
Expect the Unexpected: Error Code Mismatches
Between Documentation and the Real World ∗

Cindy Rubio-González
University of Wisconsin–Madison

crubio@cs.wisc.edu

Ben Liblit
University of Wisconsin–Madison

liblit@cs.wisc.edu

Abstract
Inaccurate documentation can mislead programmers and cause soft-
ware to fail in unexpected ways. We examine mismatches between
documented and actual error codes returned by 42 Linux file-related
system calls. We use static program analysis to identify the error
codes returned by system calls across 52 file systems, including
widely-used implementations such as CIFS, ext3, IBM JFS, Reis-
erFS and XFS. We describe analysis optimizations that dramatically
reduce run-time and memory consumption. Comparing analysis
results with Linux manual pages reveals over 1,700 undocumented
error-code instances affecting all file systems and system calls ex-
amined.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—formal methods, reliability,
validation; D.2.5 [Software Engineering]: Testing and Debugging—
error handling and recovery; D.2.7 [Software Engineering]: Dis-
tribution, Maintenance, and Enhancement—documentation; D.4.3
[Operating Systems]: File Systems Management

General Terms Algorithms, Languages, Reliability, Verification

Keywords static program analysis, interprocedural dataflow analy-
sis, weighted pushdown systems, manual pages

1. Introduction
User applications rely on systems software to run as specified.
File systems play a particularly important role within systems
software by storing and organizing user’s data. When run-time
errors do occur, user applications must be notified and respond.
Thus, user applications must be aware of possible problems and be
prepared to deal with them. Documentation is the programmer’s
main resource to learn about potential run-time errors that might
arise from invoking a given system call. Unfortunately, writing
and maintaining accurate code documentation is difficult. This is
particularly true for large code bases such as the Linux kernel.

∗ Supported in part by AFOSR grant FA9550-07-1-0210; DoE contract
DE-SC0002153; LLNL contract B580360; and NSF grants CCF-0621487,
CCF-0701957, and CCF-0953478. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF or other institutions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PASTE’10, June 5–6, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0082-7/10/06. . . $10.00

This paper considers whether the manual pages that document
Linux kernel system calls match the real source code’s behavior. We
are particularly interested in Linux file-system implementations be-
cause of their importance and the large number of implementations
available, which might make the task of maintaining documentation
even harder. Our task is to examine the Linux source code to find
the sets of error codes that system calls return and compare these
against the information given in the Linux manual pages to find
errors that are returned to user applications but not documented.

We generalize this problem as finding the set of error codes that
each function returns, and then focus on the subset of system call
functions. This requires tracing error codes through kernel code.
It has been shown that error codes flow through long call chains,
which has suggested the need for interprocedural static analyses.
Rubio-González et al. [15] describe a static analysis that finds error
propagation bugs by identifying the set of error codes that each
variable may contain at each program point. Given such an analysis,
we can reduce the documentation-checking problem to finding the
sets of possible error codes at function exit points.

The contributions of this paper are: 1) adapting an existing
error-propagation analysis to find the list of error codes that each
function may return, 2) retrieving this information for system calls
and comparing the list of returning error codes against the Linux
manual pages, 3) describing optimizations to allow analysis of larger
and more complex file systems, 4) providing real-world results
for 52 Linux file-system implementations that reveal over 1,700
undocumented error-code instances returned by file-related system
calls.

The paper is organized as follows: Section 2 discusses some
related work. Section 3 gives a high-level description of an error-
propagation analysis and how this analysis has been extended
to manipulate positive error codes. Section 4 shows how to use
the error-propagation framework to find the set of error codes
returned by each function in a program. We discus some analysis
optimizations in Section 5. We present experimental results on 52
Linux file systems in Section 6. Section 7 concludes.

2. Related Work
Studies show that programmers value accurate documentation, but
neither trust nor maintain the documentation they have [9, 19]. For
example, Sacramento et al. [16] found that 90% of relevant excep-
tions thrown by .NET assemblies (C# libraries) are undocumented.
Misleading documentation can lead to coding errors [20] or even
legal liability [5]. Our work bridges the gap between code and
documentation, automatically identifying mismatches so that dis-
agreements between the two may be peaceably resolved. In the spirit
of Xie and Engler [23], even if we do not know which is right and
which is wrong, the mere presence of inconsistencies indicates that
something is amiss.

mailto:crubio@cs.wisc.edu
mailto:liblit@cs.wisc.edu

Venolia [21] uses custom regular expressions to find references
to software artifacts in free-form text. The referenced artifacts
are extracted from compiler abstract syntax trees. Tan et al. [20]
use natural-language processing to identify usage rules in source
comments, then check these against actual code behavior using
backtracking path exploration. Our documentation-analysis task is
much easier, and can be solved using a Venolia-style purpose-built
pattern-matcher. Our analysis of the corresponding source code,
however, poses a greater challenge.

Prior work has measured documentation completeness, quantity,
density, readability, reusability, standards adherence, and internal
consistency [4, 11, 14, 17, 18]. Berglund and Priestley [1] call for
automatic verification of documentation, but consider only XML val-
idation, spell checking, and the like. None of this assesses whether
the documentation’s claims are actually true. For truly free-form text,
nothing more may be possible. However, for some highly-structured
documents, we can go beyond structural validation to content vali-
dation: affirming that the documentation is not merely well-formed,
but actually truthful with respect to the code it describes.

While our work focuses on finding mismatches between code
and pre-existing documentation, Buse and Weimer [3] automatically
generate documentation describing the circumstances under which
Java code throws exceptions. If applied to kernel code, this could
help us not just list undocumented error codes, but also describe the
conditions under which they arise.

3. Error Propagation Analysis
Linux (like many other operating systems) is written in C, a language
that offers no exception-handling mechanism by which an error
code could be raised or thrown. Errors must propagate through
conventional mechanisms such as variable assignments and function
return values. Most Linux run-time errors are represented as simple
integer codes. Each integer value represents a different kind of error,
and macros give these mnemonic names. For example, EIO (I/O
error) is defined as 5. Linux uses 34 basic error codes. Error codes
are negated by convention (except for the XFS Linux file system,
which uses positive error codes). We say that an error is unchecked
if no action (e.g., error notification, attempted recovery, etc.) has
taken place due to its occurrence.

Rubio-González et al. [15] proposed an interprocedural, flow-
and context-sensitive static program analysis that determines, at
each program point, the set of unchecked error codes each variable
may contain. We present a high-level description of this framework
in Section 3.1. We describe in Section 3.2 an extension to this
framework that allows to track positive error codes.

3.1 Analysis Framework
Assignments propagate unchecked errors forward from one variable
to another. Propagation ends when an error is overwritten, dropped,
or checked by error-handling code. In general we wish to identify
the set of unchecked errors that each program variable may contain
at each program point. Thus, this problem resembles an over-
approximating analogue of copy constant propagation [22].

We codify the analysis as a path problem over weighted push-
down systems (WPDSs) [13]. A WPDS is a useful dataflow engine
for problems that can be encoded with suitable weight domains,
computing the meet-over-all-paths solution. It consists of three main
components: (1) a pushdown system, (2) a bounded idempotent
semiring, and (3) a mapping from pushdown system rules to asso-
ciated weights. The pushdown system is used to model the control
flow of the program. The bounded idempotent semiring is a 5-tuple
as defined in Reps et al. [13]. Finally, we define transfer functions
for each construct in the program. Transfer functions define the new
state of the program as a function of the old state.

Rule Control flow modeled

〈p,a〉 ↪→ 〈p,b〉 Intraprocedural flow from a to b

〈p,c〉 ↪→ 〈p, fenterr〉 Call from c to procedure entry fenter,
eventually returning to r

〈p, fexit〉 ↪→ 〈p,ε〉 Return from procedure exit fexit

Table 1. Encoding of control flow as PDS rules

3.1.1 Pushdown System
We model the control flow of the program with a pushdown system
using the approach of Lal et al. [8]. Let P contain a single state {p}.
Γ corresponds to program statements, and ∆ corresponds to edges
of the interprocedural control flow graph (CFG). Table 1 shows the
PDS rule for each type of CFG edge.

3.1.2 Bounded Idempotent Semiring
We classify integer constants into error constants and non-error
constants. Define E as the set of all error constants. For purposes
of this analysis, all non-error constants can be treated as a single
value, which we represent as OK. We also introduce uninitialized
to represent uninitialized values. Let C be the set of all constants
and V be the set of all program variables.

Let S = (D, ⊕, ⊗, 0̄, 1̄) be a bounded idempotent semiring.
Figure 1 shows the definition for each semiring element. Elements
of D are drawn from V → 2V ∪C , so each weight in D is a mapping
from variables to sets containing variables, error values, OK and/or
uninitialized. This gives the possible values of v following execution
of a given program statement in terms of the values of constants
and variables before that statement. Figure 1(b) defines the combine
operator. The combine operator is applied component-wise, with
each variable v mapping to any value it could have mapped to in
either of the weights being combined. Figure 1(e) defines the extend
operator, which is also applied component-wise. The extend operator
is essentially composition generalized to the power set of variables
and constants rather than just single variables. The neutral weight
1̄, given in Figure 1(f), maps each variable to the set containing
itself, which is a power-set generalization of the identity function.
Figure 1(c) gives the annihilator weight 0̄, which maps each variable
to the empty set.

3.1.3 Transfer Functions
Each control-flow edge in the source program corresponds to a
WPDS rule and therefore needs an associated weight drawn from
the set of transfer functions D. We describe transfer functions as
being associated with specific statements. The corresponding WPDS
rule weight is associated with the edge from a statement to its unique
successor. (Conditionals have multiple outgoing edges and therefore
require multiple transfer functions.)

Consider an assignment t = s where t,s ∈ V are distinct and s
might contain an unchecked error code. The assignment t = s leaves
an unchecked error in t but removes it from s, effectively transferring
ownership of unchecked error values across assignments. The
following paragraphs discuss the transfer functions for assignments
without function calls on the right side (see Table 2). Rubio-
González et al. [15] detail transfer functions for other language
constructs, including variants that treat errors as having been copied
instead of transferred.

Simple Assignments These are assignments of the form v = e,
where e ∈ V ∪C . Let Ident be the function that maps each vari-
able to the set containing itself. Note that this is identical to
1̄. The transfer function for this simple assignment is Ident[v 7→
{e}][s 7→ {OK} for s ∈ {e}∩V −{v}]. In other words, after the as-

E = {e | e is an error constant}
C = E ∪{OK,uninitialized}
V = {v | v is a variable}

(a) General Definitions

For all w1,w2 ∈ D and v ∈ V :

(w1⊕w2)(v)≡ w1(v)∪w2(v)
(b) Combine Operator

0̄≡ {(v, /0) |v ∈ V }
(c) Zero

D = {w | w : V → 2V ∪C }
(d) Set D

For all w1,w2 ∈ D and v ∈ V :

(w1⊗w2)(v)≡

{
(C ∩w2(v))∪

⋃
v′∈V ∩w2(v) w1(v′) if w1(v) , /0

/0 otherwise

(e) Extend Operator

1̄≡ {(v,{v}) |v ∈ V }
(f) One

Figure 1. Definitions for weighted pushdown system representing error propagation analysis

Program Statement Where Transfer Function

v = e e ∈ V ∪C Ident[v 7→ {e}][s 7→ {OK} for all s ∈ {e}∩V −{v}]

v = e1 op e2 e1,e2 ∈ V ∪C and Ident[u 7→ {OK} for all u ∈ {v,e1,e2}∩V]
op is a binary arithmetic or bitwise operator

e1,e2 ∈ V ∪C and Ident[v 7→ {OK}]
op is a relational operator

v = op e e ∈ V ∪C and Ident[u 7→ {OK} for all u ∈ {v,e}∩V]
op is a binary arithmetic or bitwise operator

e ∈ V ∪C and Ident[v 7→ {OK}]
op is the logical negation or an indirection operator

Table 2. Transfer functions for assignments

signment, (1) v must now have any unchecked error code previously
in e; (2) e, having relinquished responsibility, is OK or a constant;
and (3) all other variables retain whatever values they had before
the assignment. Special care is taken in the case that v and e are
identical, in which case this transfer function reduces to identity.

Complex assignments These are assignments in which the as-
signed expression e is not a simple variable or constant. We assume
that the program has been converted into three-address form, with
no more than one operator on the right side of each assignment.

Consider an assignment of the form v = e1 op e2 where e1,e2 ∈
V ∪C and op is a binary arithmetic or bitwise operator (+, &,
<<, etc.). Error codes are represented as integers but conceptu-
ally they are atomic values on which arithmetic operations are
meaningless. Thus, if op is an arithmetic or bitwise operation,
then we can safely assume that e1 and e2 do not contain errors.
Furthermore, the result of this operation must be a non-error
as well. Therefore, the transfer function for this assignment is
Ident[u 7→ {OK} for all u ∈ {v,e1,e2}∩V].

Consider instead an assignment of the form v = e1 op e2 where
e1,e2 ∈ V ∪C and op is a binary relational operator (>, ==, etc.).
Relational comparisons are meaningful for error codes, so we cannot
assume that e1 and e2 are non-errors. However, the Boolean result of
the comparison cannot be an error. Therefore, the transfer function
for this assignment is Ident[v 7→ {OK}].

Assignments with unary operators (v = op e) are similar: arith-
metic and bitwise operators map both v and e (if a variable) to
{OK}. However, C programmers often use logical negation to test
for equality to 0. So when op is logical negation (!) or an indirection
operator (&, *), the transfer function maps v to {OK} but leaves e
unchanged.

We perform a poststar query [13] on the WPDS, with the
beginning of the program as the starting configuration. We read

out weights from the resulting weighted automaton applying the
path_summary algorithm of Lal et al. [7]. This algorithm allows us
to retrieve the weight representing execution from the beginning of
the program to any particular point of interest.

3.2 Positive Error Codes
Prior work assumed that error codes are always negated. We now
support optional analysis of positive error codes as well. In particular,
we define a new set of interchangeable transfer functions for
conditional statements. As before, each branch of a conditional
statement is associated with a transfer function, depending on
the condition. We assume that conditional statements with short-
circuiting conditions are rewritten as nested conditional statements
with simple conditions.

Consider a conditional of the form if (v > 0). The transfer
function associated with the true branch for negative error codes
is Ident[v 7→ {OK}]. The true branch is never selected when v is
negative, therefore v cannot contain an error code on that branch.
The transfer function for the false branch is Ident. The false branch
is selected when v is zero or negative, which does not reveal any
additional information about v (it might contain an error code or not).
Thus, variables should remain mapped to whatever values they had
before the conditional. Note that the opposite holds for positive error
codes. If error codes are positive, then the true branch of if (v > 0)
uses Ident and the false branch uses Ident[v 7→ {OK}].

Currently, the analysis can be applied in negative or positive
mode. This lets us analyze code that uses positive error codes. An
example is the XFS Linux file system: it is one of the largest and
most complex Linux file systems, and it uses positive error codes.

1 int bar() {

2 return -EIO;

3 }
4

5 int foo() {
6 int retval;
7 if (...) retval = -ENOMEM;
8 else if (...) retval = -EPERM;

9 else return bar();

10 return retval;

11 }

(a) Example code

ex.c:2: EIO* returned from function bar
(b) Report for function bar

ex.c:2: error code EIO is returned
ex.c:9: EIO* returned from function foo

ex.c:7: "retval" receives an error from ENOMEM
ex.c:10: ENOMEM* EPERM returned from function foo

ex.c:8: "retval" receives an error from EPERM
ex.c:10: ENOMEM EPERM* returned from function foo

(c) Reports for function foo

Figure 2. Example code fragment and corresponding reports

4. Finding Error Return Values
We wish to find the list of error codes returned by each function in
the program. As mentioned earlier, we can now retrieve the weight
at any program point. Thus, at each return statement r in function
f , we retrieve the associated weight w. Let E be the set of all error
constants and R ⊆ C be the set of possible constant values returned
by function f (if any). Then R ∩E represents the set of error codes
that may be returned when f returns at exit point r. We generate
a report that includes source information, the list of returned error
codes and a sample path for each of these error codes.

Sample paths describe how a particular function exit point r was
reached in a way that a certain error code instance was returned. We
use WPDS witness tracing information to construct these paths. A
witness set is a set of paths that justify the weight reported for a
given configuration. Rubio-González et al. [15] described the use of
witness tracing information for the construction of error-propagation
paths; we use witnesses here to justify each error code that a function
exit point is claimed to return.

Figure 2 shows examples of return-value reports. Function bar
returns a constant error code at line 2. Figure 2(b) shows the report
produced for this return point, which consists of a single line of
information, since the error was generated and returned at the same
program point. On the other hand, function foo has two exit points
(lines 9 and 10). In the first case, line 9, foo calls function bar.
In the second case, foo returns the value contained in variable
retval. The corresponding reports are shown in Figure 2(c).
We produce three return-value reports instead of two. This is
because retval can possibly contain two error codes (ENOMEM
and EPERM), and we choose to provide a sample path for each. Of
course, error propagation in real code is far more complex. Real
sample paths can span thousands of lines of code, even exceeding
half a million lines in one extreme case.

5. Analysis Optimizations
Rubio-González et al. [15] required several hours to analyze file
systems approaching 100,000 lines of code, and the massive XFS
file system remained completely out of reach. We have optimized
the analysis core in two ways:

1. We add a preliminary flow- and context-insensitive analysis
that filters out irrelevant program variables that cannot possibly
contain any error code.

2. We compress consecutive WPDS rules that share identity weight
and identical source locations.

The number of variables determines the size of the weights, and
large weights can significantly degrade performance. Our return-
value analysis initially considered all program variables as potential
error-code holders. In reality, most program variables have nothing
to do with storing error codes. Thus, we now perform a lightweight
pre-analysis to find the set of program variables that can possibly
contain error codes at some point during program execution, thereby
keeping weights small.

This pre-analysis is flow- and context insensitive. It begins by
identifying program points at which error codes are generated, i.e.,
those program points at which error macros are used. We identify
those variables that are assigned error constants and add them to
our set of relevant variables. A second iteration looks for variables
that are assigned from relevant variables, which are also added to
the relevant-variable set. We repeat this process until we reach a
fixed point. Because of earlier program transformations that we do
not discuss here (e.g., introducing exchange variables [15]), this
approach also handles other error-flow scenarios such as function
parameters and return values.

WPDS rules are used to model the control flow of the program
and are associated with weights. The identity weight has no effect
on the current state of the program. We also associate source
information (file name and line number) to rules for use when
presenting diagnostic information. Because we convert the program
into three-address form, one original program statement may be split
into several consecutive rules, all with identical source information.
These are analyzed as distinct program points, thus increasing the
number of weights to be created and calculated. We compress back
consecutive rules that are associated with the identity weight and
share the same source information, thereby reducing the number of
weights to be calculated.

6. Experimental Evaluation
We use the CIL C front end [12] to apply preliminary source-to-
source transformations on Linux kernel code, such as redefining
error code macros as distinctive expressions to avoid mistaking
regular constants for error codes. We also use CIL to traverse the
CFG and emit a textual representation of the WPDS. Our separate
analysis tool uses the WALi WPDS library [6] to perform the
interprocedural dataflow analysis on this WPDS. We encode weights
using binary decision diagrams (BDDs) [2] as implemented by the
BuDDy BDD library [10].

We analyze 52 file-system implementations (871 KLOC) found
in the Linux 2.6.32.4 kernel. We synthesize a main function that
nondeterministically calls all exported entry points of the file system
under analysis. Our tool produces the list of basic error codes that
each function may return, along with sample paths that illustrate
how specific error instances reach a given function’s exit points. We
compare these error codes against version 2.39 of the Linux manual
pages for each of 42 file-related system calls.

E
rr

or
C

od
e

Sy
st

em
C

al
l

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

aa
ab

To
ta

l

ac
ce

ss
0

-
0

1
0

0
-

0
1

-
-

0
0

0
0

0
-

-
0

-
1

0
0

-
0

0
-

0
3

ch
di

r
0

-
0

-
0

0
-

0
1

1
-

0
0

0
0

0
-

-
0

-
1

0
0

21
0

0
0

0
24

ch
m

od
1

-
2

-
0

4
-

3
4

11
-

0
1

0
1

2
-

-
5

-
2

-
4

-
0

0
4

1
45

ch
ow

n
1

-
2

-
0

4
-

3
4

11
-

0
1

0
1

2
-

-
5

-
2

-
4

-
0

0
4

1
45

ch
ro

ot
0

-
0

1
0

0
-

0
1

1
-

0
0

0
0

0
-

-
0

-
1

-
0

21
0

0
0

0
25

du
p

0
0

0
-

-
0

0
0

-
0

0
0

-
0

0
0

0
20

0
0

0
0

0
0

0
0

0
0

20
du

p2
0

0
0

-
-

0
0

0
-

1
0

0
-

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
2

fc
hd

ir
0

-
0

-
0

0
-

0
1

0
-

0
0

0
0

0
-

-
0

-
1

0
0

21
0

0
0

0
23

fc
hm

od
1

-
2

-
0

4
-

3
4

10
-

0
1

0
1

2
-

-
5

-
2

-
4

-
0

0
4

1
44

fc
ho

w
n

1
-

2
-

0
4

-
3

4
10

-
0

1
0

1
2

-
-

5
-

2
-

4
-

0
0

4
1

44
fd

at
as

yn
c

0
0

1
-

0
0

0
0

2
22

-
0

0
0

0
1

2
3

0
0

1
0

0
0

0
0

0
0

32
flo

ck
0

0
21

-
0

0
0

0
-

-
21

0
0

0
0

0
21

21
0

0
0

0
0

0
0

0
0

0
84

fs
ta

t
1

-
1

-
0

1
-

0
1

2
21

0
1

0
1

2
-

-
1

-
1

0
1

1
0

0
1

1
37

fs
ta

tf
s

0
-

0
-

0
0

-
0

-
0

-
0

0
0

0
21

-
-

0
-

0
0

0
0

0
0

0
0

21
fs

yn
c

0
0

1
-

0
0

0
0

2
22

-
0

0
0

0
1

2
3

0
0

1
0

0
0

0
0

0
0

32
ft

ru
nc

at
e

1
-

21
-

0
4

-
-

-
-

-
-

1
0

1
2

-
10

5
-

2
-

4
-

0
0

-
1

52
ge

td
en

ts
1

1
2

-
0

1
-

0
1

-
20

0
1

0
1

2
-

12
2

-
1

1
1

1
0

0
1

1
50

io
ct

l
0

10
4

-
2

0
-

21
2

-
21

2
0

0
0

21
5

21
2

2
1

21
0

8
21

1
1

0
16

6
lc

ho
w

n
1

-
2

-
0

4
-

3
4

11
-

0
1

0
1

2
-

-
5

-
2

-
4

-
0

0
4

1
45

lin
k

1
-

3
1

1
-

-
0

3
7

-
0

1
-

1
2

-
-

-
-

2
-

1
-

0
0

1
-

24
ls

ta
t

1
-

1
-

0
1

-
0

2
4

21
0

1
0

1
2

-
-

1
-

2
0

1
21

0
0

1
1

61
m

kd
ir

1
-

3
1

1
-

-
1

3
11

21
0

1
7

1
2

-
-

-
-

2
-

2
-

0
0

2
1

60
m

kn
od

1
-

3
1

1
-

-
1

3
-

21
0

1
1

1
2

-
-

-
-

2
-

2
-

0
0

2
1

43
m

ou
nt

0
-

-
1

-
0

-
0

1
-

21
0

-
0

0
-

-
-

0
-

-
-

0
21

0
0

0
0

44
nf

ss
er

vc
tl

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
re

ad
0

1
-

-
0

0
-

0
-

-
-

-
0

0
0

2
20

21
0

0
0

0
0

0
0

0
0

0
44

re
ad

lin
k

0
-

0
1

0
0

-
0

1
-

-
0

0
0

0
0

-
-

0
-

1
0

0
21

0
0

0
0

24
re

ad
v

0
0

0
20

0
0

0
0

0
-

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

20
re

na
m

e
1

-
3

21
-

21
-

0
3

-
21

-
1

-
1

2
-

-
-

-
2

21
1

-
0

0
1

-
99

rm
di

r
0

-
2

1
-

1
-

0
3

-
21

21
0

0
0

1
-

-
2

-
1

-
0

-
0

0
0

0
53

se
le

ct
0

0
0

-
0

0
1

0
-

-
0

0
0

0
0

0
0

-
0

0
0

0
0

0
0

0
0

0
1

st
at

1
-

1
-

0
1

-
0

2
4

21
0

1
0

1
2

-
-

1
-

2
0

1
21

0
0

1
1

61
st

at
fs

0
-

0
-

0
0

-
0

-
1

-
0

0
0

0
21

-
-

0
-

1
0

0
21

0
0

0
0

44
sy

m
lin

k
0

-
3

1
1

-
-

1
3

8
-

0
0

1
0

1
-

-
-

-
1

-
0

-
0

0
1

0
21

tr
un

ca
te

1
-

21
-

0
4

-
-

-
-

-
-

1
0

1
2

-
23

5
-

2
-

4
-

0
0

-
1

65
um

ou
nt

0
-

-
1

-
0

-
0

1
-

21
0

-
0

0
-

-
-

0
-

-
-

0
21

0
0

0
0

44
un

lin
k

1
-

2
2

21
2

-
0

3
5

-
-

1
0

1
2

-
-

3
-

2
-

1
-

0
0

2
1

49
us

el
ib

0
-

0
0

0
0

21
0

0
21

0
0

0
0

-
0

0
21

0
0

0
0

0
0

0
0

0
0

63
us

ta
t

0
0

0
0

0
0

-
0

1
-

2
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

5
ut

im
e

1
-

2
2

0
4

1
3

4
12

21
0

1
0

1
2

-
26

5
21

2
-

4
-

0
0

4
1

11
7

w
ri

te
0

1
-

-
0

0
-

-
-

-
-

0
0

0
0

2
20

2
-

0
0

0
0

0
0

1
0

0
26

w
ri

te
v

0
0

0
20

0
0

0
0

0
-

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

20

G
ra

nd
To

ta
l

17
13

10
5

75
27

60
24

42
65

17
6

27
4

23
17

9
17

10
6

70
18

5
52

23
43

43
43

19
9

21
2

38
15

1,
78

4

Ta
bl

e
3.

N
um

be
r

of
fil

e
sy

st
em

s
pe

r
sy

st
em

ca
ll,

w
hi

ch
re

tu
rn

un
do

cu
m

en
te

d
er

ro
rs

.
a:
E
2
B
I
G

,
b:
E
A
C
C
E
S

,
c:
E
A
G
A
I
N

,
d:
E
B
A
D
F

,
e:
E
B
U
S
Y

,
f:
E
E
X
I
S
T

,
g:
E
F
A
U
L
T

,
h:
E
F
B
I
G

,
i:E
I
N
T
R

,j
:E
I
N
V
A
L

,k
:E
I
O

,l
:E
I
S
D
I
R

,m
:E
M
F
I
L
E

,n
:E
M
L
I
N
K

,o
:E
N
F
I
L
E

,p
:E
N
O
D
E
V

,q
:E
N
O
E
N
T

,r
:E
N
O
M
E
M

,s
:E
N
O
S
P
C

,t
:E
N
O
T
D
I
R

,u
:E
M
X
I
O

,v
:E
P
E
R
M

,w
:E
R
A
N
G
E

,x
:E
R
O
F
S

,
y:
E
S
P
I
P
E

,z
:E
S
R
C

,a
a:
E
T
X
T
B
S
Y

,a
b:
E
X
D
E
V

.

6.1 Analysis of Manual Pages
The manual pages for Linux system calls have a very consistent
internal structure. We can easily identify the section listing possible
errors and extract the list of error codes contained therein. This
requires only basic text analysis in the style of Venolia [21] rather
than sophisticated natural-language-processing algorithms as used
by Tan et al. [20].

For any given system call, “man -W 2 syscall” prints the
absolute path(s) to the raw documentation file(s) documenting
syscall. This is typically a single GZip-compressed file named
/usr/share/man/man2/syscall.2.gz.

The uncompressed contents of these files are human-readable
text marked up using man-specific macros from the troff typesetting
system. Section headers are annotated using “.SH” with the section
documenting error codes always being named “ERRORS.” Thus,
“.SH ERRORS” marks the start of the error-documenting section of
each manual page, which continues until the start of the next section,
also annotated using “.SH.”

Within the ERRORS section, each documented error code is
named in boldface (annotated using “.B”) followed by a brief
description of the circumstances under which that error occurs.
Error code names always begin with a capital letter E followed by
one or more additional capital letters, as in EPERM or ENOMEM.
These never correspond to natural English-language words within
the ERRORS section, so it is both straightforward and highly reliable
to iterate through this section and extract the names of all error codes
mentioned therein.

6.2 Undocumented Error Codes
Comparing our code analysis with our documentation analysis
reveals two kinds of mismatch: documented error codes not returned
by any file system, and error codes returned by some file system but
not mentioned in the documentation. The first case, of unused error
codes, is disturbing but likely benign. We focus here on the second
case, of undocumented error codes, as these can be truly disruptive.

Table 3 summarizes our results. The table shows the number
of file systems that may return a given undocumented error code
(columns) for each analyzed system call (rows). For example, we
find that 21 file systems may return the undocumented EIO er-
ror (column k) for the system call mkdir. Note that table entries
marked with a hyphen represent documented error codes for the
respective system calls. For instance, the error code EACCES or
permission denied (column b) is documented for the system call
chdir. When many file systems return the same undocumented
error for a given system call, this hints that the documentation may
be incomplete. On the other hand, if only a few file systems return a
given undocumented error code, that suggests that the documenta-
tion may be correct but the file systems are using inappropriate error
codes. In either case, mismatches are signs of trouble.

The results shown in Table 3 can also be used to confirm that
certain undocumented errors are indeed never returned by any file-
system implementation (their count is zero). Additionally, we can
retrieve the list of undocumented errors per system call.

Note that we analyze each file-system implementation separately
along with the virtual file system (VFS). This leads to duplication
of VFS-related reports when aggregating the results across all file
systems. Unfortunately, it is not easy to determine whether a report
should be attributed to the VFS. We adopt a heuristic that classi-
fies bug reports based on the sample traces. A report is marked as
file-system specific if the corresponding sample trace mentions that
given file system, otherwise the report is attributed to VFS. Table 3
shows the results after removing duplicates: 1,784 undocumented
error-code instances are unexpectedly returned across the 52 file

File System FS Specific # VFS # Total #

CIFS 131 19 150
ext3 48 73 121
IBM JFS 44 74 118
ReiserFS 87 21 108
XFS 55 23 78

Table 4. Distribution of bug reports

File System Total # Unique # Top Error Top #

SMB 255 26 ENODEV 20
CIFS 131 18 ENODEV 26
Coda 113 20 ENXIO 26
ReiserFS 87 17 EIO 13
ext2 87 20 EIO 13

Table 5. File systems with the most undocumented error codes

Error Code Total # FS # System Call #

EIO 274 21 14
EROFS 199 21 12
ENOMEM 185 26 14
EINVAL 176 22 21
ENODEV 106 21 27

Table 6. Undocumented error codes most commonly returned

systems and the VFS. 1. Table 4 shows detailed bug-report classi-
fication results for a subset of file systems: CIFS, ext3, IBM JFS,
ReiserFS and XFS. Bug reports have been sent to the corresponding
developers for further inspection.

If no duplicate-removal heuristic is used, 4,565 undocumented
error-code instances are found. A more aggressive heuristic could
mark reports as file-system specific only if the undocumented error
originates in file-system code (based on sample traces). This leaves
699 instances after duplicate removal. Note that any heuristic based
on sample traces will not be complete as only one sample trace is
considered for each report.

It is sobering to observe that every single system call analyzed
exhibits numerous mismatches; none of the 42 system calls emerges
trouble-free. Likewise, not a single file system completely operates
within the confines of the documented error codes for all imple-
mented system calls. Table 5 shows the top five file systems that
return the most undocumented error instances. SMB is at the top
of the list with a total of 255 instances, from which we find 26
different error codes. The error code with the most instances (20) is
ENODEV (no such device). Table 6 shows the top five undocumented
error codes with the most instances across all file systems. EIO (I/O
error) tops the list with 274 instances, accounting for 15% of all
undocumented errors reported in Table 3.

Table 7 presents more detailed results for our subset of file
systems, plus the shared VFS layer. We list the undocumented errors
for each system call under consideration. A file system returns a
given undocumented error code if the corresponding bullet is filled
(�). For some system calls such as utime, all file systems return the
same undocumented error ENOMEM (among others). As discussed
earlier, this hints that the documentation may be incomplete as
these file systems are among the most popular and widely used.
On the other hand, blame is harder to assign for other system calls

1 The VFS is treated as a separate entity after bug-report classification. Thus,
the maximum possible count in each cell of Table 3 is 53.

File Sys

Call Error c e j r x v

access EBADF � � � � � �

chdir EROFS � � � � � �

chmod

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

chown

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

chroot EBADF � � � � � �
EROFS � � � � � �

dup ENOMEM � � � � � �

dup2 ENOMEM � � � � � �
EINVAL � � � � � �

fchdir EROFS � � � � � �

fchmod

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

fchown

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

fdatasync

ENOMEM � � � � � �
EAGAIN � � � � � �
ENODEV � � � � � �
ENOENT � � � � � �
EINVAL � � � � � �

flock

EAGAIN � � � � � �
ENOENT � � � � � �
EIO � � � � � �
ENOMEM � � � � � �

File Sys

Call Error c e j r x v

fstat

EAGAIN � � � � � �
ENODEV � � � � � �
EIO � � � � � �
EINVAL � � � � � �

fstatfs ENODEV � � � � � �

fsync

ENOMEM � � � � � �
EAGAIN � � � � � �
ENODEV � � � � � �
ENOENT � � � � � �
EINVAL � � � � � �

ftruncate

ERANGE � � � � � �
ENOMEM � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
ENODEV � � � � � �

getdents

EAGAIN � � � � � �
ENOSPC � � � � � �
ENOMEM � � � � � �
EIO � � � � � �
ENODEV � � � � � �

ioctl

EISDIR � � � � � �
EFBIG � � � � � �
EPERM � � � � � �
ENOTDIR � � � � � �
ESRC � � � � � �
ENOMEM � � � � � �
EACCES � � � � � �
EBUSY � � � � � �
ENOENT � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EROFS � � � � � �
ESPIPE � � � � � �
EIO � � � � � �
ENODEV � � � � � �

lchown

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

link

ENODEV � � � � � �
EAGAIN � � � � � �
EBUSY � � � � � �
EINVAL � � � � � �
EBADF � � � � � �

File Sys

Call Error c e j r x v

lstat

EAGAIN � � � � � �
ENODEV � � � � � �
EROFS � � � � � �
EIO � � � � � �
EINVAL � � � � � �

mkdir

EBADF � � � � � �
EFBIG � � � � � �
ERANGE � � � � � �
EMLINK � � � � � �
EBUSY � � � � � �
ETXTBSY � � � � � �
EAGAIN � � � � � �
ENODEV � � � � � �
EIO � � � � � �
EINVAL � � � � � �

mknod

EBADF � � � � � �
EFBIG � � � � � �
ERANGE � � � � � �
EMLINK � � � � � �
EBUSY � � � � � �
ETXTBSY � � � � � �
EAGAIN � � � � � �
EIO � � � � � �
ENODEV � � � � � �

mount
EBADF � � � � � �
EROFS � � � � � �
EIO � � � � � �

nfsservctl EFAULT � � � � � �
EINVAL � � � � � �

read
ENOMEM � � � � � �
ENOENT � � � � � �
ENODEV � � � � � �

readlink EBADF � � � � � �
EROFS � � � � � �

readv EBADF � � � � � �

rename

EBADF � � � � � �
EPERM � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
EIO � � � � � �
ENODEV � � � � � �

rmdir

EISDIR � � � � � �
EBADF � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
EIO � � � � � �
ENODEV � � � � � �

select EFAULT � � � � � �

File Sys

Call Error c e j r x v

stat

EAGAIN � � � � � �
ENODEV � � � � � �
EROFS � � � � � �
EIO � � � � � �
EINVAL � � � � � �

statfs EROFS � � � � � �
ENODEV � � � � � �

symlink

EBADF � � � � � �
EFBIG � � � � � �
EMLINK � � � � � �
EBUSY � � � � � �
EAGAIN � � � � � �
ENODEV � � � � � �
ETXTBSY � � � � � �
EINVAL � � � � � �

truncate

ERANGE � � � � � �
ENOMEM � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
ENODEV � � � � � �

umount
EBADF � � � � � �
EROFS � � � � � �
EIO � � � � � �

unlink

EBADF � � � � � �
ETXTBSY � � � � � �
EBUSY � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
EINVAL � � � � � �
ENODEV � � � � � �

uselib
ENOMEM � � � � � �
EFAULT � � � � � �
EINVAL � � � � � �

ustat ENODEV � � � � � �

utime

EBADF � � � � � �
EFBIG � � � � � �
EFAULT � � � � � �
ENOTDIR � � � � � �
ENOMEM � � � � � �
EEXIST � � � � � �
ETXTBSY � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
ENODEV � � � � � �
ERANGE � � � � � �
EIO � � � � � �
EINVAL � � � � � �

write
ENOMEM � � � � � �
ENOENT � � � � � �
ENODEV � � � � � �

writev EBADF � � � � � �

Table 7. Undocumented error codes returned per system call. Bullets mark undocumented error codes returned (�) or not returned (�) by
CIFS (c), ext3 (e), IBM JFS (j), ReiserFS (r), XFS (x), and VFS (v).

Unoptimized→ Optimized

File System KLOC # of Variables # of Rules Time Used Memory Used

CIFS 90 37,504→ 1,972 117,300→ 89,131 1:00:12→ 0:05:16 1.69 GB→ 0.40 GB
ext3 82 38,094→ 2,119 131,274→ 91,418 1:32:04→ 0:05:50 1.73 GB→ 0.48 GB
IBM JFS 91 36,531→ 1,922 129,999→ 91,025 1:50:30→ 0:05:49 1.54 GB→ 0.52 GB
ReiserFS 86 42,249→ 1,892 143,827→ 101,958 1:36:43→ 1:49:31 1.87 GB→ 0.53 GB
XFS 159 55,430→ 1,076 175,683→ 137,074 4:17:13→ 1:12:11 2.26 GB→ 0.98 GB

Table 8. Analysis performance and effectiveness of optimizations. KLOC gives the size of each file system in thousands of lines of code,
including 59 KLOC of shared VFS code. Time is given as h:mm:ss.

such as mknod. For fdatasync, we posit mistakes on both sides:
EINVAL may be incorrectly omitted from the documentation, and
CIFS may be returning a variety of inappropriate error codes.

It is also possible that implementation and documentation are
both correct, but that our analysis claims an error code can be
returned when it actually cannot. The effect of such false positives
can be multiplied if a single analysis-fooling code construct is copied
and pasted into many file systems. The sample paths presented
for each error code may help programmers recognize if this is
happening; further study of this possibility is left for future work
and pending feedback from developers.

6.3 Performance
We perform our experiments on a dual 3.2 GHz Intel processor
workstation with 3 GB RAM. Table 8 shows the sizes of file
systems (in thousands of lines of code) and the time and memory
required to analyze each. We restrict our focus to the five popular
file systems presented in detail in Table 7. We present running
times without and with the optimizations discussed in Section 5.
We give the total running time, which includes 1) extracting the
push-down system, 2) solving the poststar query, and 3) traversing
witnesses to produce the sample paths. The second phase is the
most expensive, consuming roughly 76% of the running time before
optimizations. For the five file systems under consideration, the
running time after optimizations ranges from just over five minutes
(CIFS, ext3 and IBM JFS) to less than two hours (ReiserFS). IBM
JFS shows the most significant difference between running times,
with optimizations making the analysis nineteen times faster. Note
that running times decrease in general, except for ReiserFS. We
find that the running time for the second phase is indeed reduced
considerably, from 1:35:28 to 0:02:25. However the usually cheap
third phase becomes fairly expensive, from 0:00:19 to 1:45:39. This
is because sample traces are chosen non-deterministically. In this
particular case, and no other, extremely long traces happen to be
chosen when running the optimized analysis, slowing down the
running time significantly. Deterministically selecting short (or
minimal) paths remains future work.

Table 8 shows additional information related to the optimizations
performed. We find that about 96% of the variables in the file-
system implementations under consideration (including the VFS)
cannot possibly contain error codes. Filtering out irrelevant variables
reduces their count from an average of 41,961 to just 1,796. As
a consequence, the size of the weights is reduced considerably,
boosting performance. Similarly, rule compression leads to a 27%
decrease in the number of rules used to model the control flow of
the file systems. The number of rules decreases from an average
of 139,616 to 102,121, which translates into fewer weights to
calculate and consequently into a faster analysis. The analysis also
dramatically decreases memory usage, saving an average of 1.24
GB with respect to the unoptimized version.

7. Conclusions
We describe how to adapt an existing error-propagation analysis
to find the list of error codes returned by each program function.
We analyze 52 Linux file systems, including CIFS, ext3, IBM JFS,
ReiserFS and XFS. After retrieving data for 42 file-related system
calls, we compare against the Linux manual pages, finding 1,784
undocumented error instances across all file systems. We also find
that the analysis optimizations described in this paper contribute to
decreasing running time and memory consumption considerably.

8. References
[1] E. Berglund and M. Priestley. Open-source documentation: in search

of user-driven, just-in-time writing. In SIGDOC, pages 132–141, 2001.

[2] R. E. Bryant. Binary decision diagrams and beyond: enabling
technologies for formal verification. In R. L. Rudell, editor, ICCAD,
pages 236–243. IEEE Computer Society, 1995.

[3] R. P. L. Buse and W. Weimer. Automatic documentation inference for
exceptions. In B. G. Ryder and A. Zeller, editors, ISSTA, pages
273–282. ACM, 2008.

[4] L. H. Etzkorn, W. E. H. Jr., and C. G. Davis. Automated reusability
quality analysis of oo legacy software. Information & Software
Technology, 43(5):295–308, 2001.

[5] C. Kaner. Liability for defective documentation. In S. B. Jones and
D. G. Novick, editors, SIGDOC, pages 192–197. ACM, 2003.

[6] N. Kidd, T. Reps, and A. Lal. WALi: A C++ library for weighted
pushdown systems. http://www.cs.wisc.edu/wpis/wpds/,
2009.

[7] A. Lal, N. Kidd, T. W. Reps, and T. Touili. Abstract error projection.
In H. R. Nielson and G. Filé, editors, SAS, volume 4634 of Lecture
Notes in Computer Science, pages 200–217. Springer, 2007.

[8] A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural analysis of
concurrent programs under a context bound. Technical Report 1598,
University of Wisconsin–Madison, July 2007.

[9] T. Lethbridge, J. Singer, and A. Forward. How software engineers use
documentation: The state of the practice. IEEE Software, 20(6):35–39,
2003.

[10] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram Package.
http://sourceforge.net/projects/buddy, 2004.

[11] S. N. I. Mount, R. M. Newman, R. J. Low, and A. Mycroft. Exstatic: a
generic static checker applied to documentation systems. In S. R.
Tilley and S. Huang, editors, SIGDOC, pages 52–57. ACM, 2004.

[12] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation of C
programs. In R. N. Horspool, editor, CC, volume 2304 of Lecture
Notes in Computer Science, pages 213–228. Springer, 2002.

[13] T. W. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown
systems and their application to interprocedural dataflow analysis. Sci.
Comput. Program., 58(1-2):206–263, 2005.

[14] G. Robles, J. M. González Barahona, and J. L. Prieto Martínez.
Assessing and evaluating documentation in libre software projects. In
T. Wasserman and M. Pal, editors, Workshop on Evaluation
Frameworks for Open Source Software (EFOSS), Como, Italy, June
2006. International Federation for Information Processing.

[15] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau,
and A. C. Arpaci-Dusseau. Error Propagation Analysis for File
Systems. In Proceedings of the ACM SIGPLAN 2009 Conference on
Programming Language Design and Implementation, Dublin, Ireland,
June 15–20 2009.

[16] P. Sacramento, B. Cabral, and P. Marques. Unchecked exceptions: Can
the programmer be trusted to document exceptions? In Second
International Conference on Innovative Views of .NET Technologies,
Florianópolis, Brazil, Oct. 2006. Microsoft.

[17] C. Schönberg, F. Weitl, M. Jaksic, and B. Freitag. Logic-based
verification of technical documentation. In U. M. Borghoff and
B. Chidlovskii, editors, ACM Symposium on Document Engineering,
pages 251–252. ACM, 2009.

[18] D. Schreck, V. Dallmeier, and T. Zimmermann. How documentation
evolves over time. In M. D. Penta and M. Lanza, editors, IWPSE,
pages 4–10. ACM, 2007.

[19] J. Singer. Practices of software maintenance. In ICSM, pages 139–145,
1998.

[20] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*icomment: bugs or bad
comments?*/. In T. C. Bressoud and M. F. Kaashoek, editors, SOSP,
pages 145–158. ACM, 2007.

[21] G. Venolia. Textual allusions to artifacts in software-related
repositories. In S. Diehl, H. Gall, and A. E. Hassan, editors, MSR,
pages 151–154. ACM, 2006.

[22] M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches. In POPL, pages 291–299, 1985.

[23] Y. Xie and D. R. Engler. Using redundancies to find errors. IEEE
Trans. Software Eng., 29(10):915–928, 2003.

http://www.cs.wisc.edu/wpis/wpds/

	Introduction
	Related Work
	Error Propagation Analysis
	Analysis Framework
	Pushdown System
	Bounded Idempotent Semiring
	Transfer Functions

	Positive Error Codes

	Finding Error Return Values
	Analysis Optimizations
	Experimental Evaluation
	Analysis of Manual Pages
	Undocumented Error Codes
	Performance

	Conclusions
	References

