1 133
Throughput (Mbps) 156 135 67 66

7.3.2 Implementation of Modes with Twofish

Combined synthesis results for all modes of operations with Twofish as the underlying

block cipher are shown in Table 7.25 and Table 7.29 for 90 nm and 130 nm technologies

respectively. As can be seen from the results, throughput is comparatively low for all

modes of operation with Twofish. This is because of a comparatively greater number

of pipeline stages in Twofish. Twofish has been designed with eight pipeline stages

per round and since the pipeline is not fully utilized, it reduces the throughput by a

factor of 8 as compared to a fully utilized pipeline. Sub-optimal number of pipeline

stages were used in Twofish in order to meet a clock frequency of 100 MHz. Twofish

has a complex round and hence up to 4 pipeline stages are not sufficient to make it

run at the desired frequency.

7.3.3 Implementation of Modes with Serpent

Synthesis results for all modes of operation with Serpent are shown in Table 7.33 and

Table 7.37 for 90 nm and 130 nm technology respectively. Serpent is implemented

with a two pipeline stages per round and hence the throughput compares favorably

to other ciphers. On the other hand, Serpent implementation requires a significantly

95

Table 7.26: Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-OCB

(90 nm)

Mode Increase % Increase
ECB OCB

Combinational Area 66,856 79,252 12,395 18.5
Non-Combinational Area 62,411 72,367 9,955 16
Total Cell Area 129,268 151,620 22,351 17.3
Min Clock Period (ns) 6.4 7.4 1 16.5
Max Clock Freq (MHz) 157 135.1 -21.9 14.2
Throughput (Mbps) 156 135 -21 13.5

Table 7.27: Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-CCM

(90 nm)

Mode Increase % Increase
ECB CCM

Combinational Area 66,856 76,786 9,930 14.9
Non-Combinational Area 62,411 69,689 7,277 11.7
Total Cell Area 129,268 146,476 17,207 13.3
Min Clock Period (ns) 6.4 7.4 1 16.5
Max Clock Freq (MHz) 157 135.1 -22.3 -14.2
Throughput (Mbps) 156 67 -89 -57.1

Table 7.28: Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-EAX

(90 nm)

Mode Increase % Increase
ECB EAX

Combinational Area 66,856 79,388 12,531 18.7
Non-Combinational Area 62,411 72,534 10,122 16.2
Total Cell Area 129,268 151,923 22,654 17.5
Min Clock Period (ns) 6.4 7.5 1.2 18.4
Max Clock Freq (MHz) 157 133 -24.5 -15.6
Throughput (Mbps) 156 66 -90 -57.7

96

Table 7.29: ASIC Synthesis Results for Modes of Operation with Twofish (130 nm)

Modes of Operation
ECB OCB CCM EAX

Combinational Area 128,729 147,756 146,685 147,361
Non-Combinational Area 121,697 137,753 137,059 137,690
Total Cell Area 250,426 285,509 283,745 285,051
Min Clock Period (ns) 7.2 7.9 7.9 8.1
Max Clock Freq (MHz) 138.7 126.1 126.1 123.5
Throughput (Mbps) 138 126 63 61

Table 7.30: Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-OCB

(130 nm)

Mode Increase % Increase
ECB OCB

Combinational Area 128,729 147,756 19,027 14.8
Non-Combinational Area 121,697 137,753 16,055 13.2
Total Cell Area 250,426 285,509 35,082 14
Min Clock Period (ns) 7.2 7.9 0.7 10
Max Clock Freq (MHz) 138.7 126.1 -12.6 -9.1
Throughput (Mbps) 138 126 -12 -8.7

Table 7.31: Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-CCM

(130 nm)

Mode Increase % Increase
ECB CCM

Combinational Area 128,729 146,685 17,955 13.9
Non-Combinational Area 121,697 137,059 15,362 12.6
Total Cell Area 250,426 283,745 33,318 13.3
Min Clock Period (ns) 7.2 7.9 0.7 9.4
Max Clock Freq (MHz) 138.7 126.7 -12 -8.6
Throughput (Mbps) 138 63 -75 -54.3

97

Table 7.32: Comparison of ASIC Synthesis Results - Twofish-ECB and Twofish-EAX

(130 nm)

Mode Increase % Increase
ECB EAX

Combinational Area 128,729 147,361 18,632 14.5
Non-Combinational Area 121,697 137,690 15,992 13.1
Total Cell Area 250,426 285,051 34,624 13.8
Min Clock Period (ns) 7.2 8.1 0.9 12.3
Max Clock Freq (MHz) 138.7 123.5 -15.2 -11
Throughput (Mbps) 138 61 -77 -55.8

Table 7.33: ASIC Synthesis Results for Modes of Operation with Serpent (90 nm)

Modes of Operation
ECB OCB CCM EAX

Combinational Area 197,583 210,015 207,789 208,665
Non-Combinational Area 185,056 196,059 192,427 197,192
Total Cell Area 382,640 406,075 400,217 405,858
Min Clock Period (ns) 7 8.2 8.3 8.3
Max Clock Freq (MHz) 142.5 121.7 120.5 121.1
Throughput (Mbps) 569 486 240 242

larger area than other ciphers because of storage necessary to store a large number

of round keys.

7.3.4 Implementation of Generic Composition Schemes - AES

+ HMAC

Results for ASIC synthesis of generic composition schemes using AES for encryption

and HMAC for authentication are presented. Two versions of HMACs are considered,

one with SHA-1 as the underlying hash function and the other with SHA-512. Results

for 90 nm and 130 nm technologies are shown in Table 7.41 and Table 7.44 respectively.

Throughput supported by the combined scheme is restricted by the smaller of

98

Table 7.34: Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-OCB

(90 nm)

Mode Increase % Increase
ECB OCB

Combinational Area 197,583 210,015 12,431 6.3
Non-Combinational Area 185,056 196,059 11,002 5.9
Total Cell Area 382,640 406,075 23,434 6.1
Min Clock Period (ns) 7 8.2 1.2 17.1
Max Clock Freq (MHz) 142.5 121.7 -20.8 -14.6
Throughput (Mbps) 569 486 -83 -14.6

Table 7.35: Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-CCM

(90 nm)

Mode Increase % Increase
ECB CCM

Combinational Area 197,583 207,789 10,205 5.2
Non-Combinational Area 185,056 192,427 7,371 4
Total Cell Area 382,640 400,217 17,577 4.6
Min Clock Period (ns) 7 8.3 1.3 18.2
Max Clock Freq (MHz) 142.5 120.5 -22 -15.4
Throughput (Mbps) 569 240 -329 -57.8

Table 7.36: Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-EAX

(90 nm)

Mode Increase % Increase
ECB EAX

Combinational Area 197,583 208,665 11,081 5.6
Non-Combinational Area 185,056 197,192 12,136 6.6
Total Cell Area 382,640 405,858 23,217 6.1
Min Clock Period (ns) 7 8.3 1.2 17.7
Max Clock Freq (MHz) 142.5 121.1 -21.4 -15
Throughput (Mbps) 569 242 -327 -57.5

99

Table 7.37: ASIC Synthesis Results for Modes of Operation with Serpent (130 nm)

Modes of Operation
ECB OCB CCM EAX

Combinational Area 376,877 396,209 394,809 393,518
Non-Combinational Area 336,416 352,664 354,786 354,172
Total Cell Area 713,293 748,874 749,595 747,691
Min Clock Period (ns) 7.7 8.9 9 8.9
Max Clock Freq (MHz) 130.7 112.2 111.4 112.4
Throughput (Mbps) 522 448 222 224

Table 7.38: Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-OCB

(130 nm)

Mode Increase % Increase
ECB OCB

Combinational Area 376,877 396,209 19,332 5.1
Non-Combinational Area 336,416 352,664 16,247 4.8
Total Cell Area 713,293 748,874 35,580 5
Min Clock Period (ns) 7.7 8.9 1.2 16.5
Max Clock Freq (MHz) 130.7 112.2 -18.5 -14.1
Throughput (Mbps) 522 448 -74 -14.2

Table 7.39: Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-CCM

(130 nm)

Mode Increase % Increase
ECB CCM

Combinational Area 376,877 394,809 17,931 4.8
Non-Combinational Area 336,416 354,786 18,369 5.5
Total Cell Area 713,293 749,595 36,301 5.1
Min Clock Period (ns) 7.7 9 1.3 17.4
Max Clock Freq (MHz) 130.7 111.4 -19.4 -14.8
Throughput (Mbps) 522 222 -300 -57.5

100

Table 7.40: Comparison of ASIC Synthesis Results - Serpent-ECB and Serpent-EAX

(130 nm)

Mode Increase % Increase
ECB EAX

Combinational Area 376,877 393,518 16,641 4.4
Non-Combinational Area 336,416 354,172 17,755 5.3
Total Cell Area 713,293 747,691 34,397 4.8
Min Clock Period (ns) 7.7 8.9 1.3 16.3
Max Clock Freq (MHz) 130.7 112.4 -18.4 -14
Throughput (Mbps) 522 224 -298 -57.1

the individual throughput values for AES and HMAC. In case of a combined scheme

using AES and HMAC SHA-1, the throughput is restricted due to the throughput

of HMAC SHA-1. HMAC SHA-1 supports a throughput of 842 Mbps, while AES

supports almost 1.1 Gbps. On the other hand, for a combined scheme consisting of

AES and HMAC SHA-512, the throughput is restricted by the throughput of AES.

HMAC SHA-512 supports a throughput of almost 1.3 Gbps. Hence the throughput of

the combined scheme is restricted to 1097 Mbps, which is the throughput of AES. The

above resuts are for implementations targeting 90 nm technology. Similar techniques

are used in order to determine the throughput for implementations targeting 130 nm

technology. For 130 nm technology, the throughput both both HMAC SHA-1 (820

Mbps) and HMAC SHA-512 (1280 Mbps) is better than AES (765 Mbps).

101

Table 7.41: ASIC Synthesis Results for Generic Composition Schemes(90 nm)

Generic Composition Scheme
AES + HMAC SHA-1 AES + HMAC SHA-512

Combinational Area 49,429 73,181
Non-Combinational Area 65,247 109,333
Total Cell Area 114,676 182,514
Min Clock Period (ns) 7.6 9.9
Max Clock Freq (MHz) 131.2 101.2
Throughput (Mbps) 842 1097

Table 7.42: Comparison of ASIC Synthesis Results - AES-ECB and AES+HMAC

SHA-1(90 nm)

Scheme Increase %Increase
AES-ECB AES + HMAC

SHA-1
Combinational Area 22,177 49,429 27,251 122.9
Non-Combinational Area 19,072 65,247 46,174 242.1
Total Cell Area 41,250 114,676 73,426 178
Min Clock Period (ns) 5.3 7.6 2.3 43.3
Max Clock Freq (MHz) 187.9 131.2 -56.7 -30.2
Throughput (Mbps) 1097 1097 0 0

Table 7.43: Comparison of ASIC Synthesis Results - AES-ECB and AES+HMAC

SHA-512(90 nm)

Scheme Increase %Increase
AES-ECB AES + HMAC

SHA-512
Combinational Area 22,177 73,181 51,003 230
Non-Combinational Area 19,072 109,333 90,260 473.3
Total Cell Area 41,250 182,514 141,264 375.5
Min Clock Period (ns) 5.3 9.9 4.6 85.7
Max Clock Freq (MHz) 187.9 101.2 -86.8 -46.2
Throughput (Mbps) 1097 1293 196 67.3

102

Table 7.44: ASIC Synthesis Results for Generic Composition Schemes(130 nm)

Generic Composition Scheme
AES + HMAC SHA-1 AES + HMAC SHA-512

Combinational Area 88,345 151,238
Non-Combinational Area 140,579 225,827
Total Cell Area 228,924 377,065
Min Clock Period (ns) 7.8 10
Max Clock Freq (MHz) 128.2 100
Throughput (Mbps) 765 765

Table 7.45: Comparison of ASIC Synthesis Results - AES-ECB and AES+HMAC

SHA-1(130 nm)

Scheme Increase %Increase
AES-ECB AES + HMAC

SHA-1
Combinational Area 42,095 88,345 46,249 109.9
Non-Combinational Area 37,198 140,579 103,380 277.9
Total Cell Area 79,293 228,924 149,630 188.7
Min Clock Period (ns) 7.6 7.8 0.2 2.6
Max Clock Freq (MHz) 131.6 128.2 -3.4 -2.6
Throughput (Mbps) 765 765 0 0

Table 7.46: Comparison of ASIC Synthesis Results - AES-ECB and AES+HMAC

SHA-512(130 nm)

Scheme Increase %Increase
AES-ECB AES + HMAC

SHA-512
Combinational Area 42,095 151,238 109,142 259.3
Non-Combinational Area 37,198 225,827 188,628 507.1
Total Cell Area 79,293 377,065 297,771 375.5
Min Clock Period (ns) 7.6 10 2.4 31.3
Max Clock Freq (MHz) 131.6 100 -31.4 -23.9
Throughput (Mbps) 765 765 0 0

Chapter 8: Analysis of Results

Authentication schemes were implemented according to the design methodology pre-

sented in Chapter 2. Results for FPGA implementation and ASIC synthesis of the

designs were tabulated in Chapter 7. The analysis of those results is presented here.

8.1 Analysis of Results of FPGA Implementations

8.1.1 Comparison of Authenticated-Encryption Modes of Op-

eration with Generic Composition Schemes

In order to make a decision about the suitability of authenticated-encryption modes of

operation versus generic composition schemes, it is necessary to compare and contrast

the results obtained for these schemes. Graphical comparison is shown in Fig. 8.1.

Comparison is based on authentication schemes using only AES-128. Both the generic

composition schemes have significantly high throughput; 542 Mbps for AES + HMAC

SHA-1 and 708 Mbps for AES + HMAC SHA-512. Throughput of OCB mode of

operation is slightly less than generic composition schemes. CCM and EAX modes,

being two-pass schemes support approximately half the throughput of a single-pass

scheme like OCB mode of operation. Referring to the target throughput goal of ∼150

Mbps for the analyzed applications, mentioned in Chapter 1, we can see that all

authentication options considered here easily meet the goals.

Since throughput requirements are satisfied, a selection would be done based upon

103

104

Figure 8.1: Throughput Comparison for FPGA Implementation – Authenticated-

Encryption Modes of Operation and Generic Composition Schemes

the area required. For FPGA bitstream security application, the available area budget

is quite small. Even for authentication applications in wireless networks, small area

implementation of cryptographic algorithms would be preferred since this would leave

more space on the FPGA for other logic components, or possibly allow migration to

a smaller and cheaper FPGA device.

In order to compare resource utilization on an FPGA, some background about

FPGA structure is introduced very briefly. Details about FPGA structure can be

found in [17].

The basic logic block on an FPGA is known as Configurable Logic Block (CLB)

105

Figure 8.2: Comparison of Resource Utilization for FPGA Implementation –

Authenticated-Encryption Modes of Operations and Generic Composition Schemes

Each CLB consists of two identical sub-blocks known as CLB Slices. Resource uti-

lization on an FPGA is generally expressed in terms of CLB Slices. Comparison of

Resource Utilization for AES-128 in all modes of operations with generic composition

schemes is shown in Fig. 8.2. As can be seen, AES + HMAC SHA-1 utilizes almost the

same amount of resources as authenticated-encryption schemes. The faster generic

composition scheme, AES + HMAC SHA-512 is approximately 1.4 times larger than

the largest authenticated-encryption scheme (4200 CLB Slices v/s 3000 CLB Slices).

CCM uses the least amount of resources among all authenticated-encryption schemes

and would be a feasible option to be used for both target applications.

106

8.1.2 Comparison of Modes of Operations Based on Different

Ciphers

All implemented modes of operations are compared in Fig. 8.3 on the basis of the

underlying block cipher used. It can be seen that throughput value for any mode of

operation is actually set by the throughput supported by ECB mode of operation.

Throughput in OCB mode approaches the throughput of ECB mode, whereas CCM

and EAX modes support almost half the throughput of ECB mode.

If target throughput is known, then by looking at the throughput values for ECB

mode of operation for a particular cipher, it is possible to make a rough estimation

about the throughput supported by other modes of operation. For example, if the

throughput requirement is 100 Mbps, and ECB mode of that block cipher provides

a throughput of little over 100 Mbps, then it is evident that CCM and EAX modes

of that cipher cannot be used in order to support the throughput requirement. OCB

mode might be able to support the requirement, but that needs to be verified by

actual analysis.

8.1.3 Comparison of Throughput/Area Ratio for FPGA Im-

plementations

Throughput/Area ratio is an important comparison criteria. This is evident from the

design goal that the implementation should support sufficient throughput and should

have the least possible circuit area. Higher the Throughput/Area ratio, better the

design.

For FPGA implementations, the area is expressed in terms of CLB Slices. There-

fore, the unit of Throughput/Area ratio is {Mbps/CLB Slice}. A comparative graph

107

Figure 8.3: Throughput Comparison for FPGA Implementation – Authenticated-

Encryption Modes of Operation based on Different Ciphers

is shown in Fig. 8.4. It is clearly evident that OCB is almost twice as good as

CCM and EAX. This can be attributed to the single-pass and two-pass aspects of

the schemes. Also, AES implementations have a better Throughput/Area ratio than

Twofish and Serpent. Twofish suffers due to under-utilized pipeline stages, whereas

Serpent has a drawback of occupying a relatively large circuit area.

Surprisingly, generic composition schemes compare favorably against almost all

modes of operations, even against AES modes. This can be attributed to a sig-

nificantly large number of Block RAMs (16) used in the implementation of generic

composition schemes. When Throughput/Area ratio is computed, only area occupied

108

Figure 8.4: Throughput/Area Ratio for FPGA Implementation of Authentication

Schemes

by CLB Slices is considered. Block RAMs are not included as a part of CLB Slice

structure. Also, it is extremely difficult to find the equivalent number of CLB Slices

for the area occupied by a single Block RAM. The results of comparison seem to be

favorable towards generic composition schemes due to the Block RAM factor.

8.2 Analysis of Results of ASIC Synthesis

ASIC synthesis results are presented in Chapter 7 for designs targeting both 90 nm

and 130 nm technologies. Those results are analyzed in this section with regards to

circuit area and supported throughput.

109

Figure 8.5: Total Cell Area for ASIC Synthesis - Modes of Operations and Generic

Composition Schemes (90 nm)

Total cell area in ASIC synthesis reports is divided into Combinational area and

non-combinational circuit area. Routing area is not specifically mentioned since

the routing model (wireload) which has been used assumes zero routing area. The

wireload model uses pin capacitances based on fan-out values for computing routing

delays. Area estimation in ASIC synthesis is a reliable scale for comparing circuit

areas for different designs.

110

Figure 8.6: Total Cell Area for ASIC Synthesis - Modes of Operations and Generic

Composition Schemes (130 nm)

8.2.1 Comparison of Authenticated-Encryption Modes of Op-

eration with Generic Composition Schemes

Comparative graphs related to resource utilization are shown in Fig. 8.5 and Fig. 8.6

for 90 nm and 130 nm technology respectively. From the graphs it is evident that

all three authenticated-encryption mode of operations, OCB, CCM and EAX require

approximately the same amount of resources. Actually, CCM is the smallest design

by a very small margin. ECB is not considered in this analysis since it is not an

authentication scheme; it is shown in the graph as a benchmark value. Generic

composition schemes occupy significantly more cell area than any mode of operation.

For both technologies, AES + HMAC SHA-1 is bigger than authenticated-encryption

111

modes approximately by a factor of 2, whereas AES + HMAC SHA-512 is bigger by a

factor of approximately 3. In applications where circuit area is crucial, authenticated-

encryption modes would be preferred over generic composition schemes, if they meet

the required throughput.

Throughput supported by the above mentioned schemes is compared in Fig. 8.7

and Fig. 8.8 for 90 nm and 130 nm technology respectively. As can be seen, through-

put supported by generic composition schemes is slightly greater than single pass

scheme like OCB. CCM and EAX, being two-pass schemes, have approximately half

the throughput of OCB. Even then, a throughput of 400 Mbps for 90 nm (250 Mbps

for 130 nm) should be sufficient for applications related to bitstream security and

wireless communications. Throughput requirements for both these applications are

quite modest, around 100 to 150 Mbps. Details about the throughput requirements

for target applications are given in Chapter 1.

Since all schemes satisfy the throughput requirements, choice of a particular

scheme would be based on the scheme with minimum cell area. Therefore, CCM

would probably be a proper choice according to the results obtained. Additionally,

we can see that the results of both FPGA as well as ASIC synthesis agree in this

regard. ASIC synthesis results are more favorable towards the use of CCM mode

since the resource utilization is lesser by a factor of 2 when compared with AES +

HMAC SHA-1 as opposed to FPGA results where both the schemes use comparable

resources.

112

Figure 8.7: Throughput for ASIC Synthesis - Modes of Operations and Generic Com-

position Schemes (90 nm)

Figure 8.8: Throughput for ASIC Synthesis - Modes of Operations and Generic Com-

position Schemes (130 nm)

113

Figure 8.9: Total Cell Area for ASIC Synthesis - Modes of Operations (90 nm)

8.2.2 Comparison of Modes of Operations Based on Different

Ciphers

Comparison of cell areas required by mode of operation wrappers for all implemented

block ciphers is shown in Fig. 8.9 and Fig. 8.10 for 90 nm and 130 nm technologies

respectively. We can get only a general indication of the comparative size of the

ciphers form these figures. Modes of operations based on relatively large ciphers like

Serpent would be difficult to fit into the area budget for most applications.

8.2.3 Comparison of Throughput/Area Ratio for ASIC Syn-

thesis

Comparison of Throughput/Area ratios for ASIC synthesis would tend to give a fair

estimation of the relative rankings of authentication schemes based on the ratio under

114

Figure 8.10: Total Cell Area for ASIC Synthesis - Modes of Operations (130 nm)

consideration. This is because, there is no parameter unaccounted for, as is the case

with Block RAMs in FPGA implementations.

Graphical comparison of Throughput/Area ratios of authentication schemes for 90

nm and 130 nm technology are shown in Fig. 8.11 and Fig. 8.12 respectively. It would

be fair to assume that a particular design would fit in a smaller area if synthesized

targeting 90 nm technology than 130 nm. Also, 90 nm designs would run at a higher

clock speed than 130 nm thereby resulting in a higher throughput.

Results for 90 nm technology are comparable to corresponding results for FPGA

implementations. On the other hand, for generic composition schemes synthesized

for 130 nm, throughput decreases and area increases as compared to 90 nm. This is

the main reason for the significantly better Throughput/Area ratio for AES modes

of operation as compared to generic composition schemes.

115

Figure 8.11: Throughput/Area Ratio for ASIC Synthesis of Authentication Schemes

(90 nm)

Figure 8.12: Throughput/Area Ratio for ASIC Synthesis of Authentication Schemes

(130 nm)

Chapter 9: Modifications, Optimizations and

Future Work

Implementation results for authentication schemes have been presented in Chapter 7.

Analysis of the obtained results for both ASICs and FPGAs is performed in Chap-

ter 8. This chapter serves as a natural follow-up to analysis of results and shows how

the currently obtained results can be improved by introducing certain optimizations.

Small but non-trivial modifications to the existing designs can improve performance

of some authentication schemes.

Two main aspects of the design improvement will be analyzed in this chapter –

1. Improvement in throughput

2. Reduction of circuit area

9.1 Modifications for Improving Throughput

Mathematical formulas for computing throughput of the authentication schemes un-

der consideration are provided in Chapter 7. The general formula is stated here for

reference.

Throughput = 128×L
ncipher calls×nrounds×npipeline stages×tp

× nallowed blocks

By looking at the above equation, we can enumerate the following probable ways to

improve throughput.

116

117

1. Length of the message (L), number of cipher calls required by the mode of

operation (ncipher calls) and number of rounds in the block cipher (nrounds) are

parameters which are beyond the control of the hardware designer. Number of

block cipher calls for a mode of operation and number of rounds of the block

cipher are specified by the respective algorithms.

2. Maximum clock period (tp) can be controlled up to a certain extent by the

hardware designer. As clock period decreases, the value of throughput would

increase. Hence we must look at ways by which the clock period of the circuit

can be decreased. One of the ways to do that is to introduce pipelining in the

circuit.

3. Number of pipeline stages in the block cipher (npipeline stages) and maximum

number of blocks allowed to pass through the pipeline at any time (nallowed blocks)

are important parameters to be considered when pipelining is introduced in the

circuit. The pipeline is fully utilized, when npipeline stages = nallowed blocks. If the

ratio nallowed blocks/npipeline stages is less than 1, then it leads to under-utilization

of the pipeline, thereby decreasing the throughput.

In order to analyze the throughput improvements, it is necessary to analyze the

optimal number of pipeline stages that must be introduced in each block cipher.

Irrespective of the number of pipeline stages, a necessary modification is to modify

the block cipher such that it can handle multiple data blocks at the same time and

fully utilize the pipeline. This change would require some modification in the mode

of operation wrappers in order to handle multiple data blocks.

118

Determining the Optimal Number of Pipeline Stages

Discussion about determination of optimal number of pipeline stages is done assuming

that modifications are done to the block cipher and the wrapper to fully utilize the

pipeline subject only to restrictions imposed by the algorithms themselves.

OCB mode of operation is a parallelizable single-pass scheme [18]. Theoretically,

except for a couple of pre-processing block cipher calls and the final post-processing

call, all other block cipher calls can be performed in parallel. Putting in more pipeline

stages typically decreases the clock period of the circuit, but this decrease in period

saturates after a certain number of stages. In case of AES-OCB with two pipeline

stages, the current throughput will get doubled to 1.4 Gbps for FPGAs and more

than 2 Gbps for 90 nm ASICs. Currently, FPGA implementation of Twofish-OCB

can support a throughput of only 75 Mbps. This is a perfect example of the fact

that a sub-optimal ratio nallowed blocks/npipeline stages adversely affects the throughput.

Currently the ratio nallowed blocks/npipeline stages = 1/8. If the pipeline were to be fully

utilized, then the throughput would increase by a factor of 8.

Analysis of CCM and EAX modes of operation is a little more interesting with

regards to the optimal number of pipeline stages. The specifications of both the

modes [19][21] state that the modes are not parallelizable. In fact, hardware im-

plementation of these modes of operations is parallelizable to a certain extent. The

modes have been designed in such a way that the wrappers use the block cipher alter-

nately, in CBC and Counter (CTR) modes. Subsequent CBC and CTR invocations

are mutually exclusive and, in theory, could be parallelized. Therefore, if there are 2

pipeline stages in the block cipher, and if the pipeline is fully utilized, the throughput

of CCM and EAX could be doubled.

119

Let us look at the effect of having more than 2 pipeline stages with CCM and EAX

mode. Assume that the underlying block cipher has n pipeline stages, such that n≥2.

Also, the block cipher supports full utilization of the pipeline. The restriction on

utilization of the pipeline is imposed by the structure of CCM and EAX modes. The

CCM and EAX modes can be optimized to handle at most 2 blocks being in the

pipeline at any time. This would lead to under-utilization of the pipeline by a factor

of n/2. Thus, the optimal value of n would most probably be 2. Throughput for

n = 4 should be analyzed since, the sub-optimal value of nallowed blocks/npipeline stages

would decrease the throughput by 2. On the other hand, additional 2 pipeline stages

might actually decrease the clock period, tp. If the clock period decreases by a factor

of 2, then the resultant throughput will remain unchanged.

9.2 Modifications for Reducing the Circuit Area

When area is the main concern, sacrificing performance will generally lead to a smaller

area. Another way to minimize area is sharing of resources in the design. Examples

of practically reducing area by resource sharing in hardware implementation of cryp-

tography can be found in [23]. Resource sharing might increase the size of the control

logic in a small way in order to incorporate the controls for passing data from various

modules to the common module and redistributing output data from the common

module to its proper destination.

The focus of this section is to utilize in-built features of modes of operations in

order to reduce the circuit area. CCM and EAX modes of operations are designed

in order to use only the forward (encryption) function of the block cipher for all

operations. Reverse (decryption) function of the block cipher is not required at all

120

in CCM and EAX mode of operation. Hence one of the optimizations in case of

CCM and EAX modes would be to implement the block cipher with only the forward

functionality rather than both functionalities as is currently done.

I tried to modify the existing cipher cores such that they would support only en-

cryption and was able to get about 15% improvement in area for AES and Twofish and

about 20% improvement for Serpent. We can safely assume that complete redesigning

of the cipher blocks would result in much more savings in area.

Using Preprocessing to Reduce Circuit Area

Looking at the comparison of resource utilization for various modes of operation, it is

quite surprising to find that CCM is the most area-efficient among the 3 implemented

modes of operation. Comments and critiques of CCM mode [21][24] point to the fact

that the mode is inefficient due to unnecessary parametrization. Bellare, Rogaway

and Wagner [21] specify that they designed the EAX mode in order to overcome the

shortcomings of CCM mode. The question then is – Why is this discrepancy in the

results?

I analyzed my implementations of both CCM and EAX mode in order to find the

reason for the seemingly out-of-place results. The reason for area-efficient nature of

CCM is that the inefficiencies mentioned in [21] do not add to the circuit area because

of the pre-processing done in CCM. Since CCM is not on-line, it is safe to assume

that such pre-processing is practically possible. OCB and EAX modes require very

minimal pre-processing and hence I have not used any pre-processing scheme with

these modes. Possible preprocessing includes one-time processing of static headers

in case of EAX [21]. Headers might be static over the course of communication

121

session and might contain information such as IP address of sender, receiver and

fixed cryptographic parameters related to the session. There are no straightforward

pre-processing techniques evident for OCB mode of operation.

9.3 Projected Benefits from Optimizations

While there are possible techniques to optimize the hardware implementations of

authenticated-encryption modes of operations, there seems to be no straightforward

improvement for generic composition schemes. Results for implementations of HMAC

are comparable to previously published results. Some optimizations put forth by

[14], if incorporated in the design can possibly improve the performance by a small

margin. It would be prudent to assume that supported throughput for HMACs does

actually saturate at the current levels unless some novel architecture is found. The

algorithm is too simple to derive novel schemes for implementing it. On the other

hand, there is a vast potential for improvement with the authenticated-encryption

modes of operations. For single pass schemes like OCB, multi-gigabit throughput can

be easily supported with a properly designed block cipher. The current throughput

requirements of applications under consideration are modest enough to be satisfied

by all implemented schemes. But thinking ahead, current network speeds might get

obsolete very fast considering the rate at which technology is progressing. It did not

take long to move from 11 Mbps supported by 802.11b wireless protocol to 54 Mbps

supported by 802.11g protocol. Standards have already been put forth for 100+ Mbps

support in 802.11n wireless standard. If considerations are stretched beyond wireless

networking, then multi-gigabit ethernet is one application where high throughput

rate would be required. From analysis of results and considered optimizations, we

122

can see that generic composition schemes would soon become incapable handling

future application requirements. On the other hand, the newer schemes are much

better designed to provide improved performance for emerging needs.

9.4 Summary

Possible optimizations explained in this chapter are summarized below –

1. The hardware implementation of block cipher must be modified to fully utilize

its internal pipeline. Also, similar modifications must be made to the mode of

operations wrapper to fully support the modified block cipher functionality.

2. Throughput-to-area ratio must be analyzed in order to determine the optimal

number of pipeline stages. Theoretical analysis seems to indicate that 2 pipeline

stages should be optimal for CCM and EAX mode of operation. Further anal-

ysis of throughput-to-area ratio is necessary to estimate the optimal number of

pipeline stages for OCB mode of operation.

3. Reduction in circuit area is possible in CCM and EAX mode by removing the

decryption functionality from the underlying block cipher.

4. Use of preprocessing wherever possible, (maybe in future implementations of

other modes of operations) can greatly reduce the circuit area as demonstrated

by my implementation of CCM mode of operation.

Chapter 10: Summary

Combined authenticated-encryption modes of operation for block ciphers have been

implemented targeting Xilinx Virtex 4 family of devices. Additionally, these designs

have been adapted for synthesis targeting 90 nm and 130 nm standard cell ASIC

technologies based on TSMC libraries. For the sake of comparison, generic compo-

sition schemes, consisting of an independent encryption algorithm and a separate

authentication algorithm have also been implemented.

The authentication schemes have been compared with regards to a several applica-

tions, with primary focus on FPGA bitstream security and authenticated-encryption

in wireless networks. The current state of these applications has a throughput re-

quirement of about 150 Mbps. Additionally, both applications would typically have a

low area budget. Therefore, design effort was concentrated on optimizing the designs

for low area and a high Throughput/Area ratio. Analysis of possible future optimiza-

tions has been provided in order to come up with a more general and fair comparison,

expandable to future requirements and other more demanding applications.

Results of both FPGA implementation and ASIC synthesis are consistent in the

ranking of authentication schemes with regards to resource utilization and through-

put. Generic composition schemes provide comparable throughput to authenticated-

encryption schemes for both FPGA as well as ASIC implementations, at a cost of

higher circuit area. As expected, ASIC synthesis results give a better throughput

than FPGA implementation results and this can be primarily attributed to support

123

124

for higher clock frequency in ASIC designs. Requirement of larger circuit area for

generic composition schemes is more pronounced in ASICs than in FPGAs. This

is at least partially because of the lack of unified measure of resource utilization in

FPGAs. In case of ASICs, the total cell area in square microns covers all circuit

resources. In case of FPGAs, multiple sources of resource utilization exist. These

measures, number of CLB Slices, number of LUTs, number of Block RAMs, etc. are

hard to unify and convert among one another.

In terms of applications, FPGA bitstream security engine is required to support

a modest throughput requirement of 150 Mbps. Such an engine would be imple-

mented on the FPGA fabric. Hence, ASIC synthesis results should be considered

for choosing an authentication scheme which would be optimal for this application.

From the results presented earlier, it is evident that all authentication schemes which

have been considered in this thesis can support the required throughput. Therefore,

the deciding criteria is minimum area. CCM mode of operation has the smallest

implementation area and hence is the best candidate for providing bitstream security

services. Additionally, CCM has been standardized by NIST as a mode of operation

for use with AES. FPGA vendors would generally prefer to use standardized security

schemes as it would be easier to convince customers about security services offered

by their products.

In applications related to wireless networking, throughput requirements are eas-

ily satisfied by both FPGA as well as ASIC implementations of all authentication

schemes. The decisive parameter is again the implementation area of the designs.

CCM is the winner on the basis of that criteria. It is also significant that the IEEE

125

802.11i standard for wireless networks uses a subset of CCM mode for data authen-

tication. Analysis shows that the throughput values reported in this thesis can be

doubled by implementation of a two-stage pipeline in the underlying cipher and pro-

viding a mechanism to fully utilize this pipeline. With some optimizations, CCM

should be able to support a throughput of about 500 Mbps for FPGA implementa-

tion and about 900 Mbps for 90 nm ASIC technology. This level of throughput would

be sufficient to meet the requirements of wireless networks well into the future.

For other network applications, with higher throughput requirements, some trade-

offs have will have to be considered for selection of the best candidate. OCB and the

generic composition scheme comprising of AES and HMAC SHA-512 have comparable

throughput values. Additionally, there is a vast scope for improvement of throughput

with OCB mode of operation as opposed to the generic composition scheme. Imple-

menting a fully utilizable four-stage pipeline would increase the throughput supported

by OCB-AES well beyond 3 Gbps for 90 nm ASICs and beyond 2 Gbps for FPGAs.

If such high levels of throughput are not required, then implementations with bet-

ter Throughput/Area ratios should be considered. For FPGA implementations, the

choice would be between AES-OCB and generic composition scheme using AES and

HMAC SHA-512. For ASIC implementations, AES-OCB outperforms other schemes

based on Throughput/Area ratio. One of the possible issues which would lead to

avoidance of OCB mode is patent restrictions. In that case, CCM mode is a good

choice if the throughput requirements can be met.

126

Bibliography

127

Bibliography

[1] W. Stallings, Cryptography and Network Security: Principles and Practice.
Pearson Education, 2002.

[2] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied
Cryptography. Boca Raton, FL, USA: CRC Press, Inc., 1996.

[3] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in
C. New York, NY, USA: John Wiley & Sons, Inc., 1993.

[4] “Proposed modes of operation, http://csrc.nist.gov/CryptoToolkit/modes/ pro-
posedmodes/index.html.”

[5] A. Telikepalli, “Is your FPGA design secure?” XCell Journal, 2003.

[6] I. Hadzic, S. Udani, and J. M. Smith, “FPGA viruses,” in FPL ’99: Proceedings
of the 9th International Workshop on Field-Programmable Logic and Applica-
tions. London, UK: Springer-Verlag, 1999, pp. 291–300.

[7] “Security Scenarios, Actel Corporation, www.actel.com/documents/ Securi-
tyScenarios.pdf .”

[8] S. Trimberger, R. Pang, and A. Singh, “A 12 Gbps DES encryptor/decryptor core
in an FPGA,” in CHES ’00: Proceedings of the Second International Workshop
on Cryptographic Hardware and Embedded Systems. London, UK: Springer-
Verlag, 2000, pp. 156–163.

[9] “IEEE Standard for Information Technology - Medium Access Control Secu-
rity Enhancements,” IEEE Computer Society, Tech. Rep. IEEE 802.11i Part 11,
Amendment 6, 2004.

[10] T. Iwata and K. Kurosawa, “OMAC: One-Key CBC MAC,” 2002.

[11] “The Keyed Hash Message Authentication Code,” National Institute of Stan-
dards and Technology (NIST), Tech. Rep. FIPS 198, 2002.

[12] C. S. Jutla, “Encryption Modes with Almost Free Message Integrity,” Cryptology
ePrint Archive, Report 2000/039, 2000.

128

[13] M.-Y. Wang, C.-P. Su, C.-T. Huang, and C.-W. Wu, “An HMAC processor
with integrated SHA-1 and MD5 algorithms,” in ASP-DAC ’04: Proceedings of
the 2004 conference on Asia South Pacific design automation. Piscataway, NJ,
USA: IEEE Press, 2004, pp. 456–458.

[14] R. Lien, T. Grembowski, and K. Gaj, “A 1 Gbit/s partially unrolled architecture
of hash functions SHA-1 and SHA-512,” pp. 324 – 338, Jan 2004.

[15] L. Dadda, M. Macchetti, and J. Owen, “An ASIC design for a high speed
implementation of the hash function SHA-256 (384, 512),” in GLSVLSI ’04:
Proceedings of the 14th ACM Great Lakes symposium on VLSI. New York, NY,
USA: ACM Press, 2004, pp. 421–425.

[16] “Secure Hash Standard,” National Institute of Standards and Technology
(NIST), Tech. Rep. FIPS 180-1, 1995.

[17] “Xilinx Virtex-4 datasheet,” 2005, http://direct.xilinx.com/bvdocs/ publica-
tions/ds112.pdf.

[18] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A block-cipher mode of
operation for efficient authenticated encryption,” in ACM Conference on Com-
puter and Communications Security, 2001, pp. 196–205.

[19] D. Whiting, N. Ferguson, and R. Housley, “Counter withCBC-MAC (CCM), sub-
mission to NIST,” http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes.

[20] “Specification for the advanced encryption standard (AES),” Federal
Information Processing Standards Publication 197, 2001. [Online]. Available:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[21] M. Bellare, P. Rogaway, and D. Wagner, “The EAX Mode of Operation,” in
FSE, 2004, pp. 389–407.

[22] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block chaining
message authentication code,” Journal of Computer and System Sciences, vol. 61,
no. 3, pp. 362–399, 2000.

[23] P. Chodowiec, “Comparison of the hardware performance of AES candidates
using reconfigurable hardware,” Master’s thesis, George Mason University, 2002.

[24] P. Rogaway and D. Wagner, “A critique of CCM,” Cryptology ePrint Archive,
Report 2003/070, 2003.

129

Curriculum Vitae

Milind M. Parelkar received his Bachelor of Electronics degree from the University
of Mumbai (Bombay), India in 2002. He was ranked among the top 10 students
in the University. He was awarded the Vision Award for Academic Excellence at
George Mason University in 2004. His publication, “Implementation of EAX Mode
of Operation for FPGA Bitstream Encryption and Authentication” was accepted as
a poster at FPT 2005 held at Singapore. He has been involved with teaching various
undergraduate and graduate courses at George Mason University, both as a teaching
assistant and a lab instructor.

