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Abstract—Static bug detectors aim at helping developers to
automatically find and prevent bugs. In this experience paper,
we study the effectiveness of static bug detectors at identifying
Null Pointer Dereferences or Null Pointer Exceptions (NPEs).
NPEs pervade all programming domains from systems to web
development. Specifically, our study measures the effectiveness of
five Java static bug detectors: CheckerFramework, ERADICATE,
INFER, NULLAWAY, and SPOTBUGS. We conduct our study on
102 real-world and reproducible NPEs from 42 open-source
projects found in the BUGSWARM and DEFECTS4J datasets. We
apply two known methods to determine whether a bug is found by
a given tool, and introduce two new methods that leverage stack
trace and code coverage information. Additionally, we provide a
categorization of the tool’s capabilities and the bug characteristics
to better understand the strengths and weaknesses of the tools.
Overall, the tools under study only find 30 out of 102 bugs
(29.4%), with the majority found by ERADICATE. Based on our
observations, we identify and discuss opportunities to make the
tools more effective and useful.

Index Terms—static bug detectors, null pointer exceptions, null
pointer dereferences, bug finding, BugSwarm, Defects4J, Java

I. INTRODUCTION

Defects in software are a common and troublesome fact

of programming. Software defects can cause programs to

crash, lose or corrupt data, suffer from security vulnerabilities,

among other problems. Depending on the application domain,

undesirable behavior can range from poor user experience to

more severe consequences in mission critical applications [44].

Testing to uncover such software defects remains one of the

most expensive tasks in the software development cycle [31].

There is a need for both precision and scalability when

finding defects in real-world code. Furthermore, in an effort

to increase their applicability, static bug detectors are often

designed to target a large variety of software bugs. Many

static bug detectors [2, 5, 7, 9, 10, 13–16] are currently being

developed in industry and academia. Even with many tools to

choose from, developers have some hesitation in using static

bug detectors for a variety of reasons such as large number of

bug warnings, high false positive rates, and inadequate warning

messages [18, 26].

Previous studies have evaluated static bug detectors through

various metrics: number of warnings [35], number of false

negatives [38], tool performance [35], and recall [20, 41].

These studies have focused on popular tools that identify

a large number of bug patterns, and their conclusions are

drawn with respect to the overall bug-finding capabilities of

the tools. In contrast, this paper evaluates static bug detectors

with respect to their effectiveness at finding a common and

serious kind of bug: Null Pointer Dereferences or Null Pointer

Exceptions (NPEs).

NPEs pervade all programming domains from systems

software to web development. For instance, as of August

2021, there are over 1,900 CVEs (Common Vulnerabilities and

Exposures) that involve NPEs [3]. One such CVE describes

a denial of service attack in early versions of Java (1.3 and

1.4) caused by crashing the Java Virtual Machine when calling

a function with a null parameter [1]. In general, NPEs are

problematic in memory-unsafe and object-oriented languages.

NPEs occur when either a pointer to a memory location or an

object is dereferenced while being uninitialized or explicitly

set to null. Depending on the programming language, NPEs

will result in either undefined behavior or a runtime exception.

This experience paper evaluates recall of static bug detectors

with respect to a known set of real NPE bugs. The focus

on NPEs allows to present an in-depth study of different

approaches to find a same kind of bug, the characteristics of

real-world NPEs, and the reasons that affect tool effectiveness.

To the best of our knowledge, this is the first study on the real-
world effectiveness of static bugs detectors at finding NPEs.

There are two orthogonal approaches to finding or prevent-

ing NPEs, which make use of either a static bug detector or

a type-based null safety checker. The former uses dataflow

analysis [6, 10, 23, 29, 30, 32, 34] to find null dereferences.

Such approaches mainly differ on the complexity of their

analyses. Some favor analysis scalability at the expense of

missing real bugs and/or producing numerous false positives,

e.g., intra/interprocedural and field sensitivity. The latter pre-
vents NPEs via a type system with null-related information

using dataflow analysis for type refinement. The type checker

approach has been adopted in recent years [4, 14, 19, 33].

We study two popular Java static bug detectors: INFER

[6, 15–17] and SPOTBUGS [10], and three popular type-

based null safety checkers for Java: Checker Framework’s

Nullness Checker (CFNULLNESS) [19, 33], ERADICATE [4],

and NULLAWAY [8, 14]. INFER uses separation logic and

bi-abduction analysis [16] to infer pre/post conditions from

procedures affecting memory. SPOTBUGS detects bugs based

on a predefined set of bug patterns. CFNULLNESS verifies
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Fig. 1: Workflow for running tools, collecting reports, parsing results, and analyzing data.

the absence of NPEs via type checking nullable expression

dereferences and assignments. ERADICATE is a type checker

that performs flow-sensitive analysis to find possible null

dereferences. Finally, NULLAWAY uses dataflow analysis to

type check nullability in procedures and class fields.

In this study, we consider 102 real-world and reproducible
NPEs found across 42 popular open-source Java projects. 76

of these NPEs belong to the BUGSWARM dataset [42] while

the remaining 26 are from DEFECTS4J [27]. For each NPE,

both datasets provide buggy and fixed versions of the programs

along with scripts for compilation and testing. Furthermore,

each program has a failing test due to an NPE. This makes both

the BUGSWARM and DEFECTS4J datasets good candidates for

this study; we want to run existing static bug detectors and type

checkers on these programs to determine their effectiveness at

detecting and preventing real NPEs.

The first challenge is to determine whether a tool finds or

prevents a specific NPE bug. Tools may report the program

location at which the null dereference occurs, or simply the

location where the null value originates, which can be far

from the dereference. The latter is particularly difficult to

associate with the bug fix, which is often applied closer to the

dereference site. Another difficulty lies in the large number of

warnings to inspect. On average a tool produces from 122 to

1,307 bug warnings per program (in our dataset).

Previous work has partially automated the process of map-

ping bugs to warnings based on static information such as the

code difference (diff) between buggy and fixed versions [20,

38], and by comparing the warnings produced for each version

of the program [20]. In this paper, we observe that dynamic
information can also be leveraged when an input exposing the

NPE bug is available, which is the case for all the bugs in our

dataset. We present two new mapping methods for NPEs that

use (1) stack trace information, and (2) code coverage of tests

that fail due to NPEs. Our experimental evaluation shows that

these methods complement previous approaches.

We run CFNULLNESS, ERADICATE, INFER, NULLAWAY,

and SPOTBUGS on our dataset of 102 real NPEs. We find

that the tools produce a large number of warnings, including

over 500,000 NPE warnings across all programs. We apply

existing approaches, and our new methods, to identify the

warnings that describe the bugs under study. Ultimately, we

find that the tools detect only 30 out of 102 bugs (29.4%),

with ERADICATE finding the majority of these.

The second challenge is to understand the reasons why
tools fail to find NPEs to identify opportunities to improve

their real-world effectiveness. This requires understanding the

capabilities of the tools under study as well as the charac-

teristics of the NPE bugs in our dataset. First, we conduct

a detailed analysis of the tools’ capabilities with respect to

well-known program-analysis properties (e.g., flow sensitivity,

context sensitivity, etc.), and we identify common sources of

unsoundness. This process required us to manually inspect the

source code of the tools and write tests. All of our findings

were later confirmed by tool developers. Second, we manually

inspect and categorize each NPE bug in the dataset with

respect to the nature of the dereference and its context. Based

on the tool results, and the tool and bug characterizations,

we identify several open opportunities to improve static bug

detectors that find NPEs.

The contributions of this paper are:

• We present two new methods that leverage dynamic infor-

mation to map tool warnings to NPE bugs (Section II).

• We provide a categorization of the tool’s capabilities and

the bug characteristics to better understand the strengths

and weaknesses of the tools under study (Section III).

• We evaluate CFNULLNESS, ERADICATE, INFER, NULL-

AWAY, and SPOTBUGS on a collection of 102 NPEs, from

which only 29.4% of NPE bugs are detected (Section IV).

• We discuss the capabilities and limitations of each tool,

and provide future directions for improving their real-

world effectiveness (Section V).

II. METHODOLOGY

Here we describe the benchmark and tool selection, and

the methodology to determine the effectiveness of the tools at

finding NPEs. Figure 1 shows the main steps of our approach.

A. Benchmark Selection

Our study focuses on Null Pointer Exceptions (NPEs). We

consider bugs from the BUGSWARM and DEFECTS4J datasets,

both of which provide a bug classification based on runtime

exceptions. Our selection criteria is: (1) the bug is due to an

NPE, (2) there is a failing test due to the NPE, and (3) code

coverage can be measured. Additionally, we control for unique

builds when selecting BUGSWARM bugs. Our final dataset
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consists of 76 NPE bugs from the BUGSWARM dataset and

26 from DEFECTS4J. The BUGSWARM NPE bugs belong

to 32 Java projects hosted on GitHub that use the Maven

build system, while the DEFECTS4J bugs belong to 10 Java

projects that use the Ant build system. Note that all NPEs are

reproducible, i.e., one can run the programs and observe a Null

Pointer Exception being thrown. Furthermore, we manually
verified that each NPE bug in our study is an actual NPE, i.e.,

a null object is eventually dereferenced. Each NPE instance

consists of the source code that contains the bug, the source

code that fixes the bug, and scripts to compile and test.

B. Tool Selection and Configuration

We conducted an extensive search for tools that find or

prevent NPE bugs in Java projects. We focused on publicly

available tools that are standalone and under active devel-

opment. Out of nine tools, four [29, 30, 32, 34] did not

satisfy at least one of these requirements. In this paper we

study the remaining five tools: CFNULLNESS, ERADICATE,

INFER, NULLAWAY, and SPOTBUGS. Note that INFER and

SPOTBUGS find a large variety of bugs in addition to NPE

bugs. CFNULLNESS, ERADICATE, and NULLAWAY exclu-

sively specialize in NPEs. Below we describe each tool.

a) CFNULLNESS: A type checker written using the

Checker Framework, which is available as a compiler plu-

gin. CFNULLNESS works with nullness type annotations,

@Nullable and @NotNull, and looks for violations in their

use. Namely looking for dereferences on @Nullable expres-

sions and for @Nullable-value assignments to @NotNull
variables. CFNULLNESS produces compile-time warnings. We

run CFNULLNESS using its default configuration.

b) ERADICATE: A type checker part of the INFER static-

analysis suite. ERADICATE type checks for @Nullable
annotations in Java programs by performing a flow-sensitive

analysis to propagate null-related information through assign-

ments and calls. ERADICATE produces warnings for accesses

that could lead to an NPE. ERADICATE produces a report

in JSON format that provides the stack trace, severity, and

source location associated with each bug detected. We run

ERADICATE using its default configuration.

c) INFER: A static-analysis tool developed by Facebook

that finds a variety of bugs in Java, C/C++, and Objective-

C programs. INFER uses bi-abduction analysis to find bugs

including deadlocks, memory leaks, and null pointer deref-

erences. Similar to ERADICATE, INFER produces a report in

JSON format that provides the stack trace, severity, and bug

location. We use INFER’s default setting, which runs the bi-

abduction analysis.

d) NULLAWAY: A type checker for Java developed by

Uber that applies various AST-based checkers to find NPE

bugs. NULLAWAY is available as a plugin for Maven and

Gradle. We use NULLAWAY’s default configuration, which

assumes that unannotated method parameters, return values,

and class fields are not null. In such cases, the tool produces

a warning when it is found that any of those locations could

hold a null value. The user can add explicit @Nullable
annotations to obtain more precise results.

e) SPOTBUGS: SPOTBUGS applies pattern matching and

limited dataflow analysis to find a large variety of bugs

such as infinite recursion, integer overflows, and null pointer

dereferences. The tool produces an XML report listing bug

warnings that include class name, method name, severity, and

line numbers associated with the identified bug. SPOTBUGS

is available as a plugin for a variety of build systems such

as Ant, Gradle, and Maven. We run SPOTBUGS with effort

level “max”, which indicates that SPOTBUGS performs its

interprocedural analysis. Also, we use two different error con-

fidence threshold settings “low” and “high” (“low” confidence

threshold may report a higher number of false positives).

C. Analysis of NPE Warnings

A challenge in this study is to determine whether a tool finds

or prevents a specific NPE bug. In the case of NPEs, tools

may report the program location at which the null dereference

occurs, or simply report the location where the null value

originates, which can be far from the dereference. The latter

is particularly difficult to associate with the bug fix, which is

often applied closer to the dereference site.

We consider four approaches for mapping bug warnings to

actual bugs in the source code, i.e., determine whether a tool

finds a given bug under study. Two of these approaches have

been used in previous work: the CODE DIFF METHOD [20, 38]

and the REPORT DIFF METHOD [20]. We explore two new

approaches, which we refer to as the STACK TRACE METHOD

and the COVERAGE METHOD.

Figure 2 shows an example of an NPE found in the

OpenPnP1 GitHub project as part of the BugSwarm dataset.2

Method saveDebugImage is called on Line 8 of file

OpenCvVisionProvider.java (see Figure 2b), where

argument debugMat is null. Method saveDebugImage
in file OpenCvUtils.java calls toBufferedImage on

Line 6 (see Figure 2a), passing in null, which is then

dereferenced on Line 11. The code highlighted (in green)

represents the patch to fix the NPE. Figure 2e shows the stack

trace, and Figures 2c and 2d show the warnings produced by

SPOTBUGS and INFER, respectively.

1) CODE DIFF METHOD: This method takes as input the

set of warnings reported for the buggy program and the set of

patches from the GitHub code diff.3 The analysis focuses on

NPE bug warnings, and checks whether the source location of

these warnings overlaps with the lines changed in the patches.

However, this is based on an over-approximation; the lowest

and highest line numbers associated with the patch in each

changed file are considered.4 If an overlapping line is found,

then the warning is considered a bug candidate. We manually

examine bug candidates to verify their validity.

1https://github.com/openpnp/openpnp
2BugSwarm image tag: openpnp-openpnp-213669200.
3A GitHub code diff may consist of several patch fragments.
4Previous work has also added a configurable number of lines before the

starting point and after the ending point of the line range [20].
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@@ -2,6 +2,9 @@ public synchronized static Mat ...
2 2
3 3 }
4 4
5 5 public static void saveDebugImage(..., Mat mat) {

6 + if (mat == null) {
7 + return;
8 + }

6 9 saveDebugImage(...,OpenCvUtils.toBufferedImage(mat));
7 10 ...
8 11 }
9 12
10 13 public static BufferedImage toBufferedImage(Mat m) {
11 14 if (m.type() == CvType.CV_8UCI) {...} // NPE!
12 15 }

(a) GitHub diff in file OpenCvUtils.java.

1 1 public getTemplateMatches(BufferedImage template) {
2 2 ...
3 3 Mat debugMat = null;
4 4 if (LogUtils.isDebugEnabled()) {
5 5 debugMat = imageMat.clone();
6 6 }
7 7 ...
8 8 OpenCvUtils.saveDebugImage(..., debugMat);
9 9 }

(b) Null origin in file OpenCvVisionProvider.java.

<BugInstance rank="8" abbrev="NP" category="
CORRECTNESS" priority="2" type="
NP_NULL_PARAM_DEREF">

<Method classname="org.openpnp.util.
OpenCvUtils" name="saveDebugImage">
<SourceLine classname="org.openpnp.util.
OpenCvUtils" start="6" end="6"
sourcefile="OpenCvUtils.java"/>

(c) SpotBugs XML report.

{"bug_class":"PROVER",
"kind":"ERROR",
"bug_type":"NULL_DEREFERENCE",
"qualifier":"object ‘debugMat‘ last assigned

on line 3 could be null and is
dereferenced by call to ‘saveDebugImage
(...)‘ at line 8.",

"file":"OpenCvVisionProvider.java",
"severity":"HIGH",
...

}

(d) Infer JSON report.

java.lang.NullPointerException
at org.openpnp.util.OpenCvUtils.toBufferedImage(OpenCvUtils.java:11)
at org.openpnp.util.OpenCvUtils.saveDebugImage(OpenCvUtils.java:6)
at org.openpnp.machine.reference.vision.OpenCvVisionProvider.getTemplateMatches(

OpenCvVisionProvider.java:8)
...

(e) Stack trace for buggy program.

Fig. 2: GitHub diff, stack trace, SpotBugs XML report, and Infer JSON report for an NPE found by SPOTBUGSLT and INFER.

Consider the patch in Figure 2a. The line at the top

(starting with @@) indicates that the patch includes orig-

inal lines 2 through 6, and new lines 2 through 9 from

file OpenCvUtils.java. Therefore, the approximated line

range is 2 through 9 for the buggy program, i.e., the

program before the fix. The SPOTBUGS report (see Fig-

ure 2c) includes the XML tag SourceLine: Line 6 of file

OpenCvUtils.java. This location lies within the line

range 2–9, thus the method correctly collects this warning

as a bug candidate. On the other hand, even though INFER

(see Figure 2d) successfully finds the bug, the CODE DIFF

METHOD approach fails to map the warning because the report

does not include lines close to the fix. In this case, using code

diff information is not effective.

2) REPORT DIFF METHOD: This method uses the set of

bug warnings of the buggy program, and the set of warnings

of its fixed version. The algorithm searches for NPE bug warn-

ings that are only reported for the buggy program. The intuition

is that the warning that describes the bug of interest should

not be present in the bug report of the fixed program. Using

this method, both SPOTBUGS and INFER are determined to

have found the bug from Figure 2. This method is convenient

because it only requires two bug reports. However, the absence

of a bug warning in the fixed program does not necessarily

mean that the bug of interest was found. The code change

could have introduced “noise” that leads the tool to conclude

that an unrelated bug warning is no longer a problem. We

observe that this occurs often in practice (see Section IV-B).

3) STACK TRACE METHOD: This approach requires the set

of bug warnings of the buggy program, and the stack trace(s)

produced when running the buggy program. As with previous

methods, this approach only considers warnings related to NPE

bugs. For each NPE warning, the algorithm retrieves the file

and line number(s) associated with the warning, and checks

whether those are included in the stack trace. If so, the warning

is classified as a bug candidate.

Consider again the example from Figure 2. The

SPOTBUGS report (Figure 2c) mentions Line 6 in file

OpenCVUtils.java. The report pinpoints that there is a

null parameter in a recursive call to saveDebugImage,

which could result in an NPE. On the other hand, the IN-

FER report (Figure 2d) lists a warning associated with file

OpenCvVisionProvider.java on Line 8. The call to

saveDebugImage in method getTemplateMatches is

passed debugMat as argument, which could be null and

result in an NPE. Note that INFER refers to a lower stack

frame than SPOTBUGS, but the STACK TRACE METHOD

successfully maps both reports to the same bug because both
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locations can be found in the stack trace (Figure 2e).

The STACK TRACE METHOD takes advantage of the nature

of NPE bugs and their presence in the stack trace. Because

NPE bugs correspond to Null Pointer Exceptions, the call stack

is given at the time the exception occurs. This information is

a valuable resource that leads to a more natural bug mapping

than previous methods. However, this method requires an

executable buggy program and a reproducible NPE. Also, this

method provides a line in the stack trace that can be mapped

to a bug warning, however, this does not necessarily mean

that the tool found the correct dereference; there are long

dereference chains that may be associated with the same line.

Thus, as with previous methods, it is necessary to manually

verify that the trace indeed matches the context of the NPE

warning. We consider all available sources of information such

as source code and code diff during manual inspection.

4) COVERAGE METHOD: This method is a general version

of the STACK TRACE METHOD, but it includes all lines

executed by the test that triggers the NPE. The input is the

set of NPE warnings of the buggy program, and the lines

covered (executed) by a test case that fails due to an NPE.

The approach determines if the source location given in a

warning is covered, in which case the warning is added to

the set of bug candidates. This captures the scenario where

the location of an NPE warning is far away from the actual

dereference, which is particularly useful when analyzing the

warnings produced by type checkers such as NULLAWAY and

ERADICATE. The assumption is that even if the NPE warning

and the actual dereference are located far away from each

other, both source locations will be part of the execution trace.

For example, consider a case in which a field is set to null
in a constructor and the field is dereferenced in some method.

Type checkers may produce a warning related to setting the

field to null, but not a warning describing the dereference

itself. However, in this case, both source locations will be

part of the execution trace. Note that this approach requires

the existence of a failing test that triggers the NPE, and the

ability to execute the test. Both requirements are met for our

dataset. As with other methods, we manually inspect all bug

candidates to determine their validity.

III. BUG AND TOOL CHARACTERIZATION

A fundamental step in evaluating the effectiveness of static

bug detectors is to understand their capabilities, and whether

real-world bugs possess the desired characteristics to be de-

tected. In this section, we characterize the dataset of real

NPEs as well as the tools under study with respect to their

approaches to find NPEs. We describe our methodology and

results, which will be critical in Section IV to determine

whether a given NPE can be found by the tools.

First, we performed a manual categorization of all 102

NPEs to determine the root cause of the null pointer deref-

erences. The categorization was performed separately by an

author of this paper and two people external to the project.

When in disagreement, the inspectors met to reach consensus.
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Fig. 3: Bug Classification Results

Using the source code, the GitHub code diff, and the build

log, we identified the origin of the null value, and its

dereference location. Based on this inspection, we identified

nine general categories of NPEs with respect to what is deref-

erenced, and the context of the dereference. These categories

along with their counts can be found in Figure 3. Note that

an NPE can belong to multiple categories. The most common

categories are when a method return value is dereferenced (32

bugs) and when a field is dereferenced (17 bugs).

As for the tool capabilities, we consider seven well-known

program analysis properties: (1) intraprocedural, (2) interpro-

cedural, (3) flow sensitive, (4) context sensitive, (5) field

sensitive, (6) object sensitive, and (7) path sensitive [11].

We identified seven common sources of unsoundness: (1)

handling of third-party libraries whose source code may not

be available, (2) impure methods that have side effects and

are non-deterministic, (3) concurrency, (4) reasoning about

dynamic dispatch, (5) dealing with code that uses reflection,

(6) field initialization after a constructor is called, and (7)

generic parameters. Unsoundness can lead to false positives

(incorrect bug warnings) and false negatives (missed bugs).

We studied CFNULLNESS, ERADICATE, INFER, NULL-

AWAY, and SPOTBUGS with respect to the above analysis

characteristics and sources of unsoundness. In this process,

we manually inspected the source code and documentation of

the tools, and we wrote kernel test programs that exhibited

different categories of behaviors to confirm tools’ capabilities

and limitations. Table I shows the tool capabilities, and Table II

shows the sources of unsoundness for each tool. Below we

describe our findings for each tool, which were confirmed by

the corresponding developers.

a) CFNULLNESS: An ensemble of three checkers: (1)

an intraprocedural flow-sensitive qualifier inference for the

nullness of a particular object, (2) initialization checking, and

(3) map key checking. It assumes @NonNull for unannotated

code except for locals, and provides an analysis for iterating

over null collections and arrays. Additionally, CFNULLNESS

supports annotations to denote: (1) if a method has no side-

effects or is deterministic, (2) the target of a reflection invo-

cation, (3) and upper bounds of types for generic objects.
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TABLE I: Tool Capabilities Confirmed by Developers. �= has capabilities, �= no capabilities, Partial = limited capabilities.

Tool Intraproc. Interproc. Field Sensitive Context Sensitive Object Sensitive Flow Sensitive Path Sensitive

CFNULLNESS � � � � � � �
ERADICATE � � Partial � � � �
INFER � � � � � � �
NULLAWAY � Partial Partial � N/A Partial Partial
SPOTBUGS � Partial Partial � � Partial Partial

TABLE II: Sources of Unsoundness for the Tools. �= is sound, �= is unsound, Partial = unsound in some aspects.

Tool Third Party Libs. Impure Methods Concurrency Dynamic Dispatch Reflection Field Init. Generic Types

CFNULLNESS � � � � � � �
ERADICATE Partial � � � � Partial �
INFER Partial Partial � Partial � � �
NULLAWAY � � � � � Partial �
SPOTBUGS � � � � � � �

b) ERADICATE: An intraprocedural flow-sensitive anal-

ysis for the propagation of nullability through variable assign-

ments and function calls. ERADICATE also raises an alarm

for accesses to fields that have annotated nullability, however

its field initialization checker is subject to ongoing work.

ERADICATE’s nullability annotations allow for the annotation

of methods, fields, and method parameters with @Nullable
annotations. As detailed in Table II, ERADICATE provides

built-in models of the JDK and Android SDK and supports

user-specified nullability signatures for other third-party li-

braries, which helps mitigate false negatives.

c) INFER: An interprocedural analysis that supports

tracking object aliasing, side effects in methods, and dynamic

types of objects. All our tests were successful when running

INFER, showing that the tool is interprocedural and field

sensitive. A caveat is that INFER does not find uninitialized

fields, but it can find null dereferences to fields that have been

initialized. As shown in Table II, INFER partially supports

third-party libraries via an internal model of the JDK. For

impure methods, INFER tracks some effects in methods, e.g.,

if a method sets this.field = null, the effect will be

tracked at the call site. Tracking dynamic types of objects

is useful to refine the control-flow graph. However, this only

occurs in the context of the entry point of the analysis.

d) NULLAWAY: A flow-sensitive type refinement anal-

ysis to infer nullness of local variables that includes a field

initialization checker. NULLAWAY assumes that unannotated

code cannot be null. For methods, fields, and method parame-

ters annotated with the @Nullable annotation, NULLAWAY

ensures no dereferences, and that their value will not be

assigned to a non-null field or argument. Our tests showed

that NULLAWAY finds local and object field dereferences

without annotations. With annotations, NULLAWAY can find

null dereferences of method parameters and return values.

NULLAWAY is able to avoid dynamic dispatch as a source of

unsoundness by ensuring that methods that are overridden have

the same nullability as its parent’s class. NULLAWAY’s field

initialization is unsound. For example, the analysis does not

check fields that are read by methods called from constructors.

e) SPOTBUGS: A null-pointer analysis inherited from

FINDBUGS [24] that combines forward and backward dataflow

analyses for tracking null values. The analysis provides

limited tracking of object fields; it does not support aliasing

and volatile fields, and it assumes that any method can modify

a field of an object passed as argument. Additionally, SPOT-

BUGS provides a null-related annotation @CheckForNull to

denote values that must be null-checked prior to a dereference.

Our tests confirmed the intraprocedural nature of SPOTBUGS,

however we were unable to expose SPOTBUGS’ field sensi-

tivity. Lastly, SPOTBUGS infers parameter and return value

information intraprocedurally if these are null checked, and it

suffers from all sources of unsoundness as shown in Table II.

IV. EXPERIMENTAL EVALUATION

This experimental evaluation is designed to answer the

following research questions:

RQ1 How prevalent are NPEs among all warnings?

RQ2 How effective are bug mapping methods for NPEs?

RQ3 How effective are static bug detectors for NPEs?

RQ4 What are the reasons bug detectors miss NPEs?

We ran CFNULLNESS, ERADICATE, INFER, NULLAWAY,

and SPOTBUGS on our dataset of 102 programs with real NPE

bugs to generate bug reports for the buggy and fixed versions

of the programs. We ran the tools on the full programs,

and verified that the files relevant to the bug and fix were

indeed analyzed by the tools. We considered two settings for

SPOTBUGS: low and high thresholds. The results are presented

as SPOTBUGSLT and SPOTBUGSHT, respectively. We au-

tomatically parsed the bug reports to extract and normalize

relevant information, which we stored in a MySQL database.

Our study is fully reproducible. The dataset of real re-

producible NPE bugs from BUGSWARM and DEFECTS4J is

publicly available as well as the tools we study. The scripts

for performing the experiments and all data described in this

section is publicly accessible.5

5https://github.com/ucd-plse/Static-Bug-Detectors-ASE-Artifact
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Fig. 4: SPOTBUGSLT, SPOTBUGSHT, and INFER distribution of top 5 warnings.

TABLE III: Number of all warnings and NPE warnings

produced by each tool.“Avg All” and “Avg NPEs” refer to

the average number of warnings produced per program.

Tool All NPEs Avg All Avg NPEs

CFNULLNESS 231,860 231,860 (100%) 1,137 1,137
ERADICATE 266,682 266,682 (100%) 1,307 1,307
INFER 37,035 12,307 (33.2%) 181 60
NULLAWAY 25,065 25,065 (100%) 122 122
SPOTBUGSHT 49,555 8,807 (17.8%) 243 43
SPOTBUGSLT 129,183 22,656 (17.5%) 633 111

A. RQ1: Prevalence of NPE Warnings

Table III shows the total and average number of warnings

produced by each tool when analyzing the programs. There are

a total of 739,380 warnings across the 102 × 2 programs in

our dataset. ERADICATE yields the largest number of warnings

with 266,682, all of which are NPE warnings. Similarly,

CFNULLNESS has the second highest number of NPE warn-

ings with a total of 231,860. SPOTBUGSLT produces the

third highest number of warnings with 129,183 warnings,

and SPOTBUGSHT follows with 49,555 warnings. Unlike

ERADICATE, CFNULLNESS and NULLAWAY, SPOTBUGS can

generate over a hundred different types of non-NPE warnings

while INFER generates seven.

Figure 4 shows the top five types of warnings for SPOT-

BUGSLT, SPOTBUGSHT, and INFER. It is observed that NPEs

are one of the most prevalent warnings for these tools: the most

common for SPOTBUGSLT, and the second most common

for both SPOTBUGSHT and INFER. Indeed, NPEs constitute

from 17.5% to 33.2% of the total warnings produced by

these tools. For SPOTBUGSHT, we observe a reduction in

total number of warnings and NPE warnings with respect to

SPOTBUGSLT of 61.6% and 61.1%, respectively.

Finally, NULLAWAY produces the fewest warnings (all of

them are NPE warnings), with a total of 25,065.

RQ1: NPE warnings are prevalent in all the tools stud-

ied. A total of 567,377 NPE warnings (76.7% of all

warnings) are produced for our dataset. The percentage

of NPE warnings for SPOTBUGSLT is 17.5%, SPOT-

BUGSHT 17.8%, and INFER 33.2%.

TABLE IV: Bugs mapped by each method. We show the

number of correct mappings / the total number of mappings.

Column “Bugs Found” gives the total number of bugs found

per tool. Inside parenthesis are the number of bugs that a tool

found but not others. 30 unique bugs are found across tools.

Method
Tool Code Report Stack Covered Bugs Found

CFNULLNESS 6/56 5/18 7/26 5/56 11 (2)
ERADICATE 10/51 7/24 7/22 8/52 20 (5)
INFER 3/23 2/13 9/12 7/27 10 (1)
NULLAWAY 1/17 0/21 1/4 5/26 5 (2)
SPOTBUGSHT 4/18 4/6 1/5 2/13 4 (0)
SPOTBUGSLT 6/46 6/13 6/12 3/26 9 (1)

Total 30/211 24/95 31/81 30/200 30 Unique

B. RQ2: Effectiveness of Bug Mapping Methods

We applied the four methods discussed in Section II-C to

find whether the tool warnings describe the bugs of interest.

In total, all methods together correctly find 30 distinct bugs

out of 102 bugs (29.4%). All bug candidates were manually

inspected. Table IV summarizes the results.

An effective mapping method is defined as having high

recall and precision. The STACK TRACE METHOD is the most

effective among the four, mapping 31 bugs with a precision

of 38.2%. All the NPEs mapped to a warning were contained

within the STACK TRACE METHOD, except for four. On the

other hand, while the CODE DIFF METHOD and COVERAGE

METHOD produce the largest number of bug candidates across

all tools, they also suffer from the lowest precision, 14.2% and

15.0%, respectively. The REPORT DIFF METHOD mapped the

lowest number of true bugs in comparison to other methods

(24 bugs), but its precision of 25.3% was still higher than that

of the CODE DIFF METHOD and COVERAGE METHOD. The

results show that the four methods are primarily complemen-

tary of each other as they map different types of information.

RQ2: The STACK TRACE METHOD is the most effective

with 81 bug candidates, of which 31 were true bugs

(38.2%). The CODE DIFF METHOD and COVERAGE

METHOD had similar recall than the STACK TRACE

METHOD, but a lower precision of 14.2% and 15.0%,

respectively. The REPORT DIFF METHOD had the lowest

recall but a higher precision than CODE DIFF METHOD

and COVERAGE METHOD.
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1protected Object decode(Channel channel, ...){
2 - if (channel == null) {- if (channel == null) {
3 + if (channel != null) {+ if (channel != null) {
4 channel.write(response, remoteAddress);
5 }
6}

(a) NPE bug found by both SPOTBUGS and ERADICATE.

1public class GrblCntrllr extends AbstractCntrllr {
2 - capabilities = null;- capabilities = null;
3 + capabilities = new GrblUtils.Capabilities()+ capabilities = new GrblUtils.Capabilities()
4protected void pauseStreamingEvent(){
5 if (this.capabilities.REAL_TIME) { ... }
6}

(b) NPE bug dereferencing field of an object not found by any tool.

1protected void ldCmdVerSheet(String sheetName) {
2 Sheet sheet = switchToSheet(sheetName, false);
3+ if(sheet==null) return;+ if(sheet==null) return;
4 while(i<sheet.getRows()) { ... }
5}

(c) NPE bug due to null dereference of a return value.

1private void verifyDecodedPosition() {
2 - if(p.gNtk()!=null){- if(p.gNtk()!=null){
3 + if(p.gNtk()!=null && p.gNtk().gTwrs()!=null){+ if(p.gNtk()!=null && p.gNtk().gTwrs()!=null){
4 for (Twr Twr : p.gNtk().gTwrs()){
5}

(d) NPE bug with dereferencing object returned from a method.

Fig. 5: Examples of NPE diffs from the dataset.

C. RQ3: Effectiveness of Tools at Finding NPEs

Overall, the tools find 30 distinct bugs out of 102 bugs

(29.4%). The breakdown per tool is shown in Table IV.

ERADICATE finds the most bugs with 20 out of 30. CFNULL-

NESS finds 11 bugs, INFER 10 bugs, and SPOTBUGSLT 9

bugs. NULLAWAY and SPOTBUGSHT find the fewest bugs

with 5 and 4, respectively. We examined the overlap among

bugs found by each tool. The two tools with the most overlap

are CFNULLNESS and ERADICATE with 7 bugs. Interestingly,

each tool finds bugs not found by other tools (also shown in

Table IV). This shows that the tools are complementary, and

that practitioners could benefit from running multiple tools. A

challenge to this is the large number of warnings to inspect.

An example of a bug found by CFNULLNESS, INFER, and

SPOTBUGSLT was given in Figure 2a. We show the diff

between a buggy version (with an NPE bug) and the fixed

version of the GitHub project openpnp/openpnp (a robotic

pick and place machine). The call to the buggy method that

causes the NPE is located on Line 6 of the buggy program.

The fix for this NPE bug consists of adding a null check for

parameter mat in saveDebugImage.

Figure 5a shows an example of a bug found by CFNULL-

NESS, ERADICATE, SPOTBUGSHT, and SPOTBUGSLT. Here

we show the diff between a buggy version and the fixed version

of project traccar/traccar (a GPS tracking system). The

bug was that the null check was flipped, incorrectly deref-

erencing channel when null. The fix simply consists of

changing the comparison operator from == to !=. A possible

reason why INFER did not find this bug is that INFER does

not gather information from checks. Since Figure 5a includes

a null check, SPOTBUGS is able to reason that channel is

dereferenced when null, leading to an NPE.

We conducted an additional experiment on a random sample

of 40 programs6 from our initial set for which annotations

were inferred using IntelliJ IDEA’s Infer Nullity [7]. IntelliJ

Idea infers both @Nullable and @NotNull annotations.

Note that 49 out of the 102 programs originally include

6The process could not be automated due to the IDE, thus the sample.

some nullness annotations. We ran all tools on the anno-

tated programs, except for INFER which does not use an-

notations. IntelliJ added 34,229 @Nullable and 167,236

@NotNull annotations. We applied the COVERAGE METHOD

to map warnings. This resulted in 2, 3, 0, and 2 additional

bugs found by CFNULLNESS, ERADICATE, NULLAWAY, and

SPOTBUGSLT, respectively. These accounted for three unique

bugs across all tools. Despite the small increase in bugs found,

the results are promising as annotating less than half of the

programs resulted in finding 10% more bugs in total.

RQ3: Overall, the tools have low effectiveness at finding

NPE bugs. Out of the 102 bugs in our dataset, ERAD-

ICATE found 20 bugs (19.6%), CFNULLNESS found

11 (10.8%), INFER found 10 (9.8%), SPOTBUGSLT

found 9 bugs (8.8%), NULLAWAY found 5 (4.9%), and

SPOTBUGSHT found 4 (3.9%). Additional annotations

resulted in finding 3 more bugs.

D. RQ4: Reasons Bug Detectors Miss NPEs

We are interested in understanding the reasons why bug

detectors fail to find real NPEs. We start by discussing the

characteristics of the bugs that the tools find based on the

characterization of 102 bugs from our dataset and the tools

themselves (see Section III). We then discuss the characteris-

tics of those bugs that the tools fail to find.

a) CFNULLNESS: CFNULLNESS found 11 bugs includ-

ing every category shown in Figure 3. These included 3

dereferences to a method return value and 2 dereferences of a

map object. The sound properties of CFNULLNESS allow it to

find classes of bugs that the other tools cannot. For example,

CFNULLNESS also found bugs due to concurrency, field

initialization, generics, and reflection. The lack of necessary

annotations in the projects under study inhibits CFNULL-

NESS’s ability to find all of the bugs in those categories.

b) ERADICATE: ERADICATE found 20 bugs where 9
dereferenced a method return value, 3 dereferenced an object

field, 1 retrieved a value from a map object, and the rest

dereferenced a method parameter. Despite using a partial
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model of the JDK, ERADICATE missed bugs in other third-

party libraries. ERADICATE does not handle concurrency and

reflection. These limitations explain some of the false nega-

tives, while others can be explained by the lack of full field

initialization checks and dynamic dispatch.

c) INFER: INFER found 10 bugs that included 4 deref-

erences of a method parameter, 4 dereferences of a method

return value (one of which is from a JDK library), a derefer-

ence of a list, and a dereference of an object field. These

NPEs are interprocedural in nature, which aligns with our

characterization of INFER in Section III. However, INFER did

not find the remaining NPEs that involve method parameters,

method return values, or object fields, which we would expect

to be captured by interprocedural analysis. One reason is that

INFER does not take into account existing null checks.

INFER has an internal partial model of the JDK, which

enables reasoning about certain library methods. Surprisingly,

despite the fact that INFER supports field sensitivity, and was

successful at finding such bugs in our tests, it missed many

other field sensitive bugs. Note that INFER does not have a

check for field initialization so it does not find uninitialized

fields, but it does support fields set to null. Such an example

is shown in Figure 5b. Additionally, INFER does not find NPEs

that involve reflection, concurrency, maps, or use of third-party

libraries outside of the JDK.

d) NULLAWAY: NULLAWAY found 5 bugs, all of which

dereference a return value. This shows the challenge in placing

annotations in the right place to be beneficial. NULLAWAY’s

main sources of false negatives are its assumptions that

unannotated code is not null and that third-party libraries

do not return null. While manual tests written during our

categorization revealed correct warnings about dereferenced

fields, real bugs that share these characteristics were not

detected. Such an example is shown in Figure 5b, where

an unannotated field (considered non-null) is being assigned

null. This represents a strict violation of the assumption that

the field cannot hold a null value, and should result in a

warning. Finally, in the process of running NULLAWAY, one

of the programs crashed the tool. The problem was due to

a buggy treatment of certain methods in the standard Java

library. We reported the bug to NULLAWAY developers, and

it is now fixed in the latest release.

e) SPOTBUGS: SPOTBUGS found 9 NPEs, of which 5
occur when dereferencing a method parameter, 3 when derefer-

encing a method return value, and another when dereferencing

a field. In all cases, there is at least one null check within the

method for the object being dereferenced, but the programmer

dereferences the object in a path that is not checked. The

null checks enable SPOTBUGS to reason about the NPEs

intraprocedurally (Section III). The remaining NPEs in our

sample that dereference a method’s return value or parameter

are not found because they require interprocedural reasoning.

Additionally, the 17 NPEs that involve the dereference of an

object field are not found by SPOTBUGS. SPOTBUGS fails

to find any bugs dealing with reflection, concurrency, third-

party libraries, maps, and lists. This conforms to our tool

characterization; SPOTBUGS does not provide complete field

sensitivity.

RQ4: SPOTBUGS misses NPEs that require interproce-

dural analysis. INFER performs interprocedural analysis

but does not have a field initialization check nor does it

handle some path-sensitive information from null checks.

NULLAWAY relies on nullness annotations but does not

handle maps nor third-party libraries. ERADICATE deals

with third-party libraries better than other tools, but it

still misses bugs due to partial field initialization check-

ing. CFNULLNESS provides sound analyses to handle

reflection and initialization which allows finding bugs that

other tools cannot. However, the lack of annotations can

still lead to missed bugs.

E. Threats to Validity

Although we conducted this study on a substantial number

of real-world NPEs, our results cannot be generalized. We

attempted to reduce this threat by including a large number

of NPE bugs from a diverse set of 42 projects from two Java

bug datasets. It is possible that we may have missed other

tools that are eligible for our study. We still believe that the

five tools considered are good representatives of popular and

widely-used state-of-the-art static bug detectors for NPEs. The

four different mapping methods used in this paper are not

perfect, and may lead to false positives. To alleviate this threat,

we manually inspected all warnings that were deemed to be

bug candidates. Anything requiring human intervention can be

error prone and subjective. To mitigate this threat and reduce

bias, we involved two people external to our project in the

categorization of bugs. Finally, we consulted tool developers to

confirm our findings regarding tool capabilities and limitations,

as discussed in Section III.

V. LESSONS LEARNED

This section describes some opportunities for improvement.

a) Need for reducing or ranking warnings: Over 500,000

NPE warnings were generated across all tools and programs,

with NPEs being in the top-2 warnings for every tool. The

average number of warnings per program was in the hundreds,

which is a cumbersome amount. Because of this, we had

to employ a combination of mapping methods and manual

verification to determine if a bug was found. In our case it is

known that an NPE exists, and the goal is to determine whether

the tools find it. However, this is not the usual setting for tool

usage; developers do not know beforehand of the existence

of bugs, or else the tools would not be needed. Thus, the

large number of warnings is especially problematic in a real

setting where true bugs are unknown and all warnings must

be inspected.

A bug ranking system could help in navigating the large

number of warnings. All tools studied, except for NULLAWAY,

provide severity warning information, but this information did

not correlate to finding the NPEs under study. For example,
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SPOTBUGS provides a severity ranking: “concerning”, “trou-

bling”, “scary”, and “scariest”. However, the true bugs found

were not associated with the most severe category, but with the

“troubling” and “scary” categories. This shows the need for

more conservative strategies to process warnings, or to label

warnings that are more likely to be true bugs.

Two main approaches for ranking warnings are found in

the literature, and could be applied in the context of static

bug detectors for NPEs. The first solely focuses on ranking

warnings of a specific program version without considering

information such as warnings produced for other versions

of the program. Examples in this category learn a classifier

via methods ranging from bayesian networks, decision trees,

and neural networks [21, 43]. The second approach uses the

difference of warnings between a previous and the current

version of the program, or self-adapts through user feedback

[22, 36]. A promising approach to aid static bug detectors for

NPEs would be to learn a project-specific classifier that has

user-feedback on predictions. This would benefit users as the

tool learns, over time, domain-specific project characteristics,

which would eventually lead to higher precision.

b) Need for automatically inferring nullability annota-
tions: There is an inherent burden in writing annotations.

Analyzers that depend on annotations could benefit from au-

tomated inference of nullability annotations. Running IntelliJ

IDEA’s Infer Nullity on 40 programs enabled the tools to

find an additional 3 bugs. This shows that there is promise in

annotation-based approaches for bug finding. However, there is

room for improvement in annotation inference as the analysis

still missed annotations that could have lead to finding more

bugs. Furthermore, it was difficult to automate the process of

annotating code using IntelliJ, which may prevent its use in

many scenarios. There exists work that applies static analysis

to infer non-null annotations for object fields in a subset of

Java [25], which could be potentially used to aid annotation-

based NPE bug detectors but it is not publicly available.

c) Need for reasoning about collection-like data struc-
tures: A pain point for all tools studied is reasoning about

the nullability of objects inside a collection-like data structure

such as an array. Users can add annotations to indicate that

a data structure can be null, but there is no mechanism to

annotate the nullability of individual elements in the data struc-

ture. CFNULLNESS, ERADICATE, and NULLAWAY overcome

this challenge for map-like objects by assuming that the get
interface may return a “nullable” value. A similar approach

could be adopted each time an element from other collection-

like data structure is retrieved. Incorporating such strategy

would enable the tools to successfully find 10 additional bugs.

d) Need for reasoning about reflection: Reasoning about

reflection imposes a challenge for any static analysis. All

of the tools in our study are unsound when it comes to

reflection, except CFNULLNESS. Since most of the tools

can leverage annotations, a potential approach for handling

reflection is user-provided annotations. This is exactly what

CFNULLNESS does. This is done via a list of targets, a priori,

of what class or method is being operated on for certain

reflection calls. This approach has been implemented in other

analyses [28, 37, 39, 40] for Java, where analysis precision was

observed to improve. Indeed, incorporating the above strategy

would enable the NPE bug detectors to find 13 additional

bugs, from which CFNULLNESS successfully finds one given

the existing annotations.

VI. RELATED WORK

a) Static Analyzer Studies: Rutar et al. [35] compare

the static analyzers PMD, FindBugs, JLint, Bandera, and

ESC/Java 2 on a small suite of programs. The authors present

a taxonomy of bugs found by each tool showing that no tool

subsumes the other. The study focuses on runtime and number

of warnings produced. Johnson et al. [26] conduct a study in

which 20 developers are interviewed on their experiences using

static analysis tools. The study finds that the main reason why

developers do not use tools is false positives.

Habib and Pradel [20] study the static analyzers INFER,

ERROR PRONE, and SPOTBUGS to determine how many of all
bugs in DEFECTS4J can be found by these tools. The authors

use the code diff and the bug report mapping methods. The

study finds that only 27 bugs out of 594 bugs (4.5%) were

detected, of which only 2 were NPEs. Tomassi [41] conducts

a study that compares ERROR PRONE and SPOTBUGS to find

how many of all bugs in a sample of 320 BUGSWARM artifacts

are found. The author found that only one bug was found

by SPOTBUGS. Instead, we focus on a specific kind of bug,

NPEs, and present a detailed analysis of the capabilities and

the limitations of five popular tools that find NPEs.

Ayewah and Pugh [12] run Coverity, Eclipse, FindBugs,

Fortify, and XYLEM on different versions of the build system

Ant. The authors classify the null dereferences reported by

each tool (plausible, implausible, or impossible), and explore

the usefulness of using null-related annotations. Most recently,

Banerjee et al. [14] presented the tool NULLAWAY and per-

formed a comparison to the Checker Framework’s Nullness

analysis [33], and INFER’s Eradicate looking at build-time

overhead. While Ayewah and Pugh [12] study false positives

in one version of Ant, Banerjee et al. [14] focus on measuring

false negatives in Uber’s Android apps. We study the recall

of five popular bug detectors, including NULLAWAY, on 102

real and reproducible NPEs from 42 open-source projects.

b) Tools to Find Null Pointer Dereferences: Ayewah

et al. [13] present a static analysis tool called FINDBUGS, the

predecessor of SPOTBUGS. FINDBUGS finds a wide variety

of bugs including null pointer dereferences. Hovemeyer and

Pugh [24] extend FINDBUGS’s NPE finding capabilities by

improving the precision of the analysis. These improvements

were a result of a better model of the core API of JDK,

changing how errors on exception paths are handled, improv-

ing field tracking, and finding guaranteed dereferences. We

include SPOTBUGS in our study.

Papi et al. [33] introduce the Checker Framework, which

allows for pluggable type systems for Java. They evaluate

five checkers, including the Nullness checker, running them

over significant sized code bases. The checkers find real bugs
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and confirmed the absence of others. We include the Checker

Framework in our study.

Nanda and Sinha [32] develop a demand-driven dataflow

analysis for null-dereference bugs in Java. By being path-

sensitive and context-sensitive, the analysis allows for a low

false positive rate, and an improved precision over FINDBUGS

and JLint. Romano et al. [34] use the analysis from Nanda and

Sinha [32] to find variables and paths that lead to possible null

pointer dereferences. The authors use a genetic algorithm to

generate tests that trigger the null pointer dereferences. Logi-

nov et al. [29] develop a sound interprocedural analysis based

on abstract interpretation called expanding-scope algorithm.

Madhavan and Komondoor [30] demonstrate a sound, demand-

driven, interprocedural, context-sensitive dataflow analysis to

verify whether a dereference will be safe or not. None of the

above tools [29, 30, 32, 34] are publicly available.

VII. CONCLUSION

In this experience paper, we studied the effectiveness of

popular Java static bug detectors CFNULLNESS, ERADICATE,

INFER, NULLAWAY, and SPOTBUGS on 102 real NPEs from

42 open-source projects. We identified the capabilities of the

tools and the characteristics of the NPE bugs in our dataset. We

discussed the problem of mapping tool warnings to actual NPE

bugs, and investigated four mapping methods, including two

new approaches that leverage stack trace and code coverage

information, from which the stack-trace based was the most

effective. Overall, the tools detected a total of 30 out of

102 bugs. We conducted an additional experiment annotating

40 programs using IntelliJ, which resulted in 3 new bugs

found. Finally, we leveraged the characteristics of the tools

and the bugs in our dataset to gain insights into why the tools

missed certain types of bugs. We concluded by discussing

opportunities for improving NPE bug detection. We provide

the link to a public repository that contains both our scripts

and the data produced in our experimental evaluation.
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