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ABSTRACT
While tremendously useful, automated techniques for tun-
ing the precision of floating-point programs face important
scalability challenges. We present Blame Analysis, a novel
dynamic approach that speeds up precision tuning. Blame
Analysis performs floating-point instructions using differ-
ent levels of accuracy for their operands. The analysis deter-
mines the precision of all operands such that a given preci-
sion is achieved in the final result of the program. Our eval-
uation on ten scientific programs shows that Blame Anal-
ysis is successful in lowering operand precision. As it ex-
ecutes the program only once, the analysis is particularly
useful when targeting reductions in execution time. In such
case, the analysis needs to be combined with search-based
tools such as Precimonious. Our experiments show that
combining Blame Analysis with Precimonious leads to
obtaining better results with significant reduction in anal-
ysis time: the optimized programs execute faster (in three
cases, we observe as high as 39.9% program speedup) and
the combined analysis time is 9× faster on average, and up
to 38× faster than Precimonious alone.

CCS Concepts
•Software and its engineering → Dynamic analysis;
Software performance; Formal software verification; Soft-
ware testing and debugging; •Mathematics of comput-
ing → Numerical analysis;
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1. INTRODUCTION
Algorithmic [44, 2, 14] or automated program transforma-

tion techniques [35, 25] to tune the precision of floating-point
variables in scientific programs have been shown to signif-
icantly improve execution time. Developers prescribe the
accuracy required for the program result and the tools at-
tempt to maximize the volume of data stored in the lowest
native precision. Generally, this results in improved memory
locality and faster arithmetic operations.

Since tuning floating-point precision is a black art that
requires both application specific and numerical analysis ex-
pertise, automated program transformation tools are clearly
desirable and they have been shown to hold great promise.
State-of-the-art techniques employ dynamic analyses that
search through the program instruction space [25] or through
the program variable/data space [35]. Due to the empirical
nature, a quadratic or worse (in instructions or variables)
number of independent searches (program executions) with
different precision constraints are required to find a solution
that improves the program execution time for a given set of
inputs. While some search-based tools [35] attempt to only
provide solutions that lead to faster execution time, others
[25] provide solutions with no performance guarantees.

In this paper we present a novel method to perform floating-
point precision tuning that combines concrete and shadow
program execution, and it is able to find a solution after only
a single execution. The main insight of Blame Analysis is
that given a target instruction and a precision requirement,
one can build a blame set that contains all other program
instructions with their operands in minimum precision. In
other words, given an instruction and a precision require-
ment, a blame set contains the precision requirements for
the instructions that define the values of its operands. As
the execution proceeds, each instruction is executed with
multiple floating-point precisions for each operand and its
blame set is updated. The solution associated with a pro-
gram point is computed using a merge operation over all
blame sets. This can be used to infer the set of program
variables that can be declared as float instead of double
while satisfying the precision requirements for a provided
test input set. Note that, similar to [25], Blame Analysis
can only reduce precision with no performance guarantees.

We have implemented Blame Analysis using the LLVM
compiler infrastructure [27] and evaluated it on eight pro-
grams from the GSL library [17] and two programs from the
NAS parallel benchmarks [37]. To provide more context,
we also evaluated it against the Precimonious [35] search-



based tool. We have implemented both an offline analysis
that executes on program execution traces, as well as an
online analysis that executes together with the program.

Blame Analysis was always successful in lowering the
precision of all test programs for the given test input sets: it
identified on average that 40% of the program variables can
be declared as float, 28% variables in median. The trans-
formed programs did not always exhibit improved execution
time. The offline analysis is able to lower the precision of a
larger number of variables than the online version, but this
comes with decreased scalability. For the online version, to
bound the overhead we had to restrict the analysis in some
cases to consider only the last stages of execution. Even with
this restriction, the online analysis produced solutions while
imposing running time overhead as high as 50×, comparable
to other commercial dynamic analysis tools.

If reduction in execution time is desired, Blame Analysis
can be combined with feedback-directed search tools such
as Precimonious, which systematically searches for a type
assignment for floating-point variables so that the resulting
program executes faster. When using Blame Analysis to
determine an initial solution for Precimonious, we always
find better type assignments. The total analysis time is 9×
faster on average, and up to 38× faster in comparison to
Precimonious alone. In all cases in which the resulting
type assignment differs from Precimonious alone, the type
assignment produced by the combined analyses translates
into a program that runs faster.

Our results are very encouraging and indicate that floating-
point tuning of entire applications will become feasible in the
near future. As we now understand the more subtle behav-
ior of Blame Analysis, we believe we can improve both
analysis speed and the quality of the solution. It remains
to be seen if this approach to develop fast but conservative
analyses can supplant the existing slow but powerful search-
based methods. Nevertheless, our work proves that using
a fast “imprecise” analysis to bootstrap another slow but
precise analysis can provide a practical solution to tuning
floating point in large code bases.

This work makes the following contributions:

• We present a single-pass dynamic program analysis for
tuning floating-point precision, with overheads compa-
rable to that of other commercial tools for dynamic
program analysis.

• We provide an empirical comparison between single-
pass and search-based, dual-optimization purpose tools
for floating-point precision tuning.

• We demonstrate powerful and fast precision tuning by
combining the two approaches.

The rest of this paper is organized as follows. Section 2
presents an overview of precision tuning and current chal-
lenges. We describe Blame Analysis in Section 3, and
present its experimental evaluation in Section 4. We then
discuss limitations and future work in Section 5. Related
work is discussed in Section 6. We conclude in Section 7.

2. TUNING FLOATING-POINT PRECISION
Programming languages provide support for multiple float-

ing point data types: float (single-precision 32-bit IEEE
754), double (double-precision 64-bit IEEE 754) and long
double (80-bit extended precision). Software packages such

as QD [24] provide support for even higher precision (data
types double-double and quad-double). Because reason-
ing about floating-point programs is often difficult given the
large variety of numerical errors that can occur, one com-
mon practice is to use conservatively the highest available
precision. While more robust, this can significantly degrade
program performance. Many efforts [3, 4, 5, 13, 23, 28] have
shown that using mixed precision can sometimes compute
a result of the same accuracy faster than when using solely
the highest precision arithmetic. Unfortunately, determin-
ing the appropriate precision combination requires domain-
specific knowledge combined with advanced numerical anal-
ysis expertise.

Floating-point precision-tuning tools can help suggesting
ways in which programs can be transformed to effectively
use mixed precision. These tools serve multiple purposes.
For a given test input set, one goal is to determine an opti-
mal (minimal or maximal) set of program variables [35] or
instructions [25], whose precision can be changed such that
the “answer” is within a given error threshold. If the goal is
to improve accuracy, expressions can be rewritten to reduce
rounding errors [31]. Another goal is to reduce memory stor-
age by maximizing the number of variables whose precision
can be lowered. Finally, improving program performance is
another important objective.

2.1 Design and Scalability Concerns
Our main interest is in tools that target scientific comput-

ing programming and use a dual objective by targeting both
accuracy and performance. The state-of-the-art tools com-
pute a solution by searching over global program state (vari-
ables or instructions). Thus the search maintains a “global”
solution and it requires multiple executions. Due to the em-
pirical nature and the heuristics to bound the search space
and state, the solutions do not capture a global optimum.

From our perspective, particularly attractive are tools that
operate on the program variable space, as they may suggest
permanent changes to the application. The state-of-the-
art is reflected by Precimonious [35], which systematically
searches for a type assignment (also referred to as type con-
figuration) for floating-point program variables. Its analysis
time is determined by the execution time of the program
under analysis, and by the number of variables in the pro-
gram. The algorithm requires program re-compilation and
re-execution for different type assignments. The search is
based on the Delta-Debugging algorithm [45], which exhibits
a worst-case complexity of O(n2), where n is the number of
variables in the program. To our knowledge, Precimonious
and other automated floating point precision tuners [35, 25]
use empirical search and exhibit scalability problems with
program size or program runtime.

In practice, it is very difficult for programmers to predict
how the type of a variable affects the overall precision of
the program result and the Precimonious analysis has to
consider all the variables within a program, both global and
local. This clearly poses a scalability challenge to the overall
approach. In our evaluation of Precimonious (Section 4),
we have observed cases in which the analysis takes hours
for programs that have fewer than 50 variables and native
runtime less than 5 seconds. Furthermore, as the analysis
is empirical, determining a good solution requires repeating
it over multiple precision thresholds. A solution obtained
for a given precision (e.g., 10−6) will always satisfy lower
thresholds (e.g., 10−4). Given a target precision, it is also



often the case that the solution determined independently
for a higher precision provides better performance than the
solution determined directly for the lower precision.

In this work, we set to develop a method that alleviates the
scalability challenges of existing search-based floating-point
precision tuning approaches by: (1) reducing the number
of required program analyses/transformations/executions,
and (2) performing only local, fine grained transformations,
without considering their impact on the global solution.

Our Blame Analysis is designed to quickly identify pro-
gram variables whose precision does not affect the final re-
sult, for any given target threshold. The analysis takes as
input one or more precision requirements and executes the
program only once while performing shadow execution. As
output, it produces a listing specifying the precision require-
ments for different instructions in the program, which then
can be used to infer which variables in the program can def-
initely be in single precision, without affecting the required
accuracy for the final result. When evaluating the approach
we are interested in several factors: (1) quality of solution,
i.e., how much data is affected, (2) scalability of the analysis,
and (3) impact on the performance of the tuned program.

Blame Analysis can be used to lower program precision
to a specified level. Note that, in general, lowering preci-
sion does not necessarily result in a faster program (e.g.,
cast instructions might be introduced, which could make
the program slower than the higher-precision version). The
analysis focuses on the impact in accuracy, but does not con-
sider the impact in the running time. Because of this, the
solutions produced are not guaranteed to improve program
performance and a triage by programmers is required.

Even when triaged, solutions do not necessarily improve
execution time. As performance is a main concern, we also
consider combining Blame Analysis with dual objective
search-based tools, as a pre-processing stage to reduce the
search space. In the case of Precimonious, this approach
can potentially shorten the analysis time while obtaining
a good solution. Figure 1 shows how removing variables
from the search space affects the analysis time for the blas
program from the GSL library [17], for the target precision
10−10. The blas program performs matrix multiplication,
and it declares 17 floating-point variables. As shown at the
rightmost point in Figure 1, knowing a priori that 7 out of
17 floating-point variables can be safely allocated as float
reduces Precimonious analysis time from 2.3 hours to only
35 minutes. This simple filtering accounts for a 4× speedup
in analysis time.

In the rest of this paper, we present Blame Analysis and
evaluate its efficacy in terms of analysis running time and
quality of solution in two settings: (1) applied by itself, and
(2) as a pre-processing stage for Precimonious. We refer to
quality of solution as whether the resulting type assignments
lead to programs with faster execution time.

3. BLAME ANALYSIS
Blame Analysis consists of two main components: a

shadow execution engine, and an integrated online analy-
sis. The analysis is performed side-by-side with the pro-
gram execution through instrumentation. For each instruc-
tion, e.g., fadd (floating-point addition), Blame Analysis
executes the instruction multiple times, each time using dif-
ferent precisions for the operands. Examples of precision
include float, double, and double truncated to 8 digits.
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Figure 1: The effect of reducing Precimonious search space
on analysis time for the blas benchmark (error threshold
10−10). The horizontal axis shows the number of variables
removed from the search space. The vertical axis shows
analysis time in seconds. In this graph, the lower the curve
the faster the analysis.

1 double mpow(double a, double factor, int n) {
2 double res = factor;
3 int i;
4 for (i = 0; i < n; i++) {
5 res = res * a;
6 }
7 return res;
8 }
9

10 int main() {
11 double a = 1.84089642;
12 double res, t1, t2, t3, t4;
13 double r1, r2, r3;
14

15 t1 = 4*a;
16 t2 = mpow(a, 6, 2);
17 t3 = mpow(a, 4, 3);
18 t4 = mpow(a, 1, 4);
19

20 // res = a^4 - 4*a^3 + 6*a^2 - 4*a + 1
21 r1 = t4 - t3;
22 r2 = r1 + t2;
23 r3 = r2 - t1;
24 res = r3 + 1;
25

26 printf("res = %.10f\n", res);
27 return 0;
28 }

Figure 2: Sample Program

The analysis examines the results to determine which com-
binations of precisions for the operands satisfy given pre-
cision requirements for the result. The satisfying precision
combinations are recorded. The Blame Analysis algorithm
maintains and updates a blame set for each program instruc-
tion. The blame set associated with each instruction speci-
fies the precision requirements for all operands such that the
result of the instruction has the required precision. Blame
sets are later used to find the set of variables that can be
declared in single precision.

3.1 Blame by Example
Consider the sample program shown in Figure 2, which

computes and saves the final result in variable res on line
24. In this example, we consider three precisions: fl (float),
db (double) and db8 (accurate up to 8 digits compared to
the double precision value). More specifically, the value in
precision db8 represents a value that agrees with the value
obtained when double precision is used throughout the en-



Table 1: Statement r3 = r2 - t1 is executed using different
precisions for r2 and t1. The column Op Prec shows the
precisions used for the operands (fl corresponds to float,
db to double, and db8 to double accurate up to 8 digits).
Columns r2 and t1 show the values for the operands in the
corresponding precisions. Column r3 shows the result for
the subtraction. Precision (db, db) produces a result that
satisfies the precision requirement db8.

Op Prec r2 t1 r3

(fl,fl) 6.8635854721 7.3635854721 -0.5000000000
(fl,db8) 6.8635854721 7.3635856000 -0.5000001279
(fl,db) 6.8635854721 7.3635856800 -0.5000002079
(db8,fl) 6.8635856000 7.3635854721 -0.4999998721
(db8,db8) 6.8635856000 7.3635856000 -0.5000000000
. . . . . . . . . . . .
(db,db) 6.8635856913 7.3635856800 -0.4999999887

tire program in 8 significant digits. Formally, such a value
can be obtained from the following procedure. Let v be the
value obtained when double precision is used throughout
the entire program, and v8 is the value of v in precision db8.
According to the IEEE 754-2008 standard, the binary repre-
sentation of v has 52 explicitly stored bits in the significand.
We first find the number of bits that corresponds to 8 signifi-
cant decimal digits. The number of bits can be computed as
lg(108) = 26.57 bits. We therefore keep 27 bits, and set the
remaining bits in the significand to 0 to obtain the value v8.1

Back to our example, when the final result is computed in
double precision, the result is res = 0.5000000113. When
the computation is performed solely in single precision (all
variables in the program are declared as float instead of
double), the result is res = 0.4999980927. Assuming that
we require the result to have precision db8, the result would
be res = 0.50000001xy, where x and y can be any decimal
digits. Precision tuning is based on the precision require-
ment set for the final result(s) of the program.

For each instruction in the program, Blame Analysis de-
termines the precision that the corresponding operands are
required to carry in order for its result to be accurate to a
given precision. For example, let us consider the statement
on line 23: r3 = r2 - t1, and precision db8 for its result.
Since the double value of r3 is -0.4999999887, this means
that we require r3 to be -0.49999998 (i.e., the value matches
to 8 significant digits). In order to determine the precision
requirement for the two operands (r2 and t1), we perform
the subtraction operation with operands in all considered
precisions. Table 1 shows some of the precision combina-
tions we use for the operands. For example, (fl, db8) means
that r2 has fl precision, and t1 has db8 precision. For this
particular statement, all but one operand precision combi-
nations fail. Only until we try (db, db), then we obtain a
result that satisfies the precision requirement for the result
(see last row of Table 1). Blame Analysis will record that
the precision requirement for the operands in the statement
on line 23 is (db, db) when the result is required to have pre-
cision db8. Similarly, operand precision requirements will
also be recorded when the result is required to have other
precisions under consideration (fl, and db in this example).

Statements that occur inside loops are likely to be exe-
cuted more than once, such as line 5: res = res * a. For

1Similarly, if we are interested in 4, 6, or 10 significant dec-
imal digits, we can keep 13, 19, or 33 significant bits in the
significand respectively, and set other bits to 0.

prog ::= (l : instr)∗
instr ::= x = y aop z | x = y bop z |

if x goto L |
x = nativefun(y)| x = c

aop ::= + | − | ∗ | /
bop ::= = | 6= | < | ≤

nativefun ::= sin | cos | fabs
l ∈ Labels x, y, z ∈ V ariables c ∈ Constants

Figure 3: Kernel Language

the precision requirement db8 for the result of this opera-
tion, the first time this statement is executed the analysis
records the double values for the operands and the result
(6.0000000000, 1.8408964200, 11.0453785200). The algo-
rithm tries different precision combinations for the operands,
and determines that precision (fl, db8) suffices. The second
time the statement is executed, the analysis records new
double values (11.0453785200, 1.8408964200, 20.3333977750).
After trying all precision combinations for the operands, it is
determined that this time the precision required is (db, db8),
which is different from the requirement set the first time
the statement was examined. At this point, it is necessary
to merge both of these precision requirements to obtain a
unified requirement. In Blame Analysis, the merge oper-
ation over-approximates the precision requirements. In this
example, merging (fl, db8) and (db, db8) would result in the
precision requirement (db, db8).

Finally, after computing the precision requirements for ev-
ery instruction in the program, the analysis performs a back-
ward pass starting from the target statement on line 24,
and considering the precision requirement for the final re-
sult. The pass finds the program dependencies and required
precisions, and collects all variables that are determined to
be in single precision. Concretely, if we require the final
result computed on line 24 to be accurate to 8 digits db8,
the backward pass finds that the statement on line 24 de-
pends on statement on line 23, which depends on statements
on lines 22 and 15, and so on, along with the correspond-
ing precision requirements. The analysis then collects the
variables that can be allocated in single precision. In this
example, only variable factor in function mpow can be allo-
cated in single precision (it always stores integer constants
which do not require double precision).

In the rest of this section, we formally describe our Blame
Analysis algorithm and its implementation. Our imple-
mentation of Blame Analysis consists of two main com-
ponents: a shadow execution engine for performing single
and double precision computation side-by-side with the con-
crete execution (Section 3.2), and an online Blame Anal-
ysis algorithm integrated inside the shadow execution run-
time (Section 3.3). Finally, we present analysis heuristics
and optimizations (Section 3.4).

3.2 Shadow Execution
Figure 3 introduces a kernel language used to formally de-

scribe our algorithm. The language includes standard arith-
metic and boolean expressions. It also includes an assign-
ment statement which assigns a constant value to a variable.
Other instructions include if-goto and native function call
instructions such as sin, cos, and fabs.

In our shadow execution engine, each concrete floating-
point value in the program has an associated shadow value.
Each shadow value carries two values corresponding to the



Procedure FAddShadow
Inputs
` : x = y + z : instruction

Outputs
Updates the shadow memory M and the label map LM

Method

1 {single: ysingle, double: ydouble} = M[&y]
2 {single: zsingle, double: zdouble} = M[&z]
3 M[&x] = {single: ysingle + zsingle, double: ydouble + zdouble}
4 LM[&x] = `

Figure 4: Shadow Execution of fadd Instruction

concrete value when the program is computed entirely in
single or double precision. We will represent a shadow value
of a value v as {single : vsingle, double : vdouble}, where
vsingle and vdouble are the values corresponding to v when the
program is computed entirely in single and double precision,
respectively.

In our implementation, the shadow execution is performed
side-by-side with the concrete execution. We instrument
callbacks for all floating-point instructions in the program.
The shadow execution runtime interprets the callbacks fol-
lowing the same semantics of the corresponding instructions,
however, it computes shadow rather than concrete values.

Let A be the set of all memory addresses used by the
program, S be the set of all shadow values associated with
the concrete values computed by the program, and L be
the set of labels of all instructions in the program. Shadow
execution maintains two data structures:

1. A shadow memory M that maps a memory address
to a shadow value, i.e., M : A → S. If M(a) = s for
some memory address a, then it denotes that the value
stored at address a has the associated shadow value s.

2. A label map LM that maps a memory address to an
instruction label, i.e., LM : A → L. If LM(a) = ` for
some memory address a, then it denotes that the value
stored at address a was last updated by the instruction
labeled `.

As an example, Figure 4 shows how M and LM are up-
dated when an fadd instruction ` : x = y + z is executed.
In this example, x, y, z are variables and ` is an instruction
label. We also denote &x,&y,&z as the addresses of the
variables x, y, z, respectively, in that state. In this example,
the procedure FAddShadow is the callback associated with the
fadd instruction. The procedure re-interprets the semantics
of the fadd instruction (see line 3), but it uses the shadow
values for the corresponding operands (retrieved on lines 1
and 2), and creates/updates the shadow value associated
with x. The label map LM is updated on line 4 to record
that x has been last updated at the instruction labeled `.

3.3 Building the Blame Sets
In this section, we formally describe our analysis. Let A

be the set of all memory addresses used by the program, L
be the set of labels of all instructions in the program, P be
the set of all precisions, i.e., P = {fl, db4, db6, db8, db10, db}.
Precisions fl and db stand for single and double precisions,
respectively. Precisions db4, db6, db8, db10 denote values that

Function BlameSet
Inputs
` : x = f(y1, . . . , yn) : instruction with label `

p : precision requirement
Outputs
{(`1, p1), · · · , (`n, pn)} : precision requirements of the

instructions that computed the operands
Method

1 accurate res = trunc shadow(M [&x],p)
2 (s1, . . ., sn) = (M [&y1], . . ., M [&yn])
3 find minimal precisions p1, . . . ,pn such that the following holds:
4 (v1,. . .,vn) = (trunc shadow(s1,p1),. . .,trunc shadow(sn,pn))
5 trunc(f(v1,. . .,vn),p)==accurate res
6 return {(LM [&y1],p1), . . ., (LM [&yn],pn)}

Figure 5: BlameSet Procedure

are accurate up to 4, 6, 8 and 10 digits in double precision,
respectively. We also define a total order on precisions as fol-
lows: fl < db4 < db6 < db8 < db10 < db. In Blame Anal-
ysis we also maintain a blame map B that maps a pair of
instruction label and precision to a set of pairs of instruction
labels and precisions, i.e., B : L×P → P(L×P ), where P(X)
denotes the power set of X. If B(`, p) = {(`1, p1), (`2, p2)},
then it means that during an execution if instruction labeled
` produces a value that is accurate up to precision p, then
instructions labeled `1 and `2 must produce values that are
accurate up to precision p1 and p2, respectively.

The blame map B is updated on the execution of every
instruction. We initialize B to the empty map at the begin-
ning of an execution. We illustrate how we update B using a
simple generic instruction of the form ` : x = f(y1, . . . , yn),
where x, y1, . . . , yn are variables and f is an operator, which
could be +, −, ∗, sin, log, etc. In a program run consider a
state where this instruction is executed. Let us assume that
&x, &y1, . . . ,&yn denote the addresses of the variables x,
y1, . . . , yn, respectively, in that state. When the instruction
` : x = f(y1, . . . , yn) is executed during concrete execution,
we also perform a side-by-side shadow execution of the in-
struction to update B(`, p) for each p ∈ P as follows. We
use two functions, BlameSet and merge t, to update B(`, p).

The function BlameSet receives an instruction and a pre-
cision requirement as input, and returns the precision re-
quirements for the instructions that define the values of
its operands. Figure 5 shows the pseudocode of the func-
tion BlameSet. The function first computes the accurate
result by retrieving the shadow value corresponding to the
input instruction, and truncating the shadow value to pre-
cision p (line 1). Function trunc shadow(s,p) returns the
floating-point value corresponding to the precision p given
the shadow value s. Specifically, if p is single precision, then
the single value of s is returned, otherwise trunc shadow re-
turns the double value of s truncated to p. The shadow
values corresponding to all operand variables are retrieved
on line 2. Then, the procedure finds the minimal precisions
p1, . . ., pn such that if we apply f on s1, . . ., sn truncated to
precisions p1, . . ., pn, respectively, then the result truncated
to precision p is equal to the accurate result computed on
line 1. Function trunc(x,p) returns x truncated to precision
p. We then pair each pi with LM [&yi], the last instruction
that computed the value yi, and return the resulting set of
pairs of instruction labels and precisions.

The merge function t is defined as

t : P(L× P )× P(L× P )→ P(L× P )



If (`, p1), (`, p2), . . ., (`, pn) are all the pairs involving the
label ` present in LP1 or LP2, then (`,max(p1, p2, . . . , pn))
is the only pair involving ` present in (LP1 t LP2).

Given the functions BlameSet and merge t, we compute
B(`, p) t BlameSet(` : x = f(y1, . . . , yn), p) and use the re-
sulting set to update B(`, p).

At the end of an execution we get a non-empty map B.
Suppose we want to make sure that the result computed by
a given instruction labeled `out is accurate up to precision
p. Then we want to know what should be the accuracy
of the results computed by the other instructions so that
the accuracy of the result of the instruction labeled `out is
p. We compute this using the function Accuracy(`out, p, B)
which returns a set of pairs instruction labels and precisions,
such that if (`′, p′) is present in Accuracy(`out, p, B), then
the result of executing the instruction labeled `′ must have a
precision of at least p′. Accuracy(`, p, B) can then be defined
recursively as follows.

Accuracy(`, p, B) = {(`, p)}t
⊔

(`′,p′)∈B(`,p)

Accuracy(`′, p′, B)

After computing Accuracy(`out, p, B), we know that if (`′, p′)
is present in Accuracy(`out, p, B), then the instruction la-
beled `′ must be executed with precision at least p′ for the
result of executing instruction `out to have a precision p.

3.4 Heuristics and Optimizations
To attain scalability for large or long running programs,

the implementation of Blame Analysis must address mem-
ory usage and running time. We have experimented with
both online and offline versions of our algorithm.

The offline Blame Analysis first collects the complete
execution trace, and then builds the blame set for each dy-
namic instruction (i.e., if a static instruction is executed
more than once, a blame set will be computed for each time
the instruction was executed). As each instruction is exam-
ined only once, merging operand precisions is not required.
Thus, when compared to online Blame Analysis, the offline
approach often produces better (lower precision) solutions.
However, the size of the execution trace, and the blame set
information explode for long running programs. For exam-
ple, when running offline Blame Analysis on the ep NAS
[37] benchmark with input class2 S, the analysis terminates
with an out of memory error, exhausting 256 GB of RAM.

The online Blame Analysis is more memory efficient be-
cause the size of the blame sets is bounded by the number of
static instructions in the program. As shown in Section 4.2,
the maximum analysis working set size is 81 MB for ep. On
the other hand, the blame sets for each instruction have to
be merged across all its dynamic invocations, making the
analysis slower. In our implementation, we allow develop-
ers to specify what part of the program they are interested
to analyze. For short running programs, such as functions
within the GSL [17] library, examining all instructions is
feasible. Most long running scientific programs fortunately
use iterative solvers, rather than direct solvers. In this case,
analyzing the last few algorithmic iterations is likely to lead
to a good solution, given that precision requirements are in-
creased towards the end of the execution. This is the case
in the NAS benchmarks we have considered. If no options
are specified, Blame Analysis by default will be performed

2Class S is a small input, designed for serial execution.

LLVM Bitcode 

Instrumentation 
Instrumented 

LLVM Bitcode 
Online Blame 

Analysis 

Proposed Type 
Configuration 

Analysis Input 
Parameters 

Test Inputs 

Figure 6: Blame Analysis Architecture

throughout the entire program execution.
In summary, our results show that offline Blame Anal-

ysis is fast (no merge operations) and produces better so-
lutions for small programs, but it is expensive in terms of
memory usage, which makes it impractical. In contrast, on-
line Blame Analysis is memory efficient, produces good
solutions, and it is not too expensive in terms of running
time, thus it has the potential to perform better when ana-
lyzing larger programs. For brevity, the results reported in
the rest of this paper are obtained using the online analysis.

4. EXPERIMENTAL EVALUATION
The Blame Analysis architecture is described in Fig-

ure 6. We build the analysis on top of the LLVM compiler
infrastructure [27]. The analysis takes as input: (1) LLVM
bitcode of the program under analysis, (2) a set of test in-
puts, and (3) analysis parameters that include the target
instruction and the desired error threshold(s). Because the
analysis is implemented using LLVM, it can be applied to
programs written in languages that have a LLVM compiler
frontend (e.g., C, C++, and Fortran). We use the origi-
nal Precimonious benchmarks (written in C), which have
been modified by experts to provide acceptability criteria for
the result precision. For Blame Analysis we select the ac-
ceptability code developed for Precimonious as the target
instruction set. Thus, the results provided by both analyses
always satisfy the programmer specified precision criteria.

The analysis result consists of the set of variables that
can be in single precision. In this section, we present the
evaluation of Blame Analysis by itself, as well as when
used as a pre-processing stage for Precimonious. We refer
to the latter as Blame + Precimonious. We compare this
combined approach with using Precimonious alone, and
perform an evaluation in terms of the analysis running time,
and the impact of the analysis results in improving program
performance. We validate all the results presented in this
section by manually modifying the programs according to
the type assignments suggested by the tools, and running
them to verify that the corresponding final results are as
accurate as required for all test inputs.

4.1 Experiment Setup
We present results for eight programs from the GSL li-

brary [17] and two programs from the NAS parallel bench-
marks [37]. We use clang with no optimizations3 and a

3Optimizations sometimes remove floating-point variables,
which causes the set of variables at the LLVM bitcode level
to differ from the variables at the source code level.



Table 2: Overhead of Blame Analysis

Program Execution (sec) Analysis (sec) Overhead

cg 3.52 185.45 52.55×
ep 34.70 1699.74 48.98×

Python wrapper [34] to build whole program (or whole li-
brary) LLVM bitcode. Note that we do apply optimization
level -O2 when performing final performance measurements
on the tuned programs. We run our experiments on an In-
tel(R) Xeon(R) CPU E5-4640 0 @ 2.40GHz 8-core machine
running Linux with 256 GB RAM.

We use the procedure described in [35] to select program
inputs. For the NAS benchmarks (programs ep and cg), we
use the provided input Class A. For the rest, we generate
1000 random floating-point inputs, which we classify into
groups based on code coverage. We then pick one input
from each group, i.e., we want to maximize code coverage
while minimizing the number of inputs to consider. We log
and read the inputs in hexadecimal format to ensure that
the inputs generated and the inputs used match at the bit
level. We are indeed using the same set of inputs used in
the original evaluation of Precimonious.

In our experiments, we use error thresholds 10−4, 10−6,
10−8, and 10−10, which correspond to 4, 6, 8 and 10 digits of
accuracy, respectively. Additionally, for NAS programs ep
and cg, we configure Blame Analysis to consider only the
last 10% of the executed instructions. For the rest of the
programs, Blame Analysis considers all the instructions
executed.

4.2 Analysis Performance
This section compares the performance of Blame Analy-

sis and its combination with Precimonious. We also com-
pare the online and offline versions of Blame Analysis in
terms of memory usage.

By itself, Blame Analysis introduces up to 50× slow-
down, which is comparable to the runtime overhead reported
by widely-used instrumentation based tools such as Val-
grind [30] and Jalangi [39]. Table 2 shows the overhead
for programs cg and ep. For the rest of our benchmarks,
the overhead is relatively negligible (less than one second).

To measure the analysis time of the combined analyses, we
add the analysis time of Blame Analysis and the search
time of Precimonious for each error threshold. Figure 7
shows the analysis time of Blame + Precimonious (B+P)
and Precimonious (P) for each of our benchmarks. We use
all error thresholds for all benchmarks, except for program
ep. The original version of this program uses error threshold
10−8, thus we do not consider error threshold 10−10.

Overall, we find that Blame + Precimonious is faster
than Precimonious in 31 out of 39 experiments (4 error
thresholds for 9 programs, and 3 error thresholds for 1 pro-
gram). In general, we would expect that as variables are
removed from the search space, the overall analysis time will
be reduced. However, this is not necessarily true, especially
when very few variables are removed. In some cases, re-
moving variables from the search space can alter the search
path of Precimonious, which results in a slower analysis
time. For example, in the experiment with error thresh-
old 10−4 for gaussian, Blame Analysis removes only two
variables from the search space (see Table 4), a small reduc-
tion that changes the search path and actually slows down

Table 3: Average analysis time speedup of Blame + Prec-
imonious compared to Precimonious alone

Program Speedup Program Speedup

bessel 22.48× sum 1.85×
gaussian 1.45× fft 1.54×
roots 18.32× blas 2.11×
polyroots 1.54× ep 1.23×
rootnewt 38.42× cg 0.99×

the analysis. For programs ep and cg, the search space re-
duction results in analysis time speedup for Precimonious.
However, the overhead of Blame Analysis causes the com-
bined Blame + Precimonious running time to be slower
than Precimonious for programs ep (10−4 and 10−6), and
cg (10−4). Figure 8 shows the analysis time breakdown.

Table 3 shows the average speedup per program for all er-
ror thresholds. We observe analysis time speedups for 9 out
of 10 programs. The largest speedup observed is 38.42× and
corresponds to the analysis of program rootnewt. When-
ever we observe a large speedup, Blame Analysis removes
a large number of variables from the search space of Prec-
imonious, at least for error thresholds 10−4 and 10−6 (see
Table 4). This translates into significantly shorter analy-
sis time for Precimonious. The only experiment in which
Blame + Precimonious is slower than Precimonious, on
average, is when analyzing the program cg, however the
slowdown observed is only 1%.
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Figure 8: Analysis time breakdown for Blame + Precimo-
nious (B+P) and Precimonious (P) for two NAS bench-
mark programs

In terms of memory usage, the online version of Blame
Analysis uses up to 81 MB of memory in our experiments.
The most expensive benchmark in terms of analysis memory
usage is program ep. For this program, the offline version
of the analysis runs out memory (256 GB).

4.3 Analysis Results
Table 4 shows the type configurations found by Blame

Analysis (B), Blame + Precimonious (B+P) and Prec-
imonious (P), which consist of the numbers of variables
in double precision (D) and single precision (F). It also
shows the initial type configuration for the original pro-
gram. Our evaluation shows that Blame Analysis is ef-
fective in lowering precision. In particular, in all 39 experi-
ments, Blame Analysis successfully identifies at least one
variable as float. If we consider all 39 experiments, Blame
Analysis removes from the search space 40% of the vari-
ables on average, with a median of 28%.

The type configurations proposed by Blame + Preci-
monious and Precimonious agree in 28 out of 39 exper-
iments, and differ in 11 experiments. Table 5 shows the
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Figure 7: Analysis time comparison between Precimonious (P) and Blame + Precimonious (B+P). The vertical axis
shows the analysis time in seconds. The horizontal axis shows the error thresholds used in each experiment. In these graphs,
a lower curve means the analysis is more efficient.

speedup observed when we tune the programs according to
these type configurations. In all 11 cases in which the two
configurations differ, the configuration proposed by Blame
+ Precimonious produces the best performance improve-
ment. In particular, in three cases we observe 39.9% addi-
tional speedup.

In 31 out of 39 experiments, Blame + Precimonious
finds configurations that differ from the configurations sug-
gested by Blame Analysis alone. Among those, 9 exper-
iments produce a configuration that is different from the
original program. This shows that our analysis is conserva-
tive and Precimonious is still useful in further improving
configurations found by Blame Analysis alone.

Note that for Blame Analysis, we have reported results
only for the online version of the analysis. Our experi-
ments indicate that the offline version has memory scala-
bility problems and while its solutions sometimes are better
in terms of the number of variables that can be lowered to
single precision, it is not necessarily better at reducing anal-
ysis running time, or the running time of the tuned program.

5. DISCUSSION
Blame Analysis has several limitations. First, similar

to other state-of-the-art tools for precision tuning, our anal-
ysis cannot guarantee accurate outputs for all possible in-



Table 4: Configurations found by Blame Analysis (B), Blame + Precimonious (B+P), and Precimonious alone (P). The
column Initial gives the number of floating-point variables (double D, and float F) declared in the programs. For each selected
error threshold, we show the type configuration found by each of the three analyses B, B+P, and P (number of variables per
precision). × denotes the cases where the tools select the original program as fastest.

Error Threshold 10−4 Error Threshold 10−6

Initial B B+P P B B+P P
Program D F D F D F D F D F D F D F

bessel 26 0 1 25 × × × × 1 25 × × × ×
gaussian 56 0 54 2 × × × × 54 2 × × × ×
roots 16 0 1 15 × × × × 1 15 × × × ×
polyroots 31 0 10 21 10 21 × × 10 21 10 21 × ×
rootnewt 14 0 1 13 × × × × 1 13 × × × ×
sum 34 0 24 10 11 23 11 23 24 10 11 23 × ×
fft 22 0 16 6 0 22 0 22 16 6 0 22 0 22
blas 17 0 1 16 0 17 0 17 1 16 0 17 0 17
ep 45 0 42 3 42 3 × × 42 3 42 3 × ×
cg 32 0 26 6 2 30 2 30 28 4 13 19 13 19

Error Threshold 10−8 Error Threshold 10−10

Initial B B+P P B B+P P
Program D F D F D F D F D F D F D F

bessel 26 0 25 1 × × × × 25 1 × × × ×
gaussian 56 0 54 2 × × × × 54 2 × × × ×
roots 16 0 5 11 × × × × 5 11 × × × ×
polyroots 31 0 10 21 10 21 × × 10 21 10 21 × ×
rootnewt 14 0 5 9 × × × × 5 9 × × × ×
sum 34 0 24 10 11 23 × × 24 10 24 10 × ×
fft 22 0 16 6 × × × × 16 6 × × × ×
blas 17 0 10 7 × × × × 10 7 × × × ×
ep 45 0 42 3 42 3 × × - - - - - -
cg 32 0 28 4 16 16 12 20 28 4 16 16 16 16

puts, thus there is the need for representative test inputs.
Although input generation has a significant impact on the
type configurations recommended by our analysis, the prob-
lem of generating floating-point inputs is orthogonal to the
problem addressed in this paper. In practice, we expect pro-
grammers will be able to provide meaningful inputs, or use
complementary input-generation tools [16]. Still, we believe
our tool is a powerful resource for the programmer, who will
ultimately decide whether to apply the suggested configura-
tions fully or partially.

Another limitation is that Blame Analysis does not take
into account program performance; by itself, the suggested
configurations might not lead to program speedup. Note
that, in general, lowering precision does not necessarily re-
sult in a faster program. For example, consider the addition
v1 + v2. Assume v1 has type float and v2 has type double.
The addition will be performed in double precision, requir-
ing to cast v1 to double. When a large number of such
casts is required, the tuned program might be slower than
the original program. The analysis focuses on the impact in
accuracy, but does not consider the impact in running time.
Because of this, the solutions produced are not guaranteed
to improve performance.

Last, the program transformations suggested by Blame
Analysis are limited to changing variable declarations whose
precision will remain the same throughout the execution of
the program. We do not currently handle shift of preci-
sion during program execution, which could potentially con-
tribute to improving program performance. Also, the anal-
ysis does not consider algorithmic changes that could also
potentially improve running time. Note that both kinds of
transformations would require additional efforts to express
program changes.

While very useful, automated tools for floating-point pre-
cision tuning have to overcome scalability concerns. As it
adds a constant overhead per instruction, the scalability of

our single-pass Blame Analysis is determined solely by the
program runtime. The scalability of Precimonious is deter-
mined by both program runtime and the number of variables
in the program. We believe that our approach uncovers very
exciting potential for the realization of tools able to handle
large codes. There are several directions to improve the ef-
ficacy of Blame Analysis as a standalone tool, as well as
a filter for Precimonious.

A future direction is to use Blame Analysis as an intra-
procedural analysis, rather than an interprocedural analy-
sis as presented in this paper. Concretely, we can apply it
on each procedure and use the configurations inferred for
each procedure to infer the configuration for the entire pro-
gram. Doing so will enable the opportunity for parallelism
and might greatly improve the analysis time in modular pro-
grams. Another future direction is to experiment with other
intermediate precisions. In this paper, we used four inter-
mediate precisions, db4, db6, db8, and db10, to track preci-
sion requirements during the analysis. This proved a good
trade-off between the quality of the solution and runtime
overhead. For some programs, increasing the granularity of
intermediate precisions may lead to more variables kept in
low precision, further pruning the search space of Precimo-
nious.

6. RELATED WORK
Precimonious [35] is a dynamic analysis tool for tun-

ing floating-point precision, already detailed. Lam et al.
[25] also propose a framework for finding mixed-precision
floating-point computation. Lam’s approach uses a brute-
force algorithm to find double precision instructions that
can be replaced by single instructions. Their goal is to use
as many single instructions in place of double instructions
as possible, but not explicitly consider speedup as a goal.
Blame Analysis differs from Precimonious and Lam’s
framework in that it performs a white-box analysis on the



Table 5: Speedup observed after precision tuning using con-
figurations produced by Blame + Precimonious (B+P)
and Precimonious alone (P)

Threshold 10−4 Threshold 10−6

Program B+P P B+P P

bessel 0.0% 0.0% 0.0% 0.0%
gaussian 0.0% 0.0% 0.0% 0.0%
roots 0.0% 0.0% 0.0% 0.0%
polyroots 0.4% 0.0% 0.4% 0.0%
rootnewt 0.0% 0.0% 0.0% 0.0%
sum 39.9% 39.9% 39.9% 0.0%
fft 8.3% 8.3% 8.3% 8.3%
blas 5.1% 5.1% 5.1% 5.1%
ep 0.6% 0.0% 0.6% 0.0%
cg 7.7% 7.7% 7.9% 7.9%

Threshold 10−8 Threshold 10−10

Program B+P P B+P P

bessel 0.0% 0.0% 0.0% 0.0%
gaussian 0.0% 0.0% 0.0% 0.0%
roots 0.0% 0.0% 0.0% 0.0%
polyroots 0.4% 0.0% 0.4% 0.0%
rootnewt 0.0% 0.0% 0.0% 0.0%
sum 39.9% 0.0% 0.0% 0.0%
fft 0.0% 0.0% 0.0% 0.0%
blas 0.0% 0.0% 0.0% 0.0%
ep 0.6% 0.0% - -
cg 7.9% 7.4% 7.9% 7.9%

set of instructions executed by the program under analysis,
rather than through searching. Thus, Blame Analysis is
not bounded by the exponential size of the variable or in-
struction search space. Similar to Lam’s framework, the goal
of our analysis is to minimize the use of double precision in
the program without considering performance.

Darulova et. al [19] develop a method for compiling a real-
valued implementation program into a finite-precision im-
plementation program, such that the finite-precision imple-
mentation program meets all desired precision with respect
to the real numbers, however the approach does not sup-
port mixed precision. Schkufza et. al [38] develop a method
for optimization of floating-point programs using stochastic
search by randomly applying a variety of program transfor-
mations, which sacrifice bit-wise precision in favor of per-
formance. FloatWatch [11] is a dynamic execution profiling
tool for floating-point programs which is designed to identify
instructions that can be computed in a lower precision by
computing the overall range of values for each instruction of
interest. As with other tools described in this paper, all the
above also face scalability challenges.

Darulova and Kuncak [18] also implemented a dynamic
range analysis feature for the Scala language that could be
used for precision tuning purposes, by first computing a dy-
namic range for each instruction of interest and then tun-
ing the precision based on the computed range, similar to
FloatWatch. However, range analysis often incurs overesti-
mates too large to be useful for precision tuning analysis.
Gappa [20] is another tool that uses range analysis to verify
and prove formal properties of floating-point programs. One
could use Gappa to verify ranges for certain program vari-
ables and expressions, and then choose their appropriate pre-
cisions. Nevertheless, Gappa scales only to small programs
with simple structures and several hundreds of operations,
and thus is used mostly for verifying elementary functions.

A large body of work exists on accuracy analysis [8, 6, 7,

21, 26, 41, 46]. Benz et al. [8] present a dynamic approach
that consists on computing every floating-point instructions
side-by-side in higher precision, storing the higher precision
values in shadow variables. FPInst [1] is another tool that
computes floating-point errors to detect accuracy problems.
It computes a shadow value side-by-side, but it stores an
absolute error in double precision instead. Herbie [31] esti-
mates and localizes rounding errors, and then rewrites nu-
merical expressions to improve accuracy. The above tools
aim to find accuracy problems (and improve accuracy), not
to find opportunities to reduce floating-point precision.

Other large areas of research that focus on improving per-
formance are autotuning (e.g., [9, 22, 33, 42, 43]) and ap-
proximate computing (e.g., [10, 15, 29, 36, 40]). However,
no previous work has tried to tune floating-point precision
as discussed in this paper. Finally, our work on Blame
Analysis is related to other dynamic analysis tools that
employ shadow execution and instrumentation [39, 30, 32,
12]. These tools, however, are designed as general dynamic
analysis frameworks rather than specializing in analyzing
floating-point programs like ours.

7. CONCLUSION
We introduce a novel dynamic analysis designed to tune

the precision of floating-point programs. Our implementa-
tion uses a shadow execution engine and when applied to a
set of ten programs it is able to compute a solution with at
most 50× runtime overhead. Our workload contains a com-
bination of small to medium size programs, some that are
long running. The code is open source and available online4.

When used by itself, Blame Analysis is able to lower
the precision for all tests, but the results do not necessar-
ily translate into execution time improvement. The largest
impact is observed when using the analysis as a filter to
prune the inputs to Precimonious, a floating-point tuning
tool that searches through the variable space. The com-
bined analysis time is 9× faster on average, and up to 38×
in comparison to Precimonious alone. The resulting type
configurations improve program execution time by as much
as 39.9%.

We believe that our results are very encouraging and in-
dicate that floating-point tuning of entire applications will
become feasible in the near future. As we now understand
the more subtle behavior of Blame Analysis, we believe
we can improve both analysis speed and the quality of the
solution. It remains to be seen if this approach to develop
fast but conservative analyses can supplant the existing slow
but powerful search-based methods. Nevertheless, our work
proves that using a fast “imprecise” analysis to bootstrap
another slow but precise analysis can provide a practical so-
lution to tuning floating point in large code bases.
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