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Abstract—Software is rapidly increasing in size and complexity.
Static analyses must be designed to scale well if they are to be
usable with realistic applications, but prior efforts have often
been limited by available memory. We propose a database-backed
strategy for large program analysis based on graph algorithms,
using a Semantic Web database to manage representations of the
program under analysis. Our approach is applicable to a variety
of interprocedural finite distributive subset (IFDS) dataflow prob-
lems; we focus on error propagation as a motivating example. Our
implementation analyzes multi-million-line programs quickly and
in just a fraction of the memory required by prior approaches.
When memory alone is insufficient, our approach falls back on
disk using several hybrid configurations tuned to put all available
resources to good use.

I. Introduction

As computers become more powerful, software applications
continue to grow in size. For example, Linux is almost seven
times larger now than it was twelve years ago. As a consequence,
particular attention is placed on scalability when designing tech-
niques to analyze software. Unfortunately, computer resources
are often a limitation when analyzing large code bases. The key
scalability limitation is memory.

Memory usage is often correlated with the size of the code
base under analysis. Recent papers [1]–[10] describe scalable
program analyses that are applied to large code bases. The largest
programs analyzed in these papers range in size from 474 KLOC
to 8.6 MLOC. Despite the fact that these analyses either have
different purposes, or follow different approaches to solving
similar problems, it is noteworthy that their memory usage
ranges from 808 MB to 20 GB, with a few instances running out
of memory in their particular configuration settings. One rarely
sees analyses of larger code bases, or analyses of combinations
of programs (e.g., analyzing a kernel and user applications in
conjunction). Presumably, the main reason is poor scalability.

Doop [11] and SemmleCode (developed as CodeQuest [12],
[13]) use database engines to query and analyze program behav-
ior. Databases routinely work with more data than fits in memory,
so a database-backed program analysis could potentially break
through the memory scalability barrier. However, prior work
has not systematically explored the practical consequences of
moving analysis from memory-only to memory-plus-disk. For
example, Smaragdakis et al. [14] explicitly focus on Doop
configurations that do not bring the disk heavily into play.

In this paper, we present a database-backed program analysis
technique that makes good use of available memory while

allowing very large analyses to fall back on disk. We significantly
reduce the amount of memory required, thereby allowing
memory-only analyses of larger code bases than was possible
in prior work. For problems that are too large for memory, we
identify useful memory-plus-disk configurations to optimize use
of available resources.

We demonstrate the effectiveness of our technique by im-
plementing a static program analysis that tracks how error
codes propagate in C/C++ applications, and finds instances
in which unhandled error codes are dropped [15], [16]. Fig-
ure 1a shows an example of a dropped error in the Fire-
fox web browser. Function DashArrayToJSVal may return
one of two error codes: NS_ERROR_OUT_OF_MEMORY or
NS_ERROR_FAILURE. The error code is dropped on line 4
while failing to be stored in the reference parameter error. Ig-
noring this failure could cause mozDash to remain uninitialized,
leading to a confirmed potential security vulnerability.1 Note that,
although the bug fix seems trivial, finding the bug and agreeing
on a fix was definitely not an easy task.

As shown in Figure 1a, error-propagation analysis is partic-
ularly important because defective error propagation has the
potential to cause not only security vulnerabilities, but also
silent, unrecoverable data corruption. Furthermore, the systems
potentially affected can be massive. Applying error-propagation
analysis to such large code bases is an important goal, but one
that faces major scalability challenges.

We apply our database-backed analysis to the Linux kernel
and the Firefox web browser. Experiments show that we can
perform analyses with modest resources while other analysis
tools require dedicated, large-memory servers. Our approach is
highly configurable, allowing it to work efficiently and scalably
across a wide range of data characteristics. Our contributions
are as follows:

‚ We show how to encode error-propagation analysis (Sec-
tion II) as a graph saturation problem (Section III) tuned
for efficient database-backed inference.

‚ We provide an efficient and scalable implementation of
our target analysis using a database-backed graph indexing
scheme (Section IV).

‚ We explore several database configurations representing
trade-offs between available memory and time to comple-
tion (Section V).

1 https://bugzilla.mozilla.org/show_bug.cgi?id=779669
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1 Value CanvasRendering::GetMozDash(Context∗ cx, ErrorResult& error) {
2 Value mozDash;
3

4 DashArrayToJSVal(CurrentState().dash, cx, &mozDash); // unsaved error
5

6 return mozDash;
7 }

(a) Original code with an unsaved error on line 4

1 Value CanvasRendering::GetMozDash(Context∗ cx, ErrorResult& error) {
2 Value mozDash;
3 int temp;
4 temp = DashArrayToJSVal(CurrentState().dash, cx, &mozDash);
5 temp = OK; // overwritten error
6 return mozDash;
7 }

(b) Transformed code with an overwritten error on line 5

Fig. 1. An unsaved error found in the Firefox web browser. Figure 1a is the original code in which function DashArrayToJSVal may return one of two error codes:
NS_ERROR_OUT_OF_MEMORY or NS_ERROR_FAILURE. Function GetMozDash fails to propagate the error, leading to a confirmed (and now fixed) potential
security vulnerability. Figure 1b is the code after program transformations that convert the unsaved error into an overwritten error.

‚ We apply our analysis to two large, real-world code bases:
the Linux kernel and the Firefox web browser. Our tech-
nique dramatically reduces required time and/or memory
compared to a prior memory-only approach (Section V).

Section VI discusses related work and Section VII concludes.

II. Background

Incorrect error handling is a longstanding problem in a wide
variety of domains. Ideally, whenever a run-time error occurs,
software systems should respond accordingly. Unfortunately,
that is often not the case. Error-handling code tends to be
poorly understood, poorly documented, and poorly tested [17].
Unsurprisingly, then, error-handling code is often buggy. One of
the reasons is that handling errors is in general a difficult task.
Exceptional conditions must be considered during all phases of
software development [18], introducing interprocedural control
flow that can be difficult to reason about [19]–[21]. As a result,
error-handling code is usually scattered across different functions
and files, making software more complex and less reliable.

Modern programming languages such as Java, C++, and C#
provide exception-handling mechanisms. Unfortunately, C does
not have exceptions, so C programmers emulate exceptions in
a variety of ways. The return-code idiom is among the most
popular idioms used in large C programs, including operating
systems. Errors are represented as simple integer codes, where
each integer value represents a different kind of error.2 These
error codes propagate through conventional mechanisms such
as variable assignments and function return values. Even C++

programmers sometimes prefer the return-code idiom over
language-level exceptions [22]–[25]. Unfortunately, the error-
code idiom is highly error-prone.

Several approaches have been proposed to detect or monitor
error-propagation patterns at run time, typically during con-
trolled in-house testing with fault-injection to elicit failures
[26]–[34]. Other approaches use dataflow analysis to detect
bugs in the propagation of errors in system software and user
applications [15], [16], [35]. Our case study is particularly
inspired by the error-propagation analysis of Rubio-González
et al. [16], which tracks errors as they propagate through C/C++

programs.

2 For example, the Linux kernel defines EIO, EAGAIN, and ENOMEM as integers
5, 11, and 12, respectively. These error codes correspond to “I/O error”, “try
again”, and “out of memory”. Error codes are not, in general, standardized across
applications: each program or library may define its own idiosyncratic codes.

The error-propagation analysis is an interprocedural, flow-
and context-sensitive static program analysis that finds the set of
error codes that each variable may contain at each given program
point. This information is used to detect a variety of error-
handling related bugs in Linux file systems that can potentially
cause silent, unrecoverable data corruption [16], [36], [37].
In particular, the analysis detects unhandled errors that are
overwritten with a new value (overwritten error), go out of
scope (out-of-scope error), or are returned by a function but not
saved by the caller (unsaved error). Figure 1a shows an example
of an unsaved error.

For simplicity, the analysis transforms both out-of-scope and
unsaved errors into overwritten errors. Figure 1b shows how to
transform the unsaved error of Figure 1a into an overwritten
error. The transformation consists of two steps:

1) First, the unsaved error is transformed into an out-of-scope
error. This is achieved by introducing a new temporary
variable temp on line 3. The variable is assigned the
value returned by function DashArrayToJSVal. Because
function DashArrayToJSVal may return an error code, the
transformed function now contains an out-of-scope error:
variable temp goes out of scope while storing an error code.

2) Second, the out-of-scope error is transformed into an
overwritten error. For this, an assignment is inserted at the
end of the function for each integer local variable. In our
example, only one assignment to variable temp is inserted
on line 5. Note that OK is a special value introduced by
the analysis to represent a non-error value. After this, the
transformed function now contains an overwritten error
instead of an out-of-scope error: variable temp contains an
error that is overwritten with the value OK on line 5.

At the high-level, assignment statements (or overwritten
errors) constitute the program points of interest for the analysis.
Internally, the analysis can still distinguish between the three
kinds of dropped errors, which helps provide more precise
diagnostic information. The following paragraphs describe other
analysis characteristics.

Exchange variables: The analysis introduces global vari-
ables referred to as exchange variables. Exchange variables
are used for the purpose of value passing between callers
and callees. There is an exchange variable for each function
parameter, and function return value. Callers export arguments
into the corresponding exchange variables, and callees import
these exchange variables into its formal parameters. Similarly,
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before assignment: x y z

after assignment: x y z

intra
intra intra

Fig. 2. Example graph fragment corresponding to “y = x;”

callees export their return value into the corresponding exchange
variable, and callers import this variable into the receiver. This
process makes value passing explicit.

Pointer variables: Each pointer variable p is treated as two
locations p and ∗p, and no pointer is assumed to alias any other.
This is neither sound nor complete, but it has been shown to yield
useful results in bug finding. Under these conditions, pointer
parameters are equivalent to call-by-copy-return parameters.
Pointed-to values are copied from the caller to the callee just
as for function parameters. Callee values are copied back into
the caller. This extra copy-back on return is what distinguishes
pointer arguments from non-pointer arguments, because it allows
changes made by the callee to become visible to the caller.

Function pointers: Indirect calls are treated as a nonde-
terministic choice among a conservative over-approximation of
all possible callees. Specifically, calls across functions pointers
are rewritten as switch statements that choose among possible
implementations nondeterministically.

III. Analysis Codification

This Section describes how the error-propagation analysis of
Section II can be codified as a graph edge saturation problem.
Section IV will describe how this graph problem is mapped into
a form suitable for efficient implementation.

A. Variable-Expanded Control Flow Graph

Error-propagation analysis requires determining the set of
error codes that a given variable may contain at a given program
point. This constitutes an interprocedural dataflow analysis
problem. We begin with the interprocedural control-flow graph
(CFG). Replace each statement node in this CFG with a vector
of nodes: one for each global variable, local variable, or formal
function parameter in the program. If x, y, and z are program
variables, we might have three nodes representing x, y, and z
at some statement s1, three more representing these variables
at a different statement s2, and so on for each variable at each
program location. This makes the graph significantly larger than
the original, but allows us to distinguish each variable’s value at
each program point, thereby supporting flow-sensitive analysis.
We call this new, enlarged graph the variable-expanded CFG.
It can be seen as a specific instance of an exploded supergraph
as used in the interprocedural finite distributive subset (IFDS)
framework of Reps et al. [38].

Suppose statements s1 and s2 were statement nodes connected
by an intraprocedural control-flow edge in the original CFG. In
the variable-expanded CFG, connect variable nodes at s1 to
selected variable nodes at s2 to reflect possible flows of values
as a result of executing s1. Figure 2 shows an example graph

fragment corresponding to the assignment “y = x;”. Observe
that while y is overwritten with the previous value of x, this
assignment has no effect on the values of x or z. Edges reflecting
value flow within a single function are labeled “intra” for
intraprocedural flow.

At each function call in the original CFG, split the call into a
vector of nodes for each variable before the call and a distinct
vector of nodes for each variable after the call. Do not directly
connect before-call nodes to after-call nodes. Rather, assign each
call site a unique identifier. At call site i, create interprocedural
call edges labeled “(i” connecting actual arguments in the
caller to the corresponding formal arguments at the entry point
of the callee. Conversely, create interprocedural return edges
labeled “)i” connecting variables at exit points from the callee
to variables that may receive returned values in the caller.

Lastly, create a node for each error code. Error codes are
immutable, so these nodes need not be replicated at each
program location. Connect error code nodes to variable nodes
where appropriate to reflect flow of error codes into variables.
For example, “y = ENOMEM;” adds an edge from the ENOMEM
node to the node representing y after the assignment. Edges
from error code nodes can be interprocedural as well, as in
“foo(EAGAIN)” or “return EIO”.

We handle additional program features such as parameter
passing in the manner of prior work on error propagation [16].
Refer to Section II for a brief summary.

B. Interprocedurally Valid Paths

The variable-expanded CFG reflects single-step flows of
values from one statement to the next. Determining which error
codes flow into a given variable at a given program point requires
extending these local flows across multiple statements. We are
looking for interprocedurally valid paths obeying two criteria:

‚ Within a function, a valid path must cross a sequence of
intraprocedural flow edges (“intra”).

‚ Across a function call, a valid path must enter and exit the
callee at the same call site. That is, each call edge “(i” must
match a corresponding return edge “)i”. Mismatched calls
and returns, such as “(1 )2”, are disallowed as they cannot
correspond to any properly-nested function invocation.

Paths corresponding to a complete, normally-terminating
execution would begin with some “(main” edge representing
the call to the program’s main routine, and would end with a
corresponding “)main” edge. However, we are interested in partial
executions during which error codes are propagating from one
part of the program to another. Therefore, our valid paths may
begin with a prefix of unmatched return edges, representing
returns from calls that were already in progress when the error
arose. This is called a positive flow: the caller is receiving
information returned to it by the callee. Likewise, our valid paths
may end with a suffix of unmatched call edges, representing
calls into functions that are still in progress upon reaching the
statement of interest. This is called a negative flow: the caller is
giving information to the callee. If all calls and returns match,
then a path is a matched flow. Thus, an interprocedurally valid
path for a partial execution consists of a positive-flow prefix
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followed by a negative-flow suffix, with arbitrary matched flows
intermixed at any point along the path.

C. Path Discovery Via Edge Saturation

Discovering interprocedurally valid paths proceeds bottom-up.
We begin with flows already present in the variable-expanded
CFG. Based on these, we infer progressively longer paths,
culminating in interprocedurally valid paths. We codify the
inference process as a suite of subgraph patterns given in
Figure 3. We saturate the graph using these patterns: whenever
any pattern matches any part of the graph, add the corresponding
green dashed edge. Repeat this until no new opportunities to add
edges can be found. Once that fixed point is reached, the analysis
results can be read directly out of the edges labeled “valid”.

Edge saturation for interprocedurally valid paths can be
formulated in many ways. All would ultimately lead to the same
results, but different formulations can vary dramatically in how
many intermediate edges they add, and therefore in how well
they scale up. We have carefully formulated the patterns in
Figure 3 to focus edge creation on known points of interest,
avoiding inferring edges that are correct but not useful. These
patterns also leverage our database engine’s efficient transitive
closures (Section IV-D) and fast matching against partial (source,
edge, destination) patterns (Section IV-A). Any IFDS problem
would use similar patterns, though the specific edge labels and
relationships would vary.

We now clarify the meaning and role of each pattern.
Figure 3a, matched-seed: We do not need to know about

every variable at every program location; only some of these are
actually of interest. Before analysis begins, we mark these nodes
of interest with self edges labeled “seed”. Trivially a seed self
edge is a matched flow of length zero. This zero-length matched
flow can then serve as a basis for inferring longer flows using
other patterns that follow. Thus, “seed” edges are the seeds from
which longer paths grow.

Figure 3b, intra-inferred: Suppose we have already discov-
ered any inferred flow from x to b. Additionally, there is a
single step of intraprocedural flow from a to x. Put these two
together and we have a slightly longer inferred flow (of the
same kind) from a to b. This figure actually represents three
patterns, with inferred varying over {matched, pos, neg}. In
conjunction with Figure 3a, these patterns effectively create
a predominantly-backward analysis that begins at seeds and
extends paths backward to error codes.

Figure 3c, callee-matched: Suppose we have already dis-
covered any inferred flow from x to y, and that x is a return
point from call i. In order to know what reaches y, we need
to know what could have happened in that call. So mark the
corresponding point just inside the call as a zero-length matched
flow to itself. That is not very interesting in its own right, but
it serves as a new starting point for further analysis of the body
of the called function. Note that the matched flow inferred at a
is actually independent of the )i edge and the x node to which
that edge returns. This is an important property: it means that
whatever we learn while analyzing the callee will be reusable
if some other flow eventually reaches a as well. We never need

to search for matched flows to a more than once. This figure
actually represents three patterns, with inferred varying over
{matched, pos, neg}.

Figure 3d, promote-return: If we have found a negative
flow that leads up to a return edge, that return edge might
eventually match up with a call. This possibility will be explored
due to the earlier rule that adds a matched self edge. However, it
is also possible that this return edge will never match up with
a call, i.e., that this return edge is the final step in a positive
flow. Discovering that positive flow is important, because it can
eventually become a valid reaching path in conjunction with the
negative flow we started out with. So we promote this return edge
into a single-step positive flow, and possibly continue working
backward from there.

Figure 3e, return-nonneg: Unmatched returns extend pos-
itive flows, or turn matched flows into positive flows. This
figure actually represents two patterns, with nonneg varying
over {matched, pos}.

Figure 3f, call-nonpos: Unmatched calls extend negative
flows, or turn matched flows into negative flows. However, this
should only be done when the negative flow could potentially be
part of a valid flow to a seed. This figure actually represents two
patterns, with nonpos varying over {matched, neg}.

Figure 3g, hoist-justified: Hoist matched flow from callee
to caller, but only when we already have some inferred flow after
the call to justify our interest. This figure actually represents
three patterns, with inferred varying over {matched, pos, neg}.

Figure 3h, valid: A valid reaching path is positive flow
followed by negative flow, per Section III-B.

Figure 3i, promote-valid: Alternatively, a valid reaching
path can be negative flow only with no preceding positive flow,
still ending at a seed of interest. Also inferring a valid reaching
path from positive flow only with no preceding negative flow is
unnecessary: the b end of such a path will always carry a seed
edge from which a zero-length negative flow can be inferred
using other rules.

IV. Approach

In theory, Section III reveals the critical elements needed
in order to perform error-propagation analysis. In practice,
memory and other resource limits present significant scalability
challenges. Here we discuss practical considerations that must
be addressed to apply the ideas of Section III to large, real-
world code bases. Sections IV-A and IV-B describe our disk-
based graph indexing scheme. Section IV-C describes how our
selected representation is used in the main analysis algorithm.
We describe additional supporting analyses and optimizations in
Sections IV-D and IV-E, while Section IV-F considers effective
use of limited memory and disk for further performance gains.

A. Hexastore: Efficient Management of Large Graphs

Using the graph saturation strategy of Section III requires a
suitable data structure to represent the variable-expanded CFG.
Unfortunately, this graph (including inferred edges) can easily
grow too large to fit in memory, limiting the size of programs that
can be analyzed. Databases, however, routinely work with data
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Fig. 3. Inference patterns for valid-paths analysis. In each pattern, italics represent wildcard values to be filled in after matching the pattern, while regular upright
text represents specific values that must appear as given. Solid black arrows ( ) represent edges already present or inferred, while green dashed arrows ( )
represent new edges to be added when the pattern matches.

too big to fit in memory. Semantic Web research in particular
offers triple stores optimized for storing and accessing large
graph data to and from disk. With a disk-based representation of
the variable-expanded CFG, available memory acts merely as a
working cache or buffer, not as a limiting upper bound.

Good performance on large graphs depends critically on
the indexing scheme used: we must be able to quickly find
needed information either on disk or in memory buffers while
minimizing I/O and staying within reasonable memory limits.
The approach we use, Hexastore [39], indexes graphs six-fold,
according to each of the permutations of source, destination, and
edge label. For example, Hexastore’s (source, edge, destination)
index maintains a sorted, disk-based map indexed by source
node. Each source node maps to a sorted index of outgoing
edge labels, and each of these edge labels maps to a sorted
set of destination nodes for the given source node and edge
label. Thus with one look-up we can quickly find all edges for
a given source node. With a second look-up we can quickly
find all destination nodes for a given source node and edge
label. Hexastore’s other indices allow similar look-ups based on
other permuted criteria. In general, given any one or two fixed
elements of a (source, edge, destination) tuple, Hexastore can
quickly access the related remaining information.

Hexastore allows storing indices on disk [40]. Reads from this
persistent structure are relatively cheap, while updates require
rebuilding the entire persistent structure. Reindexing is relatively
quick even for large numbers of edges: about 8 minutes for 100
million edges on a standard desktop machine with an average
hard drive. Doing this for every new edge is impractical, but
batch updates can work well for long-running analyses. New
edges can be held in memory until enough have accumulated to
make it worthwhile to pause, rebuild indices, and then continue.

A disk-based representation has other advantages besides
reducing memory requirements. The entire analysis is naturally
persistent; it can easily be interrupted mid-analysis and resumed
later, even on a different machine. Distributed analysis is also

straightforward: multiple machines can trivially share the same
disk-based representation of the initial variable-exploded CFG,
with each machine exploring different paths in parallel. Pooling
discovered edges would require cross-machine coordination.
However, the idempotent and monotonic nature of edge satu-
ration makes this easier to manage. For example, we always
have the option to redundantly discover edges that have already
been discovered elsewhere. This lets us reduce or eliminate
cross-machine communication in exchange for extra local work.

B. Index Optimizations

It is convenient to refer to graph nodes by unique names. We
use names of the form “function.location variable” to refer to
the value of a given variable at a particular numbered location
of a given function. Location numbers are derived from a simple
intraprocedural numbering of CFG nodes. Local variables’
names are systematically renamed to be globally unique.

In practice, these names are interned and mapped into unique
ID numbers suitable for use as index offsets. Unfortunately,
the sheer number of such unique names would require an
unacceptably large string intern table. To our knowledge, this
problem has not previously arisen in popular Semantic Web data
sets. Relative to those graphs, our data set contains a much larger
number of nodes that are much less densely connected: most of
our nodes have only one incoming and one outgoing edge.

We optimize the string intern pool and data indices by treating
function names as namespaces. Location numbers and variables
are tuples in those namespaces. Thus, rather than interning a
complete “function.location variable” string, we instead intern
and assign ID numbers to just the function and variable names.
We then combine these with the location (already numerical) to
form a unique triple of numbers. This triple can then be used
as the key to look up the value of a given variable at a given
location in a given function in various Hexastore indices.
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C. Graph Saturation

The main analysis iterates over the set of all assignments, after
applying the program transformations described in Section II.
For each of these assignments, we perform two graph saturations
as described in Section III: one determines the new value of
the variable after the assignment, while the other determines
the previous value of the same variable before the assignment.
We refer to this pair of saturations as one analysis instance.
During each analysis instance we maintain a work list with
recently discovered edges so that we only look for new pattern
matches where new discoveries were made. After each instance
completes, we print its results for diagnostic purposes, then
continue to the next assignment. In practice, variables are often
overwritten by constants. In this case, saturation to determine
the variable’s new value completes within one step. Saturation
to find the old value commonly takes much longer.

The main analysis operates on a graph representation with
implicit identity edges. Implicit flows are materialized as needed
to match inference patterns from Figure 3, but are never persis-
tently stored in memory or on disk.3 New edges inferred during
saturation are always fully explicit, and ultimately comprise the
bulk of the saturated graph as shown in Table I.

D. Global Variable Bypass

Assignments to global variables are rare: most global variables
flow unchanged through nearly all functions except for the
few places where one or another is explicitly overwritten. If
saturation leads through many function calls with many edges to
traverse, we may add a vast number of edges without receiving
any new information. However, if we know in advance that
certain graph regions do not modify certain global variables, we
can bypass those areas entirely during saturation. By avoiding
this unnecessary work, we can reduce both time and memory
requirements while preserving correctness.

To achieve this, we use several pre-analyses to determine
which functions modify which global variables. One intraproce-
dural analysis determines which global variables may or must
be modified directly by each function. A second intraprocedural
analysis determines which functions may or must be called
directly from within each function.

During graph saturation, our analysis monitors which specific
variable corresponds to a given inferred edge. When saturation
could traverse into a called function (Figures 3c to 3e), we
consider whether the resulting edge corresponds to a global
variable that must never be changed during that call. This
requires computing an interprocedural transitive closure across
the intraprocedural may/must facts recorded earlier. Hexastore’s
indices are ideally suited to computing transitive closures such
as these, using a number of queries linear in the size of the
result set [39]. Hexastore also has the advantage of being able
to compute this information on demand when needed by the
saturation analysis. Intermediate inferences are memoized for
possible reuse during later graph saturation iterations.

3 This approach is analogous to a video player that decompresses and displays
video frames on-the-fly without ever storing the entire decompressed stream.

If we determine that the global variable in question would not
be modified during the call, then we bypass the call entirely. We
do not descend into the callee as suggested by Figures 3c to 3e.
Instead, we bridge the global variable’s value across the call
as an inferred identity flow. The effect is similar to that of the
hoist-justified pattern in Figure 3g, but without spending time
and memory to find a matched x Ñ y flow across the callee.

E. Unreachable Code After Infinite Loops

Linux intentionally contains numerous infinite loops imme-
diately after code that detects fatal errors. Without treating
these carefully, our predominantly-backward analysis might
discover extra flows of values originating in code that could
never actually run. To exclude these, we impose an extra
reachability check whenever saturation discovers an assignment
from a constant to a variable. The reachability check determines
whether the assignment itself can be reached from the entry of
the containing function. This check is performed on-demand
within our analysis. We check intraprocedurally only: we do not
attempt to filter out unreachable code that follows a call to a
non-returning function. However, this simple intraprocedural
check proves sufficient in practice.

F. Memory and Disk Management

Our analysis tool is very flexible in how it uses memory and
disk storage. We can leave the initial graph in memory while
keeping inferred edges in memory only up to a certain number.
After that we can discard inferred edges (possibly rediscovering
them later) or instead add them to persistent disk storage. As
described in Section IV-A, writing each discovered edge to disk
one-by-one is prohibitively slow. Batched updates, however,
are quite practical. Another option is to leave the initial graph
persistently on disk and to keep some or all discovered edges
in memory. Intuitively, while the analysis can cater to almost
arbitrary memory constraints, the more data that can be managed
in memory the faster the analysis runs.

V. Experimental Evaluation

We have conducted several experiments to evaluate the
usefulness of our database-backed approach. We introduce
the benchmarks and hardware configuration used for our ex-
periments in Section V-A. Section V-B discusses correctness
with respect to a reference implementation. The remainder of
this Section presents our experiments with different analysis
configurations and varying memory usage constraints. Our first
experimental setup (Section V-C) compares the performance of
the all-in-memory configuration of our tool to the in-memory
error-propagation analysis of Rubio-González et al. [16]. Our
second experiment (Section V-D) demonstrates an optimized
configuration strategy for programs whose initial edges fit easily
in memory, but whose many inferred edges must periodically
be flushed to disk. Lastly (Section V-E), we introduce a com-
plementary configuration for programs with very large initial
graphs, but relatively few inferred edges.
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TABLE I
Sizes of programs analyzed

Edges

Program
Lines

of code Assignments Initial Inferred

Ext3 175,631 15,059 426,699 4,582,498
ReiserFS 186,334 13,041 438,234 4,527,496

Linux 1,144,394 120,784 3,316,392 1,368,826,792
Linux* 1,144,394 120,783 3,316,391 1,269,389,507
Firefox 3,026,254 68,653 10,636,371 13,045,589

A. Benchmarks and Hardware Configuration

We evaluated our implementation on a suite of benchmarks
of varying size and complexity. Our “Ext3” and “ReiserFS”
benchmarks are parts of the Linux 2.6.38.3 operating system
kernel that implement specific file systems. We include these
relatively small examples because analysis of error management
in file system code was the main focus of prior work in this
area. Our “Linux” and “Linux*” benchmarks represent a much
larger portion of the Linux 2.6.38.3 kernel. These two differ
only in that the Linux* benchmark excludes a single assignment
that consistently required an unusually long time to analyze.
This assignment appears deep within a widely-used memory
management module; its pre-assignment value can come from
myriad other locations throughout the kernel. As it happens,
analysis ultimately showed that this specific assignment does
not constitute an error-propagation bug. The incrementally-
reduced Linux* benchmark is a practical analysis target if
one is willing to skip a single difficult (but ultimately non-
buggy) assignment.4 The full Linux benchmark shows expected
performance if everything must be checked without even a single
exception. These four Linux-derived benchmarks are written
in C. Of course, error-propagation analysis is also important
beyond Linux and C. Our “Firefox” benchmark is the complete
source code to the open-source web browser. Firefox is written
in C++, but uses the return-code idiom instead of exceptions.

Table I summarizes the size and complexity of our data sets,
measured in various ways. The nature of this “complexity” is
very different for the Linux and Firefox benchmarks. Firefox has
roughly equal numbers of initial and inferred edges, meaning that
the initial graph accounts for a significant fraction of Firefox’s
total memory needs. By contrast, Linux’s initial graph is one
third the size, but has twice as many assignments, and analysis of
these infers one hundred times as many edges. Thus, analyzing
Linux puts a much greater burden on efficient management
of inferred edges. This also suggests that flows in Linux are
significantly longer and more complex than those in Firefox.

Experiments were run on one 2.67 GHz CPU of a 12-way
Intel Xeon desktop workstation, with 24 GB of RAM, 8 GB
of swap space, and a commodity 7,200 RPM SATA hard drive,
running Red Hat Enterprise Linux 6.3. In Tables II, IV and V,

4 Outliers such as this problematic assignment stand out easily in our analysis
logs. Furthermore, analyses are disk-backed and saved per assignment. Thus,
one can easily stop, recognize and exclude an outlier, then resume without it.

“RAM (GB)” columns refer to the peak memory used at any
moment during the entire analysis of a given benchmark.

B. Implementation and Correctness

We offer two front ends for converting source code into graph
form for analysis. First, we have adapted a CIL-based [41] front
end used in prior work by adding the intraprocedural may/must
analyses described in Section IV-D. CIL handles C (but not
C++), including non-standard C extensions used in the Linux
kernel. Second, we have developed an entirely new front end
derived from Clang and LLVM [42]–[44]. Custom LLVM passes
implement the may/must analyses and graph generation. Clang
handles both C and C++, but not some C extensions used by
Linux [45]. We use the CIL-based front end for all Linux-derived
benchmarks, and the LLVM-based front end for Firefox.

Our goal is to perfectly replicate the analysis results of prior
error-propagation work while dramatically reducing memory
requirements and thereby improving scalability. To provide a
basis for comparison, we reran all experiments from scratch
using a reference implementation provided by Rubio-González
et al. [16]. This implementation treats error propagation as a path
problem over weighted pushdown systems. It uses the WALi
weighted pushdown system library [46] version 3.4 to compute
meet-over-all-paths solutions before and after each assignment.
WALi is a general framework that must be instantiated using
data structures selected specifically for the problem at hand. The
WALi implementation of error-propagation analysis represents
transfer functions (also referred to as weights) using binary deci-
sion diagrams (BDDs) [47] as implemented by the BuDDy BDD
library [48] version 2.4, carefully hand-tuned for performance
on this problem. In the remainder of this Section, we refer to
this reference implementation as the “WALi-based analysis” or
simply “WALi”. We refer to our database-backed approach as
the “Hexastore-based analysis” or simply “Hexastore”.

The remainder of this Section focuses on evaluating perfor-
mance and scalability. However, we have also carefully checked
the correctness of the analysis results in all reported experiments,
taking the WALi-based analysis as a reference. Our Hexastore-
based analysis results exactly agree with those of the WALi-
based analysis at each of the 338,320 assignments across all five
of our benchmarks. The only difference observed between the
two implementations consists of 1,331 Firefox assignments that
Hexastore reports but WALi does not.

We have manually inspected 824 out of these 1,331 as-
signments. We found that all involve synthetic assignments
introduced at the end of functions to “clear” local variables
that are about to go out of scope. Most of these local variables,
in turn, are temporary variables introduced by our front end. The
additional assignments missed by WALi, then, predominantly
arise as side effects of internal representations and are not
a significant practical concern. We believe these are actually
unreachable code, such as functions never called from the main
entry point. Our Hexastore-based analysis works backward,
stopping once it reaches a constant such as EIO. Unlike WALi,
it does not try to prove that the originating constant assignment
is itself reachable. This can cause Hexastore to report results for
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TABLE II
Performance of in-memory analyses. “-” marksWALi analyses that require

more than 24 GB of RAM plus 8 GB of swap space.

RAM (GB) Time (minutes)

Program WALi Hexastore WALi Hexastore

Ext3 1.08 0.30 0.56 0.66
ReiserFS 1.47 0.30 0.69 0.74

Linux - 11.00 - 460.68
Linux* - 9.57 - 423.74
Firefox - 4.74 - 7.98

unreachable assignments that WALi’s forward analysis would
not report.

C. In-Memory Only

A database-backed approach can potentially fall back on disk
if data grows too large for memory. To establish a baseline
for comparison, we first experimented with a Hexastore con-
figuration that is strictly memory-based. We held all indices
representing the initial graphs in memory. We also held inferred
edges in memory, but checked how many we had accumulated
by the end of each analysis instance (i.e., after analyzing
each assignment). If we had more than two million, then we
purged all inferred edges from memory and started fresh for
the next assignment. Keeping inferred edges around lets us
avoid some redundant work, but managing large data structures
adds overhead. Empirically, we found that discarding after two
million edges was a good balance.

Unlike WALi, Hexastore was designed with disk in mind
and is not necessarily optimized for memory-only performance.
We therefore expected that the WALi-based analysis would be
significantly faster than a memory-only configuration of the
Hexastore-based analysis. Table II shows our results, comparing
both time and memory required to complete each analysis.
Contrary to our expectations, Hexastore outperformed WALi
on all counts. For the smaller Ext3 and ReiserFS benchmarks,
Hexastore is nearly as fast as WALi and uses far less memory.
We attribute Hexastore’s superior performance to several factors.
As mentioned in Section IV-D, Hexastore’s indices allow it to
compute transitive closures very efficiently. These indices are
also very compact, with the last level of each stored as a densely-
packed, cache-friendly, sorted vector. Less memory also means
less time spent allocating, filling, and managing that memory.

Hexastore succeeded on all three large benchmarks where
WALi failed outright due to memory exhaustion. For the
sake of completeness, we also ran the WALi analyses on a
large, dedicated server not available to most developers. WALi
required 39 GB of RAM to analyze Firefox. In theory, WALi
would require 22 GB to analyze Linux or Linux*. In practice,
memory pressure from the operating system and other processes
doomed the attempt on our developer-grade workstation: the
WALi analysis ran for several hours, swapped heavily, and was
eventually killed by the operating system when both RAM and
swap were depleted. Even if ample swap space were available,
common wisdom holds that database-managed I/O outperforms

TABLE III
Comparison of in-memory analysis times for large benchmarks. Relative times

are the ratio of Hexastore toWALi.

Absolute (minutes)

Program WALi Hexastore Relative

Linux 966.00 421.69 0.44
Linux* 966.77 387.98 0.40
Firefox 12.75 7.12 0.56

generic OS swapping [49]. Thus, swapping alone is unlikely to
solve the memory scalability barrier.

The large server needed for WALi has faster CPUs (3.07 GHz)
than the humble desktop described in Section V-A and used for
Table II. Yet Hexastore completes the large analyses dramatically
faster, as shown in Table III. Hexastore uses just 40% to 56% as
much time as WALi requires for the large benchmarks.5

D. Optimized Index Management for Many Inferred Edges

Per Table II, analyzing Linux entirely in memory required
11 GB of RAM. This significantly improves upon WALi, for
which 24 GB of RAM plus 8 GB of swap was insufficient. How-
ever, we wished to reduce memory consumption even further, to
make analysis on common desktop computers feasible.

As we described in Section V-A, the majority of memory
needed to analyze Linux comes from the inferred edges. For
this experimental setup we therefore maintained the relatively
compact initial index in memory as well as some (but not all)
inferred edges. We discarded inferred edges between analysis
instances once more than two million had accumulated, using
the threshold described in Section V-C. Since we needed to allow
this threshold to be exceeded during an analysis instance, we
introduced a second threshold: the flush-to-disk threshold. If
the flush-to-disk threshold was exceeded at any point during
saturation, all inferred edges indices were immediately flushed
to disk, all on-disk Hexastore indices were rebuilt, and the in-
memory index representation reset. Once an index was flushed
to disk, newly-inferred edges were maintained in memory
again until the flush-to-disk threshold was exceeded, and so
on. Therefore, inferred edges have to be retrieved from both the
in-memory indices, as well as from disk. Disk is slower than
memory, of course. It is therefore crucial to choose the flush-to-
disk threshold carefully: we must not exceed memory constraints,
but also should not waste time rebuilding the persistent indices
too often. This setup is particularly beneficial for data sets where
individual analysis instances discover too many inferred edges
to fit comfortably into memory.

For this setup we expected to see an upper memory con-
sumption bound not to be exceeded, but more analysis time
required compared to in-memory only analyses. For Firefox it
did not make sense to raise the flush-to-disk threshold above
1,000,000, since no Firefox analysis instance ever infers more

5 All times in Table III were measured using the same large, dedicated server
with 3.07 GHz CPUs; all other experimental results in this paper used the slower
2.67 GHz CPUs of our desktop workstation. Thus, the Hexastore analysis times
in Table III are consistently slightly smaller than corresponding times in Table II.
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TABLE IV
Linux analysis performance when flushing excessive inferred edges to disk.

“∞” means never flush to disk.

Program
Flush-to-disk

threshold RAM (GB) Time (minutes)

Linux ∞ 11.00 460.68
Linux 20,000,000 9.57 1,337.25
Linux 10,000,000 10.32 1,961.15

Linux* ∞ 9.57 423.74
Linux* 10,000,000 10.32 882.33

than 1,000,000 edges. However, Linux contains 99,437,285
edges for one particular analysis instance. In this case an
appropriate flush-to-disk threshold might significantly reduce
memory consumption.

Table IV presents the results for this experiment. Analyzing
Linux with a flush-to-disk threshold of 20 million edges cuts
memory requirements by 13% in exchange for tripling analysis
time. Decreasing the flush-to-disk threshold to 10 million does
not further reduce peak memory; in fact, memory requirements
grow slightly. This lower threshold also increases analysis time
by 47%, demonstrating that excessive flushing can be counter-
productive. Some memory overhead is required to merge data
accessed from disk as well as for recording interprocedural
may/must facts computed on demand. This collection of facts
may grow fairly large for large numbers of functions and global
variables. This is why flushing at 10 million edges does not halve
memory consumption relative to flushing at 20 million edges.

We ran Linux* only with a threshold of 10 million edges:
no single analysis instance infers more than 15 million edges,
so a threshold of 20 million edges would be equivalent to no
threshold at all. We found flushing at 10 million edges increased
analysis time without reducing memory consumption. In fact,
9.57 GB of memory seems to be a lower bound for both Linux
and Linux*. We attribute this to the accumulation of may/must
facts that are never discarded from memory.

E. Optimized Index Management for Many Initial Edges

The initial graph is used frequently during analysis, so keeping
its indices in memory improves performance significantly.
Unfortunately, this may simply be impossible if the initial graph
is too large. However, while Hexastore maintains six indices
(per Section IV-A), not all are used equally often. Our analysis
works predominantly backwards, so the most heavily-used index
is that which maps from destination nodes to edge labels to
source nodes: we call this the DES index. It may make sense
to maintain only the initial graph’s DES index in memory and
access all other initial-graph indices from disk. This leaves more
memory available for storing indices over inferred edges. This
can aid in analyzing data sets that have a large initial graph but
that infer only a moderate number of edges during each analysis
instance. Our Firefox benchmark is one such example.

Table V shows that maintaining only the initial DES index
and inferred edges in memory reduces memory consumption
by 45% when analyzing Firefox. This is understandable given

TABLE V
Firefox analysis performance for different initial index management

strategies

Strategy RAM (GB) Time (minutes)

only initial DES in RAM 2.64 114.58
all initial indices in RAM 4.74 7.98

that the initial edges constitute 43% of Firefox’s entire graph
data. Maintaining the frequently-accessed DES index in memory
allows the analysis to complete within a reasonable time-frame
of slightly less than two hours. If all indices were accessed from
disk, analysis would take nearly 24 hours. These results are
particularly striking considering that the WALi-based approach
required over 39 GB of RAM to perform the same analysis. With
this configuration we can analyze Firefox on a contemporary
laptop computer within reasonable time. For example, at the
time of this writing, the best-selling laptop on Amazon.com
costs $249 and comes with 4 GB of RAM [50].

F. Hexastore Configuration Guidelines

Hexastore is very flexible. It is to be expected that proper
tuning is necessary to achieve optimal performance for data
sets of this size. Even commercial databases require a fair
amount of tuning in order to perform well. To achieve best
performance results using our Hexastore-based analysis, we
recommend adhering to the following configuration guidelines.

A purely in-memory configuration is a reasonable starting
point. We recommend trying this first, especially since this
configuration is fastest. Hexastore’s more efficient representation
means that many problems that did not fit in memory before may
now fit with no need for secondary storage.

If memory must be conserved, though, the first priority is
to keep the most heavily-used indices in memory. For our
predominantly-backward analysis, the top priority is the DES
index that maps destinations to edges to sources. Any remaining
memory should be devoted first to other indices representing
the initial graph, and then to inferred edges, with periodic
discarding or flushing to disk as needed to keep within allotted
memory bounds. We recommend applying the configurations in
the described order to find a data-set-optimal setup.

VI. RelatedWork

a) Scalable Program Analysis: Modular static program
analysis [51]–[54] has been proposed to reduce analysis running
time and memory cost. The idea is to analyze parts (e.g.,
functions) of very large programs separately and then compose
the analyses of these program parts to obtain information on
the whole program. One advantage of this approach is that the
process may be parallelizable, depending on the interactions
between the different parts of the program. Another approach is
to use sparse analysis techniques to improve scalability [4], [55]–
[57]. The key idea is that for a given program analysis, many
parts of the program may not be relevant. Excluding irrelevant
parts of the program effectively shrinks the analysis problem.
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Our technique is complementary to these approaches, and could
be combined with them to improve scalability even further.

b) Datalog for Program Analysis: The IFDS style of
inferring new facts from old is closely related to bottom-up
evaluation of Datalog programs. The inference patterns in
Figure 3 could be recast as Datalog inference rules, as can a wide
variety of other program analysis problems [11]–[14], [58]–[64].

Doop encodes Java points-to analyses in a dialect of Dat-
alog for evaluation on the commercial LogicBlox database
engine [11]. Direct comparison between our approach and Doop
is not meaningful, as the two perform different analyses on
different source languages. Instead, one might reimplement
our approach using LogicBlox’s Datalog dialect and engine,
or conversely implement a disk-backed, LogicBlox-compatible
Datalog engine atop Hexastore.

SemmleCode uses another Datalog dialect to encode a variety
of program queries. These are translated into SQL and executed
on any relational database [12], [13]. However, prior Semantic
Web research suggests that triple stores outperform relational
databases for certain graph traversal tasks, such as transitive
closure. This is due to the use of highly-optimized indices that
significantly reduce the number of expensive joins [39], [65].

Reps [66] described how to use the “magic-sets” transforma-
tion for logic programs [67]–[69] to convert exhaustive dataflow
analyses into demand-driven analogues. This method alone is
not sufficient to produce our inference patterns from a naïve,
exhaustive formulation. However, this and other optimizations
from the logic-programming and deductive-database commu-
nities could certainly simplify parts of that process, making it
easier to formulate new analyses for extreme scalability.

c) Large Graph Data and the Semantic Web: The Semantic
Web community actively encourages exploring new ways to
manage and reason over large graph data. One example is
the Billion Triple Challenge held annually in conjunction
with the International Semantic Web Conference (ISWC) [70].
Participants are provided with a data set containing a Semantic
Web graph with one billion edges and try to come up with
new applications working with this data. Another Semantic
Web trend is to put Semantic Web technologies into application
context, thereby providing new problem-solving methods to
other areas. For example, the Workshop on Semantic Web
Enabled Software Engineering (SWESE) was created to im-
prove software development activities by applying Semantic
Web technologies. Semantic Web inference naturally requires
computing transitive closures of relations. Keivanloo and Rilling
[71] exploited inference engines to improve source code clone
detection, but did not focus on single-instance scalability.

Motivated by the need for web-scale data management, we
have seen some progress on graph-optimized index structures
and database systems [39], [65], [72], [73]. However, in recent
years research activity has shifted from improving single-
instance Semantic Web data management to leveraging cloud
services and offloading scalability concerns to distributed storage
and compute systems [74], [75]. These developments bode well
for long-term future scalability of database-backed program anal-
yses: while we have already reduced single-machine resource

needs, distributing program analysis into the cloud will allow
even greater leaps of scalability.

VII. Conclusion

As software grows in size and complexity, main memory
imposes restrictions in the scalability of program analyses.
Fortunately, the database community smashed through the
memory barrier long ago; a modern Semantic Web database
can represent billions of relations (edges) among entities (nodes)
using a tunable mix of main memory and secondary disk storage.
This suggests a way for static program analyses to break through
the memory barrier as well. We have presented a reformulation
of error-propagation analysis as a graph saturation problem in
the style of Reps et al.’s IFDS framework. Our inference patterns
are carefully designed to create a demand-driven, predominantly-
backward analysis that avoids wasted effort wherever possible.
To manage the large graphs needed for this analysis, we
have adapted Hexastore, a Semantic Web database. Hexastore
is especially well-suited to efficiently storing, querying, and
transitively-closing millions or even billions of related entities.

Hexastore can be configured to use a flexible mixture of mem-
ory and disk, allowing us to solve error-propagation analyses
in a fraction of the time and/or memory required by prior work.
Even when using no disk at all, our Hexastore-based analyses of
large programs finish 44% to 60% faster and use 50% to 88%
less memory. Incorporating disk storage allows further memory
savings in exchange for longer analysis times. Our database-
backed strategy, configured to use both memory and disk, can
analyze over one million lines of Linux* in seven hours and
under 10 GB of RAM: a very reasonable allocation for overnight
processing on any decently-equipped developer workstation.
Using prior approaches, Firefox’s three million lines of code
required twelve minutes, 39 GB of RAM, and a dedicated server
to handle the workload. Our database-backed approach requires
something closer to a laptop: it completes in eight minutes and
less than 5 GB of RAM, or can even be restricted to just 2.6 GB
of RAM if one has two hours to spare.

Using the configuration guidelines in Section V-F, developers
equipped with our Hexastore-based, database-backed analysis
engine can continue to scale important program analyses up to
meet the demands of large software today and into the future.
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