United States Patent

US007949129B2

(12) 10) Patent No.: US 7,949,129 B2
Rogaway @45) Date of Patent: *May 24, 2011
(54) METHOD AND APPARATUS FOR g,ggg,ﬁg gé: ggggg PGfi_rlman etlal' ~~~~~~~~~~~~~~~ 7;;81/2;
A K 1goretal. ...
FACILITATING EFFICIENT 7,055,027 B1* 5/2006 Gunter et al. 713/151
AUTHENTICATED ENCRYPTION 2001/0033656 Al 10/2001 Gilgoretal. .o, 380/28
2001/0044904 Al* 112001 Bergetal.cccoevnnee 713/201
(76) Inventor: Phillip W. Rogaway, Davis, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 o N] o
U.S.C. 154(b) by 927 days. Publication: Rogaway, Phillip: Efficient Instantiations of Tweakable
])])) blockciphers and Refinements to Modes OCB and PMAC, UC Davis
This patent is subject to a terminal dis- Computer Security Lab Projects, Nov. 3, 2003, pp. 1-25.
claimer.
(Continued)
(21) Appl. No.: 11/728,286 .
Primary Examiner — Michael Pyzocha
(22) Filed: Mar. 23,2007 (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP
(65) Prior Publication Data
57 ABSTRACT
US 2007/0189524 A1l Aug. 16, 2007 7)
A shared-key encryption scheme that uses identically keyed
Related U.S. Application Data block-cipher calls, low additional overhead, supports the
. . L encryption of arbitrary-length strings, produces a minimal-
(63) JCcintiIéua;Oo(;l SOf appli)cattlcgl Ng. 21 01 (;128237’6741’1.ﬁfq on length-ciphertext, and is fully parallelizable. In one embodi-
v .t' ’ i N noav:t ? ' ?.' t’ ,N ,0V9V/9ITS 6151 Sa ment, “OCB”, akey shared between communicating parties is
confiiuation-in-part ol application No. T mapped to a key variant using the block cipher. The key
filed on Jul. 30, 2001, now Pat. No. 7,046,802. S
variant is mapped into a sequence of basis offsets using shifts
(51) Int.Cl and conditional xors. To encrypt a message using a nonce, a
P nonce-dependent base offset is formed, and then a sequence
HO4L 928 (2006.01) . . .
HO04K 1/00 (2006.01) of 0ffset§ is constructed by starting Wlth the bgse offset and
5 US. Cl ’ 180/28: 380/37 then xoring, for each offset, an appropriate basis offset. The
5583 F'- l‘d f Cl """ ﬁt """ S """" h """"" ’ 380/37 message is partitioned into message blocks of the same length
leld of Llassilication Searc ’ as the block length of the block cipher, along with a message
L . 38028 fragment that may be shorter. Each message block is com-
See application file for complete search history. bined with a corresponding offset, enciphered, and then com-
(56) References Cited bined again with the offset, yielding a ciphertext block. The

U.S. PATENT DOCUMENTS

5,673,318 A * 9/1997 Bellareetal. 713/170
6,226,742 B1* 5/2001 Jakubowski et al. 713/170
6,396,928 B1* 5/2002 Zhengcoeveiiinine 380/285

6,963,976 B1* 11/2005 Jutla 713/181

message fragment is xored with an appropriately computed
pad to give a ciphertext fragment. A checksum is formed
using the message blocks, the message fragment, and the pad.
The checksum is combined with an offset and enciphered to
yield a tag. The encrypted message includes the ciphertext
blocks, the ciphertext fragment, and the tag.

6,973,187 B2* 12/2005 Gligoretal. 380/28
6,983,366 B1* 1/2006 Huynhetal. ... 713/168 12 Claims, 12 Drawing Sheets
rNonw | [wm | | Mi2] | | Mim-1] | |M[m]]——
A 4
ten Checksum
L F4g)] Z[2] Zim-1] Z[-m) Z[m)
PrePad PreFullTag
Ex Ex Ex Ek Ex Ek

Pad FullTag
t

l R
Use Rand L Z[1] Z[2]
to form
Z[11.2[2)....

HED ca | |

CIm-1] J LC['“] | Tag

US 7,949,129 B2
Page 2

U.S. PATENT DOCUMENTS

2001/0046292 Al 11/2001 Gligoretal. ... 380/37
2002/0048364 Al 4/2002 Gilgor et al. ... 380/37
2004/0131182 Al 7/2004 Rogaway 380/37

OTHER PUBLICATIONS

Publication: Bellare and Namprempre: “Authenticated Encryption:
Relations among notions and analysis of the generic composition
paradigm”, Department of Computer Science, University of CA,
Davis, Sep. 25, 2000, pp. 1-29.

Publication: Halevi and Rogaway, “A Parallelizable Enciphering
Mode”, Department of Computer Science, University of CA, Davis,
Jul. 28, 2003, pp. 1-24.

Publication: Gligor and Donescu. Fast Encryption and Authentica-
tion, XCBC Encryption and XECB Authentication Modes, Oct. 27,
2000.

Publication: Juieneman, Matyas, Meyer. “Message Authentication
with Manipulation Detection Codes”. Computer Sciences Corp and
IBM Corp. 1988.

Publication: Menezes, Alfred J. “Handbook of Applied Cryptogra-
phy” 1997. CRC Press, pp. 321-383.

Publication: Black, Halevi, Krawczyk, Krovetz, Rogaway, “UMAC:
Fast and Secure Message Authentication”. 1999.

Publication: Jutla, Charanjit, Encryption Modes with Almost Free
Message Integrity. IBM T.J. Watson research Center, Yorktown
Heights, NY 10598 Aug. 2000.

* cited by examiner

US 7,949,129 B2

Sheet 1 of 12

May 24, 2011

U.S. Patent

Bejng

y'y
be]inJ4aid

[w]z |vm>u

wnsyoayd

(w]o

A
Pedald

[w-]z |vm>u

ug|

fwin

A

[L-wiz |vm>v

(1-w]w

[2lo (110
A A
zlz' vz
wio} 0}
(clz lvmﬂv :_vam»v 7 pue Y asn
|
“3 "3 3
A A %
¥ Lz Ivm>v 1 |vm>u
[zln [N 32UON

US 7,949,129 B2

Sheet 2 of 12

May 24, 2011

U.S. Patent

S}osyo paje|suel}
J0 @ousanbas a)ep

A —>

19SY0
aseq ayep

A

20UON

¢ '9Old
eee ‘[glZ ‘[elz
A A
bS] Y
2]z

ﬁ

Tz
A

Tilz

S}asyo paxiy
jo aouanbas ayep

ﬂ

A

US 7,949,129 B2

Sheet 3 of 12

May 24, 2011

U.S. Patent

(N o [wiz=[w-]z
(wgun ol1-wjz = [w]z
(01 ©l8lz=I[6lz
(enolldz=I8lz
onoldz=1z
(0 olclz=19z
(o1 olvlz=Islz
@ olclz=1Ivlz
onoledz=Ilz
M olillz=I[zz
1o d=llz

o

"3

A

%

S0UON

leAlse-abessaw jo awin 3y

e D Rl L D D L L Sy

€ 9Old

‘(71 '(0)7

(M1 " (2

!

‘(N

L=((0T)nasay 41
o=((Duaisay u

L=(Tnaisel y

J

aIsuo) (L >>MD=(L+)7

L>>()7 =(1+1)7
1= (01

LIsuo) OA L << D=0

o=(Tuaise
L <<1=(1")1
:S19s4Q sised axe| |

i

=

Buissasoud-aid

US 7,949,129 B2

Sheet 4 of 12

May 24, 2011

U.S. Patent

[wlg oo« [L]y 8BeSSOW 1da00y
S9A

be)| bel

ON

xauaydio
} 1S4y

ﬁ Bejlind

"3

y Y
Bej|indaid

[w]z r

winsyoay)

[w-]z \v@

v "'Old
(Wi [-win

A A

+) [L-w]z —{
ped

A3 i3

A A
pedaid

[w]o

[L-w]z lvm>u

[L-wlo

4V4

(2In

(LI

[z uvmw

[2lziz
wioj 0}

7 pue Y asn

dl

A3 A3 X3
A A
[z Ivmv 71—
[2lo [LIo 9JUON

US 7,949,129 B2

Sheet 5 of 12

May 24, 2011

U.S. Patent

[L+w]z
as|e

0 usy)
u=|{wlnl

be] |in4aid

[w]z Iv@

be)

SHq }isiy

4.6eLin4

"3

bejng

A

wns3o8y?d

[w]o

g "Old

ped

[w]z

[L-w]o

"3

pedald

[w]z

A3

[1-w]z Iv@

fwin

A

[L-w]n

[2]z

[2]o (11D
[L1z
e A3
/'Y /
) Lz Ivm»u
[l [LIw

[2lz'[V]z
woj 0}

7 pue Y asn

*]

A3

A

-0

80UON

US 7,949,129 B2

Sheet 6 of 12

May 24, 2011

U.S. Patent

be|

[w]o

[1+w]z

+

wns»oayd

Fv_m

[win

[w]z

(My J01d)
9 'Old
[z]o [110
y y A
@Al [2]z +
I3 M3
2w [

L]z

[olo [1L+w]z'--<[11Z'[0]Z
7Y A
©
Z poyawl
_.v_w D —» 1O
I poyawl
A
be

US 7,949,129 B2

Sheet 7 of 12

May 24, 2011

U.S. Patent

be) [w]o
A A
+ [o]z .
N i3
[1L+w]z
wnsyosyd ﬁE‘_S_

[w]z

(My 101d)
L9l

[2]D

[L10

A

A

_.v_w

Fxm

[2]z

[zln

(LI

@AI [zlz m>UAI L]z

[1]z

[olo [L+w]Z'eee[L]Z'[0]Z
7y A
&
Z poyjaw
wa Y —P 10
| poylow
A
d

US 7,949,129 B2

Sheet 8 of 12

May 24, 2011

U.S. Patent

(Mv loud)
8 '9ld

[L+wlz[11Z'[0]z
aujulalop 0] suoieuIquiod snoleA JoX

DIAI [ZIAI [LINAI
Nv_m Nv_w Nv_w
3+d c+d L +d

US 7,949,129 B2

Sheet 9 of 12

May 24, 2011

U.S. Patent

be|

A

(My Joud)
6 ‘Old

+ <+«—4(1+w)

[2]D

wns)oay)

fw]

[zl

(11D

[0]lo

—xm_

L1

US 7,949,129 B2

Sheet 10 of 12

May 24, 2011

U.S. Patent

Be |

(My Jond)
0L oId

[2]D

wns)oayon

A

[wln

[ZIn

[LIo

Nv_m_

» X

[LIn

—xm_

Ji%)

US 7,949,129 B2

Sheet 11 of 12

May 24, 2011

U.S. Patent

£:<||vm»u

Bej|ing

Be

1 18M1

A

— ¢

3

Z ‘W ‘90uoN

[w]o
A

Ped

be|jn4aid

A

wns)o8y9)

|

| ‘W ‘@2uoN

A

[win

pedaid

Ll "Old

[1-w]o

3

0'L-Ww'aouoN

A

[1-wln

[2lo [L1o
A A
0 ,N _wocovw_m 0 ._‘ .mo:om_m
A A
[cln (LN

US 7,949,129 B2

bey ¢l "Old
)
SIq
) 1811 [wlo [1-wlo [zlo (110

£=<1.vm>v |vm>u v lm»u v lv@ vV—{

Sheet 12 of 12

May 24, 2011

U.S. Patent

Be (4 Ped

= | A3 A3 A3 =

A A A

Bel|injeid pedaid *
v—{) <I|vm>u v <|vm>v v Iv@
wnsx28y9 us|
[wln [L-wln [2Iw (Ln
Ve >V vZ >V VZoV vZ—ov vz Vv

(souUoNyIg - v

US 7,949,129 B2

1
METHOD AND APPARATUS FOR
FACILITATING EFFICIENT
AUTHENTICATED ENCRYPTION

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 11/183,674, entitled “Method and Apparatus for
Facilitating Efficient Authenticated Encryption,” by inventor
Phillip W. Rogaway, filed 18 Jul. 2005 now U.S. Pat. No.
7,200,227, which is itself a continuation-in-part of a U.S.
patent application, entitled, “Method and Apparatus for
Facilitating Efficient Authenticated Encryption,” by inventor
Phillip W. Rogaway, Ser. No. 09/918,615, filed 30 Jul. 2001
now U.S. Pat. No. 7,046,802. This application hereby claims
priority under 35 U.S.C. section 120 to the above-listed patent
applications.

BACKGROUND

1. Field of the Invention

The present invention relates generally to cryptographic
techniques for the construction of symmetric (shared-key)
encryption schemes, and more particularly, to ways to use a
block cipher in order to construct a highly efficient encryption
scheme that simultaneously provides both message privacy
and message authenticity.

2. Related Art

When two parties, a Sender and a Receiver, communicate,
the parties often need to protect both the privacy and the
authenticity of the transmitted data. Protecting the privacy of
the data ensures that unauthorized parties will not understand
the content of transmissions. Protecting the authenticity of the
data provides assurance to the Receiver that the actual Sender
of'a message coincides with the claimed Sender of the mes-
sage (and it thereby provides assurance to the Receiver that
the message was not accidentally or intentionally modified in
transit). Both goals are often accomplished using symmetric
(“shared key”) techniques, wherein the Sender and the
Receiver make use of a shared key K. We call “authenticated
encryption” the goal of simultaneously achieving both pri-
vacy and authenticity using shared-key techniques. In an
authenticated-encryption method, the Sender can encrypt a
message using a key and a nonce (also called an Initialization
Vector, or IV) to yield a ciphertext. The Receiver can decrypt
a ciphertext using a key and a nonce to yield either a message
or a special symbol, invalid, that indicates to the Receiver that
the ciphertext should be regarded as inauthentic.

The most common approach for authenticated encryption
uses two different tools: for privacy, a privacy-only encryp-
tion scheme, and for authenticity, a message authentication
code (MAC). Privacy-only encryption schemes compute a
ciphertext from a plaintext, a key, and a nonce. Message
authentication codes compute an authentication tag (which is
a fixed-length string) from a message and a key. To MAC a
message means to computes its authentication tag using a
message authentication code.

Many constructions for privacy-only encryption schemes
and many constructions for message authentication codes are
known in the art. Some are described, for example, in the
book of Menezes, van Oorschot and Vanstone, Handbook of
Applied Cryptography, published by CRC Press, 1997. Both
privacy-only encryption schemes and message authentication
codes are commonly based on the use of a block cipher.

By way of further background, a block cipher is a function
E that takes a key K and a message block X, the key being a
binary string from some set of allowed keys and the message

—

0

—

5

20

2

block being a binary string of some fixed length n. The block
cipher returns a ciphertext block Y=E(X), which is also a
binary string of length n. The number n is called the block
length of the block cipher. It is required that for each key K,
the function E- is one-to-one and onto (in other words, it is a
bisection on the space of n-bit strings). Since E .- is one-to-one
and onto, it has a well-defined inverse, denoted E,~!. Well
known block ciphers include the algorithm of the Data
Encryption Standard (DES), which has a block length of n=64
bits, and the algorithm of the Advanced Encryption Standard
(AES), which has a block length of n=128 bits. We shall speak
of “applying a block cipher” or “enciphering” to refer to the
process of taking an n-bit string X and computing from it a
string Y=E (X) for some understood key K and block cipher
E. Similarly, we shall speak of “deciphering” to refer to the
process of taking an n-bit string Y and computing from it a
string X=E,~*(Y).

The most common approach for privacy-only encryption
using an n-bit block cipher E is CBC encryption (cipher block
chaining encryption). In the “basic” form of CBC encryption,
the message M that we wish to encrypt must be a binary string
of length that is a positive multiple of the block length n. The
message M is partitioned into n-bit blocks M[1], M[2], . . .,
M[m] by taking M[1] as the first n bits of M, taking M[2] as
the next n bits of M, and so forth. An n-bit nonce, IV, is
selected. Then one encrypts M using the key K and the nonce
IV by computing, for each i€[1 . . . m], the ciphertext block

CliJ=Ex(C[i-1]DM[i])

where C[0]=IV. The complete ciphertext is IV together with
the ciphertext C=C[1] . . . C[m].

Nonces are used quite generally for shared-key encryption.
A nonce is a value used at most once (or almost certainly used
at most once) within a given context. Most often, nonces are
realized using a counter or random value. For CBC encryp-
tion, a random value should be used; for CBC encryption,
there are problems with using a counter IV.

The most common approach for making a message authen-
tication code using an n-bit block cipher E is the CBC MAC
(cipher block chaining message authentication code). In the
“basic” form of the CBC MAC, the message M to be authen-
ticated must be a binary string having a length that is a
positive multiple of n. The message M is partitioned into n-bit
blocks M[1], M][2], ..., M[m] by taking M[1] as the firstn bits
of M, taking M[2] as the next n bits of M, and so forth. One
then computes the authentication tag of M, using key K, by
way of the same algorithm used for CBC encryption, but
where the IV=0, the block of n zero bits, and where the
authentication tag is the final ciphertext block, Tag=C[m].
Only Tag, or a prefix of Tag, is output as the authentication
tag. A Receiver who obtains an authenticated message M||Tag
checks the validity of M by re-computing the CBC MAC of M
under key K, obtaining a string Tag', and verifying that Tag' is
identical to Tag.

To combine CBC encryption and the CBC MAC, in order
to obtain both privacy and authenticity, use the generic com-
position method. One uses two keys: an encryption key Ke
and a message-authentication key Ka. In one method for
generic composition, the message M is CBC encrypted using
key Ka and nonce IV to yield an intermediate ciphertext
C,.~IVI[C[1]...C[m]. Then the intermediate ciphertext C,,,
is MACed using the CBC MAC under key Ka to yield an
authentication tag Tag. The ciphertext for the authenticated-
encryption scheme is C=C[1] ... C[m]||Tag. The Receiver, on
receipt of IV and C[1] . . . C[m]|[Tag, checks that Tag is the
CBC MAC of C,,~IV||IC[1] . . . C[m] under key Ka. If the
received Tag is what the Receiver computes it should be, the

US 7,949,129 B2

3

Receiver decrypts C[1] . . . C[m] using key Ke and nonce IV
to obtain the plaintext M. Ifthe received Tag is different from
what the Receiver computes it should be, the Receiver rejects
the received ciphertext C=C[1] . . . C[m]|| Tag, regarding it as
invalid.

The same generic-composition approach can be used to
combine any privacy-only encryption scheme with any mes-
sage authentication code.

There are a number of limitations to the generic composi-
tion approach. The main limitation is that two sequential
computing passes are made over the data, one to privacy-only
encrypt and one to MAC, making the process twice as slow as
privacy-only encryption (assuming that privacy-only encryp-
tion and MAC computation take about the same amount of
time, as they would for CBC encryption and the CBC MAC).
Privacy-only encryption can be computationally expensive,
and adding in a major additional expense to ensure message
authenticity is considered undesirable in many settings.

Because of the limitation just described, individuals have
tried for many years to merge privacy and authenticity into a
single, unified process that would be nearly as fast as conven-
tional ways to do privacy-only encryption. Until quite
recently, all such attempts failed. For a history of some of the
failed attempts, see the survey article of Bart Preneel entitled
Cryptographic Primitives for Information Authentication—
State of the Art, appearing in State of the Art of Applied
Cryptography, COSIAC *97, Lecture Notes in Computer Sci-
ence, vol. 1528, Springer-Verlag, pp. 49-104, 1998. As an
example of a particularly recent attempt, Gligor and Donescu
describe an incorrect authenticated-encryption mode in their
paper Integrity Aware PCBC Encryption, appearing in Secu-
rity Protocols, 7" International Workshop, Cambridge, UK,
Apr. 19-21, 1999, Lecture Notes in Computer Science, vol.
1796, Springer-Verlag, pp. 153-171, 2000.

The first publicly disclosed authenticated-encryption
scheme that achieves nearly the speed of a conventional,
privacy-only encryption scheme, was developed by Charanjit
Jutla, of IBM. Jutla describes two authenticated-encryption
methods in his paper Encryption Modes with Almost Free
Message Integrity, which first appeared in the Cryptology
ePrint Archive on Aug. 1, 2000. (Later versions of this paper
subsequently appeared in Advances in Cryptology-Eurocrypt
2001, Lecture Notes in Computer Science, vol. 2045,
Springer-Verlag, May 2001, and as a submission to NIST (the
National Institute of Standards and Technology), posted on
NIST’s website on Apr. 17, 2001.) One of Jutla’s schemes is
similar to CBC encryption and is called JACBC. The other
one of Jutla’s scheme is parallelizable mode that Jutla calls
TIAPM. Jutla’s IACBC scheme is illustrated in FIG. 6, while
his IAPM scheme is illustrated in FIG. 7.

Both IACBC and IAPM are authenticated-encryption
schemes based on an n-bit block cipher, E. The modes require
that the message M which is to be encrypted has a length
which is a positive multiple of the block length n: say M=M
[1] .. . M[m], where each M[i] is n bits long. The schemes
employ two block-cipher keys, K1 and K2, which together
comprise the encryption key K=(K1, K2). Conceptually,
there are two processes involved: a “make-offset process™ and
a “main process”. The make-offset process is the same for
IACBC and IAPM, while the main process in the two
schemes differ.

Referring to the left hand side of FIGS. 6 and 7, the make-
offset process in IACBC and IAPM uses the key K2 to map a
random nonce, R, into a sequence of “pairwise independent”
offsets, Z=7[0], ..., Z|m], Z[m+1]. Notice that one needs two
more offsets than the message M is long (measured in blocks).
Each offset is n bits. Jutla describes two different methods to

20

25

30

35

40

45

50

55

60

65

4

realize the make-offset process. We shall describe these meth-
ods shortly; for now we view the production of offsets as a
black-box process and we continue the explanation of the
main-process of TACBC and IAPM.

The main process of IACBC is shown in the right-hand side
of FIG. 6. Having used the key K2 and the nonce R to derive
offsets Z[0], . . . , Z[m+1], encipher nonce R, now under key
K1, to determine an initial chaining value, Y[0]=C[0]=E,,
(R). Then CBC encrypt M=M[1] ... M[m]: fori€[1 ... m],
let YTi]=E, (Y[i-1]®M][i]). Next, mask each of these block-
cipher outputs to determine a ciphertext block: for i€[1 . . .
m], let C[i]=YTi]DZ[i]. Call the string C=C[1] . . . C[m] is the
“ciphertext core”. Next one computes a “checksum”, Check-
sum, by xoring the message blocks: Checksum=
M[1] . . . DM[m]. Next one forms an “authentication tag”
by setting Tag=FE ., (Checksum@®Y[m])DZ[0]. The complete
ciphertext specifies C[0], ciphertext core C=C[1] .. . C[m],
and authentication tag Tag.

Decryption proceeds by the natural algorithm, as will be
understood by those skilled in the art to which the present
invention pertains, rejecting the ciphertext if the supplied
authentication tag does not have the anticipated value.

We now describe the main process of ITAPM, as show in the
right-hand side of FIG. 7. Having used the key K2 and the
nonce R to derive offsets Z[0], . . ., Z[m+1], encipher R, now
using key K1, to determine an enciphered R-value, C[0]=E,,
(R). Now, for each i€[1 . . . m], message block M[i] is xored
with offset Z[i], the result is enciphered using E (keyed by
K1), and the resulting block is xored once again with offset
Z][i], yielding a ciphertext block C[i]: that is, for each
i€l ... m], let Ci]=Z[i]PE, M[i]DPZ[i]). Call C=C[1] . ..
C[m] the ciphertext core. Next, compute a checksum, Check-
sum, by xoring together the message blocks: Checksum=M
[11D . . . © M[m]. Next, form an authentication tag, Tag, by
xoring the checksum with offset Z[m+1], enciphering the
result with E,,, and xoring the resulting block with offset
Z[0]: Tag=Z[0]DPE,, (ChecksumPZ[m+1]). The complete
ciphertext specifies C[0], ciphertext core C=C[1] .. . C[m],
and authentication tag Tag.

Decryption proceeds by the natural algorithm, rejecting a
ciphertext if its supplied authentication tag does not have the
anticipated value. Namely, set R=E,,7*(C[0]) and use R and
K2 to compute the offset sequence Z[0], . . ., Z[m+1]. Then
compute the prospective plaintext M'=M[1] . . . M[m] by
setting M[i]=Z[i]PEx, " (C[i]DZ][i]). Next, re-compute the
tag Tag' that one would expect for the prospective plaintext
M': Checksum=M[1]&D . . . ®M[m] and Tag'=Z[0]DE,,
(ChecksumZ[m+1]). If the expected tag, Tag', matches the
tag Tag appearing within the ciphertext, then the plaintext M
is defined as the prospective plaintext M'. Otherwise, the
received ciphertext is invalid.

Itshould be noted that IACBC is not parallelizable: one can
not compute Y[i] until Y[i-1] has already been computed,
making that method inherently sequential. But IAPM is fully
parallelizable: all of the block-cipher calls needed to compute
the ciphertext core can be computed at the same time.

We comment that the nonce R used in IJACBC must be
random. Use ofa counter, or another adversarially predictable
value, will result in an incorrect scheme.

It is important to optimize the speed of the make-offset
process because, if it is slow, then the entire encryption pro-
cess will be slow. Jutla’s “method 1” for making offsets is
depicted in FIG. 8. It works as follows. Let t be the number of
bits needed to write m+2 in binary; that is,

=1+ log,(m+2)].

Now for eachig[1 .. . t], let
IV[i]=E g (R+)

US 7,949,129 B2

5

where the indicated addition operation means computer addi-
tion of n-bit strings (that is, regard i as an n-bit string and add
it to the n-bit string R, ignoring any carry that might be
generated). The value R should be a random value (a counter,
for example, will not work correctly). Offsets are now formed
by xoring together different combinations of IV[i]-values.
Jutla suggests the following to compute each Z][i] value, for
i€[0 . .. m+1]. Number bit positions left-to-rightby 1,...,t
andleti,...,1,&[1...t] denote all of the bit positions where
i+1, when written as a t-bit binary number, has a 1-bit. Then
set

Z[=IV]i 1D . . . BIV]i,]

As an example, if m=3 then t=3 (since 5 is 101 in binary,
which takes 3 bits to write down), Z[0]=IV[3] (since 1 is 001
in binary), Z[1]=IV[2] (since 2 is 010 in binary), Z[2]=
IV[2]IV[3] (since 3 is 011 in binary), Z[3]=IV[1] (since 4 is
100 in binary), and Z[4]=IV[1]DIV[3] (since 5 is 101 in
binary).

We now describe Jutla’s “method 2” for making offsets.
Choose a large prime number p just less than 2” (e.g., choose
the largest prime less than 2”) and then, fori€[0 ... m+1], set

ZfiJ=(V[1]+i-IV2])mod p

where IV[1]=E.,(R+1) and IV[2]=E,(R+2) are defined as
before. Again, nonce R should be a random value. The mul-
tiplication operator “.” refers to ordinary multiplication in the
integers. Notice that for iZ1, the value of Z[i] can be com-
puted from Z[i-1] by addition of IV[2], modulo p. This sec-
ond method of Jutla’s requires fewer block-cipher calls than
the first method of Jutla’s (block-cipher calls are used to make
the IV[i] values, and now only two such values are needed,
regardless of the length of the message). On the other hand,
the mod p addition is likely more expensive than xor.

The property that Jutla demands of the sequence of offsets
he calls pairwise independence, but Jutla does not use this
term in accordance with its customary meaning in probability
theory. Jutla appears to mean the property usually called
strongly universal-2. A family of random variables Z[0], Z[1],
Z[2],...,each withrange D, is said to be strongly universal-2
if, for all ij, the random variable (Z[i], Z[j]) is uniformly
distributed DxD.

Just subsequent to the appearance of Jutla’s paper, two
other authors, Virgil Gligor and Pompiliu Donescu, described
another authenticated-encryption scheme. Their paper, dated
Aug. 18,2000 and entitled, http://www.eng.umd.edu/~gligor
Fast Encryption and Authentication: XCBC encryption and
XECB Authentication Modes, first appeared on Gligor’s
worldwide web homepage. The Gligor-Donescu authenti-
cated-encryption scheme, which the authors call XCBC,
resembles Jutla’s JACBC. The scheme called XCBCS$ is
depicted in FIG. 9. The main difference between IACBC and
XCBCS is that the latter uses offsets Z[1], Z[2], . . . Z[m+1],
which are now defined by: Z[0]=0 and, for i€[1 . . . m+1],
Z[i+1]=Z[i-1]+R. The indicated addition means addition of
binary strings, modulo 2”. Besides this “method 3” to create
offsets, one should note that the value of Z[i] is now added
(modulo 2”) to the block-cipher output, rather than being
xored with the block-cipher output. Other differences
between the Jutla and Gligor-Donescu schemes will be appar-
ent to those skilled in the relevant art when comparing FIGS.
5and 8.

As with Jutla’s schemes, the nonce R in XCBCS$ should be
a random value; use of a counter, or another adversarially-
predictable quantity, will not work correctly. The authors give
a closely related scheme, XCBC, which employs a counter

20

25

30

35

40

45

50

55

60

65

6

instead of a random value. That scheme is illustrated in FIG.
10. The complete ciphertext specifies the nonce, “ctr”, as well
as C[1]. .. C[m]|Tag.

It should be noted that XCBC and XCBCS, like IACBC,
are sequential. Gligor’s paper, as it originally appeared, did
not suggest a parallelizable approach for authenticated
encryption.

All of the available authenticated-encryption schemes we
have described thus far share the following limitation: they
assume that all messages to be encrypted have a length that is
a positive multiple of the block length n. This restriction can
be removed by first padding the message, using padding
techniques well-known in the art. For example, one can
append to every message M a “1” bit and then append the
minimum number of 0-bits so that the padded message has a
length which is a multiple of n. We call this “obligatory
padding”. Decryption removes the obligatory padding to
recover the original message. However, removing the length
restriction in an authenticated-encryption scheme by obliga-
tory padding is undesirable because it increases the length of
the ciphertext (by an amount between 1 and n-1 bits). Fur-
thermore, the method results in an extra block-cipher invoca-
tion when the message M is of a length already a positive
multiple of n.

Another approach known in the art to deal with messages
whose length is not a positive multiple of n is “ciphertext
stealing CBC encryption”, which is like ordinary CBC
encryption except that the final message block M[m] may
have fewer than n bits and the final ciphertext block C[m] is
defined notby C[m]=E (M[m]D(EC[m-1]) but by C[m]=E
(C[m-11)PM[m]. One could hope to somehow use cipher-
text stealing in an authenticated-encryption scheme, but it is
not known how to do this in a way that does not destroy the
authenticity property required of an authenticated-encryption
scheme. In particular, natural attempts to try to modify IAPM
in a manner that employs ciphertext stealing result in flawed
schemes. A possible approach is to adapt ideas from the paper
of Black and Rogaway, CBC MACs for Arbitrary-Length
Messages: The Three Key Constructions, appearing in
Advances in Cryptology-CRYPTO 00, Lecture Notes in
Computer Science, Springer-Verlag, 2000. This paper
teaches the use of obligatory padding for messages of length
zero or a non-multiple of n, combined with no padding for
messages of length of positive multiple of n, combined with
xoring into the last block one of two different keys, as a way
to differentiate these two different cases. However, such a
method is tailored to the construction of message authentica-
tion codes, particularly message authentication codes based
on the CBC MAC. It is unknown if such methods can be
correctly adapted to an authenticated-encryption scheme like
TIAPM.

An additional limitation of the authenticated-encryption
techniques we have discussed is the use of multiple keys.
While well-known key-separation techniques can create as
many “key variants” as one needs from a single underlying
key, depending on such methods results in additional time for
key-setup and additional space for key storage. It is unknown
how one could devise a correct algorithm that would use only
a single block-cipher key and use this one key to key all
block-cipher invocations.

Method 1 for computing offsets is complex and slow, need-
ing an unbounded number of block-cipher calls. The values
IV[1], . .., IV][t] can be computed during a pre-processing
stage, but this pre-processing will be slow. Method 2 for
computing offsets requires modulo p addition, which is not
particularly fast because typical implementations use blocks
having n=128 bits. Method 3 for computing offsets likewise

US 7,949,129 B2

7

requires addition (now modulo 2”) of quantities typically
having n=128 bits, which may again be inconvenient because
computers do not generally support such an operation, and
high-level programming languages do not give access to the
add-with-carry instruction that best helps to implement it.
Most of the methods we have described require the use of a
random nonce R, and the schemes will not work correctly
should R be predictable by an adversary.

SUMMARY

Variations of the present invention provide methods for
constructing more efficient authenticated-encryption
schemes. The new methods give rise to parallelizable authen-
ticated-encryption schemes that combine any or all of the
following features: (1) Messages of arbitrary bit length (not
necessarily amultiple of the block length n) can be encrypted.
(2) The resulting ciphertext will be as short as possible (in
particular, the ciphertext core will have the same length as the
message that is being encrypted, even when the message
length is not a multiple of the block length). (3) Offsets can be
computed by extremely fast and simple means, and without
the use of modular addition. (4) Pre-processing costs are very
low (e.g., one block-cipher call and some shifts and xors). (5)
The encryptionkey is a single block-cipher key, and all block-
cipher calls make use of only this one key. (6) The needed
nonce may be adversarially predictable (a counter is fine). (7)
Only as many offsets are needed as the message is long (in
blocks). (8) A total of m+2, (or even m+1) block-cipher calls
are adequate to encrypt a message of m blocks.

To achieve these and other goals, new techniques have been
developed. A first set of techniques concern the “structure” of
an authenticated-encryption scheme, and describe improved
methods for how the message M is partitioned into pieces and
how these pieces are then processed. A second set of tech-
niques concern improved ways to generate the needed offsets.
A third set of techmques deal with methods to avoid the use of
multiple block-cipher keys. A fourth set of techniques facili-
tate authenticated-encryption schemes which efficiently pro-
cess associated-data, where associated-data refers to infor-
mation which should be authenticated by the Receiver but
which is not a part of the message that is being encrypted. The
different types of improvements are largely orthogonal.

More specifically, one embodiment of the present inven-
tion provides an authenticated-encryption method that uses a
key, a nonce, and an n-bit block cipher to encrypt a message
of arbitrary bit length into a ciphertext core and a tag, the
ciphertext core having the same length as the message. The
system operates by first partitioning the message into a mes-
sage body having a multiple of n bits and a message fragment
having at most n bits. Next, the system generates a sequence
of offsets from the nonce and the key, and computes a cipher-
text body having the same length as the message body using
the n-bit block cipher, the message body, the key, and the
sequence of offsets. The system then computes an n-bit pad
from the length of the message fragment, an offset from the
sequence of offsets, the n-bit block cipher, and the key, and
computes a ciphertext fragment having the same length as the
message fragment from the message fragment and the n-bit
pad. The system then defines the ciphertext core as the cipher-
text body concatenated with the ciphertext fragment, and
defines the tag as a function of the message body, the cipher-
text fragment, the n-bit pad, the offset from the sequence of
offsets, and the key.

In a variation of this embodiment, the sequence of offsets is
produced by computing an initial offset from the nonce, the
key, and the n-bit block cipher, and each subsequent offset is

20

25

30

35

40

45

50

55

60

65

8

produced from the prior offset by a process involving at least
one shift and one conditional xor operation.

A further embodiment of the present invention provides an
authenticated-encryption method that uses a single block
cipher key, a nonce, and an n-bit block cipher keyed by the
single block cipherkey to encrypta message into a ciphertext.
The system operates by utilizing a sequence of offsets, com-
prising the steps of: computing an initial offset using the
nonce and the n-bit block cipher, computing each subsequent
offset by applying at least one shift and at least one condi-
tional xor operation to the prior offset, and computing the
ciphertext by combining the sequence of offsets and the mes-
sage, using the n-bit block cipher.

A further embodiment of the present invention provides a
parallelizable authenticated-encryption method that uses a
key, a nonce, and an n-bit block cipher to encrypt a message
of arbitrary bit length into a ciphertext core and a tag, the
ciphertext core having the same length as the message and all
invocations of the n-bit block cipher keyed using the key. The
system operates by first partitioning the message into m-1
message blocks of n bits and a message fragment of at mostn
bits. Next, the system generates from the nonce a sequence of
m+1 offsets, each of n bits, by first invoking the n-bit block
cipher and then applying a sequence of shift and conditional
xor operations. For each number i between 1 and m-1, the
system then computes an i? ciphertext block by xoring an i
message block with an i” offset, applying the n-bit block
cipher, and xoring the result with the i offset. The system
computes a pad by xoring an n-bit encoding of the length of
the message fragment with an m” offset and applying the
n-bit block cipher, an then computes a ciphertext fragment
having the same length as the message fragment by xoring the
message fragment and a portion of the pad. Next, the system
defines the ciphertext core as a concatenation of an m-1
ciphertext blocks and the ciphertext fragment. The system
computes an n-bit padded ciphertext fragment from the
ciphertext fragment, computes a checksum by xoring the m-1
message blocks, the pad, and the n-bit padded ciphertext
fragment, and computes the tag by xoring the checksum and
an (m+1)* offset and applying the n-bit block cipher.

A further embodiment of the present invention provides an
authenticated-encryption method that provides for associ-
ated-data, the method depending on a pseudorandom func-
tion and the authenticated-encryption method, wherein the
authenticated-encryption method does not provide for asso-
ciated-data, wherein encryption of a message into a ciphertext
is achieved by: encrypting the message with the authenti-
cated-encryption method that does not provide for an associ-
ated data to determine a ciphertext core and a tag, applying the
pseudorandom function to the associated-data to determine
an associated-data authenticator, and defining the ciphertext
to be the ciphertext core together with an xor of the tag and the
associated-data authenticator.

A further embodiment of the present invention provides an
authenticated-encryption method that provides for associ-
ated-data, the method utilizing a key, a nonce, an n-bit block
cipher, and a pseudorandom function to encrypt a message of
arbitrary bit length into a ciphertext core and a tag, the cipher-
text core having the same length as the message. The system
operates by partitioning the message into a message body
having a multiple of n bits and a message fragment having at
most n bits and generating a sequence of offsets from the
nonce and the key. The system then computes a ciphertext
body having the same length as the message body using the
n-bit block cipher, the message body, the key, and the
sequence of offsets, computes an n-bit pad from the length of
the message fragment, an offset from the sequence of offsets,

US 7,949,129 B2

9

the n-bit block cipher, and the key, and computes a ciphertext
fragment having the same length as the message fragment
from the message fragment and the n-bit pad. Next, the sys-
tem defines the ciphertext core as the ciphertext body concat-
enated with the ciphertext fragment. The system then com-
putes a checksum from the message body, the ciphertext
fragment, and the n-bit pad, computes a full tag using the
checksum, the offset from the sequence of offsets, the n-bit
block cipher, and the key, and computes an associated-data
authenticator by applying the pseudorandom function, keyed
by the key, to the associated-data. Finally, the system defines
the tag as an xor of the full tag and the associated-data authen-
ticator.

In a variation of this embodiment, the sequence of offsets is
produced by computing an initial offset from the nonce, the
key, and the n-bit block cipher, and each subsequent offset is
produced from a prior offset by a process involving at least
one shift and at least one conditional xor operation.

A further embodiment of the present invention provides an
authenticated-encryption method that uses a key, a nonce, and
an n-bit tweakable block cipher to encrypt a message of
arbitrary bit length into a ciphertext core of the same length
and a tag, all invocations of the n-bit tweakable block cipher
keyed by the key. The system operates by first partitioning the
message into m—-1 message blocks of n bits and a message
fragment of at most n bits. For each number i between 1 and
m-1, the system computes an i ciphertext block by applying
the n-bit tweakable block cipher to ani” message block, using
a first tweak consisting of the nonce, the number i, and a
constant 0. The system then computes a pad by applying the
n-bit tweakable block cipher to a string that encodes a length
of'the message fragment, using a second tweak consisting of
the nonce, a number m, and a constant 1, and computes a
ciphertext fragment by xoring the message fragment and a
portion of the pad that has a same number of bits as the
message fragment. Next, the system defines the ciphertext
core as a concatenation of the m-1 ciphertext blocks and the
ciphertext fragment. The system then computes an n-bit pad-
ded ciphertext fragment from the ciphertext fragment, com-
putes a checksum by xoring the m-1 message blocks, the pad,
and the n-bit padded ciphertext fragment, and computes the
tag by applying the n-bit tweakable block cipher to the check-
sum, using a tweak consisting of the nonce, the number m,
and a constant 2.

In a variation of this embodiment, the n-bit tweakable
block cipher is implemented using an n-bit conventional
block cipher, each invocation of the n-bit tweakable block
cipher utilizing at least one shift operation, at least one con-
ditional xor operation, and at least one call to the n-bit con-
ventional block cipher.

A further embodiment of the present invention provides a
parallelizable authenticated-encryption method that provides
for associated-data and uses a key, a nonce, and an n-bit
tweakable block cipher to encrypt a message of arbitrary bit
length into a ciphertext core of the same length and a tag, all
invocations of the n-bit tweakable block cipher keyed by the
key. The system operates by first partitioning the message into
m-1 message blocks of n bits and a message fragment of at
most n bits. For each number i between 1 and m-1, the system
then computes an i ciphertext block by applying the n-bit
tweakable block cipher to an i” message block, using a first
tweak consisting of the nonce, the number i, and a constant 0.
Next, the system computes a pad by applying the n-bit tweak-
able block cipher to a string that encodes a length of the
message fragment, using a second tweak consisting of the
nonce, the number m, and a constant 1, and computes a
ciphertext fragment by xoring the message fragment and a

20

25

30

35

40

45

50

55

60

65

10

portion of the pad that has a same number of bits as the
message fragment. The system then defines the ciphertext
core as a concatenation of the m ciphertext blocks and the
ciphertext fragment. Next, the system computes an n-bit pad-
ded ciphertext fragment from the ciphertext fragment, com-
putes a checksum by xoring the m-1 message blocks, the pad,
and the n-bit padded ciphertext fragment, computes a full tag
by applying the n-bit tweakable block cipher to the checksum,
using a third tweak consisting of the nonce, the number m,
and a constant 2, and computes an associated-data authenti-
cator by applying a pseudorandom function to the associated-
data. Finally, the system defines the tag as a portion of the
string that is an xor of the full tag and the associated-data
authenticator.

In a variation of this embodiment, the n-bit tweakable
block cipher is implemented using an n-bit conventional
block cipher, each invocation of the n-bit tweakable block
cipher utilizing at least one shift operation, at least one con-
ditional xor operation, and at least one call to the n-bit con-
ventional block cipher.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 describes encryption under “OCB”, where OCB is
the name for one embodiment of many of the techniques
taught in the present invention.

FIG. 2 is a high-level description of the make-offset pro-
cess of OCB in accordance with an embodiment of the present
invention.

FIG. 3 is alow-level description of the make-offset process
of OCB in accordance with an embodiment of the present
invention.

FIG. 4 describes decryption under OCB in accordance with
an embodiment of the present invention.

FIG. 5 describes a variant of OCB in accordance with an
embodiment of the present invention.

FIG. 6 depicts the IACBC scheme of Jutla.

FIG. 7 depicts the IAPM scheme of Jutla.

FIG. 8 depicts one of Jutla’s methods for constructing
offsets.

FIG. 9 depicts the XCBCS$ scheme of Gligor and Donescu.

FIG. 10 depicts the XCBC scheme of Gligor and Donescu.

FIG. 11 depicts encryption under OCB-from-a-tweakable-
block-cipher, a generalization of OCB recast to use a different
kind of primitive in accordance with an embodiment of the
present invention.

FIG. 12 depicts encryption under OCB 2.0, a second
embodiment of the ideas of this invention in accordance with
an embodiment of the present invention.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention is not intended to be limited to the embodiments
shown, but is to be accorded the widest scope consistent with
the principles and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a computer-readable stor-
age medium, which may be any device or medium that can
store code and/or data for use by a computer system. This

US 7,949,129 B2

11

includes, but is not limited to, magnetic and optical storage
devices such as disk drives, magnetic tape, CDs (compact
discs) and DVDs (digital versatile discs or digital video
discs), and computer instruction signals embodied in a trans-
mission medium (with or without a carrier wave upon which
the signals are modulated). For example, the transmission
medium may include a communications network, such as the
Internet.

We now describe an embodiment of the present invention
known as OCB (for offset codebook) mode. OCB is an
authenticated-encryption scheme that uses an n-bit block
cipher E, a key K, and a nonce Nonce to encrypt an arbitrary
message M. To specify OCB we begin by giving some nota-
tion and reviewing some mathematical background.
Notation and Mathematical Background

If a and b are integers, a=b, then [a . . . b] is the set of all
integers between and including a and b. If iZ1 is an integer
then ntz(i) is the number of trailing 0-bits in the binary rep-
resentation of i (equivalently, ntz(i) is the largest integer z
such that 2° divides i). So, for example, ntz(7)=0 and
ntz(8)=3.

A string is a finite sequence of symbols, each symbol being
0 or 1. The string of length O is called the empty string and is
denoted €. Let {0,1}*denote the set of all strings. If A,
B&{0,1}* then A B, or A|B, is their concatenation.
If AS{0,1 }*and A=e then firstbit(A) is the first bit of A and
lastbit(A) is the last bit of A. Let i and n be nonnegative
integers. Then 0’ and 17 denote strings of i 0’s and 1°s, respec-
tively. For n understood, 0 means 0”. Let {0,1}” denote the set
of all strings of length n. IFAS{0,1}* then Al is the length of
A, in bits, while |Al,=max(1, [|Al/n]is the length of A in n-bit
blocks, where the empty string counts as one block. For
AE{0,1}* and |AI=n, zpad (A) is Al|0"'“". With n under-
stood we write AO* for zpad, (A). If AS{0,1}* and =[O0 . . .
IAl] then A [first t bits] and A [last t bits] are the first t bits of
A and the last t bits of A, respectively. Both ofthese values are
the empty string if =0. If A, BE{0,1}* then A®B is the
bitwise xor of A[first s bits] and Bl[first s bits] where
s=min{I|Al,IBI}; for example, 100160110=010.

IfA=a, ...a, a,&{0,1}" is a string, each a,&{0,1}, then
str2num(A) is the number X, _,,, , 2’a, that this string repre-
sents, in binary. If a&[0 . . . 2] is a number, then num2str,,
(o) is the n-bit string A such that str2num(A)=c. Let
len,,(A)=num?2str,,(IAl) be the string that encodes the length
of A as an n-bit string. We omit the subscript n when it is
understood.

IfA=a, ja, ,...a,8,6{0,1}"thenA<<l=a,,...a, a,0is
the n-bit string which is a left shift of A by 1 bit (the first bit
of A disappearing and a zero coming into the last bit), while
A>>1=0a, ,a,,...a, is the n-bit string which is a right shift
of A by one bit (the last bit disappearing and a zero coming
into the first bit).

In pseudocode we write “Partition M into M[1] ... M[m]”
as shorthand for “Let m=IMI, and let M[1], . . ., M[m] be
strings such that M[1] . . . M[m]=M and IMJi]l=n for
1=i=m.” We write “Partition C into C[1] . . . C[m] T” as
shorthand for “if ICI<t then return invalid. Otherwise, let
C=Cffirst ICI-t bits], let T=C[last t bits], let m=ICl,,, and let
C[1] . .. C[m] be strings such that C[1] . . . C[m]=C and
IC[i]I=n for 1=i=m.” Recall that IMI,=max{1, [IMI/n]}, so
the empty string partitions into m=1 blocks, that one block
being the empty string.

By way of mathematical background, recall that a finite
field is a finite set together with an addition operation and a
multiplication operation, each defined to take a pair of points
in the field to another point in the field. The operations must
obey certain basic axioms defined by the art. (For example,

20

25

30

35

40

45

50

55

60

65

12

there must be a point 0 in the field such that a+0=0+c=a for
every «; there must be a point 1 in the field such that
a-1=1-a=a for every a; and for every a=0 there mustbe a point
a~! in the field such that a-a'=a~-a=1.) For each number n
there is a unique finite field (up to the naming of the points)
thathas 2” elements. It is called the Galois field of size 2”, and
it is denoted GF(2").

We interchangeably think of a point a&GF(2”) in any of
the following ways: (1) as an abstract point in a field; (2) as an
n-bit string a,_, . . . a,a,E{0,1}"; (3) as a formal polynomial
a(x)=a,_ X"+ ... +a,x+a, with binary coefficients; (4) as a
nonnegative integer between 0 and 2', where the string
a={0,1}" corresponds to the number str2num(c). For
example, one can regard the string a=0'2*101 as a 128-bit
string, as the number 35, as the polynomial x*+1, or as a
particular point in the finite field GF(2'%). We write a(x)
instead of a if we wish to emphasize the view of o as a
polynomial in the formal variable x.

To add two points in GF(2”), take their bitwise xor. We
denote this operation by ab.

Before we can say how to multiply two points we must fix
some irreducible polynomial poly,(x) having binary coeffi-
cients and degree n. For OCB, choose the lexicographically
first polynomial among the irreducible degree-n polynomials
having a minimum number of coefficients. For n=128, the
indicated polynomial is poly, ,o(x)=x"284x74+x%4+x+1.

To multiply points a, bEGF(2”), which we denote ab,
regard oo and b as polynomials a(x) and b(x), form their
product polynomial ¢(x) (where one adds and multiplies coef-
ficients in GF(2)), and take the remainder one gets when
dividing c(x) by the polynomial poly, (x). By convention, the
multiplication operator has higher precedence than addition
operator and so, for example, v,-LR means (y, L)PR.

It is particularly easy to multiply a point ={0,1 }* by x.
We illustrate the method for n=128, where poly,(x)—x"**+
X +x*+x+1. Then multiplying o=a,, . . . a,a, by x yields the
polynomial a,_x"+a,_,X" " +a,x>+a,x. Thus, if the first bit of
ais 0, then a.-x=a<<1. If the first bit of a is 1 then we mustadd
x?® to a<<l. Since x'**+x”+x*+x+1=0 we know that
x'28x"4x%+x+1, so adding x'*®* means to xor by
0'2°10000111. In summary, when n=128,

a1 if firstbit(a) =0, and

a-x=
(a < 1)@0'2°10000111 if firsthir(a) =1

If a={0,1}” then we can divide . by x, meaning that one
multiplies a by the multiplicative inverse of x in the field:
o-x~t. It is easy to compute .- x~*. To illustrate, again assume
that n=128. Then if the last bit of & is 0, then a-x ™" is a>>1.If
the last bit of a is 1, then we must add (xor) to a>>1 the value
x71. Since x" **=x"4x*+x+1 we have x' *"=x%+x+1+x~" and so
x1=x!?74x54x+1=10"2°1000011. In summary, for n=128,

a>»1 if lastbit(a) =0, and

T a» D@ 1010000111 if lasthit(@) = 1

a-x

If LE{0,1}” and i=-1, we write L(i) for L-X". There is an
easy way to compute L(-1),L.(0),L(1), . . ., L(u), for a small
number u. Namely, set L(0)=L; compute L(1)=L(i-1)x from
L(i-1), for all i€[1 . . . u], using a shift and a conditional xor
(with the formula we have given); and compute L.(-1) from L.
by a shift and a conditional xor (with the formula we have
given).

US 7,949,129 B2

13

Still by way of background, a Gray code is an ordering of
the points of {0,1}* (for some number s) such that successive
points differ (in the Hamming sense) by just one bit. Forn a
fixed number, like n=128, OCB uses the canonical Gray code
Gray(n)=(Yo, Yi» - - - » Yo)- Gray(n) is defined as follows: 3
Gray(1)=(0, 1) and Gray(s) is constructed from Gray(s—1) by
firstlisting the strings of Gray(s-1) in order, each preceded by
a 0-bit, and then listing the strings of Gray(s—1) in reverse
order, each preceded by a 1 bit. It is easy to see that Gray(n)
is a Gray code. What is more, y, can be obtained from v, ; by
xoring y,., with ("' 1<<ntz(i). This makes successive strings
easy to compute.

Asan example, Gray(128)=(0,1,3,2,6,7,5,4,...). Tosee
this, start with (0, 1). Then write it once forward and once
backwards, (0,1,1,0). Then write (00, 01, 11, 10). Then write
it once forward and once backwards, (00,01,11,10, 10,11,01,
00). Then write (000,001,011,010, 110,111,101,100). At this
point we already know the first 8 strings of Gray(128), which
are (0,1,3,2,6,7,5,4), where these numbers are understood to
represent 128-bit strings. So, for example, v5 is 7 and y, is 5,
and y4=5 really is ys =7 xored with 2, where 2 is the string 1
shifted left ntz(6)=1 positions.

20

14

A popular block cipher to use with OCB is likely to be the
AES algorithm (AES-128, AES-192, or AES-256). As for the
tag length, a suggested default of t=64 is reasonable, but tags
of any length are fine.

Encryption under OCB mode requires an n-bit nonce,
Nonce. The nonce would typically be a counter (maintained
by the sender) or a random value (selected by the sender).
Security is maintained even if the adversary can control the
nonce, subject to the constraint that no nonce may be repeated
within the current session (that is, during the period of use of
the current encryption key). The nonce need not be random,
unpredictable, or secret.

The nonce Nonce is needed both to encrypt and to decrypt.
To permit maximum flexibility, it is not specified by OCB
how the nonce is communicated to the Receiver, and we do
not regard the nonce as part of the ciphertext. Most often the
nonce would be communicated, in the clear, along with the
ciphertext: for example, the nonce, in it entirety, might be
prepended to the ciphertext. Alternatively, the Sender may
encode the nonce using some agreed upon number of bits less
than n, and this encoded nonce would be sent to the Receiver
along with the ciphertext.

TABLE 1

OCB-Encrypt x (Nonce,M)

Partition M into M[1]... M[m]

L =Ex(0)

R =Eg (Nonce @ L)

fori=1tom

// Define needed values

// Key variant. Recall 0 = 07
// Base offset R

// Offsets: Z[1]....,Z[m]

doZ[i]=yi-LyR
Z[-m] =Z[m] LB L -x!

for i=1 to m-1 do
= ExM[i] @ Z[i]) Z[i]
PrePad = len(M[m]) D Z[-m]

Cli]

//Process message blocks...

// Process final fragment...

Pad = Ex(PrePad)

C[m] =Pad & M[m]
=C[1]... C[m]

C

// Uses Pad bits 1..IM[m] |
// Ciphertext core

Checksum = M[1] ... & M[m-1]D C[m]0* & Pad
PreFullTag = Checksum € Z[m]

FullTag = Ex (PreFullTag)

Tag = FullTag [first t bits]

return C || Tag

// The final ciphertext, C

Let LE{0,1}” and consider the problem of successively
forming the strings v,-L, v,'L, v5;'L, . . ., v, L. Of course
y,'L=1-L=L. Now, for iZ2, assume one has already computed
Y.L Since y,=y, DO " 1<<ntz(i)) we know that 4

Yi-L= (i @O < (i) L

=y L@ (0" < niz(i))- L 50

=71 - L& (L-x")

That is, the i string in the sequence is obtained by xoring the
previous string in the sequence with L(ntz(i)).

Had the sequence we were considering been additively
offset by some value R, that is, R®y,-L, RSBy, L, . . .,
RPy,, L, the i” string in the sequence would be formed in the
same way, for i=2, but the first string in the sequence would
be LR instead of L.

Definition of OCB

With the necessary notation and background now in place,
we are ready to describe OCB. OCB depends on two param-
eters: a block cipher E, having block length n, and a tag length
t, where t is a number between 1 and n. By trivial means, the
adversary will be able to forge a valid ciphertext with prob-
ability 27°.

55

60

65

See FIG. 1 for an illustration of OCB encryption. FIG. 1is
best understood in conjunction with the algorithm definition
in Table 1, which explains all of the figure’s various parts and
gives additional algorithmic details. Thekey space for OCB is
the key space for the underlying block cipher E. OCB encryp-
tion is then defined in Table 1.

Referring to FIG. 1 and the algorithm definition above, one
sees that the message M has been partitioned into n-bit blocks
M[1], ..., M[m-1], as well as a message fragment, M[m],
which may have fewer than n bits. The message blocks and
the final fragment are treated differently.

Each message block M[i] is xored with an offset (the Z[i]
value), enciphered, and then xored again with the same offset.
This gives a ciphertext block C[i].

The message fragment M[m] is mapped into a ciphertext
fragment C[m] by xoring it with the string Pad. According to
our conventions, only the first IM[m]| bits of Pad are used. In
this way, C[m], will have the same length as M[m]. The value
Pad does not depend on M[m], apart from its length. In
particular, Pad is formed by enciphering the string PrePad
which is the xor of the length of the final fragment M|m],
encoded as a string, and the “special” offset Z[-m], which is
the xor of Z[m] and L-x~*. Thus PrePad (and therefore Pad)
depends on the bit length of M.

At this point, the ciphertext core C=C[1] ... C[m] has been
computed. Its length is the length of M.

US 7,949,129 B2

15

A checksum is now computed by xoring together: (a) the
m-1 message blocks; (b) the zero-padded ciphertext frag-
ment, C[m]0*; and (c) the value Pad. (This is equivalent to
xoring together: (a) the message blocks; (b') the zero-padded
message fragment, M[m]0%*; (c') the string S which is the first
n-IM[m]| bits of Pad followed by IM[m]l zero-bits.) The
checksum is offset using offset Z[m], giving the PreFullTag.
That string is enciphered to give the FullTag. The t-bit prefix
of the FullTag is used as the actual tag, Tag.

The ciphertext C is the ciphertext core C=C[1] . . . C[m]
together with the tag Tag. The Nonce must be communicated
along with the ciphertext C to allow the Receiver to decrypt.

FIGS. 2 and 3 clarify the make-offset process that isused in
OCB but whichis only partially depicted in FIG. 1. First, FIG.
2 depicts how the underlying key K is mapped, conceptually,
into a sequence of fixed offsets z[1], z[2], [3], . . . We call this
sequence of offsets “fixed” because it does not depend on the
nonce Nonce (it only depends on the key K). The sequence of
fixed offsets is mapped into a sequence of translated offsets,
or simply offsets, by xoring each fixed offset with a base
offset, R: that is, Z[i]=7[i]DR. The base offset R is deter-
mined from the nonce Nonce and from the underlying key K.

FIG. 3 shows the inventive process in more detail. The
sequence of fixed offsets that we choose is z[1]=y,L,
7|2]=y,'L, z[3]=y5°L, and so on. Thus the sequence of trans-
lated offsets used by OCB is Z[1]=y, LR, Z[2]=y,' LOR,
Z[3]=y5;' LR, and so on. These offsets can be calculated in a
particularly simple manner. Namely, in a pre-processing step
we map L, which is a key variant determined by enciphering
under K the constant string 0, into a sequence of basis offsets
L(0), L(1),L(2), . . . Basis offset L(i) is defined to be L-x’. We
have already explained how to easily compute these strings.
Now we compute translated offsets as follows. The first off-
set, Z[1], is defined as RPL(0). Offset Z[2] is computed from
offset Z[1] by xoring Z[1] with L(1). One chooses L(1)
because we are making offset number 2 and the number 2,
written in binary, ends in 1 zero-bit. Offset Z[3] is computed
from offset Z[2] by xoring Z[2] with [(0). One chooses L(0)
because we are making offset 3 and 3, written in binary, ends
in 0 zero-bits. Offset Z[4] is computed from offset Z[3] by
xoring into Z[3] with L.(2). One chooses [.(2) because we are
making offset 4 and 4, written in binary, ends in 2 zero-bits.
One continues in this way, constructing each (translated)
offset from the prior offset by xoring in the appropriate L(i)
value.

Decryption in OCB works in the expected way. The algo-
rithm is shown in FIG. 4 and is defined as follows. All parts of
FIG. 4 can be understood by consulting the algorithm defini-
tion that appears in Table 2.

TABLE 2

OCB-Decrypt x (Nonce, C)
Partition C into C[i]... C[m] Tag
L =Eg(0)
R =Ex (Nonce @ L)
fori=ltomdo Z[i]=yi- LB R
Z[-m] = Z[m] PL - x!
fori=1tom-1do

MIi] =Ex" (C[i] @ Z[i]) & Z[i]
PrePad = len(C[m]) @ Z[-m]
Pad = Eg(PrePad)
M[m] =Pad € C[m]
M =M[l]... M[m]
Checksum = M[1] ... & M[m-1]& C[m]0* D Pad
Tag" = Ex (Checksum B Z[m]) [first t bits]
if Tag = Tag" then return M

else return invalid

10

20

25

40

45

50

55

60

65

16

An Alternative Description

At this point, we have fully described the embodiment
OCB. $till, the following alternative description may help to
clarify what a typical implementation might choose to do.

Key generation: Choose a random key K from the key
space for the block cipher. The key K is provided to both the
entity that encrypts and the entity that decrypts.

Key setup: With the key now distributed, the following can
be pre-computed:

1. Setup the block-cipher key. For the party that encrypts:
do any key setup associated to enciphering using the
block-cipher with key K. For the party that decrypts: do
any key setup associated to enciphering or deciphering
using the block-cipher with key K.

2. Pre-compute L. Let L=E(0).

3. Pre-compute L(i)-values. Let m,,,, be at least as large as
the number of n-bit blocks in any message to be
encrypted or decrypted. Let u=] log, m,, . |- Let L(0)=L
and, fori€[1 .. . u], compute L(1)=L.(i-1)x using a shift
and a conditional xor, in the manner already described.
Compute L(-1)=L-x"* using a shift and a conditional
xor, in the manner already described. Save L(-1),
L(0), ..., L(u)in a table.

Encryption: To encrypt message ME{0,1 }* using key K
nonce Nonce€ {0,1}”, obtaining ciphertext C, do the follow-
ing:

1. Partition M. Let m=[IMI/n]. If m=0 then replace m by 1.
Let M[1], . . ., M[m] be strings such that M[1] . . .
M[m]=M and IM[i]l=n for all i€[1 . . . m-1].

2. Initialize variables. Let Offset=E (Nonce ©@L). Let
Checksum=0.

3. Encipher all blocks but the last one. For i=1 to m-1, do
the following:

Let Checksum=Checksum ED M[i].
Let Offset=Offset®L(ntz(i)).
Let C[i]=Ex(M[i]POffset) POffset.

4. Mask the final fragment and finish constructing the
checksum:

Let Offset=OffsetPL(ntz(m)).

Let Pad=E . (len(M[m])PL(-1)POffset).

Let C[m]=M[m](the first IM[m]! bits of Pad).
Let Checksum=Checksum@®Pad®C[m]0*.

5. Form the tag. Let Tag be the first t bits of
E{Checksum@Offset).

6. Return the ciphertext. The ciphertext is defined as the
string C=C[1] .. .C[m~-1]C[m]||Tag. It is communicated
along with the nonce Nonce to the Receiver.

Decryption: To decrypt a ciphertext C={0,1}* using key K
and nonce Nonce©{0,1}”, obtaining a plaintext ME{0,1}* or
else an indication invalid, do the following:

1. Partition the ciphertext. If ICl<t then return invalid (the
ciphertext has been rejected). Otherwise, let C be the
first ICl-t bits of C and let Tag be the remaining t bits. Let
m=[ICl/n]. If m=0then let m=1. Let C[1], . . ., C[m] be
strings such that C[1] . . . C[m]=C and IC[i]l=n for

i€[1...m-1].

2. Initialize variables. Let Offset=E (Nonce€L). Let
Checksum=0.

3. Recover all blocks but the last one. Fori=1to m-1, do the
following:

Let Offset=Offset®L(ntz(i)).
Let M[i]=E . *(C[i]®Offset)POffset.
Let Checksum=Checksum®M[i].

US 7,949,129 B2

17

4. Recover the final fragment and finish making the check-
sum:
Let Offset=OffsetPL(ntz(m)).
Let Pad=FE . (len(C[m])PL(-1)POffset.
Let M[m]=C[m]D(the first IC[m]! bits of Pad).
Let Checksum=Checksum@®Pad@C[m]0*.

5. Check the tag. Let Tag' be the first t bits of
Ex(Checksum@POffset). If Tag=Tag' then return invalid
(the ciphertext has been rejected). Otherwise,

6. Return the plaintext. The plaintext that is returned is
defined to be M=M[1] . .. M[m-1] M[m].

Variations

While many variants of OCB resultinincorrect algorithms,
there are also many correct variants. One type of variant
leaves the structure of OCB alone, but changes the way offsets
are produced. When changing the way that offsets are pro-
duced, one may also have to change the semantics of the xor
operation. We give a couple of examples.

For an “addition mod 2” variant” of OCB, one might
change the offsets to Z[i]=(R+iL) mod 2", for i1, and
Z[-m]=complement(Z[m]) (the bit-wise complement of
Z[m]). According to this definition, each offset is computed
from the prior one by n-bit addition of L. Alternatively,
replace complement(Z[m])) by -Z[m] mod 2", where is
nearly the same thing (the two differ by a constant, 1, and this
difference is irrelevant).

Assuming n is a multiple of the word size of a computer,
addition mod 2” is easily computed by a computer. We call
addition mod 2" “computer addition”. Computer addition
might or might not generate a carry. To achieve addition
modulo 2” any carry that is generated is simply ignored.

Alternatively, for i1, one could define Z[i]=iR mod 2", so
that each offset is obtained from the prior one by n-bit addi-
tion of R instead of L.

When defining offsets using computer addition, the xor
operations used to combine a message block and an offset,
and the xor operations used to combine a block-cipher output
and an offset, should be replaced by mod 2" addition. L.eaving
these operations as xors seems to damage the schemes’ secu-
rity.

For a “mod p variant” of OCB, where p is a large prime
number (for example, the smallest prime number less than
2"), change the offsets to Z[i]=(R+iL) mod p, for i=1, and
Z[-m]=complement(Z[m]). According to this definition,
each offset is computed from the prior one by n-bit addition of
L. The complement(Z[m]) can be replaced by -Z[m] mod p,
which is nearly the same thing (the two differ by a constant, 1,
and this difference is irrelevant).

Alternatively, for i1, one could define Z[i]=iR mod p, so
that each offset is obtained from the prior one by n-bit addi-
tion of R instead of L.

When defining offsets using addition modulo p, the xor
operations used to combine a message block and an offset,
and then used to combine a block-cipher output and an offset,
could be replaced by mod p addition. However, this does not
seem to be essential.

An efficiency improvement can be made to the mod p
schemes for offset production: define Z[i] not as (Z[i-1]+L)
mod p, where an implementation would always have to check
if the sum is p or larger, but by doing the (mod p)-reduction in
a “lazy” manner, according to the carry bit produced by
computer addition. Namely, form Z[i] by computer addition
of n-bit numbers L and Z[i-1]. If the addition generates a
carry bit, then add into the sum the number 8=2"-p. This
method results in Z[i] being equal to one of two possible
values: (iL.+R) mod p, or p+((iL.+R) mod p). The latter is only
a possibility in (rare) case that the indicated sum is less than

20

25

30

35

40

45

50

55

60

65

18

2". Thus the sequence of offsets is not little changed, yet an
implementation is more efficient since it only has to make an
adjustment to the computer-addition sum when a carry is
generated. The carry will typically be computed “for free” in
a modem processor. We call this method of offset production
lazy mod p addition.

Lazy mod p addition also works as a modification to the
Z[i]=R mod p method; namely, define Z[1]=R and Z[i]=(Z
[i-1]+R) mod 2n if the indicated computer addition does not
generate a carry, and define Z[i]=(Z[i-1]+R+d) mod 2" if the
first addition does generate a carry.

Other variants of OCB change minor details in the structure
of the algorithm. For example, the value L-x~* used in form-
ing the PrePad can be replaced by the value L>>1. These two
possibilities are nearly the same thing: recall that L-x* is
actually equal to L>>1 if L. ends in a O bit, and, if L ends in a
1 bit, Lx~* differs from L>>1 by a fixed constant. Thus there
is no practical difference between L-x™' and L>>1. This is
exactly analogous to the use of —A mod p verses complement
(A) in an addition mod p based scheme; or —A mod 2" verses
complement(A) in an addition mod 2” based scheme.

More structural changes can be made to OCB while pre-
serving its basic ideas. The intuition for the manner in which
OCB processes the final fragment and then produces the tag is
to ensure that the PreFullTag appreciably depends not only on
the message blocks, but also on (a) the message fragment/
ciphertext fragment, and (b) the length of the message. As an
example alternative, one might change the Z[-m] offset to
Z[m], and change the Z[m] offset to Z[-m].

It is even possible to allow PreFullTag to inadequately
depend on the message fragment/ciphertext fragment, as long
as this dependency is realized in the FullTag itself. An
example of such an OCB variant is shown in FIG. 5. In that
variant, Pad does not depend on the bit length of M[m], but
only on the block length of M. The checksum is defined
differently from before; it is now defined by Checksum=M
[11D . . . DM[m-1]Ppad(M[m]), where pad(A)=A if A isn
bits long and pad(A)=Al10™"*"" otherwise. With such a
scheme, PreFullTag would seem to inadequately depend on
the message; for example, 17 and 1" give rise to identical
checksums, as well as ciphertext cores that differ by just one
bit. So if the authentication tag were taken to be FullTag®, the
scheme would be insecure. To differentiate pairs of strings
like 17 and 1"', the scheme of FIG. 5 modifies the value
FullTag*=E .(PreFullTag) by xoring it with one of two dif-
ferent offsets, 0 or Z[m+1]. The first offset is used if the
message fragment is n bits long (so no padding was appended
to the message fragment when forming the checksum), while
the second offset is used when the message fragment has
fewer than n bits (so 10* padding was appended to it when
forming the checksum). Now strings such as 17 and 1" will
give rise to the same FullTag™* but different FullTag values.

Many other correct variants of OCB are possible, as a
person skilled in the art will now be able to discern.

A variant in a different direction is to facilitate the efficient
processing of associated-data. Associated-data refers to
information which the Receiver would like to ensure that he
shares (in identical form) with the Sender, but where this
information is not a part of the message that is being
encrypted. Such information is usually non-secret, and it is
usually held static during the course of a session (that is, all
messages encrypted using a given key will usually share the
same associated-data). The associated-data is a vector of
strings AD, or it is a single string AD that encodes such a
vector of strings.

An authenticated-encryption scheme that permits associ-
ated-data can be regarded as an authenticated-encryption

US 7,949,129 B2

19

scheme in which there is an extra argument, AD, supplied to
both the encryption function E and the decryption function D.
The Sender encrypts using E (Nonce, AD, M) while the
Receiver decrypts using D (Nonce, AD, C). If the Receiver
supplies an AD-value which is different from the one which
the Sender used, the ciphertext C, on decryption, will almost
certainly be regarded as invalid.

A method to allow for associated-data that will be obvious
to those skilled in the art is to have the Sender encode AD
along with the message M, obtaining an augmented message
M, and then have the Sender encrypt M', with authenticity,
using an authenticated-encryption scheme. But this method is
inefficient, insofar as the ciphertext C' that one obtains is
longer than a ciphertext C would be for M. The increase in
length is by an amount proportional to the length of AD. Also,
extra processing time is needed to encrypt and to decrypt
(even when AD is held constant across many messages).

The inventive methods permit more efficient processing of
associated-data than what is described above. We illustrate
the method for encryption under OCB,- (Nonce, AD, M). Let
F be a function of the key K and the associated-data AD. The
inventive method begins by computing A=F(AD). In a first
technique, ciphertext OCB (Nonce, AD, M) is then defined
as OCB, (Nonce, M). In an alternative technique, the cipher-
text OCB (Nonce, AD, M) is defined as OCB. (Nonce® A,
M). In yet another alternative, ciphertext OCB,- (Nonce, AD,
M) is defined as (C, Tag & A), where (C,T)=OCB, (Nonce,
M). Decryption proceeds according to the obvious associated
algorithm, as those skilled in the relevant art will infer. Other
ways to modify the process of computing ciphertexts under
OCBj (Nonce, M) which make use of A will be apparent to
those skilled in the relevant art.

The inventive method has the advantage that the ciphertext
is not lengthened because of the presence of the associated-
data, and the processing time is not significantly increased,
assuming that A has been pre-computed.

The description of the inventive method uses one key K for
both Fz(*) and OCBK (*,¢). This is advantageous, but two
separate keys may of course be used instead.

There are many options for realizing the function F used
above. For example, F may be the CBC MAC described
earlier. Alternatively, F may be obtained from a cryptographic
hash function, or from a universal hash function.

There are also many options for realizing the encoding of a
vector of strings AD into a string AD. For example, one can
concatenate an encoding of each string in the vector of strings,
where the encoding of each string in the vector of strings
consists of a fixed-byte encoding of the string’s length, fol-
lowed by the string itself.

The associated-data techniques we have described are
applicable to any authenticated-encryption scheme, without
restriction. The technique can be used in conjunction with the
other inventive teachings, or the technique can be used inde-
pendently. Its use in conjunction with other inventive teach-
ings does not limit the scope of those teachings, and mecha-
nisms which allow the presence of associated-data should be
understood as covered by claims which do not explicitly refer
to the presence of associated-data.

Description of OCB in Terms of a Tweakable Block Cipher

A convenient way to conceptualize OCB is in terms of a
tweakable block cipher, a notion suggested by Richard
Schroeppel in his paper The hasty pudding cipher, which was
submitted to the National Institute of Standards and Technol-
ogy (NIST) in 1998 as an Advanced Encryption Standard
(AES) candidate and is available on a NIST web page. The
notion of a tweakable block cipher was later named and
studied by Liskov, Rivest, and Wagner in their paper Tweak-

20

25

30

35

40

45

50

55

60

65

20
able block ciphers, published in Advances in Cryptolog-
CRYPTO 2002, Lecture Notes in Computer Science, vol.
2442, Springer-Verlag, 2002, who also pointed out the utility
of the concept in understanding the workings of OCB.

A tweakable block cipher E (bold E) is like an ordinary
block cipher E except that it takes one further argument, the
tweak. The tweak was originally called the spice in Schroep-
pel’s paper. A tweakable block cipher E thus takes three
values as input: a key K, a tweak T, and a plaintext block X
having some fixed number n of bits. The output is a ciphertext
block Y=E(K,T, X) having n bits. The block length will usu-
ally be n=64 or n=128 bits. It is required that for each key K
and tweak T, the function E(K,T,*) is a permutation on the set
of n-bit strings. For a tweakable block cipher to be deemed
good it is necessary that as the tweaks T vary, the different
block ciphers named by each tweak act independently from
one another; it is as though each tweak T specifies its own
different version of the block cipher. The space of allowed
tweaks depends on the tweakable block cipher E.

We now describe OCB in terms of a tweakable block
cipher, the mechanism that we call OCB-from-a-tweakable-
block-cipher. See FIG. 11, where encryption under OCB-
from-a-tweakable-block-cipher utilizes a tweakable block
cipher E that takes tweaks that are triples of values. In the
figure, the tweak T for the blockcipher E is written as a
superscript to E and the key K of E is written as a subscript.
The first component in E’s tweak is the nonce Nonce. This
nonce would typically be an n-bit string. It need not be a
counter or a random value; it may be any value that, with high
probability, is used at most once during a session. The second
component in E’s tweak is an integer index. The minimal
value for this index is 1 and the maximal possible value m,,, ,,
is the length of the longest message that can be encrypted with
the scheme, measured in n-bit blocks. The third component of
the tweak is 0, 1, or 2.

To encrypt a message M using a key K and nonce Nonce,
the message is first partitioned into M[1] .. . M[m] where each
block MJi] has n bits except for the last block M[m], which
may be shorter. The final block M[m] is called the message
fragment. For each position i between 1 and m-1, plaintext
block M[i] is encrypted into a ciphertext block C[i] by apply-
ing the tweakable block cipher E to M[1i], the tweakable block
cipher keyed by K and tweaked by (Nonce, 1,0). To encrypt
the message fragment M[m], the tweakable block cipher E is
first applied to the n-bit string that encodes the length of
M[m], the tweakable block cipher E keyed by K and tweaked
by (Nonce, m, 1). The result of this tweakable block cipher
call is an n-bit string Pad, the IM[m]I-bit prefix of which is
xored with M[m] to obtain the ciphertext fragment C[m].
Next an n-bit string Checksum is computed by xoring
together M[1], ..., M[m-1], Pad, and C[m]0*, the last string
denoting, as before, C[m] with enough 0-bits appended at the
end to bring the resulting string to n bits. The tweakable block
cipher E is applied to Checksum to obtain the authentication
tag FullTag, this invocation of the tweakable block cipher
keyed by K and tweaked by the triple (Nonce, m, 2). The
string FullTag is then modified by xoring in the n-bit string
Auth that results from applying a pseudorandom function F,
keyed by K, to associated-data AD and then truncating the
result to some desired number t of bits, obtaining an authen-
tication tag Tag. The final ciphertext is C=C[1] . . . C[m] Tag,
which is transmitted along with the nonce Nonce and the
associated-data AD to the receiver. The portion C[1] . .. C[m]
of C is called the ciphertext core. It’s length is the same length
as M=M[1] ... M|m] even when M[m] has fewer than n bits.
(Obviously padding M would not obtain this property.) The
receiver recovers the message M from C in the natural way,

US 7,949,129 B2

21

making sure to check that the tag Tag that is received is the tag
that is expected for this ciphertext, given the nonce and the
associated-data.

There are many ways to realize OCB-from-a-tweakable-
block-cipher using a conventional block cipher E. Each way
requires constructing the needed tweakable block cipher E
from a conventional block cipher E. Our prior definition of
OCB corresponds to implementing E from E according to:

E(K, (Nonce, i, 0), X)=ADE (XDA) and

B(K, (Nonce, i, 1), X)=E (XPADBLx*) and

E(K, (Nonce, i, 2), X)=FE(XDA) if j=2, where

A=y, LR and R=E, (Nonce) and L=E,(0). Recall that -
denotes multiplication in the finite field with 2" elements,
while y, denotes the i”* string in a Gray-code-ordered
sequence of strings. Thus the OCB mechanisms specified
earlier is the particular instantiation of OCB-from-a-tweak-
able-block-cipher.

An alternative instantiation of the tweakable block cipher E
from a conventional block cipher E is to set

E(K, (Nonce, i, 0), X)=ADPE(XPA) where A=2"L and
L=E(Nonce),

E(K, (Nonce, i, 1), X)=E(XDA) where A=2"1, and L=E
(Nonce), and

B(K, (Nonce, i, 2), X)=E(XPA) where A=2"-3-1, and
L=E(Nonce).

We emphasize that the - operator is not multiplication of
integers but multiplication in the field with 2” elements. The
2'- operation is carried out by repeatedly doing left shifts and
a conditional xors (a total of i times). Multiplication by 3
(the -3 operation) is a left shift, a conditional xor, and then an
XOr.

In FIG. 12 we describe the above instantiation of OCB-
from-a-tweakable-block-cipher in terms of the conventional
block cipher E from which E was built. We call the algorithm
OCB 2.0. The party that encrypts has a plaintext message
M=M][1] ... M[m] where each M[i] is n bits except for the

20

25

30

22

message fragment M[m], which may have fewer than n bits.
The party that wants to encrypt M also has an n-bit nonce
Nonce and a key K for the conventional n-bit block cipher E,
and it has associated-data AD. An initial offset A is computed
as A=E (Nonce). Then, for each i between 1 and m-1, the
following is done: replace A by 2-A, the latter computed using
a shift and a conditional xor, and let C[i] be computed as
Cli]=E(M[i]PAYPA. When all m-1 full blocks are pro-
cessed the value A is again replaced by 2'A and C[m] is
obtained by xoring M[m] with the first IM[m]| bits of Pad=E
(IM[m]IPA). Next the string Checksum is computed by xor-
ing together C[1], . .., C[m-1], Pad, and C[m]0*. Replace A
by 3-A. The string FullTag=E z(Checksum €A) is now com-
puted. This value is xored with Auth=F .(AD) and then trun-
cated to t bits to get the tag Tag. The ciphertext is C=
C[1] ... C|m] Tag. This is transmitted along with the nonce
Nonce and the associated-data AD. Decryption proceeds in
the natural way. The encryption and decryption algorithms
are specified textually in Table 3.

The main advantage of OCB 2.0 over OCB is that offset
computation is simpler, with each offset being computed
from the prior one by a shift and conditional xor (the last
offset requires one extra xor). Each offset computation is
therefore constant time and can be implemented with very
simple hardware or software. In addition, OCB 2.0 accom-
modates associated-data, this being handled in a particularly
efficient way (near zero per-message cost when associated-
data is held fixed). Other efficiency characteristics of OCB
and OCB 2.0 are the same; in particular, potentially expensive
multiplication in the ring of integers modulo 2” is avoided;
messages of arbitrary bit length can be encrypted and the
resulting ciphertext core C[1] . . . C[m] will always have
identical length as the plaintext M[1] . . . M[m]; a single key
is used for all block-cipher invocations; and no random num-
bers or counters are employed—an arbitrary nonce is suffi-
cient.

TABLE 3

OCB2-Encrypt g (Nonce, AD, M)
Partition M into M[1] ... M[m]

A = Ex(Nonce)
fori=1to m-1do
A=2-A

Cli] = Ex(M[i] B A) B A

A=2-A

Pad = Eg(len(M[m]) B A)

C[m] = Pad €& M[m]
C=C[1] ... C[m]

//'1C [m] |= IM[m] |; use Pad bits 1../M[m] |
// Ciphertext core

Checksum = M[1] & ... @ M[m~1] € C[m] 0* € Pad

A=3-A

FullTag = Eg (Checksum & A)

Auth = Fz (AD)

// A pseudorandom function like PMAC

Tag = (FullTag € Auth) [first t bits]

return C || Tag

// The final ciphertext, C

OCB2-Decrypty (Nonce, AD, C)
Partition C into C[1] ... C[m] Tag

A = Ex(Nonce)
fori=1to m-1do
A=2-A

M[i] = Eg L (C[i] B A) B A

A=2-A

Pad = Eg(len(M[m]) B A)

M[m] = Pad & C[m]
M = M[1] ... M[m]

// IM[m]|=IC[m]|; use Pad bits 1../C[m]|

Checksum = M[1] & ... @ M[m~-1] & C[m]0* & Pad

A=3-A

FullTag = Eg (Checksum D A)

Auth = Fz (AD)

// A pseudorandom function like PMAC

Tag' = (FullTag € Auth) [first t bits]
if Tag=Tag' then return M else return invalid

US 7,949,129 B2

23

Execution Vehicles

The encryption and the decryption process used by the
present invention may reside, without restriction, in software,
firmware, or in hardware. The execution vehicle might be a
computer CPU, such as those manufactured by Intel Corpo-
ration and used within personal computers. Alternatively, the
process may be performed within dedicated hardware, as
would typically be found in a cell phone or a wireless LAN
communications card or the hardware associated to the
Access Point in a wireless LAN. The process might be
embedded in the special-purpose hardware of a high-perfor-
mance encryption engine. The process may be performed by
a PDA (personal digital assistant), such as a Palm Pilot®. In
general, any engine capable of performing a complex
sequence of instructions and needing to provide a privacy and
authenticity service is an appropriate execution vehicle for
the invention.

The various processing routines that comprise the present
invention may reside on the same host machine or on different
host machines interconnected over a network (e.g., the Inter-
net, an intranet, a wide area network (WAN), or local area
network (LAN)). Thus, for example, the encryption of a mes-
sage may be performed on one machine, with the associated
decryption performed on another machine, the two commu-
nicating over a wired or wireless LAN. In such a case, a
machine running the present invention would have appropri-
ate networking hardware to establish a connection to another
machine in a conventional manner. Though we speak of a
Sender and a Receiver performing encryption and decryption,
respectively, in some settings (such as file encryption) the
Sender and Receiver are a single entity, at different points in
time.

The foregoing descriptions of embodiments of the present
invention have been presented for purposes of illustration and
description only. They are not intended to be exhaustive or to
limit the present invention to the forms disclosed. Accord-
ingly, many modifications and variations will be apparent to
practitioners skilled in the art. Additionally, the above disclo-
sure is not intended to limit the present invention. The scope
of the present invention is defined by the appended claims.

What is claimed is:

1. A computer-implemented authenticated-encryption
method that provides for associated-data, the method depend-
ing on a pseudorandom function and an authenticated-en-
cryption method that does not provide for associated-data,
wherein encryption of a message into a ciphertext is achieved
by:

encrypting the message with the authenticated-encryption

method that does not provide for an associated data to
determine a ciphertext core and an authentication tag;

applying the pseudorandom function to the associated-data
to determine an associated-data authenticator; and

defining the ciphertext to be the ciphertext core together
with an xor of the authentication tag and the associated-
data authenticator.

2. A computer-implemented authenticated-encryption
method that provides for associated-data, the method depend-
ing on an authenticated-encryption method that does not pro-
vide for associated-data, wherein encryption of a message
into a ciphertext is achieved by:

10

20

25

30

35

40

45

50

55

60

65

24

encrypting the message with the authenticated-encryption
method that does not provide for an associated data to
determine an initial ciphertext;

applying the pseudorandom function to the associated-data

to determine an associated-data authenticator;
selecting a portion of the initial ciphertext;

modifying said portion of the initial ciphertext by xoring it

with the associated-data authenticator; and

defining the result as the ciphertext.

3. A computer-implemented authenticated-encryption
method that provides for associated-data, the method depend-
ing on an authenticated-encryption method that does not pro-
vide for associated-data, wherein encryption of a message
into a ciphertext is achieved by:

encrypting the message with the authenticated-encryption

method that does not provide for an associated data to
determine an initial ciphertext;

applying the pseudorandom function to the associated-data

to determine an associated-data authenticator; and
modifying the initial ciphertext with the associated-data
authenticator to create the ciphertext.

4. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform an authenticated-encryption method
that provides for associated-data, the method depending on a
pseudorandom function and an authenticated-encryption
method that does not provide for associated-data, wherein
encryption of a message into a ciphertext is achieved by:

encrypting the message with the authenticated-encryption

method that does not provide for an associated data to
determine a ciphertext core and an authentication tag;
applying the pseudorandom function to the associated-data
to determine an associated-data authenticator; and
defining the ciphertext to be the ciphertext core together
with an xor of the authentication tag and the associated-
data authenticator.

5. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform an authenticated-encryption method
that provides for associated-data, the method depending on an
authenticated-encryption method that does not provide for
associated-data, wherein encryption of a message into a
ciphertext is achieved by:

encrypting the message with the authenticated-encryption

method that does not provide for an associated data to
determine an initial ciphertext;

applying the pseudorandom function to the associated-data

to determine an associated-data authenticator;
selecting a portion of the initial ciphertext;

modifying said portion of the initial ciphertext by xoring it

with the associated-data authenticator; and

defining the result as the ciphertext.

6. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform an authenticated-encryption method
that provides for associated-data, the method depending on an
authenticated-encryption method that does not provide for
associated-data, wherein encryption of a message into a
ciphertext is achieved by:

encrypting the message with the authenticated-encryption

method that does not provide for an associated data to
determine an initial ciphertext;

applying the pseudorandom function to the associated-data

to determine an associated-data authenticator; and
modifying the initial ciphertext with the associated-data
authenticator to create the ciphertext.

US 7,949,129 B2

25

7. A circuit to perform authenticated-encryption that pro-
vides for associated-data, the circuit comprising:
circuitry to encrypt a message using an authenticated-en-
cryption technique to obtain a ciphertext core and an
authentication tag, wherein the authenticated-encryp-
tion technique does not provide for an associated-data;
circuitry to apply a pseudorandom function to the associ-
ated-data to obtain an associated-data authenticator; and
circuitry to create ciphertext, wherein the ciphertext is the
ciphertext core together with an xor of the authentication
tag and the associated-data authenticator.
8. The circuit of claim 7, wherein the circuit is an applica-
tion-specific integrated circuit (ASIC).
9. The circuit of claim 7, wherein the circuit is a field-
programmable gate array (FPGA).

26

10. A circuit to perform authenticated-encryption that pro-
vides for associated-data, comprising:
circuitry to encrypt a message with an authenticated-en-
cryption technique to determine an initial ciphertext,
wherein the authenticated-encryption techmque does
not provide for an associated data;
circuitry to apply a pseudorandom function to the associ-
ated-data to obtain an associated-data authenticator; and
circuitry to modify the initial ciphertext with the associ-
ated-data authenticator to create ciphertext.
11. The circuit of claim 10, wherein the circuit is an appli-
cation-specific integrated circuit (ASIC).
12. The circuit of claim 10, wherein the circuit is a field-
programmable gate array (FPGA).

#* #* #* #* #*

