
FINDING ERROR-PROPAGATION BUGS IN

LARGE SOFTWARE SYSTEMS USING STATIC ANALYSIS

by

Cindy Rubio González

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2012

Date of final oral examination: 08/20/2012

The dissertation is approved by the following members of the Final Oral Committee:

Benjamin R. Liblit, Associate Professor, Computer Sciences

Remzi H. Arpaci-Dusseau, Professor, Electrical and Computer Engineering

Susan B. Horwitz, Professor, Computer Sciences

Shan Lu, Assistant Professor, Computer Sciences

Thomas W. Reps, Professor, Computer Sciences

Copyright c© 2012 Cindy Rubio González

All Rights Reserved

i

To Mom, Dad, and Sister.

ii

Acknowledgments

This dissertation would have not been completed without the continued encouragement and

support of my family, friends, mentors, fellow students, professors, and many others who made it

possible for me to be here today.

I dedicate this dissertation to my parents, Victor Rubio and Minerva Gonzalez, and my sister

Minerva. Without their support throughout all these years far away from home, I would have

not been able to complete this degree. I still remember the long hours my dad spent helping me

translate graduate school information when my dream was to pursue a graduate degree in the

U.S., and yet I did not speak a word of English. Also, it was my dad who encouraged me to

major in Computer Engineering in the first place. Thanks to my mom and my sister for their

love and patience.

I would like to express my most sincere gratitude to my advisor Prof. Ben Liblit for his

guidance and unconditional support during my Ph.D. studies. He had faith in me since the first

time we met, and gave me the opportunity to join his research team the summer before my first

semester at UW–Madison. I was not even an official student yet and he was already taking the

time to discuss and explore new research ideas with me. I was fortunate to continue being part

of his team for the following six years, for which I feel extremely lucky. Ben has taught me how

to conduct research while giving me the freedom to make my own decisions, which has played a

pivotal role in my development as a researcher.

I would like to thank the members of my thesis committee, professors Remzi Arpaci-Dusseau,

Shan Lu, Susan Horwitz, and Thomas Reps for their insightful comments and numerous sugges-

iii

tions to improve this dissertation.

I am immensely thankful to professors Remzi Arpaci-Dusseau, Andrea Arpaci-Dusseau,

Thomas Reps, and their students. My dissertation work was originated and inspired from a

collaboration with Remzi, Andrea, and their student Haryadi Gunawi. I would also like to thank

Tom and his students Nick Kidd and Akash Lal for letting us use their WALi library. Even

after graduation, Nick and Akash took the time to continue answering our questions regarding

the tool. I would also like to thank Prof. Reps for his advice throughout these years, and for

encouraging me to continue pursuing my passion for music by doing a Ph.D. minor in Piano

Performance. I would also like to thank professors Mark Hill and Guri Sohi for their advice.

Thanks to Andreas Gal and David Herman from Mozilla Research for their financial support,

and their interest in having our tool analyze their code base. Thank you to all Linux and Mozilla

developers who took the time to inspect our bug reports and gave us invaluable feedback.

During my studies, I interned at Microsoft Research twice. This was a great experience, and

I would like to thank my mentor Patrice Godefroid for the invaluable opportunity, and for still

answering my questions and providing support years after my internships.

Thanks to professors John Tang Boyland, Adam Brooks Webber, and Ethan Munson for

introducing me to the area of Programming Languages and for all the advice and support

provided during my first years of graduate school at UW–Milwaukee.

I would like to thank current and former students in my group: Piramanayagan Arumuga

Nainar, Tristan Ravitch, Mark Chapman, Peter Ohmann, Anne Mulhern, Steve Jackson, and

Suhail Shergill. In particular, I would like to thank Arumuga and Tristan for reviewing all my

papers and sitting through each of my practice talks throughout my entire Ph.D.

Special thanks to Aditya Thakur for the insightful discussions, comments, and suggestions

on my papers and presentations. I would also like to thank Arkaprava Basu, Asim Kadav, Bill

Harris, Daniel Luchaup, Drew Davidson, Evan Driscoll, Junghee Lim, Kevin Roundy, Lorenzo

De Carli, Matt Elder, Prathmesh Prabhu, Rich Joiner, Spyros Blanas, Tycho Andersen, Tushar

Sharma, and Venkatesh Srinivasan for attending my talks and providing invaluable feedback.

iv

Thanks to Cathrin Weiss for collaborating with us and for the fun discussions.

I would like to thank Aditya Thakur, Piramanayagan Arumuga Nainar, Michael Bebenita,

Theo Benson, Shravan Rayanchu, Akanksha Baid, Yasuko Eckert, Somayeh Sardashti, Hamid

Reza Ghasemi, Giridhar Ravipati, Neelam Goyal, Nitin Agrawal, Oriol Vinyals, Swaminathan

Sundararaman, Vivek Shrivastava, and Massiel Cisneros for always being there for me.

I am fortunate to be part of a strong network called Latinas in Computing. I am particularly

grateful to Gilda Garreton, Patty Lopez, Dilma Da Silva, Cecilia Aragon, Gaby Aguilera, Claris

Castillo, Raquel Romano, and Rosa Enciso for sharing their experiences with me and offering

their advice and help whenever needed.

I would like to thank Hugo and Emy Lopez for opening their house doors, and letting me

stay when I was new to this country and did not know anyone. Without their support, I would

have not stayed in Wisconsin.

Thanks to Angela Thorp and Cathy Richard for the support throughout all these years in

the department.

Last but not least, I would like to thank the rest of my family, in particular, my grandparents

and my brother-in-law.

v

Contents

Contents v

List of Tables ix

List of Figures xii

Abstract xiv

1 Introduction 1

1.1 Why Error Handling? . 2

1.2 Why Systems Software? . 3

1.3 Linux Error Management . 4

1.3.1 Integer Error Codes . 4

1.3.2 Consequences of Not Handling Errors 6

1.3.3 Handled vs. Unhandled Errors . 6

1.4 Error-Propagation Bugs . 7

1.5 Contributions . 8

1.6 Dissertation Structure . 9

2 Error-Propagation Analysis 11

2.1 Weighted Pushdown Systems . 12

2.2 Creating the Weighted Pushdown System . 14

vi

2.2.1 Pushdown System . 14

2.2.2 Bounded Idempotent Semiring . 14

2.2.3 Transfer Functions . 17

2.3 Additional Configurable Options . 23

2.3.1 Copy Mode vs. Transfer Mode . 23

2.3.2 Negative vs. Positive Error Codes . 24

2.3.3 Tentative vs. Non-Tentative Errors . 25

2.3.4 Error-Handling Patterns . 25

2.4 Solving the Dataflow Problem . 26

2.5 Analysis Optimizations . 26

2.5.1 Reducing Weight Size . 27

2.5.2 Reducing the Number of Weights . 27

2.5.3 Impact of Optimizations . 28

2.6 Framework Components . 30

2.6.1 Intermediate Representation . 30

2.6.2 Front End . 33

2.6.3 Back End . 33

2.7 Summary . 34

3 Dropped Errors in Linux File Systems 35

3.1 Examples of Dropped Errors . 35

3.2 Finding Dropped Errors . 37

3.2.1 Program Transformations . 37

3.2.2 Error-Propagation Analysis . 38

3.3 Describing Dropped Errors . 40

3.4 Experimental Evaluation . 43

3.4.1 Overwritten Errors . 44

3.4.2 Out-of-Scope Errors . 48

vii

3.4.3 Unsaved Errors . 49

3.5 Performance . 50

3.6 Other File Systems . 51

3.7 Summary . 51

4 Errors Masquerading as Pointers in Linux 53

4.1 Error Transformation in the Linux Kernel . 54

4.2 Error-Valued Pointer Bugs . 55

4.2.1 Bad Pointer Dereferences . 55

4.2.2 Bad Pointer Arithmetic . 57

4.2.3 Bad Overwrites . 57

4.3 Error Propagation and Transformation . 59

4.3.1 Bounded Idempotent Semiring . 60

4.3.2 Transfer Functions . 60

4.4 Finding and Reporting Bugs . 66

4.5 Experimental Evaluation . 68

4.5.1 Bad Pointer Dereferences . 68

4.5.2 Bad Pointer Arithmetic . 73

4.5.3 Bad Overwrites . 75

4.5.4 False Negatives . 76

4.6 Performance . 76

4.7 Other Linux Versions and Code Bases . 77

4.8 Summary . 78

5 Error-Code Mismatches Between Code and Documentation 79

5.1 Finding Error Return Values . 80

5.2 Linux Manual Pages . 81

5.3 Experimental Evaluation . 81

viii

5.3.1 Undocumented Error Codes . 84

5.3.2 Performance . 89

5.4 Summary . 89

6 Error-Propagation Bugs in User Applications 90

6.1 Case Study: Mozilla Firefox . 90

6.1.1 True Bugs . 92

6.1.2 Harmless Dropped Errors . 95

6.1.3 False Positives . 99

6.1.4 Performance . 100

6.2 Case Study: SQLite . 104

6.2.1 Results . 104

6.2.2 Performance . 105

6.3 Summary . 107

7 Related Work 108

7.1 Error Propagation and Dropped Errors . 108

7.2 Errors Masquerading as Pointer Values . 110

7.3 Undocumented Error Codes . 111

8 Conclusions and Future Directions 113

References 117

ix

List of Tables

2.1 Encoding of control flow as PDS rules . 14

2.2 Transfer functions for assignments . 18

2.3 Effectiveness of optimizations. KLOC gives the size of each file system in thousands

of lines of code, including 59 KLOC of shared VFS code. 29

3.1 Average lengths of full paths and path slices . 40

3.2 Summary results for the six case studies. Bug reports are broken down into overwritten,

out-of-scope and unsaved. Each category is further divided into true bugs (TB) and

false positives (FP). The first column under FPs corresponds to “removable” FPs

(FPs that can be removed if our tool recognizes unsafe patterns). The second column

corresponds to “unavoidable” FPs (FPs that cannot be automatically removed because

significant human intervention is required). The last column (T) gives the total number

of bug reports per bug category. Results for unsaved errors were produced in copy

mode. 45

3.3 Analysis performance. KLOC gives the size of each file system in thousands of lines

of code, including 60 KLOC of shared VFS code. We provide running times for

extracting the WPDS textual representation of the program, solving the poststar

query, and finding bugs. 50

4.1 Transfer functions for assignments in copy mode . 61

x

4.2 Error-valued pointer dereferences. File systems, modules, and drivers producing no

diagnostic reports are omitted. 69

4.3 Bad pointer arithmetic . 73

4.4 Analysis performance for a subset of file systems and drivers. Sizes include 133 KLOC

of shared VFS and mm code. 77

5.1 Number of file systems per system call returning undocumented errors. a:E2BIG, b:EACCES,

c:EAGAIN, d:EBADF, e:EBUSY, f:EEBADHDR, g:EFAULT, h:EBIG, i:EINTR, j:EINVAL, k:EIO,

l:EISDIR, m:EMFILE, n:ENLINK, o:ENFILE, p:ENODEV, q:ENOENT, r:ENOMEM, s:ENOSPC,

t:ENOTDIR, u:ENXIO, v:EPERM, w:ERANGE, x:EROFS, y:ESPIPE, z:ESRC, aa:ETXTBSY,

ab:EXDEV. 82

5.2 Distribution of bug reports . 85

5.3 File systems with the most undocumented error codes 85

5.4 Undocumented error codes most commonly returned 86

5.5 Undocumented error codes returned per system call. Bullets mark undocumented

error codes returned (�) or not returned (�) by CIFS (c), ext3 (e), IBM JFS (j),

ReiserFS (r), XFS (x), and VFS (v). 87

5.6 Analysis performance for a subset of file systems. KLOC gives the size of each file

system in thousands of lines of code, including 59 KLOC of shared VFS code. . . . 88

6.1 Inspected dropped errors in Mozilla Firefox. Results are shown per component, and

divided into true bugs, harmless dropped errors (H1: dropped in the process of

shutting down, H2: dropped in the process of releasing resources, H3: documented by

developer to be ignored, and H4: logged), and false positives (FP1: double error code,

FP2: met precondition, and FP3: imprecision in our tool). 93

6.2 Analysis performance for Firefox . 104

xi

6.3 Dropped errors in SQLite (preliminary results). The reports are divided into true

bugs, harmless dropped errors (H1: dropped in the process of shutting down, H2:

dropped in the process of releasing resources, H3: documented by developer to be

ignored, and H4: logged), and false positives (FP1: double error code, FP2: met

precondition, FP3: infeasible paths, FP4: error masking, and FP5: error hierarchy). 106

6.4 Analysis performance for SQLite . 107

xii

List of Figures

1.1 Definition of basic error codes in the Linux kernel 5

1.2 Typical error-checking code example . 6

1.3 High-Level Framework Components . 10

2.1 An example of a weight . 15

2.2 An example of applying the combine operator . 16

2.3 An example of applying the extend operator . 16

2.4 Removing irrelevant variables a, b and c from the weights 28

2.5 Collapsing rules . 29

2.6 Sample program whose intermediate representation is shown in Figure 2.7 30

2.7 The intermediate representation for the program shown in Figure 2.6 31

3.1 Three common scenarios in which unhandled errors are lost 36

3.2 Unsaved ⇒ Out of scope ⇒ Overwrite . 38

3.3 Example code fragment and corresponding diagnostic output 41

3.4 Some recurring safe patterns recognized by the analysis 46

3.5 Some recurring unsafe patterns . 47

4.1 Examples of error transformation in ReiserFS . 55

4.2 Example of a bad pointer dereference. The Coda file system propagates an error-valued

pointer which is dereferenced by the VFS (function iput). 56

xiii

4.3 Bad pointer arithmetic found in the mm . 58

4.4 Two examples of safe error-overwrite patterns . 59

4.5 Example making parameter and return value passing explicit. Highlighted assignments

emulate transfer functions. 64

4.6 Example of diagnostic output . 67

4.7 Example of a bad pointer dereference due to a missing error check in the HFS+ file

system . 69

4.8 Example of an insufficient error check in the ReiserFS file system (function r_stop)

leading to a bad pointer dereference in the VFS (function deactivate_super) 71

4.9 Example of a false positive found in the VFS . 72

4.10 Double error code in the ext3 file system, leading to 12 overwrite false positives . . 74

5.1 Example code fragment and corresponding reports 83

6.1 Subset of macros defining errors in Firefox . 91

6.2 Two examples of macros that use log errors . 91

6.3 An example of a potential security bug in Firefox due to a dropped error 95

6.4 An example of a dropped error in Firefox . 96

6.5 An example in which developers document that errors can be dropped 97

6.6 Example of a dropped error when shutting down 97

6.7 An example of an error dropped during the release of resources 98

6.8 An example in which emitting an error warning is sufficient 99

6.9 An example of a false positive due to a variant of the double-error-code pattern . . . 101

6.10 A second example of a false positive due to the double-error-code pattern 102

6.11 An example of a false positive due to met preconditions 103

6.12 Basic error codes used in SQLite . 105

xiv

Abstract

Incorrect error handling is a longstanding problem in many large software systems. Despite

accounting for a significant portion of the code, error handling is one of the least understood,

documented, and tested parts of a system. Ideally, some action should be taken when a run-time

error occurs (e.g., error notification, attempted recovery, etc.). Incorrect error handling in system

software is especially dangerous, as it can lead to serious problems such as system crashes, silent

data loss, and corruption. Most system software today is written in C, which does not provide

support for exception handling. Consequently the return-code idiom is commonly used in large

C programs, including operating systems: run-time errors are represented as integer codes, and

these error codes propagate through the program using conventional mechanisms such as variable

assignments and function return values.

In this dissertation, I present my work on developing and applying static program analyses to

find error-propagation bugs in system software that uses the return-code idiom. I give an overview

of an interprocedural context- and flow-sensitive analysis that tracks the propagation of errors.

This analysis is formalized using weighted pushdown systems. I describe how this analysis is used

to find a variety of error-propagation bugs, such as dropped errors, misused error-valued pointers,

and error-code mismatches between source code and error-reporting program documentation. I

present results for numerous real-world, widely-used Linux file systems such as ext3 and ReiserFS,

and Linux device drivers, where we have found hundreds of confirmed error-propagation bugs.

Additionally, I show that the error-propagation bugs described in this dissertation also occur in

widely-used applications such as the Mozilla Firefox web browser, which is written in C++.

1

Chapter 1

Introduction

Incorrect error handling is an important source of critical software bugs. Ideally, some action

should be taken when a run-time error occurs (e.g., error notification, attempted recovery, etc.),

but that is often overlooked. Despite accounting for a significant portion of the code in large

software systems, error-handling code is in general the least understood, documented and tested

part of a system. Exceptional conditions must be considered during all phases of development.

As a result, error-handling code is scattered across different functions and files, making software

more complex. Implementing correct error handling is particularly important for system software,

since user applications rely on them.

C is still the preferred language for system programming. C does not have explicit exception-

handling support. Consequently the return-code idiom is commonly used in large C programs,

including operating systems. Run-time errors are represented as simple integer codes, where

each integer value represents a different kind of error. These error codes propagate through

conventional mechanisms such as variable assignments and function return values. Despite

having exception-handling support, many C++ applications also adopt the return-code idiom.

Unfortunately, this idiom is error-prone and effort-demanding. In this dissertation, we apply

static program analysis to understand how error codes propagate through software that uses the

return-code idiom, with a particular emphasis on system software.

2

The main component of our framework is an interprocedural, flow- and context-sensitive static

analysis that tracks error codes as they propagate. We formulate and solve the error-propagation

problem using weighted pushdown systems (WPDS). A WPDS is a dataflow engine for problems

that can be encoded with suitable weight domains, computing the meet-over-all-paths solution.

Solving the WPDS reveals the set of error codes each variable might contain at each program

point. This information is used to find a variety of error-propagation bugs.

1.1 Why Error Handling?

Error handling accounts for a significant portion of the code in software systems. The simplest

exception handling strategy represents up to 11% of a system [20]. Weimer and Necula [70]

show how error-handling code represents between 1% and 5% in a suite of open-source Java

programs ranging in size from 4,000 to 1,600,000 lines of code, however between 3% and 46% of

the program text is transitively reachable from error-handling code. Cristian [13] reveals that

more than 66% of software represents error handling. These numbers suggest that error handling

is an important part of software systems. Unfortunately, exception handling is not a priority

when developing software systems [7]. Error-handling code is in general the least understood,

documented and tested part of a system [13].

It is difficult to write correct error-handling code. Exceptional conditions must be considered

during all phases of software development [45], introducing interprocedural control flow that can

be difficult to reason about [9, 48, 54]. As a result, error-handling code is usually scattered across

different functions and files and tangled with the main system’s functionality [2, 3, 45]. It is not

surprising that error handling is error-prone and makes software more complex and less reliable.

Error-handling code is in fact the buggiest part of a system [13]. Furthermore, many system

failures and vulnerabilities are due to buggy error-handling code [1, 16, 66, 70], which is hard to

test [7, 63] because it is difficult to generate tests that invoke error-handling mechanisms.

Poor support for error handling is reported as one of the major obstacles for large-scale and

mission-critical systems [9]. Modern programming languages such as Java, C++ and C# provide

3

exception-handling mechanisms. Unfortunately, there is a lack of guidance in the literature on

how to use exception handling effectively [21]. On the other hand, C does not have explicit

exception-handling support, thus programmers have to emulate exceptions in a variety of ways

[36]. The return-code idiom is among the most popular idioms used in large C programs, including

operating systems. The use of idioms is significantly error-prone and effort-demanding. The

development of robust software applications is a challenging task because programs must detect

and recover from a variety of faults. Error handling is the key component of any reliable software

system, thus it is not optional but necessary [7].

1.2 Why Systems Software?

Buggy error handling is a longstanding problem in many application domains, but is especially

troubling when it affects systems software, in particular operating-system file-management code.

File systems occupy a delicate middle layer in operating systems. They sit above generic block

storage drivers, such as those that implement SCSI, IDE, or software RAID; or above network

drivers in the case of network file systems. These lower layers ultimately interact with the physical

world, and may produce both transient and persistent errors. Error-propagation bugs at the

file-system layer can cause silent data corruption from which recovery is difficult or impossible.

At the same time, implementations of specific file systems sit below generic file-management

layers of the operating system, which in turn relay information through system calls into user

applications. The trustworthiness of the file system in handling errors is an upper bound on the

trustworthiness of all storage-dependent user applications.

Error handling in file-system code cannot simply be fixed and forgotten. File-system imple-

mentations abound, with more constantly appearing. Linux alone includes dozens of different file

systems. There is no reason to believe that file system designers are running out of ideas or that

the technological changes that motivate new file system development are slowing down. Given

the destructive potential of buggy file systems, it is not only critical to fix error-propagation

bugs, but also to create tools that automate the process of finding them.

4

1.3 Linux Error Management

The majority of this dissertation focuses on Linux file systems, although we also find error-

propagation bugs in other code bases (see Chapter 6). Our approach combines generic program

analysis techniques with specializations for Linux coding idioms. Other operating systems share

the same general style, although some details may differ. This section describes error management

in Linux.

1.3.1 Integer Error Codes

Different kinds of failure require different responses. For example, an input/output (I/O) error

produces an EIO error code, which might be handled by aborting a failed transaction, scheduling

it for later retry, releasing allocated buffers to prevent memory leaks, and so on. Memory

shortages yield the ENOMEM error code, signaling that the system must release some memory in

order to continue. Disk quota exhaustion propagates ENOSPC across many file system routines

to prevent new allocations.

Unfortunately, Linux (like many operating systems) is written in C, which offers no exception-

handling mechanisms by which an error code could be raised or thrown. Errors must propagate

through conventional mechanisms such as variable assignments and function return values. Most

Linux run-time errors are represented as simple integer codes. Each integer value represents a

different kind of error. Macros give these mnemonic names: EIO is defined as 5, ENOMEM is

12, and so on. Linux uses 34 basic named error macros, defined as the constants 1 through 34.

Figure 1.1 shows their definitions.

Error codes are negated by convention, so −EIO may be assigned to a variable or returned

from a function to signal an I/O error. Return-value overloading is common. An int-returning

function might return the positive count of bytes written to disk if a write succeeds, or a negative

error code if the write fails. Callers must check for negative return values and propagate or

handle errors that arise. Remember that error codes are merely integers given special meaning

by coding conventions. Any int variable could potentially hold an error code, and the C type

5

#i fnde f _ASM_GENERIC_ERRNO_BASE_H
#def ine _ASM_GENERIC_ERRNO_BASE_H

#def ine EPERM 1 /∗ Opera t i on not p e rm i t t ed ∗/
#def ine ENOENT 2 /∗ No such f i l e o r d i r e c t o r y ∗/
#def ine ESRCH 3 /∗ No such p r o c e s s ∗/
#def ine EINTR 4 /∗ I n t e r r u p t e d system c a l l ∗/
#def ine EIO 5 /∗ I /O e r r o r ∗/
#def ine ENXIO 6 /∗ No such d e v i c e or add r e s s ∗/
#def ine E2BIG 7 /∗ Argument l i s t too l ong ∗/
#def ine ENOEXEC 8 /∗ Exec format e r r o r ∗/
#def ine EBADF 9 /∗ Bad f i l e number ∗/
#def ine ECHILD 10 /∗ No c h i l d p r o c e s s e s ∗/
#def ine EAGAIN 11 /∗ Try aga in ∗/
#def ine ENOMEM 12 /∗ Out o f memory ∗/
#def ine EACCES 13 /∗ Pe rm i s s i on den i ed ∗/
#def ine EFAULT 14 /∗ Bad add r e s s ∗/
#def ine ENOTBLK 15 /∗ Block d e v i c e r e q u i r e d ∗/
#def ine EBUSY 16 /∗ Dev ice or r e s o u r c e busy ∗/
#def ine EEXIST 17 /∗ F i l e e x i s t s ∗/
#def ine EXDEV 18 /∗ Cross−d e v i c e l i n k ∗/
#def ine ENODEV 19 /∗ No such d e v i c e ∗/
#def ine ENOTDIR 20 /∗ Not a d i r e c t o r y ∗/
#def ine EISDIR 21 /∗ I s a d i r e c t o r y ∗/
#def ine EINVAL 22 /∗ I n v a l i d argument ∗/
#def ine ENFILE 23 /∗ F i l e t a b l e o v e r f l ow ∗/
#def ine EMFILE 24 /∗ Too many open f i l e s ∗/
#def ine ENOTTY 25 /∗ Not a t y p ew r i t e r ∗/
#def ine ETXTBSY 26 /∗ Text f i l e busy ∗/
#def ine EFBIG 27 /∗ F i l e too l a r g e ∗/
#def ine ENOSPC 28 /∗ No space l e f t on d e v i c e ∗/
#def ine ESPIPE 29 /∗ I l l e g a l s eek ∗/
#def ine EROFS 30 /∗ Read−on l y f i l e system ∗/
#def ine EMLINK 31 /∗ Too many l i n k s ∗/
#def ine EPIPE 32 /∗ Broken p i p e ∗/
#def ine EDOM 33 /∗ Math argument out o f domain o f func ∗/
#def ine ERANGE 34 /∗ Math r e s u l t not r e p r e s e n t a b l e ∗/

#end i f

Figure 1.1: Definition of basic error codes in the Linux kernel

6

1 int status = write(...);
2 if (status < 0) {
3 printk("write failed: %d\n", status);
4 // perform recovery procedures
5 } else {
6 // write succeeded
7 }
8 // no unhandled error at this point

Figure 1.2: Typical error-checking code example

system offers little help determining which variables actually carry errors.

1.3.2 Consequences of Not Handling Errors

Ideally, an error code arises in lower layers (such as block device drivers) and propagates upward

through the file system, passing from variable to variable and from callee to caller, until it is

properly handled or escapes into user space as an error result from a system call. Propagation

chains can be long, crossing many functions, modules, and software layers. If buggy code breaks

this chain, higher layers receive incorrect information about the outcomes of file operations.

For example, if there is an I/O error deep down in the sync() path, but the EIO error code is

lost in the middle, then the application will believe its attempt to synchronize with the storage

system has succeeded, when in fact it failed. Any recovery routine implemented in upper layers

will not be executed. “Silent” errors such as this are difficult to debug, and by the time they

become visible, data may already be irreparably corrupted or destroyed.

In this dissertation, we are particularly interested in how file systems propagate those error

codes passed up from device drivers.

1.3.3 Handled vs. Unhandled Errors

Figure 1.2 shows a typical fragment of Linux kernel code. Many error-handling routines call

printk, an error-logging function, with the error code being handled passed as an argument.

Because this is an explicit action, it is reasonable to assume that the programmer is aware of the

error and is handling it appropriately. Thus, if status contained an unhandled error on line 2, we

7

can assume that it contains a handled error after line 3. We consider such an action sufficient to

determine that the error is being handled. We do not examine the error-handling code itself to

make a judgement about its effectiveness.

Because error codes are passed as negative integers (such as −EIO for -5), sign-checking such

as that on line 2 is common. If the condition is false, then status must be non-negative and

therefore cannot contain an error code on line 6. When paths merge on line 8, status cannot

possibly contain an unhandled error.

Passing error codes to printk is common, but not universal. Code may check for and handle

errors silently, or may use printk to warn about a problem that has been detected but not yet

remedied. More accurate recognition of error-handling code may require annotation. For example,

we might require that programmers assign a special EHANDLED value to variables with handled

errors, or pass such variables as arguments to a special handled function to mark them as handled.

Requiring explicit programmer action to mark errors as handled would improve diagnosis by

avoiding the silent propagation failures that presently occur.

1.4 Error-Propagation Bugs

Our goal is to use static program analysis to find how error codes propagate through large

software systems and identify a variety of error-propagation bugs:

Dropped Errors. We identify error-code instances that vanish before proper handling is

performed. We learn that unhandled errors are commonly lost when the variable holding the

unhandled error value (a) is overwritten with a new value, (b) goes out of scope, or (c) is returned

by a function but not saved by the caller. We find dropped errors in Linux file systems, the

Mozilla Firefox web browser, and the database management system SQLite.

Errors Masquerading as Pointer Values. Linux error codes are often temporarily or

permanently encoded into pointer values. Error-valued pointers are not valid memory addresses,

and therefore require special care. Misuse of pointer variables that store error codes can lead

8

to system crashes, data corruption, or unexpected results. We use static program analysis to

find three classes of error-valued pointer bugs in Linux file systems and drivers: (a) bad pointer

dereferences, (b) bad pointer arithmetic, and (c) bad pointer overwrites.

Error-Code Mismatches Between Code and Documentation. Inaccurate documenta-

tion can mislead programmers and cause unexpected failures. We consider whether the manual

pages that document Linux kernel system calls match the real code’s error-reporting behavior.

We use static program analysis to find the sets of error codes that file-related system calls return

and compare these to Linux manual pages to find errors that are returned to user applications

but not documented.

1.5 Contributions

The overall contribution of this dissertation is the design, development and application of

static program analyses to make error handling in large systems more reliable by finding error-

propagation bugs. Our analyses help developers understand how error codes propagate through

software and find numerous error-propagation bugs that could lead to serious problems such as

silent data corruption or data loss, from which recovery is difficult or even impossible. Specifically,

the contributions of this dissertation are summarized as follows:

• We characterize the error-propagation dataflow problem and encode it using weighted

pushdown systems (Chapter 2).

• We propose analysis optimizations that make the error- propagation analysis highly scalable,

allowing the analysis of large real-world C and C++ programs (Chapter 2).

• We show how to extract detailed and useful diagnostic error reports from the raw analysis

results (Chapter 3).

• We identify high-level error-handling patterns in Linux file systems and drivers (Chapters 2

and 3).

9

• We identify common scenarios in which unhandled errors are commonly lost. We find 312

confirmed dropped errors in five widely-used Linux file system implementations (Chapter 3).

• We characterize error transformation in the Linux kernel and show how these transformations

can lead to bugs due to error codes masquerading as pointer values. We extend the error-

propagation analysis to properly model the effects of error transformation. We find 56

error-valued pointer bugs in 52 different Linux file system implementations and 4 device

drivers (Chapter 4).

• We use the error-propagation analysis to find the set of error codes that file-related system

calls return and compare these against the Linux manual pages. We find over 1,700

undocumented error-code instances across 52 different Linux file system implementations

(Chapter 5).

• We present two case studies that show how error-propagation bugs are also common in

user applications, one of them written in C++ (Chapter 6).

1.6 Dissertation Structure

The rest of this dissertation is organized as follows. First, we formalize the error-propagation

analysis as a weighted pushdown system in Chapter 2. The next three chapters describe analyses

that use or extend the error-propagation framework to find a varierity of error-handling bugs.

We discuss dropped errors in Chapter 3, error-valued pointer bugs in Chapter 4, and error-code

mismatches between code and documentation in Chapter 5. Figure 1.3 shows these different

components. We present two case studies involving user applications in Chapter 6. Related work

is discussed in Chapter 7. Finally, we conclude in Chapter 8.

10

Source Code

Bug Reports

Find Dropped Errors Find Error-Valued
Pointer Bugs

Find Error-Code
Mismatches

Bug Reports Bug Reports

Error Propagation
Analysis

Figure 1.3: High-Level Framework Components

11

Chapter 2

Error-Propagation Analysis

The goal of the error-propagation analysis is to find the set of error codes that each variable may

contain at each program point. The error-propagation analysis can be formulated as a forward

dataflow problem. Error constants such as EIO generate unhandled error codes. Assignments

propagate unhandled errors forward from one variable to another. Propagation ends when an

error is overwritten, dropped, or handled by error-handling code.

This problem resembles copy constant propagation [69]. However, copy constant propagation

finds one constant value that a variable must contain (if any), whereas we find the set of error code

constants that a variable may contain. Copy constant propagation drives semantics-preserving

optimization, and therefore under-approximates. We use the error-propagation analysis for bug

reporting, and generally over-approximate so that no possible bug is overlooked.

The following sections describe weighted pushdown systems (WPDSs), and how we use

WPDSs to encode the error-propagation problem. Note that the error-propagation problem

can be described as a standard context-sensitive interprocedural analysis problem. We choose

to cast the problem as a path problem over WPDSs because WPDSs (1) provide an algebraic

formulation for handling local variables [38], and (2) support generating a witness trace as a

proof of the result of solving the path problem [53]. We use witness tracing extensively to provide

programmers with detailed diagnostic traces for each potential program bug (see Section 3.2).

12

2.1 Weighted Pushdown Systems

We use WPDSs [53] to formulate and solve the error-propagation dataflow problem. A WPDS

is a pushdown system that associates a weight with each rule. Weights can serve as transfer

functions that describe the effect of each statement on the program state. Such weights must

be elements of a set that constitutes a bounded idempotent semiring. We now formally define

WPDSs and related terms; Section 2.2 shows how WPDSs can be applied to solve the error

propagation dataflow problem.

Definition 2.1. A pushdown system is a triple P = (P,Γ,∆) where P and Γ are finite sets

called the control locations and stack alphabet, respectively. A configuration of P is a

pair 〈p, w〉, where p ∈ P and w ∈ Γ∗. ∆ contains a finite number of rules 〈p, γ〉 ↪→ 〈p′, w〉, where

p, p′ ∈ P , γ ∈ Γ, and w ∈ Γ∗, which define a transition relation ⇒ between configurations of P

as follows:

If r = 〈p, γ〉 ↪→ 〈p′, w〉, then 〈p, γw′〉 ⇒ 〈p′, ww′〉 for all w′ ∈ Γ∗.

As shown by Lal et al. [38] and Reps et al. [53], a pushdown system can be used to model

the set of valid paths in an interprocedural control-flow graph (CFG).

Definition 2.2. A bounded idempotent semiring is a quintuple (D, ⊕, ⊗, 0̄, 1̄), where D

is a set, 0̄ and 1̄ are elements of D, and ⊕ (the combine operator) and ⊗ (the extend operator)

are binary operators on D conforming to certain algebraic properties as given in Reps et al. [53].

Each element of D is called a weight. The extend operator (⊗) is used to calculate the weight

of a path. The combine operator (⊕) is used to summarize the weights of a set of paths that

merge.

Definition 2.3. A weighted pushdown system is a triple W = (P,S, f) such that P =

(P,Γ,∆) is a pushdown system, S = (D,⊕,⊗, 0̄, 1̄) is a bounded idempotent semiring, and

f : ∆→ D is a function that assigns a value from D to each rule P.

13

Let σ = [r1, . . . , rk] be a sequence of rules (a path in the interprocedural CFG) from ∆∗. We

associate a value with σ by using function f . This value is defined as val(σ) = f(r1)⊗· · ·⊗ f(rk).

For any configurations c and c′ of P, path(c, c′) denotes the set of all rule sequences [r1, . . . , rk],

i.e., the set of all paths transforming c into c′.

Definition 2.4. Let W = (P,S, f) be a weighted pushdown system, where P = (P,Γ,∆), and

let C ⊆ P × Γ∗ be a regular set of configurations. The generalized pushdown successor

problem is to find for each c ∈ P × Γ∗:

• δ(c) ≡ ⊕{val(σ) |σ ∈ path(c′, c), c′ ∈ C}

• a witness set of paths w(c) ⊆ ∪c′∈C path(c′, c) such that ⊕σ∈w(c)val(σ) = δ(c).

The generalized pushdown successor problem is a forward reachability problem. It finds δ(c),

the combine of values of all paths between configuration pairs, i.e., the meet over all paths value

for each configuration pair. A corresponding witness set w(c) is a subset of inspected paths such

that their combine is δ(c). This set can be used to justify the resulting δ(c).

The meet over all paths value is the best possible solution to a static dataflow problem. Thus,

a WPDS is a useful dataflow engine for problems that can be encoded with suitable weight

domains. In Section 2.2 we show how the error propagation problem can be encoded as a weight

domain.

In order to handle local variables properly, we use an extension to WPDSs proposed by

Lal et al. [38]. This extension requires the definition of a merge function, which can be seen

as a special case of the extend operator. This function is used when extending a weight w1 at

a call program point with a weight w2 at the end of the corresponding callee. The resulting

weight corresponds to the weight after the call. The difference between the merge function

and a standard extend operation is that w2 contains information about the callee’s locals; this

information is irrelevant to the caller. Thus, the merge function defines what information from

w2 to keep or discard before performing the extend.

14

Table 2.1: Encoding of control flow as PDS rules

Rule Control flow modeled

〈p, a〉 ↪→ 〈p, b〉 Intraprocedural flow from a to b

〈p, c〉 ↪→ 〈p, fenterr〉 Call from c to procedure entry fenter, eventually returning to r

〈p, fexit〉 ↪→ 〈p, ε〉 Return from procedure exit fexit

2.2 Creating the Weighted Pushdown System

Per definition 2.3, a WPDS consists of a pushdown system, a bounded idempotent semiring, and

a mapping from pushdown system rules to associated weights. We now define these components

for a WPDS that encodes the error-propagation dataflow problem.

2.2.1 Pushdown System

We model the control flow of the program with a pushdown system using the approach of Lal et al.

[40]. Let P contain a single state {p}. Γ corresponds to program statements, and ∆ corresponds

to edges of the interprocedural CFG. Table 2.1 shows the PDS rule for each type of CFG edge.

2.2.2 Bounded Idempotent Semiring

Let S = (D, ⊕, ⊗, 0̄, 1̄) be a bounded idempotent semiring per definition 2.2.

Set D

D is a set whose elements are drawn from V ∪ C → 2V∪C , where V is the set of program variables,

and C is the set of constant values. Constants include error codes, the special value OK (used to

represent all non-error values) and the special value uninitialized (used to represent uninitialized

variables). Each element in D is called a weight and is a mapping from variables and constants to

sets of variables and/or constants. The mapping for a variable v ∈ V gives the possible values of

that variable following execution of a given program statement in terms of the values of constants

and variables immediately before that statement. By design, all statement’s weights always

15

map every constant c ∈ C to the set {c}. In other words, statements never change the values

of constants. Figure 2.1 illustrates an example of a weight. Consider a program that has two

variables x and y. For simplicity, we only include two error codes. OK represents all non-error

values. The example shows how after the program statement y = −EIO, the error constant EIO

flows into y, while variable x and all constants remain unchanged.

y = -EIO

x y EIO EROFS OK

x y EIO EROFS OK

Ident [y {EIO}]

Figure 2.1: An example of a weight

Operators Combine and Extend

The combine operator (⊕) is applied when conditional branches join. It summarizes the weights

of a set of paths that merge. Combine is applied component-wise, where a component is a

variable or constant. For all w1, w2 ∈ D and e ∈ V ∪ C:

(w1 ⊕ w2)(e) ≡ w1(e) ∪ w2(e)

In other words, combine is defined as the union of the sets of values a variable or constant

is mapped to in each of the paths being merged. In the case of constants, the result is always

the set containing itself. Figure 2.2 shows an example of applying the combine operator, where

weights w1 and w2 are associated with the true and false branches of a conditional statement,

respectively. The result of applying the combine operator is shown as w1 ⊕ w2.

The extend operator (⊗) calculates the weight of a path. It is also applied component-wise.

16

x y EIO EROFS OK

x y EIO EROFS OK

Ident [y {EIO}]

x y EIO EROFS OK

x y EIO EROFS OK

Ident [y {EROFS}]

x y EIO EROFS OK

x y EIO EROFS OK

Ident [y {EIO, EROFS}]

w1 w2 w1 ⊕ w2

Figure 2.2: An example of applying the combine operator

For all w1, w2 ∈ D and e ∈ V ∪ C:

(w1 ⊗ w2)(e) ≡
⋃

e′∈w2(e)
w1(e′)

The extend operator is essentially composition generalized to the power set of variables and

constants rather than just single variables. Figure 2.3 shows an example of applying the extend

operator.

Ident [y {x}]

Ident [x {EIO}]
x y EIO EROFS OK

x y EIO EROFS OK

Ident [x {EIO}, y {EIO}]

w1 ⊗ w2 x y EIO EROFS OK

x y EIO EROFS OK

w1

w2

x = -EIO;

y = x;

Figure 2.3: An example of applying the extend operator

Weights 0̄ and 1̄

The weights 0̄ and 1̄ are both elements of the set D. The annihilator weight 0̄ maps each variable

and constant to the empty set and is the identity for the combine operator. The neutral weight

17

1̄ maps each variable and constant to the set containing itself: a power-set generalization of the

identity function. The weight 1̄ is the identity for the extend operator.

0̄ ≡ {(e, ∅) | e ∈ V ∪ C} 1̄ ≡ {(e, {e}) | e ∈ V ∪ C}

Merge Function

Finally, the merge function is defined as follows. Let w1 be the weight of the caller just before

the call, and let w2 be the weight at the very end of the callee. Then for any variable v ∈ V,

merge(w1(v), w2(v)) ≡

w1(v) if v is a local variable

w2(v) if v is a global variable

This propagates any changes that the callee made to globals while discarding any changes that

the callee made to locals.

2.2.3 Transfer Functions

Each control-flow edge in the source program corresponds to a WPDS rule and therefore needs an

associated weight drawn from the set of transfer functions D defined in Section 2.2.2. We describe

transfer functions as being associated with specific program statements. The corresponding WPDS

rule weight is associated with the edge from a statement to its unique successor. Conditionals

have multiple outgoing edges and therefore require multiple transfer functions.

Assignments

The following paragraphs discuss the transfer functions for assignments without function calls on

the right side (see Table 2.2 for a summary). We leave the discussion of assignments such as

v = f() for later in this section.

18

Ta
bl
e
2.
2:

Tr
an

sf
er

fu
nc

tio
ns

fo
r
as
sig

nm
en
ts

Pr
og

ra
m

St
at
em

en
t

W
he

re
Tr

an
sf
er

Fu
nc

tio
n

v
=
e

e
∈
V
∪
C

Id
en

t[v
7→
{e
}]

v
=
e 1

op
e 2

e 1
,e

2
∈
V
∪
C
an

d
Id

en
t[u
7→
{O

K
}
fo
r
al
lu
∈
{v
,e

1,
e 2
}
∩
V

]
op

is
a
bi
na

ry
ar
ith

m
et
ic

or
bi
tw

ise
op

er
at
or

e 1
,e

2
∈
V
∪
C
an

d
Id

en
t[v
7→
{O

K
}]

op
is

a
re
la
tio

na
lo

pe
ra
to
r

v
=

op
e

e
∈
V
∪
C
an

d
Id

en
t[u
7→
{O

K
}
fo
r
al
lu
∈
{v
,e
}
∩
V

]
op

is
a
un

ar
y
ar
ith

m
et
ic

or
bi
tw

ise
op

er
at
or

e
∈
V
∪
C
an

d
Id

en
t[v
7→
{O

K
}]

op
is

th
e
lo
gi
ca
ln

eg
at
io
n
or

an
in
di
re
ct
io
n
op

er
at
or

19

Simple assignments These are assignments of the form v = e, where e ∈ V ∪ C. Let Ident be

the function that maps each variable to the set containing itself. (Note that this is identical to

1̄ per Section 2.2.2.) The transfer function is Ident[v 7→ {e}]. In other words, v must have the

value of e after this assignment, while all other variables retain whatever values they had before

the assignment.

Complex assignments These are assignments in which the assigned expression e is not a

simple variable or constant. We assume that the program has been converted into three-address

form, with no more than one operator on the right side of each assignment.

Consider an assignment of the form v = e1 op e2 where e1, e2 ∈ V ∪ C and op is a binary

arithmetic or bitwise operator (+, &, <<, etc.). Define Donors ≡ {e1, e2} ∩ V as the set of

variables on the right side of the assignment. Error codes are represented as integers but

conceptually they are atomic values on which arithmetic operations are meaningless. Thus, if op

is an arithmetic or bitwise operation, then we assume that the variables in Donors do not contain

errors. Furthermore, the result of this operation must be a non-error value as well. Therefore,

the transfer function for this assignment is Ident[u 7→ {OK} for all u ∈ Donors ∪{v}]. Note that

we can easily choose to produce a warning instead.

Consider instead an assignment of the form v = e1 op e2 where e1, e2 ∈ V ∪ C and op is

a binary relational operator (>, ==, etc.). Relational comparisons are meaningful for error

codes, so we cannot assume that e1 and e2 are non-error values. However, the Boolean result

of the comparison cannot be an error. Therefore, the transfer function for this assignment is

Ident[v 7→ {OK}].

Assignments with unary operators (v = op e) are similar: arithmetic and bitwise operators

map both v and e (if a variable) to {OK}. However, C programmers often use logical negation

to test for equality to 0. So when op is logical negation (!) or an indirection operator (&, ∗), the

transfer function maps v to {OK} but leaves e unchanged.

20

Conditionals

Assume that conditional statements with short-circuiting conditions are rewritten as nested

conditional statements with simple conditions. A transfer function is then associated with each

branch of a conditional statement. The transfer function to be applied on each branch depends

upon the condition.

Consider a conditional statement of the form if (v), where v ∈ V . The true branch is selected

when v is not equal to zero, which does not reveal any additional information about v: it may or

may not contain an error value. In this case, variables should remain mapped to whatever values

they had before. On the other hand, the false branch is selected when v is equal to zero. Because

zero is never an error code, v definitely does not contain an error. Thus the transfer functions

associated with the true and false branches are Ident and Ident[v 7→ {OK}], respectively.

Conversely, consider conditionals of the forms if (v > 0), if (v ≥ 0), if (0 < v), if (0 ≤ v),

if (0 == v), if (v == 0), and if (!v). In all of these cases, the transfer function associated with

the true branch is Ident[v 7→ {OK}]. The true branch is never selected when v is negative, so v

cannot contain an error on that branch. The transfer function for the false branch is the identity

function Ident.

Lastly, consider conditional statements such as if (v < 0), if (v ≤ 0), if (0 > v) and if (0 ≥ v).

We associate the transfer function Ident with the true branch and Ident[v 7→ {OK}] with the

false branch. In each of these cases, the false branch is only selected when v is non-negative,

which means that v cannot contain an error code.

For conditional statements that do not match any of the above patterns, we simply associate

Ident with both true and false branches. An example of such a pattern is if (v1 < v2), where

v1, v2 ∈ V.

Function calls

We adopt the convention used by Callahan [11], and later by Reps et al. [53], in which the CFG

for each function has unique entry and exit nodes. The entry node is not the first statement in the

21

function, but rather appears just before the first statement. Likewise, we assume that function-

terminating statements (e.g., return or last-block fall-through statements) have a synthetic

per-function exit node as their unique successors. We use these dummy entry and exit nodes to

manage data transfer between callers and callees.

CFGs for individual functions are combined together to form an interprocedural CFG.

Furthermore, each CFG node n that contains a function call is split into two nodes: a call node

n1 and a return-site node n2. There is an interprocedural call-to-enter edge from n1 to the

callee’s entry node. Similarly, there is an interprocedural exit-to-return-site edge from the callee’s

exit node to n2.

Local variable initialization First consider a call to a void function that takes no parameters.

Let L,G ⊆ V, respectively, be the sets of all local and global variables. Recall that transfer

functions are associated with CFG edges. For the edge from the callee’s entry node to the first

actual statement in the callee, we use the transfer function Ident[v 7→ {uninitialized} for v ∈ L].

When a function begins executing, local variables are uninitialized while global variables retain

their old values.

Parameter passing Now consider a call to a void function that takes one or more parameters.

We introduce new global variables, called exchange variables, to convey actual arguments from

the caller into the formal parameters of the callee. One exchange variable is introduced for each

function parameter. Suppose function F has formal parameters f1, f2, . . . , fn. Let F (a1, a2, . . . an)

be a function call to F with actual parameters ai ∈ V ∪C. We introduce global exchange variables

F1, F2, . . . , Fn. The interprocedural call-to-enter edge is given the transfer function for a group

of n simultaneous assignments Fi = ai, exporting each actual argument into the corresponding

global exchange variable. Rules for assignment transfer functions discussed earlier apply.

A similar process imports values from global exchange variables into callee formal parameters.

For a callee F with formal parameters f1, f2, . . . , fn, the edge from the callee’s entry node to the

first actual statement in the callee is given the transfer function for a group of n simultaneous

22

assignments fi = Fi, as though each formal argument were initialized with a value from the

corresponding exchange variable. Other local variables are uninitialized as before.

Thus, argument passing is modeled as a two-step process: first the caller exports its arguments

into global exchange variables, then the callee imports these exchange variables into its formal

parameters.

Return value passing Lastly, suppose that function F returns non-void. Let r ∈ V ∪C be the

value being returned by some return r statement, and let Fret be a per-function global exchange

variable. Then the edge connecting this return statement node to the dummy exit node is given

the transfer function for an assignment Fret = r.

Let v ∈ V be the variable receiving the return value in the caller. Then the interprocedural

exit-to-return-site edge from F ’s exit node is given the transfer function for an assignment

v = Fret .

Other interprocedural issues

We consider functions whose implementation is not available to not have any effect on the state

of the program. Thus the weight across any such call is simply Ident.

For functions with variable-length parameter lists, we apply the above transfer functions but

we only consider the formal parameters explicitly declared.

Pointers Our treatment of pointers is both unsound and incomplete, but is designed for

simplicity and to give useful results in practice. We find that many functions take a pointer to a

callee-local variable where an error code, if any, should be written. Thus we only consider pointer

parameters and ignore other pointer operations. We assume that inside a function, pointer

variables have no aliases and are never changed to point to some other variable.

Under these conditions, pointer parameters are equivalent to call-by-copy-return parameters.

On the interprocedural call-to-enter edge, we copy pointed-to values from the caller to the callee,

just as for simple integer parameters. On the interprocedural exit-to-return-site edge, we copy

23

callee values back into the caller. This extra copy-back on return is what distinguishes pointer

arguments from non-pointer arguments, because it allows changes made by the callee to become

visible to the caller.

Function pointers Most function pointers in Linux file systems are used in a fairly restricted

manner. Global structures define handlers for generic operations (e.g., read, write, open, close),

with one function pointer field per operation. Fields are populated statically or via assignments

of the form “file_ops−>write = ext3_file_write” where ext3_file_write identifies a function, not

another function pointer. It is straightforward to identify the set of all possible implementations

of a given operation. We then rewrite calls across such function pointers as switch statements

that choose among possible implementations nondeterministically. This technique, previously

employed by Gunawi et al. [26], accounts for approximately 80% of function pointer calls while

avoiding the overhead and complexity of a general field-sensitive points-to analysis. The remaining

20% of calls are treated as Ident. Note that we analyze each file system individually; this perfectly

disambiguates nearly all indirect calls in the code under study.

2.3 Additional Configurable Options

Although the overall framework described in this chapter is used throughout the dissertation,

specific uses have slightly different needs. This section presents additional configurable options

available depending on how the results will be used (to be discussed in subsequent chapters).

2.3.1 Copy Mode vs. Transfer Mode

Our analysis has two chief modes of operation: copy mode and transfer mode. Consider an

assignment t = s where t, s ∈ V are distinct and s might contain an error code. In copy mode,

assignment copies errors: after the assignment t = s, both t and s contain errors. In transfer

mode, the assignment t = s leaves an error in t but removes it from s, effectively transferring

ownership of error values across assignments.

24

The transfer functions described in Section 2.2.3 correspond to copy mode. As discussed

earlier in this chapter, the transfer function in copy mode for a simple assignment of the form

v = e, where e ∈ V ∪ C, is Ident[v 7→ {e}]. In other words, v must have the value of e after

this assignment, while all other variables retain whatever values they had before the assignment.

In transfer mode, let Donor ≡ {e} ∩ V − {v} be the set containing the source variable (if any)

of the assignment. Then the transfer function for a simple assignment in transfer mode is

Ident[v 7→ {e}][s 7→ {OK} for s ∈ Donor] to transfer any errors from Donor to v. In other

words, after the assignment, (1) v must now have any error code previously in e; (2) e, having

relinquished responsibility, is OK or a constant; and (3) all other variables retain whatever values

they had before the assignment. Special care is taken in the case that v and e are identical, in

which case this transfer function reduces to identity.

2.3.2 Negative vs. Positive Error Codes

There are systems that define positive error codes instead of negative errors. An example

is the XFS Linux file system: one of the largest and most complex Linux file systems. We

support optional analysis of positive error codes as well. In particular, we define a new set

of interchangeable transfer functions for conditional statements. As before, each branch of a

conditional statement is associated with a transfer function, depending on the condition. We

assume that conditional statements with short-circuiting conditions are rewritten as nested

conditional statements with simple conditions.

Consider a conditional of the form if (v > 0). The transfer function associated with the true

branch for negative error codes is Ident[v 7→ {OK}]. The true branch is never selected when v

is negative, therefore v cannot contain an error code on that branch. The transfer function for

the false branch is Ident. The false branch is selected when v is zero or negative, which does

not reveal any additional information about v (it might contain an error code or not). Thus,

variables should remain mapped to whatever values they had before the conditional. Note that

the opposite holds for positive error codes. If error codes are positive, then the true branch of

25

if (v > 0) uses Ident and the false branch uses Ident[v 7→ {OK}].

2.3.3 Tentative vs. Non-Tentative Errors

A popular coding practice in the Linux kernel consists of storing potential error codes in variables

before failure conditions actually hold. Error codes are used to initialize variables. These errors

will be returned if a failure is eventually discovered. This phenomenon is usually contained within

the function that generates the error code: error codes returned to callers generally represent

real run-time errors. For certain kinds of error-propagation bugs (see Chapter 3), it is necessary

to consider this practice in order to avoid a large number of false positives.

As discussed in Section 2.2.2, we classify integer constants into error constants and non-error

constants. Among the error constants we further distinguish between tentative and non-tentative

errors. Let TentativeErrors be the set of tentative error constants: integer values used to represent

error codes. For each tentative error constant we define a corresponding non-tentative error

constant. Let NonTentativeErrors be the set of all non-tentative error constants. We define

E = TentativeErrors ∪NonTentativeErrors as the set of all error constants.

Let E ≡ w(Fret) ∩ TentativeErrors, where Fret is the return exchange variable for function

F and w is the weight at the end of function F . E represents the set of tentative error codes

returned by function F . For all e ∈ E, we replace e with e′, the corresponding non-tentative error.

This transformation of returned errors from tentative to non-tentative models the coding practice

described above. The analysis provides the option to make this transformation, if required.

2.3.4 Error-Handling Patterns

Error-handling patterns can be optionally provided to the analysis. If so, the analysis can

distinguish between handled and unhandled errors. This distinction is crucial in certain cases.

For example, dropping handled errors is harmless while dropping unhandled errors is not (see

Chapter 3). On the other hand, there are other scenarios in which error handling is irrelevant

(see Chapter 4 for some examples). In such cases, error-handling patterns are not required by

26

the analysis.

Currently, error-handling patterns are provided by developers, or found through manual

inspection of the code under analysis. An example of an error-handling pattern found in the

Linux kernel is described in Section 1.3.3. We consider any error values in a variable to have

been handled when the variable is passed as an argument to the function printk. printk is a

variadic function that logs errors. While logging alone does not correct any problems, it clearly

expresses programmer awareness that a problem has occurred; presumably it is being handled

as well. In general, after errors are handled, they no longer need to be tracked. The transfer

function for such a call is Ident[v 7→ {OK} for v in the actual int-typed arguments to printk].

Error-handling patterns are particular to the application under analysis, however patterns across

different applications often share common characteristics.

2.4 Solving the Dataflow Problem

We perform a poststar query [53] on the WPDS, with the beginning of the program as the starting

configuration. For kernel analysis, we synthesize a main function that nondeterministically calls

all exported entry points of the file system under analysis. The result is a weighted automaton.

We apply the path_summary algorithm of Lal et al. [39] to read out weights from this automaton.

This algorithm calculates, for each state in the automaton, the combine of all paths in the

automaton from that state to the accepting state, if any. We can then retrieve the weight

representing execution from the beginning of the program to any program point. We use this

algorithm to find the set of values that each variable may contain at each program point.

2.5 Analysis Optimizations

Preliminary results showed that it took several hours to analyze real-world systems software

components approaching 100,000 lines of code, while larger pieces of code remained completely out

of reach. We optimize the analysis core in two ways. First, we reduce weight size by performing

27

a preliminary flow- and context-insensitive analysis. The analysis filters out irrelevant program

variables that cannot possibly contain any error codes. Second, we reduce the number of weights

by collapsing consecutive WPDS rules that share identity weight and identical source locations.

2.5.1 Reducing Weight Size

The number of variables determines the size of the weights, and large weights can significantly

degrade performance. The error-propagation analysis initially considered all program variables as

potential error-code holders. In reality, most program variables have nothing to do with storing

error codes. Thus, we now perform a lightweight pre-analysis to find the set of program variables

that can possibly contain error codes at some point during program execution, thereby keeping

weights smaller.

This pre-analysis is flow- and context insensitive. It begins by identifying program points at

which error codes are generated, i.e., those program points at which error macros are used on the

right-hand side of an assignment. We identify those variables that are assigned error constants

and add them to our set of relevant variables. A second iteration looks for variables that are

assigned from relevant variables, which are also added to the relevant-variable set. We repeat

this process until we reach a fixed point. Because of earlier program transformations discussed in

Section 2.2.3 (e.g., introducing exchange variables), this approach also handles other error-flow

scenarios such as function parameters and return values.

For example, consider a program with five program variables a, b, c, x and y. If the pre-analysis

finds that variables a, b and c cannot possibly contain any error codes during the execution of

the program, then we can safely remove them from the weights. This is illustrated in Figure 2.4.

2.5.2 Reducing the Number of Weights

WPDS rules are used to model the control flow of the program and are associated with weights.

The Ident weight has no effect on the current state of the program. We also associate source

information (file name and line number) to rules for use when presenting diagnostic information.

28

Ident [y {x}]

Ident [x {EIO}]

x y EIO EROFS OK

x y EIO EROFS OK

x = -EIO;

y = x;

a b c

a b c

Figure 2.4: Removing irrelevant variables a, b and c from the weights

Because we convert the program into three-address form, one original program statement may be

split into several consecutive rules, all with identical source information (same file name and line

number). These are analyzed as distinct program points, thus increasing the number of weights

to be created and calculated. We collapse consecutive rules that are associated with the Ident

weight and share the same source information, thereby reducing the number of weights to be

calculated.

Consider the example shown in Figure 2.5. Assume the three consecutive rules associated

with the Ident weight share the same source information. We then collapse these into a single

rule associated with the Ident weight without losing any information. This reduces the number

of weights considerably.

2.5.3 Impact of Optimizations

Table 2.3 shows information related to the optimizations performed. For a sample of five

widely-used Linux file systems, we find that about 96% of the program variables cannot possibly

contain error codes. Filtering out irrelevant variables reduces their count from an average of

41, 961 to just 1, 796. As a consequence, the size of the weights is reduced considerably, boosting

performance. Similarly, rule collapsing leads to a 27% decrease in the number of rules used to

model the control flow of the file systems. The number of rules decreases from an average of

29

Ident [y {x}]

Ident [x {EIO}]

x y EIO EROFS OK

x y EIO EROFS OK

Ident

Ident

Ident

x y EIO EROFS OK

x y EIO EROFS OK

Ident [y {x}]

Ident [x {EIO}]

Ident

Figure 2.5: Collapsing rules

Table 2.3: Effectiveness of optimizations. KLOC gives the size of each file system in thousands
of lines of code, including 59 KLOC of shared VFS code.

Unoptimized→ Optimized

File System KLOC Number of Variables Number of Rules

CIFS 90 37,504→ 1,972 117,300→ 89,131
ext3 82 38,094→ 2,119 131,274→ 91,418
IBM JFS 91 36,531→ 1,922 129,999→ 91,025
ReiserFS 86 42,249→ 1,892 143,827→ 101,958
XFS 159 55,430→ 1,076 175,683→ 137,074

139, 616 to 102, 121, which translates into fewer weights to calculate and consequently into a

faster analysis. By performing these optimizations, the analysis runs 24 times faster on average

(from hours to minutes) and requires 75% less memory with respect to the unoptimized version.

30

1 int getError() {
2 return −EIO;
3 }
4
5 int main() {
6 int status, result;
7
8 status = getError();
9 result = status;

10
11 return 0;
12 }

Figure 2.6: Sample program whose intermediate representation is shown in Figure 2.7

2.6 Framework Components

The error-propagation analysis requires the user to provide the source code to analyze, and

the definition of error codes used by the application. Our front end produces an intermediate

representation of the program, which describes the program control flow and encodes transfer

functions (as defined in Section 2.2.3). The back end takes as input the intermediate representation,

solves the dataflow problem, and presents the results.

The following section describes our intermediate representation. The next two sections give

implementation details of our front and back ends.

2.6.1 Intermediate Representation

We extract a textual representation of the WPDS. This intermediate representation describes

the program control flow and encodes the transfer functions of the different constructs used in

the program under analysis.

The intermediate representation consists of a Prologue section and a sequence of Rules. The

Prologue section includes the list of global and local variables in the program. Local variable

names are prefixed with the function’s name in which they are defined. Global variables include

the exchange variables we introduce. For example, lines 2 to 12 in Figure 2.7 show the Prologue

for the program from Figure 2.6. Local variables in main are prefixed with main#. Function

31

1 <WPDS>
2 <Pro logue>
3 <Va r i a b l e s>
4 <G l oba l s>
5 <var i d=’ g e t E r r o r $ r e t u r n ’ />
6 </ G l ob a l s>
7 <Loca l s>
8 <var i d=’main#r e s u l t ’ />
9 <var i d=’main#s t a t u s ’ />

10 </ Loca l s>
11 </ Va r i a b l e s>
12 </Pro logue>
13 <Rule from=’p ’ f romStack=’ g e t E r r o r . 0 ’ to=’ p ’ toStack1=’ g e t E r r o r . 1 ’>
14 <Weight b a s i s=’ i d e n t i t y G l o b a l s ’>
15 </Weight>
16 </Rule>
17 <Rule from=’p ’ f romStack=’ g e t E r r o r . 1 ’ to=’ p ’>
18 <Weight b a s i s=’ i d e n t i t y ’>
19 <se t to=’ g e t E r r o r $ r e t u r n ’ from=’EIO ’ t r u s t e d=’ t r u e ’ />
20 </Weight>
21 <sou r c e l i n e=’ 2 ’ f i l e=’ example . c ’ />
22 </Rule>
23 <Rule from=’p ’ f romStack=’main . 0 ’ to=’ p ’ toStack1=’main . 1 ’>
24 <Weight b a s i s=’ u n i n i t i a l i z e d ’>
25 </Weight>
26 </Rule>
27 <Rule from=’p ’ f romStack=’main . 1 ’ to=’ p ’ toStack1=’ g e tE r r o r . 0 ’ toStack2=’main . 2 ’>
28 <Weight b a s i s=’ i d e n t i t y ’>
29 </Weight>
30 <sou r c e l i n e=’ 8 ’ f i l e=’ example . c ’ />
31 </Rule>
32 <Rule from=’p ’ f romStack=’main . 2 ’ to=’ p ’ toStack1=’main . 3 ’>
33 <Weight b a s i s=’ i d e n t i t y ’>
34 <se t to=’main#s t a t u s ’ from=’ g e t E r r o r $ r e t u r n ’ t r u s t e d=’ f a l s e ’ />
35 </Weight>
36 <sou r c e l i n e=’ 8 ’ f i l e=’ example . c ’ />
37 </Rule>
38 <Rule from=’p ’ f romStack=’main . 3 ’ to=’ p ’ toStack1=’main . 4 ’>
39 <Weight b a s i s=’ i d e n t i t y ’>
40 <se t to=’main#r e s u l t ’ from=’main#s t a t u s ’ t r u s t e d=’ f a l s e ’ />
41 </Weight>
42 <sou r c e l i n e=’ 9 ’ f i l e=’ example . c ’ />
43 </Rule>
44 <Rule from=’p ’ f romStack=’main . 4 ’ to=’ p ’>
45 <Weight b a s i s=’ i d e n t i t y ’>
46 </Weight>
47 <sou r c e l i n e=’ 11 ’ f i l e=’ example . c ’ />
48 </Rule>
49 </WPDS>

Figure 2.7: The intermediate representation for the program shown in Figure 2.6

32

getError does not have any local variables. There are no global variables defined in this program,

but there is an exchange global variable getError$return (we do not define a return exchange

variable for main).

There are three types of rules: intraprocedural rules, push rules and pop rules. Intraprocedural

rules model intraprocedural control flow. The attributes fromStack and toStack1 denote the

from/to control locations, respectively. An example of an intraprocedural rule can be found

on line 32. Push rules are used to model function calls. Push rules have an additional control

location (attribute toStack2), which specifies the control location to return to after the call. An

example of a push rule can be found on line 27. Pop rules model function return and only contain

one attribute: fromStack. Examples of pop rules can be found in lines 17 and 44.

If source information is available, a Rule contains a Source tag with attributes line and file.

Each Rule also has a Weight tag that describes the transfer function for the corresponding program

statement. Weights have one of three values for the attribute basis: uninitialized, identityGlobals,

or identity. uninitialized maps each global and local variable to the uninitialized value. This

occurs only at the beginning of main (see line 24). identityGlobals maps each global variable to

itself (no change) and each local variable to the uninitialized value (see line 14), which occurs at

the beginning of each function except for main. Finally, identity maps all variables to themselves,

and it is the basis value for the rest of the rules (e.g., line 39).

If required, a Weight has one or more set tags to describe transfer functions. For example, the

set on line 40 describes the transfer function for the assignment on line 9 in Figure 2.6. These

tags have the attribute trusted. Error overwrites (see Chapter 3) at assignments with the trusted

attribute are not reported by the tool. Assignments from the original program are never trusted.

On the other hand, assignments introduced by our analysis are usually trusted. For example, the

assignment to the exchange variable on line 19 is trusted, while the assignment on line 9 is not.

33

2.6.2 Front End

The goal of the front end is to parse the source code and emit our intermediate representation of

the program. In the process, the front end also applies source-to-source transformations on the

source code under analysis. This includes redefining error-code macros as distinctive expressions

to avoid mistaking regular constants for error codes. If a main function is not available, the front

end finds the set of function entry points and creates a main function. We currently have two

front ends:

1. CIL Front End. This implementation uses the CIL C front end [51]. CIL (C Intermediate

Language) is a front end for the C programming Language. We use CIL version 1.3.6, and

our implementation consists of 6,728 lines of OCaml code.

2. LLVM Front End. We use the LLVM Compiler Infraestructure [41]. The implementation

consists of 16 LLVM passes written in 2,617 lines of C++ code. We compile the code under

analysis to LLVM bitcode using Clang, which can produce LLVM bitcode for programs

written in C and C++. We use LLVM and Clang version 3.0.

There is no difference between the intermediate representation produced by either front end.

However, the LLVM front end (most recently implemented) allows us to obtain an intermediate

representation for C++ programs.

2.6.3 Back End

The goal of the back end is to perform the dataflow analysis. We use the WALi WPDS library

[37] revision 2822 to perform the interprocedural dataflow analysis on the WPDS produced by the

front end. Within our WALi-based analysis code (4,744 lines of C++ code), we encode weights

using binary decision diagrams (BDDs) [8] as implemented by the BuDDy BDD library [44]

version 2.4. BDDs have been used before to encode weight domains [60]. The BDD representation

allows highly-efficient implementation of key semiring operations, such as extend and combine.

34

We use Xerces version 3.1.1 to parse the XML intermediate representation. We write C++ code

to query the WPDS and construct bug reports.

2.7 Summary

We have designed and implemented an interprocedural, flow- and context-sensitive static analysis

for tracking the propagation of errors using WPDSs. The analysis finds the set of error codes

that variables may contain at each program point. Our approach is based on a novel over-

approximating counterpart to copy constant propagation analysis, with additional specializations

for our specific problem domain. The analysis is unsound in the presence of pointers, but has been

designed for a balance of precision and accuracy that is useful to kernel developers in practice.

We perform optimizations that allow the analysis of large real-world applications. The rest of

this dissertation describes how we use the error-propagation analysis to find error-propagation

bugs in widely-used software, including numerous Linux file systems and drivers.

35

Chapter 3

Dropped Errors in

Linux File Systems

We refer to a dropped error as an error instance that vanishes before proper handling is performed.

We identify three general cases in which unhandled errors are commonly lost. The variable

holding the unhandled error value (1) is overwritten with a new value, (2) goes out of scope, or

(3) is returned by a function but not saved by the caller.

In this chapter, we give real-world examples of dropped errors (Section 3.1), show how we

use the error-propagation analysis from Chapter 2 to find these kinds of bugs (Section 3.2),

and present results for five widely-used Linux file systems (Section 3.4) along with performance

numbers (Section 3.5).

3.1 Examples of Dropped Errors

This section presents real-world examples of dropped errors. Figure 3.1a illustrates an overwritten

error in ext2. Function ext2_sync_inode, called on line 3, can return one of several errors including

ENOSPC. The code inside the if statement on line 4 handles all errors but ENOSPC. Thus, if

ENOSPC is returned then it is overwritten on line 8. This may lead to silent data loss.

Figure 3.1b depicts an out-of-scope error found in IBM JFS. txCommit, starting on line 1,

36

1 int ext2_xattr_set2(...) {
2 ...
3 error = ext2_sync_inode(...);
4 if (error && error != −ENOSPC) {
5 ...
6 goto cleanup;
7 }
8 error = 0; //overwriting error
9 }

(a) An overwritten error in ext2

1 int txCommit(...) {
2 ...
3 if (isReadOnly(...)) {
4 rc = −EROFS;
5 ...
6 goto TheEnd;
7 } ...
8
9 if (rc = diWrite(...))

10 txAbort(...);
11
12 TheEnd: return rc;
13 }
14
15 int diFree(...) {
16 ...
17 rc = txCommit(...);
18 ...
19 return 0; //rc out of scope
20 }

(b) An out-of-scope error in IBM JFS

1 int log_wait_commit(...) {
2 ...
3 wake_up();
4 ...
5 if (is_journal_aborted(journal))) {
6 err = −EIO;
7 return err;
8 }
9 }

10
11 int __process_buffer(...) {
12 ...
13 log_start_commit(journal, tid);
14 log_wait_commit(journal, tid);
15 ...
16 }

(c) An unsaved error code in ext3

Figure 3.1: Three common scenarios in which unhandled errors are lost

37

commits any changes that its caller has made. This function returns EROFS if the file system is

read-only. diFree calls txCommit on line 17, saving the return value in variable rc. Unfortunately,

diFree does not check rc when the function exits. In fact, diFree always returns 0 on line 19,

thereby claiming that the commit operation always succeeds. Interestingly, all other callers of

txCommit save and propagate the return value correctly. This strongly suggests that rc should

be returned, and that the code as it stands is incorrect.

Figure 3.1c shows an unsaved error found in ext3. Function log_wait_commit returns EIO

if a transaction commit has failed (lines 5–7). In a synchronous operation, this EIO error code

is correctly propagated to the user application. In addition to synchronous foreground I/O

operations, there are also background I/O operations that are flushed periodically to the disk.

Since there is no way to communicate any related errors of background I/O operations to user

applications, these errors are often dropped. One example is when a periodic timer launches

a background checkpoint operation that will wrap all dirty buffers to a transaction, commit

the transaction to the journal, and wait for it to finish. As shown on line 14, the I/O failure

propagated by the log_wait_commit function is neglected by the __process_buffer function,

which itself is called during the background checkpoint. Hence, if there is a failure, data is silently

lost.

3.2 Finding Dropped Errors

This section describes program transformations performed to simplify the problem of finding

dropped errors. We present error-handling patterns we find in Linux file systems, and describe

how we use the results obtained from applying the error-propagation analysis (see Chapter 2) to

find dropped errors.

3.2.1 Program Transformations

We turn the three cases in which unhandled errors are commonly lost into a single case: overwritten

errors. First, we turn unsaved errors into out-of-scope errors. For each function whose result

38

1 int bar(...) {
2 return −EIO;
3 }
4
5 int foo(...) {
6 ...
7 bar();
8 ...
9

10 return ...;
11 }

(a) Unsaved

1 int bar(...) {
2 return −EIO;
3 }
4
5 int foo(...) {
6 ...
7 int temp = bar();
8 ...
9

10 return ...;
11 }

(b) Unsaved ⇒ Out of scope

1 int bar(...) {
2 return −EIO;
3 }
4
5 int foo(...) {
6 ...
7 int temp = bar();
8 ...
9 temp = OK;

10 return ...;
11 }

(c) Out of scope ⇒ Overwritten

Figure 3.2: Unsaved ⇒ Out of scope ⇒ Overwrite

is not already being saved by the caller, we introduce a temporary local variable to hold that

result. If any of these temporary variables contains unhandled errors, these are transformed into

out-of-scope errors. For example, Figure 3.2a illustrates how an error is not saved on line 7. A

temporary variable temp is used on line 7 (Figure 3.2b) to save the error, however variable temp

goes out of scope on line 10. Thus, the unsaved error becomes an out-of-scope error.

Second, we turn out-of-scope errors into overwritten errors. We insert assignment statements

at the end of each function. These extra statements assign OK to each local variable except for

the variable being returned (if any). Thus, if any local variable contains an unhandled error

when the function ends, then the error is overwritten by the inserted assignment. A systematic

naming convention for the newly-added temporary variables permits us to distinguish between

unsaved and out-of-scope errors. This allows us to properly describe each bug.

The transformations discussed in this section reduce the problem of finding dropped errors to

determining whether each assignment in the program may overwrite an unhandled error.

3.2.2 Error-Propagation Analysis

We run the error-propagation analysis from Chapter 2 to find the set of values each variable

may contain at each program point. We use two analysis configurations. The first configuration

operates in copy mode, while the second operates in transfer mode. In both, we enable error-

39

handling recognition, and distinguish between tentative and non-tentative errors. Section 3.4

describes how each configuration is more effective for certain kinds of bugs.

We enable error-handling recognition because we are particularly interested in finding the

set of unhandled errors each variable may contain. In order to distinguish between handled

and unhandled errors, we provide high-level error-handling patterns found in Linux file systems.

For example, similar to our treatment of calls to function printk (discussed in Section 2.3.4), we

also consider handled any errors passed as arguments to functions cERROR, cFYI, ea_bdebug,

ext3_error, ext3_warning, ext4_warning, jfs_error, and reiserfs_warning. We provide additional

patterns that describe scenarios in which errors are acknowledged. We refer to these as safe

patterns since errors are likely to be handled, thus they can be safely dropped. Examples of

these patterns can be found in Section 3.4.

We find that distinguishing between tentative and non-tentative errors (see Section 2.3.3) is

necessary to avoid a significant number of false positives when finding dropped errors.

After running the analysis, at each assignment p we retrieve the associated weight w (rep-

resenting execution from the beginning of the program to right before the assignment). Let

S, T ⊆ C respectively be the sets of possible constant values held by the source and target of

the assignment, as revealed by w. Note that w does not include the effect of assignment p itself.

Rather, it reflects the state just before p. Then:

1. If T ∩ NonTentativeErrors = ∅, then the assignment cannot overwrite any non-tentative

error code and is not examined.

2. If T ∩ NonTentativeErrors = S = {e} for some single error code e, then the assignment

can only overwrite an error code with the same error code and is not examined.1

3. Otherwise, it is possible that this assignment will overwrite an unchecked error code with a

different code. Such an assignment is incorrect, and is presented to the programmer along

with suitable diagnostic information.
1We open this loophole because we find that this is a commonly-occurring pattern judged to be acceptable by

file-system developers.

40

Table 3.1: Average lengths of full paths and path slices

CIFS ext3 ext4 IBM JFS ReiserFS VFS

Full path 14.7 66.6 70.4 16.7 17.9 22.6
Path slice 6.0 8.1 8.3 4.7 3.8 5.8

Observe that we only report overwrites of non-tentative errors. We find that overwrites of

tentative errors are rarely true bugs. This is due to coding conventions such as storing potential

error codes in variables before failure conditions actually hold. This phenomenon is usually

contained within the function that generates the error code: error codes returned to callers

generally represent real run-time errors. Our transformation of returned errors from tentative to

non-tentative models this coding practice; ignoring it would have tripled our false-positive count.

We list all error codes that could be possibly overwritten at each bad assignment, then select one

for detailed path reporting as described in the following section.

3.3 Describing Dropped Errors

WPDSs support witness tracing. As mentioned in definition 2.4, a witness set is a set of paths

that justify the weight reported for a given configuration. This information lets us report not

just the location of a bad assignment, but also detailed information about how that program

point was reached in a way that exhibits the bug.

For each program point p containing a bad, error-overwriting assignment, we retrieve a

corresponding set of witness paths. Each witness path starts at the beginning of the program and

ends at p. We select one of these paths arbitrarily and traverse it backward, starting at p and

moving along reversed CFG edges toward the beginning of the program. During this backward

traversal, we track a single special target location which is initially the variable overwritten at p.

The goal is to stop when the target is directly assigned the error value under consideration, i.e.,

when we have found the error’s point of origin. This allows us to present only a relevant suffix of

the complete witness path.

Let t be the currently-tracked target location. Each statement along the backward traversal

41

1 int nextId() {
2 static int id;
3 return ++id;
4 }
5
6 int getError() {
7 return −EIO;
8 }
9

10 int load() {
11 int status, result = 0;
12
13 if (nextId())
14 status = getError();
15
16 result = status;
17
18 if (nextId())
19 result = −EPIPE;
20
21 return result;
22 }

(a) Example code with overwritten error on line 19

Error codes: *EIO

(b) List of overwritten/dropped errors

example.c:7: unhandled error "EIO" is returned
example.c:14: "status" receives unhandled error from function "getError"
example.c:16: "result" receives unhandled error from "status"
example.c:18: "result" has unhandled error
example.c:19: overwriting unhandled error in variable "result"

(c) Complete diagnostic path trace

example.c:7: unhandled error "EIO" is returned
example.c:14: "status" receives unhandled error from function "getError"
example.c:16: "result" receives unhandled error from "status"
example.c:19: overwriting unhandled error in variable "result"

(d) Diagnostic path slice

Figure 3.3: Example code fragment and corresponding diagnostic output

42

of the selected witness path has one of the following forms:

1. t = x for some other variable x ∈ V . Then the overwritten error value in t must have come

from x. We continue the backward path traversal, but with x as the new tracked target

location instead of t. Additionally, we produce diagnostic output showing the source file

name, line number, and the message “t receives unhandled error from x.” If x is a return

exchange variable, then we print an alternate message reflecting the fact that t receives an

error code from a function call (e.g., see the message for line 14 in Figure 3.3a).

2. t = e for some error constant e ∈ E . We have reached the point of origin of the overwritten

error. Our diagnostic trace is now complete for the bad assignment at p. We produce

a final diagnostic message showing the source file name, line number, and the message

“t receives error value e.” If t is a return exchange variable, then we print an alternate

message reflecting the fact that an error code is being returned from a function (e.g., see

the message for line 7 in Figure 3.3a).

3. Anything else. We continue the backward path traversal, retaining t as the tracked target

location. Additionally, we produce diagnostic output showing the source file name, line

number, and the message “t has unhandled error.”

If all diagnostic output mentioned above is presented to the programmer, then the result is a

step-by-step trace of every program statement from the origin of an error value to its overwriting

at p. If diagnostic output is omitted for case 3, then the trace shows only key events of interest,

where the error value was passed from one variable to another. We term this a path slice, as it is

analogous to a program slice that retains only the statements relevant to a particular operation.

In practice, we find that the concise path slice provides a useful overview while the complete

witness path trace helps to fill in details where gaps between relevant statements are large enough

to make intervening control flow non-obvious. Table 3.1 shows that slicing significantly reduces

path lengths. Across all five file systems and the shared virtual file system, slicing shrinks paths

by an average ratio of 5.7 to 1.

43

Note that we only provide diagnostic output for one overwritten error code per bad assignment.

If the bad assignment may overwrite more than one error code, then we choose one arbitrarily.

The instance chosen may not be a true bug, fooling the programmer into believing that no real

problem exists. A different error value potentially overwritten by the same assignment may

be a true bug. However, providing diagnostic output for all error values might overwhelm the

programmer with seemingly-redundant output.

Figure 3.3a shows an example code fragment that has an error-propagation bug in transfer

mode. Figure 3.3b lists the error codes that may be overwritten/dropped at line 19. The error

code to which the rest of the diagnostic information corresponds is marked with an asterisk.

EIO is the only error code that may be overwritten in this example. Figure 3.3c shows the

complete diagnostic path trace. Observe that this trace begins in function getError, which is

called from load on line 14. Execution eventually traverses into nextId (line 3) while traveling

from the error-code-generation point (line 7) to the overwriting assignment (line 19). Figure 3.3d

shows the diagnostic path slice that includes only those lines directly relevant to the error. Here

we see just four events of interest: the generation of an error code, which is returned by function

getError on line 7; the transfer of that error to status on line 14; the transfer of that error code

from status to result on line 16; and the assignment to result on line 19.

3.4 Experimental Evaluation

We present the results of our analysis on four local file systems (ReiserFS, IBM JFS, ext3 and

ext4), one network file system (CIFS), and the virtual file system (VFS) in the Linux 2.6.27

kernel.

Our analysis reports 501 bugs in total, of which 312 are judged true bugs following manual

inspection of the reports. IBM JFS and ReiserFS reports were inspected by the file systems’

respective developers. CIFS and ext4 developers inspected a subset of their corresponding reports.

A local domain expert assessed the rest, including the reports for ext3.

Developer response has been positive:

44

I think this is an excellent way of detecting bugs that happen rarely enough that there

are no good reproduction cases, but likely hit users on occasion and are otherwise

impossible to diagnose. [14]

Our local expert reports spending an average of five minutes to accept or reject each path

trace. We find that unsaved errors are the most common. In general we find that transfer mode

yields better results than copy mode in the sense that it produces fewer false positives.

In the discussion that follows, we present results for each bug category. All results reported

are for transfer mode unless explicitly stated otherwise. Table 3.2 summarizes our findings.

We identify and describe safe patterns that we use to refine our tool. We also describe false

positives in detail. Note that these are only “false” positives in that developers and our local

expert judge that errors are safely overwritten, out of scope or unsaved. The fact that errors are

overwritten, out of scope or unsaved is real, and in this sense the analysis is providing correct,

precise information for the questions it was designed to answer.

3.4.1 Overwritten Errors

Developers and our local expert identify 25 overwritten true bugs out of 69 reports. We find

that EIO and ENOMEM are the most commonly overwritten error codes. EIO signals I/O errors,

including write failures that may lead to data loss. ENOMEM is used when there is insufficient

memory. Figure 3.1a shows an overwritten error found in ext2.

Our tool recognizes four recurring patterns that represent safe overwrites. Figure 3.4a shows

the most common recurring pattern found across all five file systems. Here, line 1 compares err

with a specific error code. If they match, then line 3 clears err or assigns it a different error

code. Overwriting one error code with another does not always represent a bug. For example,

an error code generated in one layer of the operating system may need to be translated into a

different code when passed to another layer. This clearly depends on the context and the error

codes involved. In this case, we can see that the programmer acknowledges that err contains a

45

Ta
bl
e
3.
2:

Su
m
m
ar
y
re
su
lts

fo
r
th
e
six

ca
se

st
ud

ie
s.

B
ug

re
po

rt
s
ar
e
br
ok
en

do
w
n
in
to

ov
er
w
rit

te
n,

ou
t-
of
-s
co
pe

an
d
un

sa
ve
d.

E
ac
h
ca
te
go

ry
is

fu
rt
he

r
di
vi
de

d
in
to

tr
ue

bu
gs

(T
B
)
an

d
fa
lse

po
sit

iv
es

(F
P
).

T
he

fir
st

co
lu
m
n
un

de
r
FP

s
co
rr
es
po

nd
s

to
“r
em

ov
ab

le
”
FP

s
(F

P
s
th
at

ca
n
be

re
m
ov
ed

if
ou

r
to
ol

re
co
gn

iz
es

un
sa
fe

pa
tt
er
ns
).

T
he

se
co
nd

co
lu
m
n
co
rr
es
po

nd
s
to

“u
na

vo
id
ab

le
”
FP

s
(F

Ps
th
at

ca
nn

ot
be

au
to
m
at
ic
al
ly

re
m
ov
ed

be
ca
us
e
sig

ni
fic

an
t
hu

m
an

in
te
rv
en
tio

n
is

re
qu

ire
d)
.
T
he

la
st

co
lu
m
n
(T

)
gi
ve
s
th
e
to
ta
ln

um
be

r
of

bu
g
re
po

rt
s
pe

r
bu

g
ca
te
go

ry
.
R
es
ul
ts

fo
r
un

sa
ve
d
er
ro
rs

w
er
e
pr
od

uc
ed

in
co
py

m
od

e.

C
IF

S
ex
t3

ex
t4

IB
M

JF
S

R
ei
se
rF

S
V
FS

B
ug

ca
te
go
ry

T
B

FP
T

T
B

FP
T

T
B

FP
T

T
B

FP
T

T
B

FP
T

T
B

FP
T

O
ve
rw

rit
te
n

8
1+

5
14

5
5+

0
10

5
10
+
0

15
2

7+
0

9
3

2+
0

5
2

11
+
3

16
O
ut

of
sc
op

e
2

0+
0

2
5

6+
0

11
3

7+
0

10
2

0+
1

3
3

12
+
1

16
3

16
+
5

24
U
ns
av
ed

12
11
+
4

27
69

16
+
2

87
68

39
+
1

10
8

58
0+

3
61

24
6+

5
35

38
10
+
0

48

To
ta
l

22
12
+
9

43
79

27
+
2

10
8

76
56
+
1

13
3

62
7+

4
73

30
20
+
6

56
43

37
+
8

88

46

1 if (err == −EIO) {
2 ...
3 err = ...; //safe
4 }

(a) Specific error code

1 reiserfs_warning(...);
2 err = −EIO; //safe

(b) Special function

1 if (retval && err)
2 retval = err; //safe

(c) Replacement

1 int err;
2 ...
3 retry:
4 ...
5 if (...)
6 return ...;
7 //err is safely out of scope
8
9 err = ...; //safe

10 ...
11 if (err == −ENOSPC && ...)

12 goto retry;

(d) Retries

Figure 3.4: Some recurring safe patterns recognized by the analysis

specific error code before performing the assignment. We choose to trust the programmer in this

particular scenario, thus we assume that overwriting the error code contained in err is safe.

Figure 3.4b shows the second common pattern, found in both ReiserFS and ext3. In this

case the programmer acknowledges that something might be wrong by calling a function such as

reiserfs_warning in the case of ReiserFS. The call is usually followed by an assignment that may

overwrite an error code. We choose to allow overwrites that occur immediately after such calls.

The third pattern, shown in Figure 3.4d, appears in both ext3 and ext4. Here variable err

may receive an error code from a function call (the function could return different error codes) on

line 9. Our tool initially reported an overwrite at that line in the case of a retry. We observe that

the goto statement on line 12 is always located inside an if statement. In addition, the variable

being overwritten always appears in the condition (line 11), making it possible to identify the

variable that needs to be cleared before retrying.

The last pattern is shown in Figure 3.4c. Both variables retval and err might contain error

codes at line 1. Thus a potential overwrite would be reported on line 2 when the error stored in

err replaces that in retval. In this case, we can see that the programmer acknowledges that those

variables might contain error codes before performing the assignment: the assignment occurs

47

1 if (err)
2 retval = err; //unsafe

(a) Replacement

1 int ret, err;
2 ret = ...;
3
4 if (ret) goto out;
5
6 ret = ...;
7 err = ...;
8
9 if (!ret && err)

10 ret = err;
11
12 out: return ret;
13 // err out of scope

(b) Precedence/scope

1 ret = ...;
2 ret2 = ...;
3
4 if (ret == 0)
5 ret = ret2;
6 ...
7 ret2 = ...; //unsafe

(c) Precedence/overwrite

1 buffer_head ∗tbh = NULL;
2 ...
3 if (buffer_dirty(tbh))
4 sync_dirty_buffer(tbh);

5 // unsaved error
6
7 if (!buffer_uptodate(tbh)) {

8 reiserfs_warning(...);
9 retval = −EIO;

10 }

(d) Redundancy

Figure 3.5: Some recurring unsafe patterns

only if both variables are nonzero. We trust the programmer in this particular scenario and

assume that overwriting the error code contained in retval is safe.

Most false positives arise from overwriting one error code with another error code without

clear knowledge that an error may be overwritten. Unfortunately, there is no formal error

hierarchy, which prevents us from automatically differentiating between correct and incorrect

overwrites. We identify two unsafe patterns in which error codes are commonly overwritten. We

find that 27 out of 44 false positives obey the pattern shown in Figure 3.5a. In this case, only

the variable err is acknowledged to be nonzero on line 1. We do not consider the overwrite on

line 2 to be safe because it is not clear that the developer is aware of the overwrite. Our tool

reports the potential bug and developers must determine its validity. The second unsafe pattern

is shown in Figure 3.5c. If both ret and ret2 contain error codes at line 4, then ret2 is overwritten

48

in line 7. In this case, ret has precedence over ret2. We find that 9 out of the remaining 17 false

positives fall into this category. We can recognize these patterns and mark these reports in the

future. This would allow developers to prioritize the reports or skip certain categories altogether

if considered safe. We call these false positives “removable.” The 8 remaining false positives

required significant human intervention to determine their safeness; we call these “unavoidable.”

3.4.2 Out-of-Scope Errors

Out-of-scope errors are the least common. A total of 66 bug reports concern out-of-scope errors.

Among these, 18 true bugs are identified. Figure 3.1b shows an out-of-scope error found in IBM

JFS. Most of these bugs relate to ignoring I/O errors. We identify four recurring safe patterns

for out-of-scope errors, of which three are variants of those discussed in Section 3.4.1.

The first pattern appears in CIFS, ext4 and IBM JFS. This pattern is similar to that shown

in Figure 3.4a, however if the variable holds a specific error code, then zero or a different error

code is returned on line 3, i.e., there is a return statement instead of an assignment. We also

trust the programmer in this case and err is not reported to go out of scope at this line.

The second pattern, shown in Figure 3.4d, appears in ext3 and ext4. Without recognizing

this pattern, our tool would report that err is out of scope on line 6. This is not the case when

err is cleared before retrying.

The third pattern has already been shown in Figure 3.4b, however there is a subtle difference.

In this case, reiserfs_warning takes the variable that is about to go out of scope as a parameter.

As a general approach for this pattern, we clear any variable that is passed as a parameter to

reiserfs_warning and similar functions.

The fourth pattern concerns error transformation: changes in how errors are represented as

they cross software layers. Integer error codes may pass through structure fields, be cast into

other types, be transformed into null pointers, and so on. Our analysis does not track errors

across all of these representations. As a result, error codes are not propagated when transformed,

yielding out-of-scope false positives. We also find that transformation from integers to pointers

49

predominates 2. This transformation uses the ERR_PTR macro, which takes the error to be

transformed as parameter. As in the case of functions such as reiserfs_warning, we clear any

variable that is passed as a parameter to ERR_PTR.

Ad hoc error precedence is the main source of false positives. Figure 3.5b presents one

example. Both ret and err may be assigned error codes on lines 6 and 7, respectively. Variable

ret is propagated regardless the contents of err, unless it does not contain an error code, i.e.,

ret has precedence over err. Our tool produces an out-of-scope report for err on line 12. This

could be a bug or not depending on the context. We find that 41 out of 48 false positives exhibit

this pattern. We can recognize this pattern to provide more information in the future. As for

overwrites, the “false” positives here are not indications of analysis imprecision, but rather are

based on a human expert’s judgment that some errors can fall out of scope safely.

3.4.3 Unsaved Errors

Unsaved errors predominate in all five file systems. Developers and our local expert identify 269

true bugs among 366 unsaved bug reports in copy mode. Transfer mode produces 48% fewer false

positives but misses 33% of the true bugs found in copy mode. The most common unsaved error

code is EIO, followed by ENOSPC and ENOMEM. Figure 3.1c shows an unsaved error found in

ext3.

Close inspection reveals serious inconsistencies in the use of some functions’ return values.

For example, we find one function whose returned error code is unsaved at 35 call sites, but

saved at 17 others. In this particular example, 9 out of the 35 bad calls are true bugs; the rest

are false positives. When we alerted developers, some suggested they could use annotations to

explicitly mark cases where error codes are intentionally ignored.

The main source of false positives concerns error paths: paths along which an error is already

being returned, so other errors may be safely ignored. The second most common source of false

positives is due to the fact that there is another way to detect the problem, which we term
2We address this kind of error transformation in Chapter 4.

50

Table 3.3: Analysis performance. KLOC gives the size of each file system in thousands of lines
of code, including 60 KLOC of shared VFS code. We provide running times for extracting the
WPDS textual representation of the program, solving the poststar query, and finding bugs.

Analysis Time (min:sec)

File System KLOC WPDS Poststar Query Finding Bugs Total Memory (MB)

CIFS 91 1:09 0:24 0:04 1:31 271
ext3 83 1:15 0:24 0:08 1:47 273
ext4 97 1:33 0:31 0:12 2:16 358
IBM JFS 93 1:14 0:24 0:05 1:43 304
ReiserFS 88 1:15 0:28 0:06 1:49 320

redundant error reporting. Figure 3.5d shows an example from ReiserFS. The sync_dirty_buffer

call on line 4 may return an error code, but checking its parameter tbh on line 7 is sufficient

in this case. However, it is still possible for a more specific error to be dropped leading to loss

of information about what exactly went wrong. A few false positives arise when callers know

that the callee returns an error code only if certain preconditions are not met. Callers that have

already established those preconditions know that success is assured and therefore ignore the

return value.

We find that error paths and redundant error reporting describe 82 out of 97 false positives.

We consider these removable since we can recognize these unsafe patterns and provide additional

information for the developer to decide about their safety. The remaining 15 unavoidable false

positives correspond to met preconditions.

3.5 Performance

Our experiments use a dual 3.2 GHz Intel processor workstation with 3 GB RAM. Table 3.3

shows code sizes, the time required to analyze each file system, and memory usage. We divide

the analysis into three phases: (1) extracting a textual WPDS representation of the kernel code,

(2) solving the poststar query, and (3) finding bugs and traversing the witness information to

produce diagnostic output.

The analysis is quite cheap. Extracting the textual WPDS representation is the most expensive

51

phase, nevertheless the overall analysis running time ranges from only 1 minute 31 seconds for

CIFS to 2 minutes 16 seconds for ext4, while using 305 MB of memory on average. The analysis

is clearly suitable for regular use by kernel developers using widely-available hardware.

3.6 Other File Systems

We have performed the analysis on 43 other Linux file systems. Together, these account for 250

thousand additional lines of kernel code (KLOC). However we have not manually inspected the

results. We have also analyzed different Linux versions, and find that file-system code evolves

significantly in each release. This demonstrates that fixing this class of bugs is not a one-time

operation. Rather, kernel developers need robust tools to ensure that existing error-propagation

bugs are fixed, and also that new bugs are not introduced as implementations change over time.

The NASA/JPL Laboratory for Reliable Software is currently using our implementation to

check code in the Mars Science Laboratory. JPL builds upon the VxWorks real-time operating

system, not Linux, but was able to tune the tool themselves without difficulty. To date our tool

has found one error-propagation bug in “flying” code (code used for space missions):

We’ve found one legitimate problem. . . .We call a non-void function (that can return

some critical error codes) and don’t assign the return value, dropping some nice

things such as EASSERT, EABOUND, and EEBADHDR on the ground. We would have

expected the compiler or [another code-checking tool] to catch that, actually. . .We’re

going to rerun on a big update to the code, soon. [25]

3.7 Summary

In this chapter, we characterize and present real-world examples of dropped errors in Linux file

systems. We show how we use the error-propagation analysis from Chapter 2 to find unsaved,

out-of-scope and overwritten unhandled errors. We describe how to construct useful and detailed

diagnostic information using WPDS witness information. Finally, we present results for five

52

widely-used Linux file systems: CIFS, ext3, ext4, IBM JFS, and ReiserFS, where we find 312

nontrivial bugs. False positives arise, but many of these can be ascribed to a small number of

recurring unsafe patterns that should also be amenable to automated analysis; we identify several

such patterns in our detailed case studies. We also find that the same patterns repeat among

different file system implementations.

53

Chapter 4

Errors Masquerading as

Pointers in Linux

Error codes are often temporarily or permanently encoded into pointer values as they propagate.

Error-valued pointers are not valid memory addresses, and therefore require special care by

programmers. Improper use of pointer values in systems code can have serious consequences

such as system crashes, data corruption, and unexpected results. We identify three classes of

bugs relating to error-valued pointers: (1) bad pointer dereferences, (2) bad pointer arithmetic,

and (3) bad pointer overwrites.

In this chapter, we further describe the transformation from integer error codes to error-valued

pointers (Section 4.1), characterize the three kinds of error-valued pointer bugs (Section 4.2),

describe how to extend the error-propagation analysis from Chapter 2 to track errors in pointer

variables (Section 4.3), and how to use the results to find error-valued pointer bugs (Section 4.4).

Finally, we present experimental results for 52 different Linux file systems, and 4 Linux drivers

(Section 4.5).

54

4.1 Error Transformation in the Linux Kernel

Error transformation refers to changes in error representation as errors propagate across software

layers. Integer error codes may be cast into other types. In particular, integer error codes are

often cast to pointer values. To be clear, these are not pointers that refer to the locations of error

codes. Rather, the numeric value of the pointer itself is actually a small integer error code rather

than a proper memory address. As offensive as this may seem from a type-system perspective, it

is nevertheless a well-accepted practice found throughout the Linux kernel. Linux introduces

two functions to convert (cast) error codes from integers to pointers and vice versa: ERR_PTR

and PTR_ERR. The Boolean function IS_ERR is used to determine whether a pointer variable

contains an error code.

Figure 4.1a shows an example of integer-to-pointer error transformation. Function open_xa_dir

returns a pointer value. Variable xaroot may receive an error-valued pointer from a function call

on line 4. Function IS_ERR on line 6 tests the return value. If it is an error, the error-valued

pointer is returned. Additionally, function ERR_PTR is called on lines 16 and 22 to transform

integer error codes into pointers.

Figure 4.1b illustrates the opposite transformation, from pointer to integer. Function

reiserfs_listxattr returns an integer value. An error constant is returned on line 6. Also, variable

dir may receive an error-valued pointer from a call to function open_xa_dir (shown in Figure 4.1a).

If it is an error, then function PTR_ERR transforms the error from a pointer to an integer on

line 13.

The preceding examples, though simplified, already illustrate how tricky it can be to follow

error flows manually. Errors propagate through long call chains, transforming several times

before being handled. This makes error tracking quite challenging in large systems such as the

Linux kernel. Thus, supporting error transformation is crucial to building a more complete

understanding of error propagation and how the system recovers from run-time errors.

55

1 struct dentry ∗open_xa_dir(...) {
2 struct dentry ∗xaroot;
3 ...
4 xaroot = ...;
5
6 if (IS_ERR(xaroot))
7 return xaroot;
8 ...
9 int err;

10
11 if (...) {
12 err = ...;
13
14 if (err) {
15 ...
16 return ERR_PTR(err);
17 }
18 }
19
20 if (...) {
21 ...
22 return ERR_PTR(−ENODATA);
23 }
24
25 ...
26 return ...;
27 }

(a) int-to-pointer

1 int reiserfs_listxattr(...) {
2 struct dentry ∗dir;
3 int err = 0;
4
5 if (...)
6 return −EINVAL;
7
8 ...
9 dir = open_xa_dir(...);

10 ...
11
12 if (IS_ERR(dir)) {
13 err = PTR_ERR(dir);
14
15 if (err == −ENODATA) {
16 ...
17 err = ...;
18 }
19
20 goto out;
21 }
22 ...
23
24 out:
25 ...
26 return err;
27 }

(b) pointer-to-int

Figure 4.1: Examples of error transformation in ReiserFS

4.2 Error-Valued Pointer Bugs

We concentrate on finding bugs due to the improper use of error-holding pointers. The following

subsections present three kinds of pointer-related bugs: bad pointer dereferences, bad pointer

arithmetic, and bad overwrites.

4.2.1 Bad Pointer Dereferences

A bad pointer dereference occurs when a possibly–error-valued pointer is dereferenced, since an

error value is not a valid memory address. Figure 4.2 shows an example. Function fill_super in

56

1 static int fill_super(...) {
2 int err;
3 inode ∗root = ...;
4 ...
5 err = cnode_make(&root,...); // err and root may get error
6
7 if (err || !root) {
8 printk("... error %d\n", err);
9 goto fail;

10 }
11 ...
12 fail:
13 ...
14 if (root) // root may contain an error
15 iput(root);
16 ...
17 }
18
19 void iput(inode ∗inode) {
20 if (inode) {
21 BUG_ON(inode−>i_state == ...); // bad pointer deref
22 ...
23 }
24 }

Figure 4.2: Example of a bad pointer dereference. The Coda file system propagates an error-valued
pointer which is dereferenced by the VFS (function iput).

the Coda file system calls function cnode_make on line 5, which may return the integer error

code ENOMEM while storing the same error code in the pointer variable root. The error is logged

on line 8. If root is not NULL (line 14), then function iput in the VFS is invoked with variable

root as parameter. This function dereferences the potential error-valued pointer parameter inode

on line 21.

Our goal is to find the program locations at which these bad pointer dereferences may occur.

We identify the program points at which pointer variables are dereferenced, i.e., program points

where the indirection (∗) or arrow (−>) operators are applied. Let us assume for now that we

are able to retrieve the set of values each pointer variable may contain at any location l in the

program. Thus, at each dereference of variable v, we retrieve the associated set of values Nl,

which corresponds to the set of values v may contain right before the dereference at l. Let E

57

be the finite set of all error constants. Let OK be a single value not in E that represents all

non-error values. Let C = OK ∪ E be the set of all values. Then Nl ⊆ C, and the set of error

codes that variable v contains before the dereference is given by Nl ∩ E . If Nl ∩ E , ∅, then we

report the bad pointer dereference.

4.2.2 Bad Pointer Arithmetic

Although error codes are stored in integer and pointer variables, these codes are conceptually

atomic symbols, not numbers. Error-valued pointers should never be used to perform pointer

arithmetic. For example, incrementing or decrementing a pointer variable that holds an error

code will not result in a valid memory address. Similarly, subtracting two pointer variables

that may contain error values will not yield the number of elements between both pointers as

it would with valid addresses. Figure 4.3 shows an example of bad pointer arithmetic found in

the mm. Callers of function kfree (line 3) may pass in a pointer variable that contains the error

code ENOMEM, now in variable x. The variable is further passed to function virt_to_head_page

when it is invoked on line 6. Finally, this function uses x to perform some pointer arithmetic on

line 11, without first checking for any errors.

We aim to identify the program points at which such bad pointer arithmetic occurs. We

find the program locations at which pointer arithmetic operators addition (+), subtraction (−),

increment (++), or decrement (−−) are used. For each variable operand v in a given pointer

arithmetic operation at program location l, we retrieve the set of values Nl that v may contain

right before the operation. We report a problem if Nl ∩ E , ∅ for any operand v.

4.2.3 Bad Overwrites

Bad overwrites occur when error values are overwritten before they have been properly acknowl-

edged by recovery/reporting code. Our goal is to find bad overwrites of error-valued pointers

or error values stored in pointed-to variables. The latter can occur either when the variable is

assigned through a pointer dereference or when the pointer variable is assigned a different value,

58

1 #define virt_to_page(addr) (mem_map + (((unsigned long)(addr)−PAGE_OFFSET) >> ...))
2
3 void kfree(const void ∗x) { // may be passed an error
4 struct page ∗page;
5 ...
6 page = virt_to_head_page(x); // passing error
7 ... // use page
8 }
9

10 struct page ∗virt_to_head_page(const void ∗x) {
11 struct page ∗page = virt_to_page(x); // macro from line 1
12 return compound_head(page);
13 }

Figure 4.3: Bad pointer arithmetic found in the mm

which may or may not be a valid address value.

In general, bad overwrites are more challenging to identify than bad pointer dereferences and

bad pointer arithmetic. Most error-valued overwrites are safe or harmless, whereas (for example)

error-valued pointer dereferences always represent a serious problem. Also, the consequences of

a bad overwrite may not be noticed immediately: the system may appear to continue running

normally.

We do not attempt to identify or validate recovery code. Rather, we simply look for indications

that the programmer is at least checking for the possibility of an error. If the check is clearly

present, then presumably error handling or recovery follows. As mentioned earlier, an error code

may be safely overwritten after the error code has been handled or checked. Figure 4.4 shows

examples in which it is safe to overwrite error codes that have been checked. In Figure 4.4a, err

may receive one of several error codes on line 4. If this variable contains an error code on line 6,

then we continue to the next iteration of the loop, where the error code is overwritten the next

time line 4 is run. Overwriting an error code with the exact same error code is considered to be

harmless, but the problem here is that different error codes might be returned by successive calls

to function get_error. A similar pattern is illustrated in Figure 4.4b.

In order to find bad overwrites, we identify the program points at which assignments are

made to potentially–error-carrying storage locations. At each such assignment to pointer variable

59

1 int ∗err;
2 ...
3 while(...) {
4 err = get_error();
5
6 if (IS_ERR(err)) {
7 continue;
8 }
9 ...

10 }

(a) Loop

1 int ∗err;
2 ...
3
4 retry:
5 ...
6 err = get_error();
7
8 if (err == ERR_PTR(−EIO))
9 goto retry;

10 ...

(b) Goto

Figure 4.4: Two examples of safe error-overwrite patterns

v at location l, we retrieve the set of values Nl that variable v may contain. If Nl ∩ E , ∅,

then we report the bad overwrite. A generalization of this strategy also allows us to check

indirect assignments across pointers, as in “∗v = . . .”; we give further details on this extension in

Section 4.3.1.

4.3 Error Propagation and Transformation

We require error-propagation information to find the bugs described in Section 4.2. The error-

propagation analysis described in Chapter 2 tracks how integer error codes propagate. However,

the analysis does not support error transformation, which is necessary to find bad pointer

dereferences, bad pointer arithmetic, and bad assignments to pointer variables. For example, it

assumes that error propagation ends if the error is transformed into a pointer. In Figure 4.1a,

even though an error may be assigned on line 4, the analysis does not actually track error flow

into variable xaroot because it is a pointer variable. Similarly, no pointer error value is recognized

as being returned at lines 16 and 22 because the analysis always clears the actual argument to

any calls to function IS_ERR. Thus, no pointer error value is identified as returned by function

open_xa_dir on line 9 in Figure 4.1b.

We extend the error-propagation framework to support error transformation. The following

subsections describe new definitions for some WPDS components. In particular, we modify one of

60

the elements of the bounded idempotent semiring, and replace the original transfer functions with

a new suite of functions that take into consideration pointer variables and error transformation.

4.3.1 Bounded Idempotent Semiring

Our definition of the bounded idempotent semiring S = (D,⊕,⊗, 0̄, 1̄) in Section 2.2.2 remains

unchanged, except for the set D. In Section 2.2.2 we defined D as a set whose elements are drawn

from V ∪ C → 2V∪C , where V is the set of all program variables, and C the set of constants (error

codes, OK and the uninitialized value). The error-propagation analysis described in Chapter 2

does not track errors stored in pointer variables. Even in the special case of integer pointer

parameters, error codes are stored in the integer variable pointed to, not in the pointer variable

itself. Now we need to track errors stored in pointer variables. This uncovers a new requirement:

distinguishing between an error code stored in a pointer variable v and an error stored in ∗v. We

introduce a dereference variable ∗v for each pointer variable v. This allows us to distinguish and

track error codes stored in either “level.”

We replace dereference expressions with the corresponding dereference variables before

performing the error-propagation analysis. Thus, the set V is now redefined as the set of all

program variables and dereference variables. Even though the number of variables can increase

considerably due to dereference variables, this does not represent a problem in practice since we

only keep those variables that are truly relevant to our analysis (see analysis optimizations in

Section 2.5).

4.3.2 Transfer Functions

Transfer functions define the new state of the program as a function of the old state. As discussed

in Section 2.2.1, PDS rules correspond to edges in the interprocedural CFG. Each PDS rule

is associated with a weight or transfer function. Although here we describe weights as being

associated with specific program statements, they are in fact associated with the edges from a

statement to its successors.

61

Ta
bl
e
4.
1:

Tr
an

sf
er

fu
nc

tio
ns

fo
r
as
sig

nm
en
ts

in
co
py

m
od

e

Pa
tt
er
n

W
he

re
Tr

an
sf
er

Fu
nc

tio
n

v
=
e

e
∈
V
∪
C
an

d
v
is

of
ty
pe

in
t

Id
en

t[v
7→
{e
}]

v
=
e

e
∈
V
∪
C
an

d
v
is

of
po

in
te
r
ty
pe

bu
t
e
is

no
t

Id
en

t[v
7→
{e
}]

[∗
v
7→
{O

K
}]

∗v
=
e

∗v
∈
V

an
d
e
∈
V
∪
C

Id
en

t[v
7→
{O

K
}]

[∗
v
7→
{e
}]

v 1
=
v 2

v 1
,v

2
∈
V

an
d
v 1

an
d
v 2

ar
e
of

po
in
te
r
ty
pe

Id
en

t[v
1
7→
{v

2}
][∗
v 1
7→
{∗
v 2
}]

v 1
=

&
v 2

v 1
,v

2
∈
V

an
d
v 1

is
of

po
in
te
r
ty
pe

Id
en

t[v
1
7→
{O

K
}]

[∗
v 1
7→
{v

2}
]

v
=
e 1

op
e 2

e 1
,e

2
∈
V
∪
C
an

d
op

is
a
bi
na

ry
ar
ith

m
et
ic
,b

itw
ise

or
lo
gi
ca
lo

pe
ra
to
r

Id
en

t[v
7→
{O

K
}]

v
=

op
e

e
∈
V
∪
C
an

d
op

is
a
un

ar
y
ar
ith

m
et
ic
,b

itw
ise

,o
r
lo
gi
ca
lo

pe
ra
to
r

Id
en

t[v
7→
{O

K
}]

62

The transfer functions discussed in this section correspond to copy mode (see Section 2.3.1).

All transfer functions share one key assumption: that pointer variables have no aliases inside

a function. This makes our approach to pointers both unsound and incomplete, however it is

simple and gives good results in practice.

Assignments

Table 4.1 shows the transfer functions for assignments. For the purpose of this discussion, we

classify these into three groups. First consider assignments of the form v = e, where e ∈ V ∪ C

and v is of type int. Let Ident be the function that maps each variable and constant to the

set containing itself, which is identical to 1̄. The transfer function for such an assignment is

Ident[v 7→ {e}]. In other words, v must have the value of e after this assignment, while all other

variables retain whatever values they contained before the assignment, including e.

Next consider assignments that involve pointer or dereference variables. In either case, we

need to update mappings at two levels. For example, for assignments of the form ∗v = e, where

∗v is the dereference variable corresponding to pointer variable v and e ∈ V ∪ C, the transfer

function is Ident[v 7→ {OK}][∗v 7→ {e}]. We map the dereference variable to any values e may

contain. At the same time, we assume that the corresponding pointer variable contains a valid

address, i.e., v is mapped to the OK value. The opposite occurs with assignments of the form

v = e, where v is of some pointer type and e ∈ V ∪ C and not a pointer variable. In this case,

variable v is mapped to whatever values e may contain, which must be non-address values. We

assume that the corresponding dereference variable ∗v does not contain an error since v does not

hold a valid address. Transfer functions for pointer-related assignments of the form v1 = v2 and

v1 = &v2 can also be found in Table 4.1.

Lastly, consider assignments of the form v = e1 op e2, where e1, e2 ∈ V ∪ C and op is a

binary arithmetic, bitwise, or logical operator. The program is converted into three-address form,

with no more than one operator on the right side of each assignment. As noted earlier, error

codes should be treated as atomic symbols, not numbers. Thus, we assume that the result of

63

those operations is a non-error value. The transfer function is Ident[v 7→ {OK}], which maps the

receiver variable v to the OK non-error value. The same transfer function applies for assignments

of the form v = op e, where op is a unary arithmetic, bitwise, or logical operator.

Function Calls

We primarily focus on parameter passing and value return for the case of non-void functions.

Note that we transform the interprocedural CFG so that each function has a dummy entry node

just before the first statement. We refer to the edge from the function call to this entry node as

the call-to-enter edge. Each function also has a unique exit node. The edge from this node back

to the call site is referred to as the exit-to-return edge.

Parameter Passing This is modeled as a two-step process: first the caller exports its argu-

ments into global exchange variables, then the callee imports these exchange variables into its

formal parameters. Exchange variables are global variables introduced for the sole purpose of

value passing between callers and callees. There is one exchange variable for each function formal

parameter.

Suppose function F has formal parameters f1, f2, . . . , fn, where some formal parameters may

be of pointer type. Let F (a1, a2, . . . an) be a function call to F with actual parameters ai ∈ V ∪C.

We introduce a global exchange variable F$i for each formal parameter. We also introduce

a global dereference exchange variable F$∗i for each formal parameter of pointer type. The

interprocedural call-to-enter edge is given the transfer function for a group of n simultaneous

assignments F$i = ai, exporting each actual argument into the corresponding global exchange

variable. Rules for assignment transfer functions apply. This means that, in the case of pointer

arguments, we pass in the values of dereference variables when applicable.

The edge from the callee’s entry node to the first actual statement in the callee is given

the transfer function for a group of n simultaneous assignments fi = F$i. Note that since the

transfer functions for assignments are applied, this group additionally includes an assignment of

the form ∗fi = F$∗i for each parameter of pointer type, where ∗fi is a dereference local variable

64

1
2
3
4 void foo(int ∗a) {
5
6
7 ∗a = −5;
8
9 return;

10 }
11
12 int main() {
13 int x = 0;
14
15
16 foo(&x);
17
18
19 x = 6;
20 return 0;
21 }

(a) Original

1 int∗ foo$1;
2 int foo$∗1;
3
4 void foo(int∗ a) {
5 int ∗a;
6 a = foo$1; ∗a = foo$∗1;
7 ∗a = −5;
8 foo$1 = a; foo$∗1 = ∗a;
9 return;

10 }
11
12 int main() {
13 int x = 0;
14
15 foo$1 = OK; foo$∗1 = x;
16 foo(&x);
17 x = foo$∗1;
18
19 x = 6;
20 return 0;
21 }

(b) Transformed

Figure 4.5: Example making parameter and return value passing explicit. Highlighted assignments
emulate transfer functions.

corresponding to pointer formal parameter fi. This step initializes each formal argument with a

value from the corresponding exchange variable. For pointer variables, both the pointer and the

corresponding dereference variable are initialized.

Figure 4.5 shows an example illustrating the idea behind pointer parameter passing. Consider

the code fragment in Figure 4.5a as though it is transformed into the code fragment in Figure 4.5b.

The goal is to make parameter passing explicit. Function foo has one pointer parameter. We

declare the corresponding pointer exchange and dereference exchange variables on lines 1 and 2,

respectively. A dereference variable corresponding to the original pointer parameter is also

declared on line 5. Exchange-variable assignments on lines 6 and 15 emulate the effects of the

corresponding parameter-passing transfer functions.

65

Return Value Passing We also introduce a global return exchange variable F$ret for any

non-void function F . This variable is used to pass the function result value from the callee

to the caller. Thus, for non-void functions, the edges from the callee’s last statements to the

exit node are given the transfer function Ident[F$ret 7→ {e}], where e is the return expression.

The interprocedural exit-to-return edge is given the transfer function Ident[r 7→ {F$ret}], where

r ∈ V is the variable in which the caller stores the result of the call, if any.

In addition, we copy back certain other values upon function return. Many functions take a

pointer to a caller-local variable where (at any of the two levels) an error code, if any, should

be written. In particular, formal dereference variables are copied back into their corresponding

dereference exchange variables. The edges from the callee’s last statements to the exit node

are additionally given the transfer function for a group of at most n simultaneous assignments

F$∗i = ∗fi. Finally, dereference exchange variable values are copied back to any actual variables

at the caller’s side. The interprocedural exit-to-return edge is given the transfer function for

a group of at most n simultaneous assignments ∗ai = F$∗i, where ai is a pointer variable or

ai = F$∗i, where ai is an address-of expression. The idea is illustrated on lines 8 and 17 in

Figure 4.5b.

Error-Transformation Functions

We attribute a special meaning to calls to the function IS_ERR. As mentioned earlier, this

Boolean function is used to test whether a variable contains a pointer error value. Typically, such

calls are part of a conditional expression. Depending on the branch taken, we can deduce what

the outcome is. If the true branch is selected, then we know that the pointer definitely contained

an error value. Conversely, when the false branch is chosen, the pointer cannot possibly contain

an error. Therefore, we map this pointer to OK in the false branch.

Since our analysis supports error-valued pointers, calls to error-transformation functions

ERR_PTR and PTR_ERR are treated as regular function calls, i.e., we apply the transfer functions

for parameter passing and value return as discussed in Section 4.3.2.

66

4.4 Finding and Reporting Bugs

We run the error-propagation and transformation analysis in two different configurations depend-

ing on the bugs to be found. The first configuration operates in copy mode with error-handling

pattern recognition disabled; this finds bad pointer dereferences and bad pointer arithmetic. We

use copy mode because dereferencing (or performing pointer arithmetic using) any copy of a

pointer error value is equally bad. Thus, all copies of an error must be considered. Likewise, we

disable error-handling pattern recognition because even after handling, an error code remains an

invalid address which must not be dereferenced or used in pointer arithmetic.

The second configuration uses transfer mode with error-handling pattern recognition enabled

(we use the error-handling patterns described in Sections 3.2.2 and 3.4). We use this configuration

when finding bad overwrites. It is common for an error instance to be copied into several variables

while only one copy is propagated and the rest can be safely overwritten. In Section 3.4.1 we

found that transfer mode leads to significantly fewer false positives when finding overwritten

integer error codes. We find that this also holds for pointer error values. We enable error-handling

pattern recognition because we are only interested in finding overwrites of unhandled error codes,

thus handled errors must be identified.

We identify program locations and variables of interest as explained in Section 4.2 and use

the analysis results to determine which of those represent error-valued pointer bugs. Each bug

report consists of a sample trace that illustrates how a given error reaches a particular program

location l at which the error is dereferenced, used in pointer arithmetic, or overwritten. We use

WPDS witness sets to construct these sample paths.

Figure 4.6 shows a more detailed version of the VFS bad pointer dereference from Figure 4.2.

The error ENOMEM is first returned by function iget in Figure 4.6a and propagated through

three other functions (cnode_make, fill_super and iput, in that order) across two other files

(shown in Figure 4.6b and Figure 4.6c). The bad dereference occurs on line 1325 of file fs/inode.c

in Figure 4.6c. The sample path produced by our tool is shown in Section 4.4. This path is

automatically filtered to show only program points directly relevant to the propagation of the

67

58
in
od

e
∗
ig
et
(..
.)
{

··
·

67
if
(!
in
od

e)
68

re
tu
rn

ER
R_

PT
R(
−
EN

O
M
EM

);

··
·

81
} ··
·

89
in
t
cn
od

e_
m
ak
e(
in
od

e
∗
∗
in
od

e,
...
)
{

··
·

10
1
∗
in
od

e
=

ig
et
(s
b,

fid
,&

at
tr
);}

10
2

if
(
IS
_E

RR
(∗
in
od

e)
)
{

10
3

pr
in
tk
("
...
")
;

10
4

re
tu
rn

PT
R_

ER
R(
∗
in
od

e)
;

10
5

}

(a
)
Fi
le

fs/
co
da
/c
no

de
.c

14
3
st
at
ic
in
t
fil
l_
su
pe
r(
...
)
{

··
·

19
4

er
ro
r=

cn
od

e_
m
ak
e(
&
ro
ot
,.
..)
;

19
5

if
(e
rro

r|
|!
ro
ot
)
{

19
6

pr
in
tk
("
...

er
ro
r%

d\
n"
,e

rro
r)
;

19
7

go
to

er
ro
r;

19
8

}

··
·

20
7

er
ro
r:

20
8

bd
i_
de
st
ro
y(
&
vc
−
>
bd

i);
20
9

bd
i_
er
r:

21
0

if
(r
oo

t)
21
1

ip
ut
(r
oo

t)
;

··
·

21
6
}

(b
)
Fi
le

fs/
co
da
/i
no

de
.c

13
22

vo
id

ip
ut
(in

od
e
∗
in
od

e)
{

13
23

13
24

if
(in

od
e)

{
13
25

BU
G_

O
N
(in

od
e−

>
i_
st
at
e
=
=

...
);

13
26

13
27

if
(..
.)

13
28

ip
ut
_fi

na
l(i
no

de
);

13
29

}
13
30

}

(c
)
Fi
le

fs/
in
od

e.
c

fs
/c

od
a/

cn
od

e.
c:

68
:

an
un

ch
ec

ke
d

er
ro

r
ma

y
be

re
tu

rn
ed

fs
/c

od
a/

cn
od

e.
c:

10
1:

"*
in

od
e"

re
ce

iv
es

an
er

ro
r

fr
om

fu
nc

ti
on

"i
ge

t"
fs

/c
od

a/
cn

od
e.

c:
10

4:
"*

in
od

e"
ma

y
ha

ve
an

un
ch

ec
ke

d
er

ro
r

fs
/c

od
a/

in
od

e.
c:

19
4:

"r
oo

t"
ma

y
ha

ve
an

un
ch

ec
ke

d
er

ro
r

fs
/c

od
a/

in
od

e.
c:

21
1:

"r
oo

t"
ma

y
ha

ve
an

un
ch

ec
ke

d
er

ro
r

fs
/i

no
de

.c
:1

32
5:

De
re

fe
re

nc
in

g
va

ri
ab

le
in

od
e,

wh
ic

h
ma

y
co

nt
ai

n
er

ro
r

co
de

EN
OM

EM

(d
)
D
ia
gn

os
tic

ou
tp
ut

Fi
gu

re
4.
6:

Ex
am

pl
e
of

di
ag

no
st
ic

ou
tp
ut

68

error. We also provide an unfiltered sample path, not shown here, showing every single step from

the program point at which the error is generated (i.e., the error macro is used) to the program

point at which the problem occurs. We list all other error codes, if any, that may also reach

there.

4.5 Experimental Evaluation

We analyzed 52 file systems (including widely-used implementations such as ext3 and ReiserFS),

the VFS, the mm, and 4 heavily-used device drivers (SCSI, PCI, IDE, ATA) found in the Linux

2.6.35.4 kernel. We analyze each file system and driver separately along with both the VFS and

mm. We have reported all bugs to Linux kernel developers.

4.5.1 Bad Pointer Dereferences

Our tool produces 41 error-valued pointer dereference reports, of which 36 are true bugs. We

report only the first of multiple dereferences of each pointer variable within a function. In other

words, as soon as a variable is dereferenced in a function, any subsequent dereferences made in

this function or its callees are not reported by the tool. Similarly, we do not report duplicate

bugs resulting from analyzing shared code (VFS and mm) multiple times.

Table 4.2 shows the number of error-valued pointer dereferences found per file system, module,

and driver. Note that the location of a bad dereference sometimes differs from the location where

a missing error-check ought to be added. For example, the mm contains a dereference that is only

reported when analyzing the Coda, NTFS, and ReiserFS file systems. We count this as a single

bad dereference located in the mm. So far, Coda developers have confirmed that this potential

error-valued dereference is due to a missing error check in a Coda function. This is likely to be

the case for the other two file systems. On the other hand, most of the other dereferences found

in shared code are reported when analyzing any file-system implementation. This suggests that

the error checks might be needed within the shared code itself.

We classify true dereference bugs into four categories depending on their source:

69

Table 4.2: Error-valued pointer dereferences. File systems, modules, and drivers producing no
diagnostic reports are omitted.

Number of Diagnostic Reports

Location True Bugs False Positives Total

AFFS 4 0 4
Coda 0 1 1
devpts 1 0 1
FAT 0 1 1
HFS+ 1 0 1
mm 15 0 15
NTFS 3 0 3
PCI 1 0 1
ReiserFS 3 0 3
SCSI 1 0 1
VFS 7 3 10

Total 36 5 41

1 struct bnode ∗bnode_split(...) {
2 struct bnode ∗node = ...;
3
4 if (IS_ERR(node))
5 return node;
6 ...
7 if (node−>next) {
8 struct bnode ∗next = bnode_find(..., node−>next);
9 next−>prev = node−>this; // bad dereference

10 ...
11 }
12 }

Figure 4.7: Example of a bad pointer dereference due to a missing error check in the HFS+ file
system

Missing Check

We refer to a missing error check when there is no check at all before dereferencing a potential

error-valued pointer. 17 out of 36 (47%) true dereference bugs are due to a missing check.

Figure 4.7 shows an example found in the HFS+ file system. Function and variable names have

been shortened for simplicity. Function bnode_split calls function bnode_find on line 8, which

is expected to return the next node. However, function bnode_find may also return one of two

70

error codes: EIO or ENOMEM. Because of this, callers of function bnode_find must check the

pointer result value for errors before any dereferences. Instead, function bnode_split dereferences

the result value immediately on line 9, without checking for any errors.

Insufficient Check

We define an insufficient check as any check that does not include a call to function IS_ERR

involving the variable being dereferenced. This is the second-most-common scenario leading to

error-valued pointer dereferences, accounting for 11 out of 36 true bugs (31%). We identify two

variants of insufficient checks. In the first case, the pointer dereference is preceded by a check

for NULL but not for an error code (6 bugs). In the second case, there is an error check, but it

involves an unrelated pointer variable (5 bugs).

Figure 4.8 shows an example of the first variant. The pointer variable p may receive the error

code ENOMEM on line 4. If so, the while loop on line 5 is entered, then exits on line 8 since the

condition on line 7 is true. Pointer p is passed as parameter to function r_stop on line 11, which

checks it for NULL before calling function deactivate_super with variable v as a parameter. Since

v contains an error code, the function deactivate_super is indeed called, which then dereferences

the error-valued pointer on line 21.

Double Error Code

First identified by Gunawi et al. [26], a double-error-code report refers to a situation in which

there are two ways to report an error: by storing an error in a pointer parameter or passing it

through the function return value. Action is often taken upon the function return value, which

may or may not be checked for errors. At the same time, a copy of the error is left in the pointer

argument and dereferenced later. Sometimes this pointer is checked, but only for the NULL

value. We find 5 (14%) true error-valued dereferences due to double error codes. An example

of a double error code can be found in Figure 4.2 (simplified version) or Figure 4.6 (extended

version including diagnostics).

71

1 static int traverse(...) {
2 void ∗p;
3 ...
4 p = m−>op−>start(...); // may receive error
5 while (p) {
6 ...
7 if (IS_ERR(p))
8 break;
9 ...

10 }
11 m−>op−>stop(..., p); // passing error
12 ...
13 }
14
15 static void r_stop(..., void ∗v) {
16 if (v)
17 deactivate_super(v); // passing error
18 }
19
20 void deactivate_super(struct super_block ∗s) {
21 if (!atomic_add_unless(&s−>s_active, ...)) { // bad deref
22 ...
23 }
24 }

Figure 4.8: Example of an insufficient error check in the ReiserFS file system (function r_stop)
leading to a bad pointer dereference in the VFS (function deactivate_super)

Global Variable

This category refers to the case in which an error code is stored in a global pointer variable.

Only 3 error-valued dereferences fall into this group. In the first situation, the global pointer

variable devpts_mnt (declared in the devpts file system) may be assigned one of two error codes:

ENOMEM or ENODEV. This variable is dereferenced in a function eventually called from function

devpts_kill_index, which is an entry-point function to our analysis, i.e., no function within the

analyzed code invokes it. The second and third cases are similar and refer to the VFS global

pointer variable pipe_mnt. This variable may be assigned one of six error codes, including

ENOMEM and EIO. Variable pipe_mnt is dereferenced in a function eventually called from the

system call pipe and also from entry-point function exit_pipe_fs.

72

1 int __break_lease(...) {
2 struct file_lock ∗new_fl;
3 int error = 0;
4 ...
5 new_fl = lease_alloc(...); // may receive error
6 ...
7
8 if (IS_ERR(new_fl) && !i_have_this_lease
9 && ((mode & O_NONBLOCK) == 0)) {

10 error = PTR_ERR(new_fl);
11 goto out;
12 }
13 ...
14
15 if (i_have_this_lease || (mode & O_NONBLOCK)) {
16 error = −EWOULDBLOCK;
17 goto out;
18 }
19 error = wait_event_interrupt(new_fl−>fl_wait, ...);
20 ...
21 out:
22 ...
23 return error;
24 }

Figure 4.9: Example of a false positive found in the VFS

False Positives

Finally, we identified 5 out of 41 reports (12%) to be false positives. Figure 4.9 illustrates an

example. Pointer variable new_fl may receive an error code on line 5. There are two conditionals

on lines 8 and 9 and on line 15. Variable new_fl is checked for errors in the first conditional, but

the call to function IS_ERR is part of a compound conditional statement. Our tool correctly

recognizes that even though there is an error, the whole expression may not evaluate to true.

Nonetheless, the two conditionals are complementary: the conditional statement on line 15

evaluates to true if that on lines 8 and 9 was false, thereby covering all possibilities. The analysis

does not detect this, so the dereference on line 19 is reported. This scenario is found twice.

Other false positives arise when (1) the error check is not exhaustive, but the missing error

codes cannot possibly reach that program point; (2) there is a double error code and one is

checked before dereferencing the other; and (3) a copy of the error is made and checked before

73

Table 4.3: Bad pointer arithmetic

Number of Diagnostic Reports

Location True Bugs False Positives Total

Coda 0 1 1
mm 15 0 15
ReiserFS 1 0 1

Total 16 1 17

dereferencing the original variable. We can easily remove (1) since we have information regarding

what error codes reach a given program point. Similarly, we can remove (3) by running the

analysis in transfer mode. On the other hand, the false positives resulting from (2) and the

example described in Figure 4.9 would require more effort to remove.

4.5.2 Bad Pointer Arithmetic

Table 4.3 shows the results of our analysis of pointer arithmetic applied to pointers whose values

are actually error codes, not addresses. Our tool reports 17 instances of bad pointer arithmetic.

We identify 16 true bugs: 15 from the mm and 1 from the ReiserFS file system. Note that

we only report the first instance in which an error-valued pointer is used to perform pointer

arithmetic. Subsequent bad uses, including bad dereferences, are not reported. Similarly, if the

error-valued pointer is first dereferenced, subsequent uses in pointer arithmetic are not reported.

As with bad pointer dereferences in Section 4.5.1, most of the bad pointer-arithmetic instances

are due to missing checks (75% or 12 out of 16 reports). The remaining bad pointer operations

are surrounded by conditionals, but none of them include checks for errors in the operands. The

majority of the reports involve pointer additions (69% or 11 out of 16 reports), while the rest

involve subtraction. We find no bad increments or decrements.

In all cases but one, the error-valued pointer is assumed to contain a valid address that is

used to calculate another address. The one exception is a calculation involving an error-valued

pointer that determines the function return value. In all situations, the error-valued pointer may

contain the error ENOMEM. There are two cases in which the pointer may additionally contain

74

1 struct buffer_head ∗ext3_getblk(..., int ∗errp) {
2 int err;
3 ...
4 err = ext3_get_blocks_handle(...); // may receive error
5 ...
6 ∗errp = err; // copy error
7
8 if (!err && ...) {
9 ...

10 }
11 return NULL;
12 }
13
14 struct buffer_head ∗ext3_bread(..., int ∗err) {
15 struct buffer_head ∗ bh;
16 bh = ext3_getblk(..., err); // err has an error
17
18 if (!bh)
19 return bh;
20 ... // code leads to overwrites
21 }

Figure 4.10: Double error code in the ext3 file system, leading to 12 overwrite false positives

the EFAULT error code, which (ironically) denotes a bad address.

Most cases, including all those in the mm, are solely triggered by the SCSI driver. An example

is shown in Figure 4.3. Callers of function kfree (line 3) may pass in a pointer variable that

contains the error code ENOMEM, now in variable x. The variable is further passed to function

virt_to_head_page when it is invoked on line 6. Finally, this function uses x to perform some

pointer arithmetic on line 11, without first checking for any errors.

A false positive is found in the Coda file system. Function cnode_make calls a function that

may return an error code and also stores it in a pointer parameter (double error code). If the

return value is any error code but ENOENT, then cnode_make further propagates the error to

its callers. Otherwise, the function proceeds to call a function that uses the pointer parameter to

perform pointer arithmetic. This would lead to bad pointer arithmetic if the pointer parameter

could contain ENOENT; however, we find that this is not the case.

75

4.5.3 Bad Overwrites

Our tool produced 7 reports describing overwrites of error-valued pointer variables. As with

other kinds of bugs, we eliminate duplicated reports that belong to shared code (VFS and mm).

We identified three true bugs located in the mm. In two cases, an error is stored in a global

variable, which is overwritten later without first being checked for errors. In the remaining case,

the error is stored in a static local variable. Three out of the four false positives are found to

be duplicates but located in file-system specific code. This is due to cloned (copied and pasted)

code. We are not able to recognize this automatically, thus we count these as multiple reports.

These overwrites are located in the ext2, System V, and UFS file systems and are due to complex

loop conditions. The other false positive is found in the mm.

The tool reported 31 cases in which errors contained in dereference variables are overwritten,

among which we only identify 1 true bug in the SCSI driver. The remaining false positives are

associated with the ext3 (15 reports), UDF (12 reports), and UFS (2 reports) file systems and the

SCSI (1 report) driver. There is complete overlap between reports belonging to ext3 and UDF

due to cloned code. Double error codes, as discussed in Section 4.5.1, caused most false positives

(87%). Figure 4.10 shows an example. An error returned on line 4 is copied to the formal

parameter ∗errp on line 6. Function ext3_getblk then returns NULL. The caller ext3_bread stores

the returned value in bh, which is further returned on line 19. However, because we are tracking

variable err and not variable bh, the analysis chooses the path that skips the conditional of line 18

and eventually leads to 12 overwrites. The same piece of code is found in file-system–specific

code for both ext3 and UDF, accounting for every false positive in the latter. Note that we find

no overwrites of error-valued dereference variables due to assignments to pointer variables.

We find considerably fewer overwrites than dropped errors due to overwrites of integer error

codes (Section 3.4.1). One difference between integer and pointer error values is that there is

an explicit error check function for the latter (IS_ERR). The existence of such a function may

influence developers into being more aware of error checking, thus contributing to fewer bugs.

Another reason might be that although error-valued pointers are part of many propagation

76

chains, these errors may ultimately end up back in int variables.

4.5.4 False Negatives

We identify three possible sources of false negatives: function pointers, aliasing, and structure

fields. We adopt a technique previously employed by Gunawi et al. [26], which exploits the

fact that function pointers in Linux file systems are used in a fairly restricted manner, allowing

us to identify the set of all possible implementations of a given file-system operation. Calls

across such functions pointers are rewritten as switch statements that choose among possible

implementations nondeterministically. This technique accounts for approximately 80% of function

pointer calls. We treat the remaining calls as Ident. Thus, if any function that propagates errors

is called through one of these unresolved function pointers, then subsequent error-valued pointer

dereferences or other misuses are not detected. Similarly, we do not perform a points-to analysis.

If a pointer variable p is assigned another pointer variable, which later receives an error code,

the analysis cannot determine that p may also contain an error code. Finally, our analysis is not

field sensitive, thus it does not currently track errors stored in structure fields.

4.6 Performance

We used a dual 3.2 GHz Intel Pentium 4 processor workstation with 3 GB RAM to run our

experiments. We analyzed 1,538,082 lines of code, including white space and comments. Counting

reanalysis of the VFS and mm as used by multiple file systems, we processed 8,875,522 lines of

code in total. Table 4.4 shows the size (in thousands of lines of code) for those file systems and

drivers in which bugs are found. The table also includes running time and memory usage for the

two different analysis configurations described in Section 4.4. Overall, we find that the analysis

scales and performs quite well even with the added burden of tracking pointer-typed variables

and their corresponding dereference variables.

Finally, we find that an average of 42% of the variables that hold errors at some point during

execution are pointer variables. This shows that error transformation is not merely an anomaly;

77

Table 4.4: Analysis performance for a subset of file systems and drivers. Sizes include 133 KLOC
of shared VFS and mm code.

Bad Dereferences & Arithmetic Bad Overwrites

File System KLOC Time (min:sec) Memory (GB) Time (min:sec) Memory (GB)

AFFS 137 2:48 0.86 3:17 0.87
Coda 136 2:54 0.83 3:15 0.84
devpts 134 2:36 0.81 3:06 0.82
FAT 140 3:06 0.88 3:21 0.90
HFS+ 143 2:54 0.86 3:31 0.87
NTFS 162 4:12 1.37 4:39 1.39
PCI 191 3:24 1.00 3:55 1.02
ReiserFS 161 4:06 1.36 4:37 1.37
SCSI 703 11:00 2.42 13:04 2.52

Avg FS - 2:54 0.87 3:16 0.89
Avg Drivers - 5:24 1.44 6:18 1.50

it is critical to understanding how error propagation really works.

4.7 Other Linux Versions and Code Bases

We also analyzed the Linux kernel 2.6.38.3, which was released seven months after the version

discussed throughout this section. The results show that 9 bad dereferences reported in Sec-

tion 4.5.1 are no longer present in the newer kernel, but 8 new bad dereferences are introduced.

We find that 6 bad pointer dereferences are fixed by adding the appropriate error checks while

code for the rest has simply been removed. An example of a bad pointer dereference that has

been fixed is that shown in Figure 4.7. Bugs related to bad pointer arithmetic and bad pointer

overwrites remain the same in both versions. This demonstrates that finding and fixing these

kinds of bugs is not a one-time operation. New bugs are introduced as code evolves.

Inspection of several other code bases reveals that FreeBSD, OpenSolaris, and Xen (hypervisor

and guest) also define and use functions that convert error codes between integers and pointers,

including an IS_ERR function to check for errors in pointers. Our tool could be used to analyze

these and other similar code bases.

78

4.8 Summary

In this chapter, we described three kinds of bugs arising from error codes masquerading as

pointer values: bad dereferences, bad pointer arithmetic, and bad overwrites. We showed how to

extend the error-propagation analysis from Chapter 2 to account for error transformation as in

the Linux kernel in order to find these bugs. We applied the analysis to 52 Linux file system

implementations, the VFS, the mm and 4 drivers, finding a total of 56 true bugs. Hiding error

codes in pointers may seem distasteful, but it is by no means uncommon: we find that 42% of the

variables that may contain error codes are pointer variables. Thus, understanding the behavior

of error-valued pointers is an important component to having a more complete understanding of

how errors propagate in large systems such as the Linux kernel.

79

Chapter 5

Error-Code Mismatches

Between Code and Documentation

User applications rely on systems software to run as specified. When run-time errors do occur,

user applications must be notified and respond. Thus, user applications must be aware of possible

problems and be prepared to deal with them. Inaccurate documentation can mislead programmers

and cause software to fail in unexpected ways. Unfortunately, writing and maintaining accurate

code documentation is difficult. This is particularly true for large code bases such as the Linux

kernel.

In this chapter, we consider whether the manual pages that document Linux kernel system

calls match the real source code’s behavior. We are particularly interested in Linux file-system

implementations because of their importance and the large number of implementations available,

which makes the task of maintaining documentation even harder. Our task is to examine the

Linux source code to find the sets of error codes that system calls return and compare these

against the information given in the Linux manual pages to find errors that are returned to user

applications but not documented.

80

5.1 Finding Error Return Values

We find the set of error codes that each function returns, and then focus on the set of file-related

system-call functions. We apply the error-propagation analysis from Chapter 2 to find the set

of possible error codes at function exit points. We run the analysis in transfer mode, with

error-handling recognition disabled. At each return statement r in function f , we retrieve the

associated weight w. Let E be the set of all error constants and R ⊆ C be the set of possible

constant values returned by function f (if any). Then R ∩ E represents the set of error codes

that may be returned when f returns at exit point r. We generate a report that includes source

information, the list of returned error codes and a sample path for each of these error codes.

Sample paths describe how a particular function exit point r was reached in a way that

a certain error code instance was returned. We use WPDS witness-tracing information to

construct these paths. A witness set is a set of paths that justify the weight reported for a

given configuration. We described the use of witness-tracing information for the construction of

error-propagation paths in Section 3.3; we use witnesses here to justify each error code that a

function exit point is claimed to return.

Figure 5.1 shows examples of return-value reports. Function bar returns a constant error

code at line 2. Figure 5.1b shows the report produced for this return point, which consists of a

single line of information, since the error was generated and returned at the same program point.

On the other hand, function foo has two exit points (lines 12 and 13). In the first case, line 12,

foo calls function bar. In the second case, foo returns the value contained in variable retval. The

corresponding reports are shown in Figure 5.1c. We produce three return-value reports instead

of two. This is because retval can possibly contain two error codes (ENOMEM and EPERM), and

we choose to provide a sample path for each. Of course, error propagation in real code is far

more complex. Real sample paths can span thousands of lines of code, even exceeding half a

million lines in one extreme case.

81

5.2 Linux Manual Pages

The manual pages for Linux system calls have a very consistent internal structure. We can

easily identify the section listing possible errors and extract the list of error codes contained

therein. This requires only basic text analysis in the style of Venolia [68] rather than sophisticated

natural-language-processing algorithms as used by Tan et al. [65].

For any given system call, “man -W 2 syscall ” prints the absolute path(s) to the raw

documentation file(s) documenting syscall . This is typically a single GZip-compressed file

named /usr/share/man/man2/syscall.2.gz.

The uncompressed contents of these files are human-readable text marked up using man-

specific macros from the troff typesetting system. Section headers are annotated using “.SH”

with the section documenting error codes always being named “ERRORS.” Thus, “.SH ERRORS”

marks the start of the error-documenting section of each manual page, which continues until the

start of the next section, also annotated using “.SH.”

Within the ERRORS section, each documented error code is named in boldface (annotated

using “.B”) followed by a brief description of the circumstances under which that error occurs.

Error code names always begin with a capital letter E followed by one or more additional capital

letters, as in EPERM or ENOMEM. These never correspond to natural English-language words

within the ERRORS section, so it is both straightforward and highly reliable to iterate through

this section and extract the names of all error codes mentioned therein.

5.3 Experimental Evaluation

We analyzed 52 file-system implementations and the VFS (871 KLOC in total) found in the Linux

2.6.32.4 kernel. We ran the error-propagation analysis to find the set of error codes that each

function may return, along with sample paths that illustrate how specific error instances reach a

given function’s exit points. We compared these error codes against version 2.39 of the Linux

manual pages for each of 42 file-related system calls. We found 1,784 error-code mismatches

82
Ta

bl
e

5.
1:

N
um

be
r
of

fil
e

sy
st
em

s
pe

r
sy
st
em

ca
ll

re
tu
rn
in
g

un
do

cu
m
en
te
d

er
ro
rs
.

a:
E2

BI
G,

b:
EA

CC
ES

,
c:
EA

GA
IN
,
d:
EB

AD
F,

e:
EB

US
Y,

f:E
EB

AD
H
D
R,

g:
EF

AU
LT

,h
:E
BI
G,

i:E
IN
TR

,j
:E
IN
VA

L,
k:
EI
O
,l
:E
IS
D
IR
,m

:E
M
FI
LE

,n
:E
N
LI
N
K
,o

:E
N
FI
LE

,p
:E
N
O
D
EV

,q
:E
N
O
EN

T,
r:E

N
O
M
EM

,s
:E
N
O
SP

C,
t:E

N
O
TD

IR
,u

:E
N
XI
O
,v

:E
PE

RM
,w

:E
RA

N
GE

,x
:E
RO

FS
,y

:E
SP

IP
E,

z:
ES

RC
,a

a:
ET

XT
BS

Y,
ab

:E
XD

EV
.

E
rr
or

C
od

e

Sy
sC

al
l

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

aa
ab

T
ot
al

ac
ce
ss

0
-

0
1

0
0

-
0

1
-

-
0

0
0

0
0

-
-

0
-

1
0

0
-

0
0

-
0

3
ch
di
r

0
-

0
-

0
0

-
0

1
1

-
0

0
0

0
0

-
-

0
-

1
0

0
21

0
0

0
0

24
ch
m
od

1
-

2
-

0
4

-
3

4
11

-
0

1
0

1
2

-
-

5
-

2
-

4
-

0
0

4
1

45
ch
ow

n
1

-
2

-
0

4
-

3
4

11
-

0
1

0
1

2
-

-
5

-
2

-
4

-
0

0
4

1
45

ch
ro
ot

0
-

0
1

0
0

-
0

1
1

-
0

0
0

0
0

-
-

0
-

1
-

0
21

0
0

0
0

25
du

p
0

0
0

-
-

0
0

0
-

0
0

0
-

0
0

0
0

20
0

0
0

0
0

0
0

0
0

0
20

du
p2

0
0

0
-

-
0

0
0

-
1

0
0

-
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

2
fc
hd

ir
0

-
0

-
0

0
-

0
1

0
-

0
0

0
0

0
-

-
0

-
1

0
0

21
0

0
0

0
23

fc
hm

od
1

-
2

-
0

4
-

3
4

10
-

0
1

0
1

2
-

-
5

-
2

-
4

-
0

0
4

1
44

fc
ho

w
n

1
-

2
-

0
4

-
3

4
10

-
0

1
0

1
2

-
-

5
-

2
-

4
-

0
0

4
1

44
fd
at
as
yn

c
0

0
1

-
0

0
0

0
2

22
-

0
0

0
0

1
2

3
0

0
1

0
0

0
0

0
0

0
32

flo
ck

0
0

21
-

0
0

0
0

-
-

21
0

0
0

0
0

21
21

0
0

0
0

0
0

0
0

0
0

84
fs
ta
t

1
-

1
-

0
1

-
0

1
2

21
0

1
0

1
2

-
-

1
-

1
0

1
1

0
0

1
1

37
fs
ta
tf
s

0
-

0
-

0
0

-
0

-
0

-
0

0
0

0
21

-
-

0
-

0
0

0
0

0
0

0
0

21
fs
yn

c
0

0
1

-
0

0
0

0
2

22
-

0
0

0
0

1
2

3
0

0
1

0
0

0
0

0
0

0
32

ft
ru
nc

at
e

1
-

21
-

0
4

-
-

-
-

-
-

1
0

1
2

-
10

5
-

2
-

4
-

0
0

-
1

52
ge
td
en
ts

1
1

2
-

0
1

-
0

1
-

20
0

1
0

1
2

-
12

2
-

1
1

1
1

0
0

1
1

50
io
ct
l

0
10

4
-

2
0

-
21

2
-

21
2

0
0

0
21

5
21

2
2

1
21

0
8

21
1

1
0

16
6

lc
ho

w
n

1
-

2
-

0
4

-
3

4
11

-
0

1
0

1
2

-
-

5
-

2
-

4
-

0
0

4
1

45
lin

k
1

-
3

1
1

-
-

0
3

7
-

0
1

-
1

2
-

-
-

-
2

-
1

-
0

0
1

-
24

ls
ta
t

1
-

1
-

0
1

-
0

2
4

21
0

1
0

1
2

-
-

1
-

2
0

1
21

0
0

1
1

61
m
kd

ir
1

-
3

1
1

-
-

1
3

11
21

0
1

7
1

2
-

-
-

-
2

-
2

-
0

0
2

1
60

m
kn

od
1

-
3

1
1

-
-

1
3

-
21

0
1

1
1

2
-

-
-

-
2

-
2

-
0

0
2

1
43

m
ou

nt
0

-
-

1
-

0
-

0
1

-
21

0
-

0
0

-
-

-
0

-
-

-
0

21
0

0
0

0
44

nf
ss
er
vc
tl

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
re
ad

0
1

-
-

0
0

-
0

-
-

-
-

0
0

0
2

20
21

0
0

0
0

0
0

0
0

0
0

44
re
ad

lin
k

0
-

0
1

0
0

-
0

1
-

-
0

0
0

0
0

-
-

0
-

1
0

0
21

0
0

0
0

24
re
ad

v
0

0
0

20
0

0
0

0
0

-
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
20

re
na

m
e

1
-

3
21

-
21

-
0

3
-

21
-

1
-

1
2

-
-

-
-

2
21

1
-

0
0

1
-

99
rm

di
r

0
-

2
1

-
1

-
0

3
-

21
21

0
0

0
1

-
-

2
-

1
-

0
-

0
0

0
0

53
se
le
ct

0
0

0
-

0
0

1
0

-
-

0
0

0
0

0
0

0
-

0
0

0
0

0
0

0
0

0
0

1
st
at

1
-

1
-

0
1

-
0

2
4

21
0

1
0

1
2

-
-

1
-

2
0

1
21

0
0

1
1

61
st
at
fs

0
-

0
-

0
0

-
0

-
1

-
0

0
0

0
21

-
-

0
-

1
0

0
21

0
0

0
0

44
sy
m
lin

k
0

-
3

1
1

-
-

1
3

8
-

0
0

1
0

1
-

-
-

-
1

-
0

-
0

0
1

0
21

tr
un

ca
te

1
-

21
-

0
4

-
-

-
-

-
-

1
0

1
2

-
23

5
-

2
-

4
-

0
0

-
1

65
um

ou
nt

0
-

-
1

-
0

-
0

1
-

21
0

-
0

0
-

-
-

0
-

-
-

0
21

0
0

0
0

44
un

lin
k

1
-

2
2

21
2

-
0

3
5

-
-

1
0

1
2

-
-

3
-

2
-

1
-

0
0

2
1

49
us
el
ib

0
-

0
0

0
0

21
0

0
21

0
0

0
0

-
0

0
21

0
0

0
0

0
0

0
0

0
0

63
us
ta
t

0
0

0
0

0
0

-
0

1
-

2
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

5
ut
im

e
1

-
2

2
0

4
1

3
4

12
21

0
1

0
1

2
-

26
5

21
2

-
4

-
0

0
4

1
11
7

w
ri
te

0
1

-
-

0
0

-
-

-
-

-
0

0
0

0
2

20
2

-
0

0
0

0
0

0
1

0
0

26
w
ri
te
v

0
0

0
20

0
0

0
0

0
-

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

20

T
ot
al

17
13

10
5

75
27

60
24

42
65

17
6

27
4

23
17

9
17

10
6

70
18
5

52
23

43
43

43
19
9

21
2

38
15

1,
78
4

83

1 int bar() {
2 return −EIO;
3 }
4
5 int foo() {
6 int retval;
7 if (...)
8 retval = −ENOMEM;
9 else if (...)

10 retval = −EPERM;
11 else
12 return bar();
13 return retval;
14 }

(a) Example code

ex.c:2: EIO* returned from function bar

(b) Report for function bar

ex.c:2: error code EIO is returned
ex.c:12: EIO* returned from function foo

ex.c:8: "retval" receives an error from ENOMEM
ex.c:13: ENOMEM* EPERM returned from function foo

ex.c:10: "retval" receives an error from EPERM
ex.c:13: ENOMEM EPERM* returned from function foo

(c) Reports for function foo

Figure 5.1: Example code fragment and corresponding reports

84

among all file systems and system calls. The following sections describe these results in more

detail.

5.3.1 Undocumented Error Codes

Comparing our code analysis with our documentation analysis reveals two kinds of mismatches:

documented error codes not returned by any file system, and error codes returned by some

file system but not mentioned in the documentation. The first case, of unused error codes, is

disturbing but likely benign. We focus here on the second case, of undocumented error codes, as

these can be truly disruptive.

Table 5.1 summarizes our results. The table shows the number of file systems that may return

a given undocumented error code (columns) for each analyzed system call (rows). For example,

we find that 21 file systems may return the undocumented EIO error (column k) for the system

call mkdir. Note that table entries marked with a hyphen represent documented error codes for

the respective system calls. For instance, the error code EACCES or permission denied (column b)

is documented for the system call chdir. When many file systems return the same undocumented

error for a given system call, this hints that the documentation may be incomplete. On the other

hand, if only a few file systems return a given undocumented error code, that suggests that the

documentation may be correct but the file systems are using inappropriate error codes. In either

case, mismatches are signs of trouble.

The results shown in Table 5.1 can also be used to confirm that certain undocumented errors

are indeed never returned by any file-system implementation (their count is zero). Additionally,

we can retrieve the list of undocumented errors per system call.

Note that we analyze each file-system implementation separately along with the VFS. This

leads to duplication of VFS-related reports when aggregating the results across all file systems.

Unfortunately, it is not easy to determine whether a report should be attributed to the VFS. We

adopt a heuristic that classifies bug reports based on the sample traces. A report is marked as

file-system specific if the corresponding sample trace mentions that given file system, otherwise

85

Table 5.2: Distribution of bug reports

File System FS Specific VFS Total

CIFS 131 19 150
ext3 48 73 121
IBM JFS 44 74 118
ReiserFS 87 21 108
XFS 55 23 78

Table 5.3: File systems with the most undocumented error codes

File System Total Unique Top Error Top

SMB 255 26 ENODEV 20
CIFS 131 18 ENODEV 26
Coda 113 20 ENXIO 26
ReiserFS 87 17 EIO 13
ext2 87 20 EIO 13

the report is attributed to VFS. Table 5.1 shows the results after removing duplicates: 1,784

undocumented error-code instances are unexpectedly returned across the 52 file systems and

the VFS. 1. Table 5.2 shows detailed bug-report classification results for a subset of file systems:

CIFS, ext3, IBM JFS, ReiserFS and XFS. Bug reports have been sent to the corresponding

developers for further inspection.

If no duplicate-removal heuristic is used, 4,565 undocumented error-code instances are found.

A more aggressive heuristic could mark reports as file-system specific only if the undocumented

error originates in file-system code (based on sample traces). This leaves 699 instances after

duplicate removal. Note that any heuristic based on sample traces will not be complete as only

one sample trace is considered for each report.

It is sobering to observe that every single system call analyzed exhibits numerous mismatches;

none of the 42 system calls emerges trouble-free. Likewise, not a single file system completely

operates within the confines of the documented error codes for all implemented system calls.

Table 5.3 shows the top five file systems that return the most undocumented error instances.
1The VFS is treated as a separate entity after bug-report classification. Thus, the maximum possible count in

each cell of Table 5.1 is 53.

86

Table 5.4: Undocumented error codes most commonly returned

Error Code Total File Systems System Calls

EIO 274 21 14
EROFS 199 21 12
ENOMEM 185 26 14
EINVAL 176 22 21
ENODEV 106 21 27

SMB is at the top of the list with a total of 255 instances, from which we find 26 different

undocumented error codes. For SMB, the error code with the most instances (20) is ENODEV

(no such device). Table 5.4 shows the top five undocumented error codes with the most instances

across all file systems. EIO (I/O error) tops the list with 274 instances, accounting for 15% of all

undocumented errors reported in Table 5.1.

Table 5.5 presents more detailed results for our subset of file systems, plus the shared VFS

layer. We list the undocumented errors for each system call under consideration. A file system

returns a given undocumented error code if the corresponding bullet is filled (�). For some

system calls such as utime, all file systems return the same undocumented error ENOMEM (among

others). As discussed earlier, this hints that the documentation may be incomplete as these

file systems are among the most popular and widely used. On the other hand, blame is harder

to assign for other system calls such as mknod. For fdatasync, we posit mistakes on both sides:

EINVAL may be incorrectly omitted from the documentation, and CIFS may be returning a

variety of inappropriate error codes.

It is also possible that implementation and documentation are both correct, but that our

analysis claims an error code can be returned when it actually cannot. The effect of such false

positives can be multiplied if a single analysis-fooling code construct is copied and pasted into

many file systems. The sample paths presented for each error code may help programmers

recognize if this is happening; further study of this possibility is left for future work and pending

feedback from developers.

87

Table 5.5: Undocumented error codes returned per system call. Bullets mark undocumented
error codes returned (�) or not returned (�) by CIFS (c), ext3 (e), IBM JFS (j), ReiserFS (r),
XFS (x), and VFS (v).

File System

Call Error c e j r x v

access EBADF � � � � � �

chdir EROFS � � � � � �

chmod

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

chown

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

chroot EBADF � � � � � �
EROFS � � � � � �

dup ENOMEM � � � � � �

dup2 ENOMEM � � � � � �
EINVAL � � � � � �

fchdir EROFS � � � � � �

fchmod

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

fchown

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

File System

Call Error c e j r x v

fdatasync

ENOMEM � � � � � �
EAGAIN � � � � � �
ENODEV � � � � � �
ENOENT � � � � � �
EINVAL � � � � � �

flock

EAGAIN � � � � � �
ENOENT � � � � � �
EIO � � � � � �
ENOMEM � � � � � �

fstat

EAGAIN � � � � � �
ENODEV � � � � � �
EIO � � � � � �
EINVAL � � � � � �

fstatfs ENODEV � � � � � �

fsync

ENOMEM � � � � � �
EAGAIN � � � � � �
ENODEV � � � � � �
ENOENT � � � � � �
EINVAL � � � � � �

ftruncate

ERANGE � � � � � �
ENOMEM � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
ENODEV � � � � � �

getdents

EAGAIN � � � � � �
ENOSPC � � � � � �
ENOMEM � � � � � �
EIO � � � � � �
ENODEV � � � � � �

ioctl

EISDIR � � � � � �
EFBIG � � � � � �
EPERM � � � � � �
ENOTDIR � � � � � �
ESRC � � � � � �
ENOMEM � � � � � �
EACCES � � � � � �
EBUSY � � � � � �
ENOENT � � � � � �
EAGAIN � � � � � �

File System

Call Error c e j r x v

ioctl

ENOSPC � � � � � �
EROFS � � � � � �
ESPIPE � � � � � �
EIO � � � � � �
ENODEV � � � � � �

lchown

EFBIG � � � � � �
ERANGE � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
EINVAL � � � � � �
ETXTBSY � � � � � �
ENODEV � � � � � �

link

ENODEV � � � � � �
EAGAIN � � � � � �
EBUSY � � � � � �
EINVAL � � � � � �
EBADF � � � � � �

lstat

EAGAIN � � � � � �
ENODEV � � � � � �
EROFS � � � � � �
EIO � � � � � �
EINVAL � � � � � �

mkdir

EBADF � � � � � �
EFBIG � � � � � �
ERANGE � � � � � �
EMLINK � � � � � �
EBUSY � � � � � �
ETXTBSY � � � � � �
EAGAIN � � � � � �
ENODEV � � � � � �
EIO � � � � � �
EINVAL � � � � � �

mknod

EBADF � � � � � �
EFBIG � � � � � �
ERANGE � � � � � �
EMLINK � � � � � �
EBUSY � � � � � �
ETXTBSY � � � � � �
EAGAIN � � � � � �
EIO � � � � � �
ENODEV � � � � � �

88

Table 5.5: Undocumented error codes returned per system call. Bullets mark undocumented
error codes returned (�) or not returned (�) by CIFS (c), ext3 (e), IBM JFS (j), ReiserFS (r),
XFS (x), and VFS (v). (continued)

File System

Call Error c e j r x v

mount
EBADF � � � � � �
EROFS � � � � � �
EIO � � � � � �

nfsservctl EFAULT � � � � � �
EINVAL � � � � � �

read
ENOMEM � � � � � �
ENOENT � � � � � �
ENODEV � � � � � �

readlink EBADF � � � � � �
EROFS � � � � � �

readv EBADF � � � � � �

rename

EBADF � � � � � �
EPERM � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
EIO � � � � � �
ENODEV � � � � � �

rmdir

EISDIR � � � � � �
EBADF � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
EIO � � � � � �
ENODEV � � � � � �

select EFAULT � � � � � �

File System

Call Error c e j r x v

stat

EAGAIN � � � � � �
ENODEV � � � � � �
EROFS � � � � � �
EIO � � � � � �
EINVAL � � � � � �

statfs EROFS � � � � � �
ENODEV � � � � � �

symlink

EBADF � � � � � �
EFBIG � � � � � �
EMLINK � � � � � �
EBUSY � � � � � �
EAGAIN � � � � � �
ENODEV � � � � � �
ETXTBSY � � � � � �
EINVAL � � � � � �

truncate

ERANGE � � � � � �
ENOMEM � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
ENODEV � � � � � �

umount
EBADF � � � � � �
EROFS � � � � � �
EIO � � � � � �

unlink EBADF � � � � � �
ETXTBSY � � � � � �

File System

Call Error c e j r x v

unlink

EBUSY � � � � � �
EEXIST � � � � � �
EAGAIN � � � � � �
EINVAL � � � � � �
ENODEV � � � � � �

uselib
ENOMEM � � � � � �
EFAULT � � � � � �
EINVAL � � � � � �

ustat ENODEV � � � � � �

utime

EBADF � � � � � �
EFBIG � � � � � �
EFAULT � � � � � �
ENOTDIR � � � � � �
ENOMEM � � � � � �
EEXIST � � � � � �
ETXTBSY � � � � � �
EAGAIN � � � � � �
ENOSPC � � � � � �
ENODEV � � � � � �
ERANGE � � � � � �
EIO � � � � � �
EINVAL � � � � � �

write
ENOMEM � � � � � �
ENOENT � � � � � �
ENODEV � � � � � �

writev EBADF � � � � � �

Table 5.6: Analysis performance for a subset of file systems. KLOC gives the size of each file
system in thousands of lines of code, including 59 KLOC of shared VFS code.

File System KLOC Time (min:sec) Memory (MB)

CIFS 90 3:01 246
ext3 82 2:24 267
IBM JFS 91 2:30 287
ReiserFS 86 2:36 309
XFS 159 4:05 491

89

5.3.2 Performance

We performed our experiments on a dual 3.2 GHz Intel processor workstation with 3 GB RAM.

Table 5.6 shows the sizes of file systems (in thousands of lines of code) and the time and memory

required to analyze each. We restricted our focus to the five popular file systems presented in

detail in Table 5.5. We give the total running time, which includes (1) extracting a textual

WPDS representation, (2) solving the poststar query, and (3) traversing witnesses to produce

the sample paths. For the file systems under consideration, the total running time ranges from 2

minutes 24 seconds for ext3 to just over 4 minutes for XFS. The analysis consumes between 246

MB and 291 MB of memory for CIFS and XFS, respectively.

5.4 Summary

In this chapter, we used the error-propagation analysis from Chapter 2 to find the set of error

codes returned by each function in a program. We analyzed 52 Linux file systems, including CIFS,

ext3, IBM JFS, ReiserFS and XFS. After retrieving the results for 42 file-related system calls,

we compared against the Linux manual pages, finding 1,784 undocumented error instances across

all file systems. Sometimes undocumented errors may be attributed to particular file-system

implementations (e.g., only a handful of implementations return the error code). Other times,

the mismatch may be attributed to the documentation (e.g., most file systems return the error

code).

90

Chapter 6

Error-Propagation Bugs in

User Applications

The purpose of this chapter is to show that (1) error handling is also important for user

applications, (2) the error-propagation bugs described in this dissertation are not exclusive to

Linux file systems and drivers, and (3) error-propagation bugs can also be found in widely-used

C++ applications that use the return-code idiom. We apply the error-propagation analysis to

find dropped errors (Chapter 3) in two widely-used user applications: Mozilla Firefox and SQLite.

The following sections describe the results.

6.1 Case Study: Mozilla Firefox

Our first case study is the Mozilla Firefox web browser. Firefox is written in C++, however it

uses the return-code idiom. Figure 6.1 shows a subset of macros that define error codes used in

Firefox. For example, the macro NS_ERROR_UNEXPECTED defines the error that is used when

an unexpected error occurs. Error codes have type nsresult, which is a typedef for unsigned long.

We consider 49 different error codes. Firefox also defines several heavily-used macros that log

errors. Figure 6.2 shows two examples. NS_ENSURE_TRUE takes a parameter x and an error

code ret. If x is NULL, then a warning is printed, and the error code is returned.

91

#def ine NS_ERROR_BASE ((n s r e s u l t) 0xC1F30000)

/∗ Returned when an i n s t a n c e i s not i n i t i a l i z e d ∗/
#def ine NS_ERROR_NOT_INITIALIZED (NS_ERROR_BASE + 1)

/∗ Returned when an i n s t a n c e i s a l r e a d y i n i t i a l i z e d ∗/
#def ine NS_ERROR_ALREADY_INITIALIZED (NS_ERROR_BASE + 2)

/∗ Returned by a not implemented f u n c t i o n ∗/
#def ine NS_ERROR_NOT_IMPLEMENTED ((n s r e s u l t) 0 x80004001L)

/∗ Returned when a g i v e n i n t e r f a c e i s not suppo r t ed . ∗/
#def ine NS_NOINTERFACE ((n s r e s u l t) 0 x80004002L)
#def ine NS_ERROR_NO_INTERFACE NS_NOINTERFACE

#def ine NS_ERROR_INVALID_POINTER ((n s r e s u l t) 0 x80004003L)
#def ine NS_ERROR_NULL_POINTER NS_ERROR_INVALID_POINTER

/∗ Returned when a f u n c t i o n a b o r t s ∗/
#def ine NS_ERROR_ABORT ((n s r e s u l t) 0 x80004004L)

/∗ Returned when a f u n c t i o n f a i l s ∗/
#def ine NS_ERROR_FAILURE ((n s r e s u l t) 0 x80004005L)

/∗ Returned when an unexpected e r r o r o c c u r s ∗/
#def ine NS_ERROR_UNEXPECTED ((n s r e s u l t) 0 x 8 0 0 0 f f f f L)

/∗ Returned when a memory a l l o c a t i o n f a i l s ∗/
#def ine NS_ERROR_OUT_OF_MEMORY ((n s r e s u l t) 0 x8007000eL)

/∗ Returned when an i l l e g a l v a l u e i s pas sed ∗/
#def ine NS_ERROR_ILLEGAL_VALUE ((n s r e s u l t) 0 x80070057L)
#def ine NS_ERROR_INVALID_ARG NS_ERROR_ILLEGAL_VALUE

/∗ Returned when a c l a s s doesn ’ t a l l o w a g g r e g a t i o n ∗/
#def ine NS_ERROR_NO_AGGREGATION ((n s r e s u l t) 0 x80040110L)

Figure 6.1: Subset of macros defining errors in Firefox

#def ine NS_ENSURE_TRUE(x , r e t) \
PR_BEGIN_MACRO \

i f (NS_UNLIKELY (! (x))) { \
NS_WARNING("NS_ENSURE_TRUE(" #x ") f a i l e d ") ; \
re tu rn r e t ; \

} \
PR_END_MACRO

#def ine NS_ENSURE_STATE(s t a t e) \
NS_ENSURE_TRUE(s t a t e , NS_ERROR_UNEXPECTED)

Figure 6.2: Two examples of macros that use log errors

92

We ran the analysis from Chapter 3 to find dropped errors in Mozilla Firefox version mozilla-

central 155f67c2c578 (the current trunk at the time of running the analysis). This version is

in-between the official releases 13.0.1 and 14.0.1 (the most recent official release at the time of

writing this dissertation). Our tool found a total of 1,388 dropped errors. We have manually

inspected 1,029 bug reports (74%). The results are summarized in Table 6.1. We divide the

reports into three groups: true bugs, harmless dropped errors, and false positives. The following

sections describe each category in more detail.

6.1.1 True Bugs

We define true bugs as dropped errors that (1) are completely ignored, or (2) are logged, but

error-logging is not sufficient. We classify 486 out of 1,029 inspected dropped errors as true bugs.

This accounts for 47% of the total number of inspected bug reports. We identified a subset of

261 unique true-bug instances, and have reported them to Mozilla developers. The rest of the

reports will be submitted as soon as we receive feedback on the initial set of bug reports.

True bugs are located in 23 out of 26 Firefox components (listed in Table 6.1). The components

with the most true bugs are editor (88 reports), netwerk (67 reports), and content (59 reports).

We find that the number of bugs per component is not proportional to the component’s size.

The most bug-dense component is embedding, while the js component is the least bug-dense.

51% of the dropped errors are not even logged. The remaining 49% are logged. Most

of these errors are logged right before they are generated. For example, developers make

heavy use of error-generator macros such as NS_ENSURE_TRUE, NS_ENSURE_STATE, and

NS_ENSURE_ARG.

We find that 63% of the functions that ignore callees’ error return values have return types

nsresult or NS_IMETHODIMP (which is defined as nsresult). As mentioned earlier in this chapter,

nsresult is the type of error codes. Thus, these functions could continue to propagate these

ignored errors without requiring changes to any function signatures in the application. Many

of these functions propagate errors in other scenarios. Others return NS_OK (an nsresult value

93
Ta

bl
e
6.
1:

In
sp
ec
te
d
dr
op

pe
d
er
ro
rs

in
M
oz
ill
a
Fi
re
fo
x.

R
es
ul
ts

ar
e
sh
ow

n
pe

r
co
m
po

ne
nt
,a

nd
di
vi
de
d
in
to

tr
ue

bu
gs
,h

ar
m
le
ss

dr
op

pe
d
er
ro
rs

(H
1:

dr
op

pe
d
in

th
e
pr
oc
es
so

fs
hu

tt
in
g
do

w
n,

H
2:

dr
op

pe
d
in

th
e
pr
oc
es
so

fr
el
ea
sin

g
re
so
ur
ce
s,
H
3:

do
cu
m
en
te
d

by
de

ve
lo
pe

r
to

be
ig
no

re
d,

an
d
H
4:

lo
gg

ed
),
an

d
fa
lse

po
sit

iv
es

(F
P
1:

do
ub

le
er
ro
r
co
de

,F
P
2:

m
et

pr
ec
on

di
tio

n,
an

d
FP

3:
im

pr
ec
isi
on

in
ou

r
to
ol
).

H
ar
m
le
ss

D
ro
pp

ed
Er

ro
rs

Fa
lse

Po
sit

iv
es

C
om

po
ne
nt

K
LO

C
Tr

ue
B
ug

s
H
1

H
2

H
3

H
4

To
ta
l

FP
1

FP
2

FP
3

To
ta
l

G
ra
nd

To
ta
l

ac
ce
ss
ib
le

62
1

1
0

0
40

41
1

1
0

2
44

ca
ps

7
5

0
0

0
6

6
0

4
0

4
15

ch
rm

e
3

0
0

0
0

0
0

0
0

0
0

0
co
nt
en
t

38
0

59
3

8
6

47
64

16
1

2
19

14
2

do
cs
he
ll

20
5

0
0

1
2

3
7

0
3

10
18

do
m

18
7

88
9

0
0

23
32

37
1

2
40

16
0

ed
ito

r
71

31
0

2
0

20
22

4
1

2
7

60
em

be
dd

in
g

22
36

0
0

0
7

7
5

0
0

5
48

ex
te
ns
io
ns

40
11

0
0

0
2

2
0

1
0

1
14

gf
x

57
8

12
0

0
0

2
2

1
0

1
2

16
in
tl

49
3

0
0

0
0

0
0

0
0

0
3

js
34
2

2
0

0
0

14
14

2
0

1
3

19
la
yo
ut

35
8

25
0

0
1

40
41

5
13

0
18

84
m
od

ul
es

71
7

0
2

1
5

8
8

0
2

10
25

ne
tw

er
k

13
9

67
10

1
7

14
32

0
1

16
17

11
6

pa
rs
er

59
14

0
0

1
1

2
0

0
2

2
18

pr
ofi

le
1

0
0

0
0

0
0

0
0

0
0

0
rd
f

15
14

0
0

0
2

2
0

0
0

0
16

se
cu
rit

y
14
1

16
1

0
2

1
4

1
0

1
2

22
st
ar
tu
pc

ac
he

2
1

0
0

0
1

1
0

0
0

0
2

st
or
ag
e

15
6

0
0

0
6

6
1

0
0

1
13

to
ol
ki
t

13
4

58
2

2
7

19
30

1
3

3
7

95
vi
ew

4
0

0
0

0
0

0
0

0
0

0
0

w
id
ge
t

16
5

10
0

0
1

47
48

1
0

0
1

59
xp

co
m

12
6

14
3

0
5

6
14

6
4

1
11

38
xp

fe
9

1
0

0
0

0
0

0
0

0
0

1

G
ra
nd

To
ta
l

30
00

48
6

29
15

32
30
5

38
1

96
30

36
16
2

10
29

94

representing a non-error) no matter what the outcome is. We also find that 24% of the functions

whose error return values are ignored are used in an inconsistent manner: some callers save the

error while others ignore it. Engler et al. [17] have shown that inconsistencies are often bug

indicators.

Preliminary feedback from developers on a small subset of bug reports suggests that dropping

the error NS_ERROR_OUT_OF_MEMORY is not critical: there is really nothing left to do if the

application runs out of memory. We find that 86 out of 486 true-bug reports (17%) correspond to

NS_ERROR_OUT_OF_MEMORY dropped errors only. The top three dropped error codes are

NS_ERROR_FAILURE, NS_ERROR_UNEXPECTED, and NS_ERROR_INVALID_POINTER.

So far, developers have identified two potential security-related bugs among our reports in

the dom and xpcom components. One of the problems has been fixed. The original code

is shown in Figure 6.3a. Function DashArrayToJSVal may return one of two error codes:

NS_ERROR_OUT_OF_MEMORY or NS_ERROR_FAILURE. The error is dropped on line 3

while failing to store it in the parameter error (this component declares a class ErrorResult with

a data member to store the error code). Ignoring the error could cause mozDash to remain

uninitialized, which could lead to a potential security vulnerability. Figure 6.3b shows the code

after developers fixed the bug. The error is simply stored in the parameter error. Note that,

although the fix was trivial, developers actively discussed this bug for more than a week, and a

first patch that proposed a different fix was rejected. Meanwhile, we were asked to keep this

in strict confidence. The fix of the second security bug is in progress and has been classified as

security-moderate.

Another example of a true bug is shown in Figure 6.4. An ignored error could cause persistent

information about the cache to be lost silently. Function Close in Figure 6.4a may return one of

two error codes: NS_ERROR_UNEXPECTED or NS_ERROR_NOT_INITIALIZED. FlushHeader

may return either error when called on line 12. The constant NS_ERROR_UNEXPECTED can

also be assigned to variable rv on line 16, which is returned on line 21. Function Shutdown_Private

in Figure 6.4b ignores both errors when calling Close on line 11. Note that Shutdown_Private’s

95

1 JS::Value nsCanvasRenderingContext2DAzure::GetMozDash(JSContext∗ cx, ErrorResult& error) {
2 JS::Value mozDash;
3 DashArrayToJSVal(CurrentState().dash, cx, &mozDash);
4 return mozDash;
5 }

(a) Dropped error introduces potential security vulnerability

1 JS::Value nsCanvasRenderingContext2DAzure::GetMozDash(JSContext∗ cx, ErrorResult& error) {
2 JS::Value mozDash;
3 error = DashArrayToJSVal(CurrentState().dash, cx, &mozDash);
4 return mozDash;
5 }

(b) Code after bug fix

Figure 6.3: An example of a potential security bug in Firefox due to a dropped error

return type is nsresult, thus these errors could be further propagated by the function. Instead,

Shutdown_Private always returns NS_OK. The most troublesome part is that the errors are not

even logged.

6.1.2 Harmless Dropped Errors

We classify dropped errors as harmless if (1) developers have documented the fact that it is OK

to drop them, (2) the application is already shutting down, (3) the application is at the end

of the process of releasing resources, and (4) emitting a warning is sufficient. We identify 381

harmless dropped errors, which accounts for 37% of the total number of inspected bug reports.

Figure 6.5 shows an example in which, according to developers’ comments in the code, it

is OK to drop errors. Function Check may return errors when called on line 13; however, the

comment says that errors returned by Check are ignored in this case as it is preferable to return

incomplete results rather than failing altogether. Unfortunately, only 32 out of 381 harmless

dropped errors are documented. Ideally, all harmless dropped errors should be documented by

developers.

Figure 6.6 shows an example of errors dropped in the process of shutting down the application.

Function Shutdown may return error NS_ERROR_UNEXPECTED when called on line 11. In this

96

1 nsresult nsDiskCacheMap::Close(bool flush) {
2 nsresult rv = NS_OK;
3
4 if (mMapFD) {
5 // close block files
6 rv = CloseBlockFiles(flush);
7 if (NS_SUCCEEDED(rv) && ...) {
8 // write the map records
9 rv = FlushRecords(false);

10 if (NS_SUCCEEDED(rv)) {
11 mHeader.mIsDirty = false;
12 rv = FlushHeader();
13 }
14 }
15 if (... && (NS_SUCCEEDED(rv)))
16 rv = NS_ERROR_UNEXPECTED;
17
18 mMapFD = nsnull;
19 }
20 ...
21 return rv;
22 }

(a) Close may return error codes

1 nsresult nsDiskCacheDevice::Shutdown_Private(bool flush) {
2 CACHE_LOG_DEBUG(("CACHE: disk ... [%u]\n", flush));
3
4 if (Initialized()) {
5 // check cache limits in case we need to evict.
6 EvictDiskCacheEntries(mCacheCapacity);
7
8 (void) nsCacheService::SyncWithCacheIOThread();
9

10 // write out persistent information about the cache.
11 (void) mCacheMap.Close(flush);
12
13 mBindery.Reset();
14 mInitialized = false;
15 }
16 return NS_OK;
17 }

(b) Shutdown_Private ignores errors returned by Close and always returns NS_OK

Figure 6.4: An example of a dropped error in Firefox

97

1 nsresult nsUrlClassifierDBServiceWorker::DoLookup(const nsACString& spec,
2 nsIUrlClassifierLookupCallback∗ c) {
3 ...
4 nsAutoPtr<nsTArray<nsUrlClassifierLookupResult> > results;
5 results = new nsTArray<nsUrlClassifierLookupResult>();
6 if (!results) {
7 c−>LookupComplete(nsnull);
8 return NS_ERROR_OUT_OF_MEMORY;
9 }

10
11 // we ignore failures from Check because we’d rather return the
12 // results that were found than fail.
13 Check(spec, ∗results);
14 ...
15 return NS_OK;
16 }

Figure 6.5: An example in which developers document that errors can be dropped

1 void Navigator::Invalidate() {
2 mWindow = nsnull;
3
4 if (mPlugins) {
5 mPlugins−>Invalidate();
6 mPlugins = nsnull;
7 }
8 ...
9

10 if (mPowerManager) {
11 mPowerManager−>Shutdown();
12 mPowerManager = nsnull;
13 }
14
15 ...
16 }

Figure 6.6: Example of a dropped error when shutting down

case, the error is logged. Note that the caller has void return type. 29 out of 381 reports fall into

this category. There are 14 errors dropped while releasing resources. An example is shown in

Figure 6.7. Function Destroy may return the NS_ERROR_OUT_OF_MEMORY error on line 8

in Figure 6.7a. This error is dropped on line 4 in Figure 6.7b. Note that the error is logged, and

the caller has void return type.

Finally, the remaining reports (305 out of 381) fall into the general category in which,

98

1 NS_IMETHODIMP nsFrameLoader::Destroy() {
2
3 // most removal done, 50 lines of code
4
5 if ((mNeedsAsyncDestroy || !doc ||
6 NS_FAILED(doc−>FinalizeFrameLoader(this))) && mDocShell) {
7 nsCOMPtr<nsIRunnable> event = new nsAsyncDocShellDestroyer(mDocShell);
8 NS_ENSURE_TRUE(event, NS_ERROR_OUT_OF_MEMORY);
9 NS_DispatchToCurrentThread(event);

10
11 // Let go of our docshell now that the async destroyer holds on to the docshell
12 mDocShell = nsnull;
13 }
14
15 return NS_OK;
16 }

(a) Function Destroy may return an error

1 void nsObjectLoadingContent::RemovedFromDocument() {
2 if (mFrameLoader) {
3 // XXX This is very temporary and must go away
4 mFrameLoader−>Destroy();
5 mFrameLoader = nsnull;
6
7 // Clear the current URI
8 mURI = nsnull;
9 }

10 ...
11 }

(b) Function RemovedFromDocument ignores an error returned by function Destroy

Figure 6.7: An example of an error dropped during the release of resources

regardless the context, an error warning is sufficient. An example is illustrated in Figure 6.8.

Function TakeFocus calls function SetFocus on line 8 in Figure 6.8b. Function SetFocus uses

the macro NS_ENSURE_ARG on line 5 in Figure 6.8a. This macro ensures that newFocus is

not NULL. If it is NULL, then an error warning is emitted and the function returns the error

NS_ERROR_INVALID_ARG. Function TakeFocus ignores this error and returns NS_OK. Note

that all callers of SetFocus ignore the error.

99

1 NS_IMETHODIMP nsFocusManager::SetFocus(nsIDOMElement∗ aElement, ...) {
2
3 ...
4 nsCOMPtr<nsIContent> newFocus = do_QueryInterface(aElement);
5 NS_ENSURE_ARG(newFocus);
6
7 SetFocusInner(newFocus, aFlags, true, true);
8
9 return NS_OK;

10 }

(a) Function SetFocus may return an error

1 NS_IMETHODIMP Accessible::TakeFocus() {
2 ...
3 nsIContent∗ focusContent = mContent;
4 ...
5 nsCOMPtr<nsIDOMElement> element(do_QueryInterface(focusContent));
6 nsFocusManager∗ fm = nsFocusManager::GetFocusManager();
7 if (fm)
8 fm−>SetFocus(element, 0);
9

10 return NS_OK;
11 }

(b) Function TakeFocus ignores an error returned by SetFocus

Figure 6.8: An example in which emitting an error warning is sufficient

6.1.3 False Positives

We identified 162 false positives, which account for 16% of the total number of inspected reports.

We divide false positives into three categories: (1) double error code, (2) met preconditions, and

(3) imprecision in our tool.

The first category consists of a variant of the double-error-code scenario discussed in Sec-

tion 4.2.1. An error is dropped, however there is an alternative way for the caller to know that

an error arises. A total of 96 out of 162 false positives fall into this category. An example is

illustrated in Figure 6.9. The NULL pointer variable stack is passed to function CreateStack on

line 9 in Figure 6.9b. Function CreateStack in Figure 6.9a may return error NS_ERROR_FAILURE

on lines 3 and 7. In either case, the variable stack’s contents are not modified. Thus, when the

function returns, it is sufficient for the caller to check the variable stack to know whether the

100

stack was created successfully (see line 10 in Figure 6.9b). If not, stack must still be NULL and

the current stack is not updated.

Another example is shown in Figure 6.10. Function GetRuleNodeForContent in Figure 6.10a

returns the error NS_ERROR_UNEXPECTED on line 9. The caller GetCSSStyleRules in Fig-

ure 6.10b drops the error on line 8. However, the function checks variable ruleNode, which is

previously passed as an argument to GetRuleNodeForContent (and initialized to nsnull). The

comment inside the conditional says how this could fail and suggests to bail out by returning

NS_OK. This is similar to the scenario discussed in Section 6.1.2. In this case, the comments

reinforce the fact that checking variable ruleNode is sufficient to determine whether the operation

has failed.

The second category consists of cases in which a precondition is met so that the callee cannot

possibly return errors, and thus the caller can safely ignore the return value. 30 out of 162 reports

correspond to this category. An example is shown in Figure 6.11. Function AllocateContents is

called with count 0 on line 13 in Figure 6.11a. Function AllocateContents cannot possibly return

an error when the count is 0 (see the conditional on line 3 in Figure 6.11b). Thus, the caller

safely ignores the return value.

Finally, the third category includes reports that do not actually represent dropped errors.

These are issues/patterns that need to be fixed/incorporated in the tool. There are 36 out of 162

reports in this category. Most cases are related to errors saved only when in DEBUG mode. We

did not compile the code in this mode. The rest are related to the tracking of errors in temporary

variables. This issue has to be further investigated and fixed.

6.1.4 Performance

Our analysis of the Mozilla Firefox code base (3 million lines of code) was run on a Core i7 3 GHz

machine with 192 GB RAM. The analysis is divided into three phases: (1) extracting a textual

representation of the WPDS (Section 2.6.1), (2) collapsing the WPDS rules (Section 2.5.2), and

(3) solving the dataflow problem and producing diagnostic information (Sections 2.4 and 3.2).

101

1 nsresult XPCJSStack::CreateStack(JSContext∗ cx, nsIStackFrame∗∗ stack) {
2 if (!cx)
3 return NS_ERROR_FAILURE;
4
5 JSStackFrame ∗fp = NULL;
6 if (!JS_FrameIterator(cx, &fp))
7 return NS_ERROR_FAILURE;
8
9 return XPCJSStackFrame::CreateStack(cx, fp, (XPCJSStackFrame∗∗) stack);

10 }

(a) Function CreateStack may return an error

1 NS_IMETHODIMP nsXPConnect::GetCurrentJSStack(nsIStackFrame ∗ ∗aCurrentJSStack) {
2 NS_ASSERTION(aCurrentJSStack, "bad param");
3 ∗aCurrentJSStack = nsnull;
4
5 JSContext∗ cx;
6 // is there a current context available?
7 if (NS_SUCCEEDED(Peek(&cx)) && cx) {
8 nsCOMPtr<nsIStackFrame> stack;
9 XPCJSStack::CreateStack(cx, getter_AddRefs(stack));

10 if (stack) {
11 ...
12 NS_IF_ADDREF(∗aCurrentJSStack = stack);
13 }
14 }
15 return NS_OK;
16 }

(b) Function GetCurrentJSStack checks the parameter instead of the return value

Figure 6.9: An example of a false positive due to a variant of the double-error-code pattern

Table 6.2 shows the running time and memory usage for each phase. The analysis takes a total of

5 hours to run. Extracting the WPDS alone takes 4 hours 5 minutes. We have not attempted to

optimize the LLVM-based front end to make it more efficient. Profiler information reveals that

half of the time is spent on printing the WPDS file. Collapsing the WPDS rules takes 39 minutes.

This analysis optimization reduces the number of rules from 19,933,777 to 7,998,022. As a result,

the analysis itself runs on a significantly smaller WPDS file, taking only 17 minutes. Without

collapsing the rules, the analysis runs out of memory on a machine with 192 GB of memory.

Solving the dataflow problem and producing diagnostic information is the most memory-intensive

102

1 nsresult inDOMUtils::GetRuleNodeForContent(nsIContent∗ aContent,
2 nsIAtom∗ aPseudo,
3 nsStyleContext∗∗ aStyleContext,
4 nsRuleNode∗∗ aRuleNode) {
5 ∗aRuleNode = nsnull;
6 ∗aStyleContext = nsnull;
7
8 if (!aContent−>IsElement()) {
9 return NS_ERROR_UNEXPECTED;

10 }
11 ...
12 return NS_OK;
13 }

(a) Function GetRuleNodeForContent returns an error

1 NS_IMETHODIMP inDOMUtils::GetCSSStyleRules(nsIDOMElement ∗aElement,
2 const nsAString& aPseudo,
3 nsISupportsArray ∗∗_retval) {
4 ...
5 nsRuleNode∗ ruleNode = nsnull;
6 ...
7
8 GetRuleNodeForContent(..., &ruleNode);
9 if (!ruleNode) {

10 // This can fail for content nodes that are not in the document or
11 // if the document they’re in doesn’t have a presshell. Bail out.
12 return NS_OK;
13 }
14 ...
15 return NS_OK;
16 }

(b) Function GetCSSStyleRules ignores a returned error but checks ruleNode instead

Figure 6.10: A second example of a false positive due to the double-error-code pattern

103

1 const void∗ nsRuleNode::ComputeContentData(void∗ aStartStruct,
2 const nsRuleData∗ aRuleData, ...) {
3 ...
4 // content: [string, url, counter, attr, enum]+, normal, none, inherit
5 const nsCSSValue∗ contentValue = aRuleData−>ValueForContent();
6 switch (contentValue−>GetUnit()) {
7 case eCSSUnit_Null:
8 break;
9 case eCSSUnit_Normal:

10 case eCSSUnit_None:
11 case eCSSUnit_Initial:
12 // "normal", "none", and "initial" all mean no content
13 content−>AllocateContents(0);
14 break;
15 ...
16 }
17 ...
18 }

(a) Function AllocateContents is called with a count of 0

1 nsresult nsStyleContent::AllocateContents(PRUint32 aCount) {
2 DELETE_ARRAY_IF(mContents);
3 if (aCount) {
4 mContents = new nsStyleContentData[aCount];
5 if (! mContents) {
6 mContentCount = 0;
7 return NS_ERROR_OUT_OF_MEMORY;
8 }
9 }

10 mContentCount = aCount;
11 return NS_OK;
12 }

(b) Function AllocateContents does not return errors if the count is 0

Figure 6.11: An example of a false positive due to met preconditions

104

Table 6.2: Analysis performance for Firefox

Task Time (h:mm:ss) Memory (GB)

Extracting WPDS 4:05:23 28.6
Collapsing rules 0:39:17 6.9
Solving problem 0:17:28 38.7

task (38.7 GB).

6.2 Case Study: SQLite

Our second case study is SQLite. SQLite is a relational database management system library

that is extensively used in widely-deployed applications such as Mozilla Firefox, Chrome, Skype,

and Dropbox. SQLite is written in C and uses the return-code idiom. Figure 6.12 shows the list

of basic error codes used by SQLite. For example, SQLITE_READONLY defines the error used

when there is an attempt to write a read-only database. This section presents results for the

current official release 3.7.13.

6.2.1 Results

Our tool produced a total of 197 bug reports. We have manually inspected all reports and

classified them into three categories: true bugs, harmless dropped errors, and false positives.

Table 6.3 summarizes our findings.

We identified 49 potential true bugs. These include 44 unsaved errors, 4 overwritten errors,

and 1 out-of-scope error. We found 36 harmless dropped errors. As with Firefox, we divided

harmless dropped errors into four groups (see Table 6.3). Finally, 112 reports are false positives.

We divided these into five groups. As with Firefox, the most common source of false positives is

double error codes (FP1) with 50 out of 112 reports. The second most common source of false

positives is due to infeasible paths (FP3) with 34 out of 112 reports. We found two additional

kinds of false positives. The first is found when inspecting overwritten error reports. In this

case, errors are overwritten while masking them (FP4). The second is found in overwritten and

105

#def ine SQLITE_ERROR 1 /∗ SQL e r r o r o r m i s s i n g database ∗/
#def ine SQLITE_INTERNAL 2 /∗ I n t e r n a l l o g i c e r r o r i n SQLite ∗/
#def ine SQLITE_PERM 3 /∗ Access p e r m i s s i o n den i ed ∗/
#def ine SQLITE_ABORT 4 /∗ C a l l b a c k r o u t i n e r e q u e s t e d an abo r t ∗/
#def ine SQLITE_BUSY 5 /∗ The database f i l e i s l o c k e d ∗/
#def ine SQLITE_LOCKED 6 /∗ A t a b l e i n the da tabase i s l o c k e d ∗/
#def ine SQLITE_NOMEM 7 /∗ A ma l l oc () f a i l e d ∗/
#def ine SQLITE_READONLY 8 /∗ Attempt to w r i t e a r e a d o n l y da tabase ∗/
#def ine SQLITE_INTERRUPT 9 /∗ Opera t i on t e rm in a t ed by s q l i t e 3 _ i n t e r r u p t () ∗/
#def ine SQLITE_IOERR 10 /∗ Some k ind o f d i s k I /O e r r o r o c c u r r e d ∗/
#def ine SQLITE_CORRUPT 11 /∗ The database d i s k image i s malformed ∗/
#def ine SQLITE_NOTFOUND 12 /∗ Unknown opcode i n s q l i t e 3 _ f i l e _ c o n t r o l () ∗/
#def ine SQLITE_FULL 13 /∗ I n s e r t i o n f a i l e d because da tabase i s f u l l ∗/
#def ine SQLITE_CANTOPEN 14 /∗ Unable to open the database f i l e ∗/
#def ine SQLITE_PROTOCOL 15 /∗ Database l o c k p r o t o c o l e r r o r ∗/
#def ine SQLITE_EMPTY 16 /∗ Database i s empty ∗/
#def ine SQLITE_SCHEMA 17 /∗ The database schema changed ∗/
#def ine SQLITE_TOOBIG 18 /∗ S t r i n g or BLOB exceed s s i z e l i m i t ∗/
#def ine SQLITE_CONSTRAINT 19 /∗ Abort due to c o n s t r a i n t v i o l a t i o n ∗/
#def ine SQLITE_MISMATCH 20 /∗ Data type mismatch ∗/
#def ine SQLITE_MISUSE 21 /∗ L i b r a r y used i n c o r r e c t l y ∗/
#def ine SQLITE_NOLFS 22 /∗ Uses OS f e a t u r e s not suppo r t ed on hos t ∗/
#def ine SQLITE_AUTH 23 /∗ A u t h o r i z a t i o n den i ed ∗/
#def ine SQLITE_FORMAT 24 /∗ A u x i l i a r y da tabase fo rmat e r r o r ∗/
#def ine SQLITE_RANGE 25 /∗ 2nd paramete r to s q l i t e 3 _ b i n d out o f range ∗/
#def ine SQLITE_NOTADB 26 /∗ F i l e opened tha t i s not a da tabase f i l e ∗/
#def ine SQLITE_ROW 100 /∗ s q l i t e 3 _ s t e p () has ano the r row ready ∗/
#def ine SQLITE_DONE 101 /∗ s q l i t e 3 _ s t e p () has f i n i s h e d e x e c u t i n g ∗/

Figure 6.12: Basic error codes used in SQLite

out-of-scope error reports (FP5). This arises when an error is overwritten with another (different)

error.

6.2.2 Performance

We ran the analysis of SQLite (138,243 lines of code) on a Core i7 3 GHz machine with 192 GB

RAM. Table 6.4 shows the running time and memory usage. The analysis takes a total of 3

minutes 39 seconds to run, while using 566 MB of memory. As with our first case study, we give

a breakdown of running time and memory using for extracting the WPDS, collapsing rules, and

solving the dataflow problem and producing diagnostic information. Again, the most expensive

phase is producing the textual WPDS representation.

106

Ta
bl
e
6.
3:

D
ro
pp

ed
er
ro
rs

in
SQ

Li
te

(p
re
lim

in
ar
y
re
su
lts

).
T
he

re
po

rt
s
ar
e
di
vi
de
d
in
to

tr
ue

bu
gs
,h

ar
m
le
ss

dr
op

pe
d
er
ro
rs

(H
1:

dr
op

pe
d
in

th
e
pr
oc
es
s
of

sh
ut
tin

g
do

w
n,

H
2:

dr
op

pe
d
in

th
e
pr
oc
es
s
of

re
le
as
in
g
re
so
ur
ce
s,

H
3:

do
cu
m
en
te
d
by

de
ve
lo
pe

r
to

be
ig
no

re
d,

an
d
H
4:

lo
gg
ed
),
an

d
fa
lse

po
sit

iv
es

(F
P1

:
do

ub
le

er
ro
r
co
de
,F

P2
:
m
et

pr
ec
on

di
tio

n,
FP

3:
in
fe
as
ib
le

pa
th
s,

FP
4:

er
ro
r

m
as
ki
ng

,a
nd

FP
5:

er
ro
r
hi
er
ar
ch
y)
.

H
ar
m
le
ss

D
ro
pp

ed
Er

ro
rs

Fa
lse

Po
sit

iv
es

B
ug

C
at
eg
or
y

Tr
ue

B
ug

s
H
1

H
2

H
3

H
4

To
ta
l

FP
1

FP
2

FP
3

FP
4

FP
5

To
ta
l

G
ra
nd

To
ta
l

U
ns
av
ed

44
6

4
8

7
25

36
4

7
0

0
47

18
8

O
ve
rw

rit
te
n

4
2

0
1

3
6

3
0

26
2

11
42

52
O
ut

of
Sc
op

e
1

3
0

0
2

5
11

0
1

0
11

23
29

G
ra
nd

To
ta
l

49
11

4
9

12
36

50
4

34
2

22
11
2

19
7

107

Table 6.4: Analysis performance for SQLite

Task Time (m:ss) Memory (MB)

Extracting WPDS 3:14 196
Collapsing rules 0:11 61
Solving problem 0:14 566

6.3 Summary

We applied the error-propagation analysis to find dropped errors in two widely-used user

applications: Mozilla Firefox and SQLite. The results show that error handling is not only

important and challenging in systems software, but also in user applications. As with systems

software, error-propagation bugs are abundant; however, not all of them represent real problems

for the application. Developers agree that fixing all dropped errors would have a positive

impact on the overall quality of the application. Unfortunately, human resources are limited and

developers prefer to focus on the “real” problems. Simply filing all bug reports is not an option,

thus determining the impact of dropped errors beforehand is crucial. This is a difficult and

effort-demanding task, in particular when one is not familiar with the code base under analysis.

This problem could be alleviated by providing the tool with more fine-grained error-handling

specifications. The high-level error-handling specification used when analyzing systems software

(error logging) no longer applied to the user applications presented in this chapter. For example,

most of the errors in Firefox are logged before they start to propagate, and error logging is not

always sufficient.

In both user applications, we found several cases in which program comments indicate that it

is OK to drop errors in particular scenarios. It would be ideal to have developers document all

similar instances. Comments might not be the best alternative to document harmless dropped

errors, but it is at least a good start.

So far, the feedback from developers continues to be positive. We have received a suggestion

for our tool to be used during code review, and there is interest in using the tool to analyze

patches to determine whether they could introduce new dropped errors.

108

Chapter 7

Related Work

In this chapter, we describe other work related to the analysis of the propagation of errors, and

the different kinds of error-propagation bugs discussed in this dissertation.

7.1 Error Propagation and Dropped Errors

The problem of unchecked function return values is longstanding, and is seen as especially

endemic in C due to the wide use of return values to indicate success or failure of system calls.

LCLint statically checks for function calls whose return value is immediately discarded [19], but

does not trace the flow of errors over extended paths. GCC 3.4 introduced a warn_unused_result

annotation for functions whose return values should be checked, but again enforcement is limited

to the call itself: storing the result in a variable that is never subsequently used is enough to

satisfy GCC. Neither LCLint nor GCC analyzes deeply enough to uncover bugs along extended

propagation chains.

It is tempting to blame this problem on C, and argue for structured exception handling

instead. Language designs for exception management have been under consideration for decades

[23, 46]. Setting aside the impracticality of reimplementing existing operating systems in new

languages, static verification of proper exception management has its own difficulties. C++

exception-throwing declarations are explicitly checked at run time only, not at compile time.

109

Java’s insistence that all checked exceptions be either caught or explicitly declared as thrown

is controversial [64, 67]. Frustrated Java programmers are known to pacify the compiler by

adding blanket catch clauses that catch and discard all possible exceptions. C# imposes no

static validation; Sacramento et al. [57] found that 90% of relevant exceptions thrown by .NET

assemblies (C# libraries) are undocumented. Thus, while exceptions change the error-propagation

problem in interesting ways, they certainly do not solve it. Furthermore, widely-used applications

written in C++ still use the return-idiom code, not exceptions.

There are numerous proposals for techniques to detect or monitor error-propagation patterns

at run time, typically during controlled in-house testing with fault-injection to elicit failures

[12, 22, 24, 28–30, 32, 33, 61]. Work by Guo et al. [27] on dynamic abstract type inference could

be used to distinguish error-carrying variables from ordinary integers, but this approach also

requires running on real (error-inducing) inputs. In contrast to these dynamic techniques, our

approach offers the stronger assurances of static analysis, which become especially important for

critical software components such as operating system kernels. Storage errors are rare enough to

be difficult to test dynamically, but can be catastrophic when they do occur. This is precisely

the scenario in which intensive static analysis is most suitable.

Gunawi et al. [26] highlight dropped errors in file systems as a special concern. Gunawi’s

proposed Error Detection and Propagation (EDP) analysis is essentially a type inference over

the file system’s call graph, classifying functions as generators, propagators, or terminators

of error codes. Our approach uses a more precise analysis framework that offers flow- and

context-sensitivity. The difference is not merely theoretical: we have compared the two in detail

and while Gunawi’s EDP finds 97% of our true unsaved errors, it also produces 2.75 times more

false positives. Furthermore, EDP finds no overwrites and just one of our true out-of-scope

errors. EDP runs relatively faster, producing results in a matter of seconds. However, it does

not produce detailed diagnostic information; WPDS witness traces (Section 3.3) offer a level of

diagnostic feedback not possible with EDP’s whole-function-classification approach.

Bigrigg and Vos [6] describe a dataflow analysis for detecting bugs in the propagation of

110

errors in user applications. Their approach augments traditional def-use chains with intermediate

check operations: correct propagation requires a check between each definition and subsequent

use. This is similar to our tracking of error values from generation to eventual handling or

accidental discarding. Bigrigg and Vos apply their analysis manually, whereas we have a working

implementation that is interprocedural, context-sensitive, and has been applied to millions of

lines of kernel code.

The FiSC system of Yang et al. [73] uses software model checking to check for a number of

file-system-specific bugs. Relative to our work, FiSC employs a richer (more domain-specific)

model of file system behavior, including properties of on-disk representations. However, FiSC

does not check for dropped errors and has been applied to only three of Linux’s many file systems.

7.2 Errors Masquerading as Pointer Values

Engler et al. [17] infer programmer beliefs from systems code and check for contradictions. They

offer six checkers, including a NULL-consistency checker that reveals an error-valued pointer

dereference. They also provide an IS_ERR-consistency checker, which reveals that NULL checks

are often omitted when checking for errors. We do not infer beliefs. Instead, we track error codes

to find what pointer variables may hold them and then report those that are used improperly,

including but not limited to pointer dereferences.

Lawall et al. [42] use Coccinelle [52] to find bugs in Linux. Their case study identifies and

classifies functions based on their known return values: a valid pointer, NULL, ERR_PTR, or

both. The tool reports program points at which inappropriate or insufficient checks are detected.

This can reveal some error-valued dereferences. However, dereferences made at functions that

cannot be classified by the tool cannot possibly be found, and only 6% of the functions are

classified as returning ERR_PTR or both ERR_PTR and NULL. Also, dereferences of error-valued

pointers that are never returned by a function or further manipulated cannot be found. Our

approach uses an interprocedural flow- and context-sensitive dataflow analysis that allows us to

track error-pointer values regardless of their location and whether or not they are transformed.

111

Although identifying missing or inappropriate checks [17, 42] can lead to finding and fixing

potential problems, our tool instead reports the exact program location at which problems might

occur due to misuse of error-valued pointers. Our bug reports also help programmers find the

program points at which error checks should be added in order to fix the problems reported.

These tools aim to find a wider range of bugs; their discovery of missing or inappropriate error

checks is only an example case study of a generic capability. Our tool is more specialized: it

finds more specific kinds of bugs than Engler et al. [17] and Lawall et al. [42], and is more precise

in finding these bugs.

Zhang et al. [74] use type inference to find violations of the principle of complete mediation,

such as the requirement that Linux Security Modules authorization must occur before any

controlled operation is executed. IS_ERR can be thought of as a mediating check that must

appear before any potentially–error-carrying pointer is used. We believe our technique can be

adapted to find other mediation violations as well. Our approach can be more precise as it is

context-sensitive. Furthermore, we could provide detailed sample traces describing how such

violations might occur.

Numerous efforts (e.g., [4, 10, 15, 17, 31, 35, 47, 50, 72]) have focused on finding NULL pointer

dereferences using varied approaches. Our problem is a generalization of the NULL dereference

problem, where instead of just one invalid pointer value, we are tracking 34 of them. However,

our problem is also more complex. Error codes might transform during propagation, which does

not occur with NULL pointers. In addition, while dereferencing and using NULL values in pointer

arithmetic is as bad as using error values, overwriting NULL is perfectly benign. Overwriting

unhandled error values, however, may have serious consequences.

7.3 Undocumented Error Codes

Studies show that programmers value accurate documentation, but neither trust nor maintain

the documentation they have [43, 62]. For example, Sacramento et al. [57] found that 90% of

relevant exceptions thrown by .NET assemblies (C# libraries) are undocumented. Misleading

112

documentation can lead to coding errors [65] or even legal liability [34]. Our work bridges the gap

between code and documentation, automatically identifying mismatches so that disagreements

between the two may be peaceably resolved. In the spirit of Xie and Engler [71], even if we do

not know which is right and which is wrong, the mere presence of inconsistencies indicates that

something is amiss.

Venolia [68] uses custom regular expressions to find references to software artifacts in free-form

text. The referenced artifacts are extracted from compiler abstract syntax trees. Tan et al. [65]

use natural-language processing to identify usage rules in source comments, then check these

against actual code behavior using backtracking path exploration. Our documentation-analysis

task is much easier, and can be solved using a Venolia-style purpose-built pattern-matcher. Our

analysis of the corresponding source code, however, poses a greater challenge.

Prior work has measured documentation completeness, quantity, density, readability, reusabil-

ity, standards adherence, and internal consistency [18, 49, 55, 58, 59]. Berglund and Priestley

[5] call for automatic verification of documentation, but consider only XML validation, spell

checking, and the like. None of this assesses whether the documentation’s claims are actually true.

For truly free-form text, nothing more may be possible. However, for some highly-structured

documents, we can go beyond structural validation to content validation: affirming that the

documentation is not merely well-formed, but actually truthful with respect to the code it

describes.

While our work focuses on finding mismatches between code and pre-existing documentation,

Buse and Weimer [9] automatically generate documentation describing the circumstances under

which Java code throws exceptions. If applied to kernel code, this could help us not just list

undocumented error codes, but also describe the conditions under which they arise.

113

Chapter 8

Conclusions and Future Directions

In this dissertation, we applied static program analysis to understand how error codes propagate

through software that uses the return-code idiom. We described the main component of our

framework: an interprocedural, flow- and context-sensitive static analysis that tracks the propa-

gation of errors, which we formulated and solved using weighted pushdown systems. We showed

how we use the error-propagation analysis to find different kinds of error-propagation bugs:

Dropped Errors. We found error-code instances that vanish before proper handling is per-

formed. We learned that unhandled errors are commonly lost when the variable holding the

unhandled error value (a) is overwritten with a new value, (b) goes out of scope, or (c) is

returned by a function but not saved by the caller. We found 312 confirmed dropped errors in five

widely-used Linux file systems, including ext3 and ReiserFS. We also found numerous dropped

errors in two user applications: the Mozilla Firefox web browser, and the database management

system SQLite. Mozilla Firefox is written in C++, however it also uses the return-code idiom.

We have submitted a subset of the bug reports to Firefox developers. Two security vulnerabilities

due to dropped errors have been confirmed so far.

Errors Masquerading as Pointers. We found misuses of pointer variables that store error

codes. We identified three classes of error-valued pointer bugs in Linux file systems and drivers:

114

(a) bad pointer dereferences, (b) bad pointer arithmetic, and (c) bad pointer overwrites. We

found 56 true bugs among 52 different Linux file systems and 4 device drivers. We found that

bad pointer dereferences are the most common error-valued pointer bugs. We ran the analysis

on a newer code version, and found that a few reported bugs had been fixed. However, as the

code evolves, new bugs are introduced.

Error-Code Mismatches Between Code and Documentation. We considered whether

the manual pages that document Linux kernel system calls match the real code’s behavior

regarding returned error codes. We found the sets of error codes that Linux file-related system

calls return and compared these to the Linux manual pages to find errors that are returned

to user applications but not documented. We found a total of 1,784 undocumented error-code

instances across 52 different Linux file systems and 42 file-related system calls.

In all of the above, bug reports included a trace that illustrates how the problem might arise. In

total, our tool has analyzed over 5 million lines of code. Although this work was mainly focused

on Linux, the analyses can also be applied to other programs. As an example, we presented

results for two additional case studies involving user applications: Mozilla Firefox and SQLite.

Additionally, the NASA/JPL Laboratory for Reliable Software has used our tool to check code

in the Mars Science Laboratory, where it found a critical bug in code used for space missions.

As an interesting side note, the Mars rover Curiosity landed successfully the day this chapter

was written.

We identified and addressed multiple technical challenges while developing and applying these

static program analyses to real-world applications. For example, performance and scalability

became an issue given the size of the systems under analysis. We devised two extremely effective

optimizations that allowed the analyses to run 24 times faster (under 5 minutes on average for

Linux file systems and drivers), requiring 75% less memory. One of these optimizations consisted

of filtering out program variables that cannot possibly contain error codes. Another challenge was

to reduce the number of false positives. By manually inspecting bug reports, we found patterns

115

that described common sources of false positives. We reduced the number of false positives by

hundreds once the tool recognized these patterns.

The feedback received from developers has been positive and encouraging:

“Thanks for your efforts!” — Jeff Mahoney (ReiserFS)

“This sounds interesting - please forward them to me.” — Steve French (CIFS)

“Thank you for helping to improve JFS!” — David Kleikamp (IBM JFS)

“So that is a nice find.” — Jan Harkes (Coda)

“Thank you for looking into this. It’s a great idea.” — Matthew Wilcox (FS)

“Ew, this [bug] is hard to figure out.” — Matthew Wilcox (FS)

“I think this is an excellent way of detecting bugs that happen rarely enough that there are no good

reproduction cases, but likely hit users on occasion and are otherwise impossible to diagnose.” —

Andreas Dilger (ext4)

The unstructured nature of C error reporting creates a significant analysis challenge. Pro-

grammer intent is often implicit, and our findings show that current practice (manual inspection

and testing) is insufficient. For good or ill, implementing operating systems in C is also part of the

status quo, and this is unlikely to change soon. Furthermore, our additional case studies confirmed

that error handling is also important and challenging in user applications. The error-propagation

bugs described in this dissertation are common and not exclusive to C programs. Furthermore,

our analyses can be useful not only in finding and fixing existing problems, but also in preventing

the introduction of new bugs as the code evolves.

A challenge still remains. Static program analysis tools have to prove useful in practice to

be worth developers’ time. Often, the precision of such tools can be improved by incorporating

domain-specific knowledge. Unfortunately, finding this knowledge represents a difficult task.

Error handling is often not documented, and developers are the only available source when trying

to understand, for example, how the program is supposed to recover from errors in a particular

scenario. This problem becomes even more challenging when analyzing large code bases: there

116

might be hundreds or thousands of developers spread across the world, and it is likely that no

one is familiar with the entire code base.

This dissertation uncovers several potential future directions to make static program analysis

more appealing in practice. We need to invest more time developing techniques that infer

program domain-specific knowledge automatically. The goal is to use this knowledge to improve

the precision of static analysis tools: producing not only fewer reports, but the reports that

describe the most relevant bugs. For example, the majority of the dropped errors found by our

tool describe real dropped errors, however developers do not find them equally critical. Ideally,

we could have a tool that learns facts from the code under analysis itself, or at least accepts

feedback on the most recently produced reports to decide what to focus on when re-analyzing a

program, or when analyzing a different version.

Another future direction is to develop techniques to automate the process of inspecting bug

reports produced by static program analysis tools. Such techniques should find similarities

between bug reports and classify the results accordingly. That would reduce the time spent in

inspecting bug reports significantly while allowing relevant problems to be found faster. Last but

not least, effort could also be spent in proposing language extensions that provide developers

with better and more effective ways to encode error handling in existing applications without the

need to rewrite them entirely. At least, a mechanism should be proposed to easily document

error-handling code.

In this dissertation, we described the use of static analysis to find error-propagation bugs in

widely-used software, in particular system software. Our results show that static analysis is an

effective way to find bugs that rarely occur (and as a consequence are difficult to reproduce),

but when they do occur they can have catastrophic consequences. Analyses such as those we

described here can go a long way toward improving not only system software reliability, but user

applications too. Eliminating error-propagation bugs increases the trustworthiness of computer

systems as a whole.

117

References

[1] Beware: 10 common web application security risks. Technical Report 11756, Security Advisor

Portal, January 2003.

[2] Acharya, Mithun, and Tao Xie. Mining API error-handling specifications from source code.

In Chechik, Marsha, and Martin Wirsing, editors, FASE, volume 5503 of Lecture Notes in

Computer Science, pages 370–384. Springer, 2009. ISBN 978-3-642-00592-3.

[3] Adams, Bram, and Kris De Schutter. An aspect for idiom-based exception handling: (using

local continuation join points, join point properties, annotations and type parameters). In

Bergmans, Lodewijk, Johan Brichau, Erik Ernst, and Kris Gybels, editors, SPLAT, volume

217 of ACM International Conference Proceeding Series, page 1. ACM, 2007.

[4] Babic, Domagoj, and Alan J. Hu. Calysto: scalable and precise extended static checking.

In Schäfer, Wilhelm, Matthew B. Dwyer, and Volker Gruhn, editors, ICSE, pages 211–220.

ACM, 2008. ISBN 978-1-60558-079-1.

[5] Berglund, Erik, and Michael Priestley. Open-source documentation: in search of user-driven,

just-in-time writing. In SIGDOC, pages 132–141, 2001.

[6] Bigrigg, Michael W., and Jacob J. Vos. The set-check-use methodology for detecting

error propagation failures in I/O routines. In Workshop on Dependability Benchmarking,

Washington, DC, June 2002.

118

[7] Bruntink, Magiel, Arie van Deursen, and Tom Tourwé. Discovering faults in idiom-based

exception handling. In Osterweil, Leon J., H. Dieter Rombach, and Mary Lou Soffa, editors,

ICSE, pages 242–251. ACM, 2006. ISBN 1-59593-375-1.

[8] Bryant, Randal E. Binary decision diagrams and beyond: enabling technologies for formal

verification. In Rudell, Richard L., editor, ICCAD, pages 236–243. IEEE Computer Society,

1995.

[9] Buse, Raymond P. L., and Westley Weimer. Automatic documentation inference for

exceptions. In Ryder and Zeller [56], pages 273–282. ISBN 978-1-60558-050-0.

[10] Bush, William R., Jonathan D. Pincus, and David J. Sielaff. A static analyzer for finding

dynamic programming errors. In Softw., Pract. Exper., 30(7):775–802, 2000.

[11] Callahan, David. The program summary graph and flow-sensitive interprocedural data flow

analysis. In PLDI, pages 47–56, 1988.

[12] Candea, George, Mauricio Delgado, Michael Chen, and Armondo Fox. Automatic failure-

path inference: A generic introspection technique for Internet applications. In Proceedings

of the The Third IEEE Workshop on Internet Applications (WIAPP ’03), pages 132–141,

San Jose, California, June 2003. IEEE.

[13] Cristian, Flaviu. Exception handling. In Dependability of Resilient Computers, pages 68–97,

1989.

[14] Dilger, Andreas. Error propagation bugs in ext4. Personal communication, November 2008.

[15] Dillig, Isil, Thomas Dillig, and Alex Aiken. Static error detection using semantic inconsistency

inference. In Ferrante, Jeanne, and Kathryn S. McKinley, editors, PLDI, pages 435–445.

ACM, 2007. ISBN 978-1-59593-633-2.

[16] Dowson, Mark. The ariane 5 software failure. In SIGSOFT Softw. Eng. Notes, 22(2):84,

1997. ISSN 0163-5948. doi: http://doi.acm.org/10.1145/251880.251992.

119

[17] Engler, Dawson R., David Yu Chen, and Andy Chou. Bugs as deviant behavior: A general

approach to inferring errors in systems code. In SOSP, pages 57–72, 2001.

[18] Etzkorn, Letha H., William E. Hughes Jr., and Carl G. Davis. Automated reusability quality

analysis of OO legacy software. In Information & Software Technology, 43(5):295–308, 2001.

[19] Evans, David. LCLint User’s Guide. University of Virginia, May 2000.

[20] Filho, Fernando Castor, Nélio Cacho, Eduardo Figueiredo, Raquel Maranhão, Alessandro

Garcia, and Cecília M. F. Rubira. Exceptions and aspects: the devil is in the details. In

Young, Michal, and Premkumar T. Devanbu, editors, SIGSOFT FSE, pages 152–162. ACM,

2006. ISBN 1-59593-468-5.

[21] Filho, Fernando Castor, Alessandro Garcia, and Cecília M. F. Rubira. Extracting error

handling to aspects: A cookbook. In ICSM, pages 134–143. IEEE, 2007.

[22] Flanagan, Cormac A., and Michael Burrows. System and method for dynamically detecting

unchecked error condition values in computer programs. United States Patent #6,378,081

B1, April 2002.

[23] Goodenough, John B. Structured exception handling. In POPL, pages 204–224, 1975.

[24] Goradia, Tarak. Dynamic impact analysis: A cost-effective technique to enforce error-

propagation. In ISSTA, pages 171–181, 1993.

[25] Groce, Alex D. Problem solved. Personal communication, January 2009.

[26] Gunawi, Haryadi S., Cindy Rubio-González, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau, and Ben Liblit. EIO: Error handling is occasionally correct. In 6th USENIX

Conference on File and Storage Technologies (FAST ’08), San Jose, California, February

2008.

120

[27] Guo, Philip J., Jeff H. Perkins, Stephen McCamant, and Michael D. Ernst. Dynamic

inference of abstract types. In Pollock, Lori L., and Mauro Pezzè, editors, ISSTA, pages

255–265. ACM, 2006.

[28] Hiller, Martin, Arshad Jhumka, and Neeraj Suri. An approach for analysing the propagation

of data errors in software. In DSN, pages 161–172. IEEE Computer Society, 2001.

[29] Hiller, Martin, Arshad Jhumka, and Neeraj Suri. Propane: an environment for examining

the propagation of errors in software. In ISSTA, pages 81–85, 2002.

[30] Hiller, Martin, Arshad Jhumka, and Neeraj Suri. Epic: Profiling the propagation and effect

of data errors in software. In IEEE Trans. Computers, 53(5):512–530, 2004.

[31] Hovemeyer, David, and William Pugh. Finding more null pointer bugs, but not too many.

In Das, Manuvir, and Dan Grossman, editors, PASTE, pages 9–14. ACM, 2007. ISBN

978-1-59593-595-3.

[32] Jhumka, Arshad, Martin Hiller, and Neeraj Suri. Assessing inter-modular error propagation

in distributed software. In SRDS, pages 152–161. IEEE Computer Society, 2001.

[33] Johansson, Andréas, and Neeraj Suri. Error propagation profiling of operating systems. In

DSN, pages 86–95. IEEE Computer Society, 2005.

[34] Kaner, Cem. Liability for defective documentation. In Jones, Susan B., and David G. Novick,

editors, SIGDOC, pages 192–197. ACM, 2003. ISBN 1-58113-696-X.

[35] Karthik, S., and H. G. Jayakumar. Static analysis: C code error checking for reliable and

secure programming. In Ardil, Cemal, editor, IEC (Prague), pages 434–439. Enformatika,

Çanakkale, Turkey, 2005. ISBN 975-98458-6-5.

[36] Kelley, Al, and Ira Pohl. A book on C (4th ed.): programming in C. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1998. ISBN 0-201-18399-4.

121

[37] Kidd, Nicholas, Thomas Reps, and Akash Lal. WALi: A C++ library for weighted pushdown

systems. http://www.cs.wisc.edu/wpis/wpds/download.php, 2008.

[38] Lal, Akash, Thomas W. Reps, and Gogul Balakrishnan. Extended weighted pushdown

systems. In Etessami, Kousha, and Sriram K. Rajamani, editors, CAV, volume 3576 of

Lecture Notes in Computer Science, pages 434–448. Springer, 2005.

[39] Lal, Akash, Nicholas Kidd, Thomas W. Reps, and Tayssir Touili. Abstract error projection.

In Nielson, Hanne Riis, and Gilberto Filé, editors, SAS, volume 4634 of Lecture Notes in

Computer Science, pages 200–217. Springer, 2007.

[40] Lal, Akash, Tayssir Touili, Nicholas Kidd, and Thomas Reps. Interprocedural analysis

of concurrent programs under a context bound. Technical Report 1598, University of

Wisconsin–Madison, July 2007.

[41] Lattner, Chris, and Vikram S. Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In CGO, pages 75–88. IEEE Computer Society, 2004. ISBN

0-7695-2102-9.

[42] Lawall, Julia L., Julien Brunel, Nicolas Palix, René Rydhof Hansen, Henrik Stuart, and

Gilles Muller. WYSIWIB: A declarative approach to finding API protocols and bugs in

Linux code. In DSN, pages 43–52. IEEE, 2009.

[43] Lethbridge, Timothy, Janice Singer, and Andrew Forward. How software engineers use

documentation: The state of the practice. In IEEE Software, 20(6):35–39, 2003.

[44] Lind-Nielsen, Jorn. BuDDy - A Binary Decision Diagram Package.

http://sourceforge.net/projects/buddy, 2004.

[45] Lippert, Martin, and Cristina Videira Lopes. A study on exception detection and handling

using aspect-oriented programming. In ICSE, pages 418–427, 2000.

[46] Liskov, Barbara. A history of CLU. In HOPL Preprints, pages 133–147, 1993.

http://www.cs.wisc.edu/wpis/wpds/download.php

122

[47] Loginov, Alexey, Eran Yahav, Satish Chandra, Stephen Fink, Noam Rinetzky, and Man-

gala Gowri Nanda. Verifying dereference safety via expanding-scope analysis. In Ryder and

Zeller [56], pages 213–224. ISBN 978-1-60558-050-0.

[48] Miller, Robert, and Anand Tripathi. Issues with exception handling in object-oriented

systems. In In Object-Oriented Programming, 11th European Conference (ECOOP, pages

85–103. Springer-Verlag, 1997.

[49] Mount, S. N. I., Robert M. Newman, R. J. Low, and A. Mycroft. Exstatic: a generic static

checker applied to documentation systems. In Tilley, Scott R., and Shihong Huang, editors,

SIGDOC, pages 52–57. ACM, 2004. ISBN 1-58113-809-1.

[50] Nanda, Mangala Gowri, and Saurabh Sinha. Accurate interprocedural null-dereference

analysis for Java. In ICSE, pages 133–143. IEEE, 2009. ISBN 978-1-4244-3452-7.

[51] Necula, George C., Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:

Intermediate language and tools for analysis and transformation of C programs. In Horspool,

R. Nigel, editor, CC, volume 2304 of Lecture Notes in Computer Science, pages 213–228.

Springer, 2002.

[52] Padioleau, Yoann, Julia L. Lawall, René Rydhof Hansen, and Gilles Muller. Documenting

and automating collateral evolutions in Linux device drivers. In Sventek, Joseph S., and

Steven Hand, editors, EuroSys, pages 247–260. ACM, 2008. ISBN 978-1-60558-013-5.

[53] Reps, Thomas W., Stefan Schwoon, Somesh Jha, and David Melski. Weighted pushdown

systems and their application to interprocedural dataflow analysis. In Sci. Comput. Program.,

58(1-2):206–263, 2005.

[54] Robillard, Martin P., and Gail C. Murphy. Regaining control of exception handling. Technical

report, University of British Columbia, Vancouver, BC, Canada, 1999.

[55] Robles, Gregorio, JesÃžs M. González Barahona, and Juan Luis Prieto Martínez. Assessing

and evaluating documentation in libre software projects. In Wasserman, Tony, and Murugan

123

Pal, editors, Workshop on Evaluation Frameworks for Open Source Software (EFOSS),

Como, Italy, June 2006. International Federation for Information Processing.

[56] Ryder, Barbara G., and Andreas Zeller, editors. Proceedings of the ACM/SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA,

July 20-24, 2008, 2008. ACM. ISBN 978-1-60558-050-0.

[57] Sacramento, Paulo, Bruno Cabral, and Paulo Marques. Unchecked exceptions: Can the

programmer be trusted to document exceptions? In Second International Conference on

Innovative Views of .NET Technologies, Florianópolis, Brazil, October 2006. Microsoft.

[58] Schönberg, Christian, Franz Weitl, Mirjana Jaksic, and Burkhard Freitag. Logic-based

verification of technical documentation. In Borghoff, Uwe M., and Boris Chidlovskii, editors,

ACM Symposium on Document Engineering, pages 251–252. ACM, 2009. ISBN 978-1-60558-

575-8.

[59] Schreck, Daniel, Valentin Dallmeier, and Thomas Zimmermann. How documentation evolves

over time. In Penta, Massimiliano Di, and Michele Lanza, editors, IWPSE, pages 4–10.

ACM, 2007. ISBN 978-1-59593-722-3.

[60] Schwoon, S. Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of Munich,

Munich, Germany, July 2002.

[61] Shin, Kang G., and Tein-Hsiang Lin. Modeling and measurement of error propagation in a

multimodule computing system. In IEEE Trans. Computers, 37(9):1053–1066, 1988.

[62] Singer, Janice. Practices of software maintenance. In ICSM, pages 139–145, 1998.

[63] Sinha, Saurabh, and Mary Jean Harrold. Analysis and testing of programs with exception-

handling constructs. In IEEE Transactions on Software Engineering, 26:849–871, 2000.

[64] Sun Microsystems, Inc. Unchecked exceptions – the controversy. http://java.sun.com/

docs/books/tutorial/essential/exceptions/runtime.html, August 2007.

http://java.sun.com/docs/books/tutorial/essential/exceptions/runtime.html
http://java.sun.com/docs/books/tutorial/essential/exceptions/runtime.html

124

[65] Tan, Lin, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment: bugs or bad

comments?*/. In Bressoud, Thomas C., and M. Frans Kaashoek, editors, SOSP, pages

145–158. ACM, 2007. ISBN 978-1-59593-591-5.

[66] Toy, W.N. Fault-tolerant design of local ess processors. In Proceedings of IEEE, pages

1126–1145. IEEE Computer Society, 1982.

[67] van Dooren, Marko, and Eric Steegmans. Combining the robustness of checked exceptions

with the flexibility of unchecked exceptions using anchored exception declarations. In

Johnson, Ralph, and Richard P. Gabriel, editors, OOPSLA, pages 455–471. ACM, 2005.

[68] Venolia, Gina. Textual allusions to artifacts in software-related repositories. In Diehl,

Stephan, Harald Gall, and Ahmed E. Hassan, editors, MSR, pages 151–154. ACM, 2006.

ISBN 1-59593-397-2.

[69] Wegman, Mark N., and F. Kenneth Zadeck. Constant propagation with conditional branches.

In POPL, pages 291–299, 1985.

[70] Weimer, Westley, and George C. Necula. Finding and preventing run-time error handling

mistakes. In Vlissides, John M., and Douglas C. Schmidt, editors, OOPSLA, pages 419–431.

ACM, 2004. ISBN 1-58113-831-8.

[71] Xie, Yichen, and Dawson R. Engler. Using redundancies to find errors. In IEEE Trans.

Software Eng., 29(10):915–928, 2003.

[72] Xie, Yichen, Andy Chou, and Dawson R. Engler. Archer: using symbolic, path-sensitive

analysis to detect memory access errors. In ESEC / SIGSOFT FSE, pages 327–336. ACM,

2003.

[73] Yang, Junfeng, Paul Twohey, Dawson R. Engler, and Madanlal Musuvathi. Using model

checking to find serious file system errors. In ACM Trans. Comput. Syst., 24(4):393–423,

2006.

125

[74] Zhang, Xiaolan, Antony Edwards, and Trent Jaeger. Using CQUAL for static analysis of

authorization hook placement. In Boneh, Dan, editor, USENIX Security Symposium, pages

33–48. USENIX, 2002. ISBN 1-931971-00-5.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Why Error Handling?
	Why Systems Software?
	Linux Error Management
	Integer Error Codes
	Consequences of Not Handling Errors
	Handled vs. Unhandled Errors

	Error-Propagation Bugs
	Contributions
	Dissertation Structure

	Error-Propagation Analysis
	Weighted Pushdown Systems
	Creating the Weighted Pushdown System
	Pushdown System
	Bounded Idempotent Semiring
	Transfer Functions

	Additional Configurable Options
	Copy Mode vs. Transfer Mode
	Negative vs. Positive Error Codes
	Tentative vs. Non-Tentative Errors
	Error-Handling Patterns

	Solving the Dataflow Problem
	Analysis Optimizations
	Reducing Weight Size
	Reducing the Number of Weights
	Impact of Optimizations

	Framework Components
	Intermediate Representation
	Front End
	Back End

	Summary

	Dropped Errors in Linux File Systems
	Examples of Dropped Errors
	Finding Dropped Errors
	Program Transformations
	Error-Propagation Analysis

	Describing Dropped Errors
	Experimental Evaluation
	Overwritten Errors
	Out-of-Scope Errors
	Unsaved Errors

	Performance
	Other File Systems
	Summary

	Errors Masquerading as Pointers in Linux
	Error Transformation in the Linux Kernel
	Error-Valued Pointer Bugs
	Bad Pointer Dereferences
	Bad Pointer Arithmetic
	Bad Overwrites

	Error Propagation and Transformation
	Bounded Idempotent Semiring
	Transfer Functions

	Finding and Reporting Bugs
	Experimental Evaluation
	Bad Pointer Dereferences
	Bad Pointer Arithmetic
	Bad Overwrites
	False Negatives

	Performance
	Other Linux Versions and Code Bases
	Summary

	Error-Code Mismatches Between Code and Documentation
	Finding Error Return Values
	Linux Manual Pages
	Experimental Evaluation
	Undocumented Error Codes
	Performance

	Summary

	Error-Propagation Bugs in User Applications
	Case Study: Mozilla Firefox
	True Bugs
	Harmless Dropped Errors
	False Positives
	Performance

	Case Study: SQLite
	Results
	Performance

	Summary

	Related Work
	Error Propagation and Dropped Errors
	Errors Masquerading as Pointer Values
	Undocumented Error Codes

	Conclusions and Future Directions
	References

