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ABSTRACT 

 
 

CLASS INVARIANT SHAPE ANALYSIS 
 

by 
 

Cindy Rubio 
 

The University of Wisconsin-Milwaukee, 2004 
Under the Supervision of Dr. Adam B. Webber 

 
 
 
 

 Class invariants can be used for compiler optimization, verification and program 

understanding. Finding class invariants is not a trivial task. In this thesis work we focus 

on the identification of class invariants that describe the shapes of linked data structures 

manipulated by the program (an unannotated Java program). We combine two techniques 

in order to achieve our goal: shape analysis and DC invariant analysis. We implement the 

analysis and experiment with some small programs. We find that the results obtained are 

the most of the time accurate except when dirty-called methods are present. Dirty-called 

methods introduce a serious problem in the analysis, so we discuss a couple of 

alternatives to handle them.   
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1. INTRODUCTION 

Apparently similar but extremely different definitions of class invariant can be 

found in the literature. The reason is that class invariants can be seen from different 

points of view. Class invariants are treated normatively the most of the time [9], i.e. they 

are used to prescribe a norm or standard. For example, the programmer identifies that 

certain value is never null or is in within a specific range and introduces an assertion to 

be checked by the system at run-time that will indicate a bug in the program whenever it 

evaluates to false.  

Among the programming languages that allow the specification of class invariants 

by using assertions are Eiffel [4], Anna [3] and JML [2]. Some projects using JML [2] 

such as ESC/Java [13], LOOP [14] and Daikon [15] have as goal to help the programmer 

to find bugs in the program by attempting proofs of the assertions provided by him [9]. 

All these projects attempt to verify what the programmer has identified as a class 

invariant, so nothing is to be done about class invariants missed or just ignored by the 

programmer.  

Our purpose is to identify class invariants for use in compiler optimization. As it 

can be seen, it may not be enough to rely on the programmer to specify the class 

invariants: first because the programmer should not be forced to specify class invariants 

whose only purpose is to help the compiler to generate better code and second, because 

even when the programmer is willing to specify them, he may not be aware of their 

existence. Therefore, we need an alternative way to identify them. 

The approach is to directly analyze the code to identify class invariants. So rather 

than looking at class invariants as assertions specified by the programmer that establish a 



 

                                                                        

2

certain behavior of the program, we see them as properties to be extracted from the code 

that will describe the behavior of the program.  

For example, consider a class Stack that implements the standard stack operations 

(push, pop, peek and isEmpty), using a linked list in the obvious way. Our analysis can 

examine such a class and determine a variety of class-invariant properties. One class-

invariant property of such a Stack is that the linked list is always acyclic. Another is that 

the nodes of the linked list are always unshared. 

 An existing technique called shape analysis can identify properties of linked data 

structures. [5, 6, 7, 8] show how to perform intraprocedural shape analysis. As mentioned 

in [17], scaling the shape analysis algorithm to analyze full programs and not just single 

procedures is difficult. Interprocedural shape analysis has been attempted on C [16] and 

Java [18] programs. Some of these attempts follow the k-call string approach, which is 

both imprecise and expensive according to [16]. An existing DC invariant analysis can be 

used to reason with class-invariant assertions. It has been applied to some unary and 

binary analyses, but it has never before been used on assertions about the shapes of linked 

data structures. 

Our research combines these two techniques and achieves results that have not 

been achieved before: the identification of class-invariant properties of linked data 

structures in unannotated Java code using DC invariant analysis. 

The next section presents formally the problem to be studied in this thesis. Section 

3 provides an overview of class invariants and shape analysis, including the work done in 

both areas. Class invariant shape analysis is presented in Section 4. Section 5 includes 
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three examples to which class invariant shape analysis was applied and the results 

obtained. Future work is presented in Section 6 followed by the Conclusion in Section 7. 

 

 

2. PROBLEM DESCRIPTION 

Properties of linked data structures such as acyclicity, disjointness and 

sharedness can be used for compiler optimization. Identifying these properties is not 

trivial. The shape analysis technique can reveal such properties, however it is difficult to 

scale to analyze full programs. The DC invariant analysis can be used to find class 

invariants, however it has never been applied to the analysis of linked data structures. 

 

This thesis has as its goal to design and implement a static program analysis 

technique to identify class-invariant properties of the linked data structures manipulated 

in a program by combining the DC invariant analysis and the local shape analysis 

technique in unannotated Java programs. The results could be used in a variety of 

applications such as program optimization, understanding, verification and debugging 

among others. The results could also be used to assess the concept of DC class invariants, 

which has never been applied to this kind of analysis.   
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3. REVIEW OF CLASS INVARIANT AND SHAPE ANALYSIS LITERATURE 

 In this review we start by presenting in section 3.1 a general discussion about 

class invariants. Section 3.2 introduces the category of class-invariants we will work with 

in this thesis: DC class invariants. The DC class invariant analysis is presented in section 

3.3. An overview of the shape analysis technique follows in section 3.4. Finally, there is a 

section discussing some related work in both areas: class invariants and shape analysis. 

3.1 Overview of Class Invariants 

As mentioned earlier, many different definitions of class invariant can be found in 

the literature and that is because they can be seen from different points of view.  A simple 

but inadequate definition might be: 

A class invariant is a property that is true of all objects of a given class at all 
times. 
 

[9] presents a complete discussion of this definition. There are many questions we 

need to ask ourselves. First we need to decide what we mean by a property. Are they 

unary or binary properties? Do we just refer to the values of the fields of an object? Are 

we referring to properties of linked data structures?  Second, the definition says that a 

class invariant is a property that is true of all objects. Should it mean all objects that 

occur in any execution of a given program or all objects that occur in any execution of 

any program that contains the class? Third, what does it mean to say of a given class? 

How about inheritance? And last, when does an invariant start being true for an object? Is 

it possible for the class invariant to be temporary broken in the middle of the execution of 

a method? We need to answer each of these questions in order to define what we mean by 

class invariant.  
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The next section answers all of these questions for a particular category of class 

invariants: DC invariants. Section 3.3 introduces the DC analysis technique. 

 

3.2 Disciplined Clean Invariants Definitions 

Disciplined clean invariants [21] are a category of class invariants that are 

reasonably tractable for static analysis. Before introducing the definition of DC invariant, 

it is necessary to define disciplined and undisciplined fields, tight and leaky constructors, 

as well as clean-called and dirty called methods. 

Definition 1  
A disciplined nonstatic field of a class is one that is written only in constructors or in 
synchronized nonstatic methods of the class, and only as a field of this (the self object). 
All other nonstatic fields are undisciplined. 

 
 

Definition 2  
A tight constructor is one that does not store a reference to the object under construction 
(except on the operand stack), either directly or by passing it to a method, which stores it. 
All other constructors are leaky. 

 
 

Definition 3  
A clean-called nonstatic method is one that is not called, either directly or transitively, 
from any constructor of the class, or from any nonstatic method of the class at any point 
at which any disciplined nonstatic field has been altered. It is either explicitly 
synchronized, or else called only from other clean-called nonstatic methods of the class. 
All other nonstatic methods are dirty-called. 

 
 

Definition 4  
A nonstatic Disciplined Clean invariant is a relation involving only constants and/or the 
disciplined fields of a class that is always true on entry in clean-called nonstatic methods 
of the class. 

 
 
If constructors are substituted for class initialization code in the previous 

definitions then we will get the definitions for disciplined and undisciplined static fields, 

clean-called and dirty-called static methods, and static DC invariants. Nonstatic DC 

invariants and static DC invariants need to be classified as two different categories of DC 
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invariants when dealing with multi-threaded programs since static methods and nonstatic 

methods synchronize on different locks; for single-threaded programs they can be 

considered as a single category. 

 

3.3 DC Invariant Analysis 

 The DC invariant analysis algorithm is a consequence of Theorem 1. Theorem 2 

may be used for the analysis of static DC invariants. 

Theorem 1  
The disciplined nonstatic fields of this on entry in any clean-called nonstatic method of a 
class must be as they were on exit from some constructor or nonstatic method of the 
class, excluding the case of abrupt termination in tight constructors. 
 
Theorem 2  
The disciplined static fields of a class on entry in any clean-called static method of the 
class must be as they were on exit from class initialization code or from some static 
method of the class. 
 
Nonstatic DC invariant analysis is illustrated in Figure 1.  
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C = a class 
 

A = Any domain of field assertions for the 
disciplined nonstatic fields of C, 
ordered by implication 
 

a default∈ A = The strongest assertion in A that 
applies to the fields as initialized using 
the Java default initializers 
 

∀ m∈ C,   
Jm: A→ A = Monotonic method analysis function. 

∀ a∈ A, if a is true of this on entry in m, 
then Jm(a) is true of this on exit from m 
 

Jm = Nm  ⊔ Am  
 

Nm = Monotonic method analysis function 
for the normal termination 
 

Am = Monotonic method analysis function 
for the abrupt termination 

 

B = ⊔ Nx(adefault)  (1) 
  Tight constructors x    
C = ⊔ Jx(adefault)  (2) 

 Leaky constructors x    
D = ⊔ Jx(⊤)  (3) 

 Nonstatic dirty-called 
methods x 

   

ainv = b ⊔ c ⊔ d ⊔ Jx (ainv ) (4) 
  Nonstatic 

clean-called 
methods x 

  

 

K(a) = A ⊔ Jx (a) (5) 
   Nonstatic 

clean-called 
methods x 

  

A0 = b ⊔ c ⊔ d   (6) 
     

ai+1 = K(ai)   (7) 
 

Figure 1: Nonstatic DC invariant analysis 
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3.4 Overview of Shape Analysis 

3.4.1 Shape analysis 

Shape analysis is a static program analysis technique attempting to determine 

properties of the heap contents [1]. The goal of Shape analysis is to give, for each 

program point, a set of finite shape graphs that describe the possible shapes that the heap-

allocated data structures manipulated by the program might have at that specific point in 

the program. Since shapes describe the contents of the heap, they are also known as shape 

descriptors.  

Before mentioning examples of what a shape descriptor might indicate and the 

properties that this analysis technique may reveal, it is important to note that Shape 

analysis is exclusively interested in the heap-allocated data structures manipulated by the 

program and in the pointers into the heap from the stack, global memory, or from cells in 

the heap. Shape analysis is not interested in any non-address values computed by the 

program. 

  

 

 

 

 

 

 

As shown in Figure 2, a shape descriptor could indicate whether a singly linked 

list, doubly linked list, binary tree or any other data structure is contained in the heap. 

A singly linked list A doubly linked list A binary tree 

Figure 2: Graphical representation of shape descriptors. 



 

                                                                        

9

Shape analysis computes a set of such shape graphs for every program point: a finite set 

representing the infinitely many possible configurations of the heap at that point. Each set 

of shape descriptors or shape graphs that could arise at each point in the program can then 

be analyzed in the search for properties such as cyclicity/acyclicity, 

jointness/disjointness, sharing/unsharing, reachability/unreachability, etc.   

Knowing whether one or several properties hold for all the possible shape graphs 

at each point in the program is valuable information that could be further used in program 

debugging, optimization, verification and understanding. [6] gives us some examples of 

how this information could be used: 

a) Debugging. If a pointer variable or pointer component of a heap cell may contain 

null then it would be valuable debugging information to know it at the entry of any 

statement attempting to dereference this pointer. Another example is if we know that 

a heap cell may be shared. The heap cell might be explicitly deallocated more than 

once and might leave the store manager in an inconsistent state. Likewise, if we know 

that a heap cell is never shared, it can be deallocated as soon as the last pointer to it 

does not exist. 

b) Optimization. If we know that a heap cell will never be pointed by two distinct 

pointer variables, then the program dependence information can be improved. 

Another example is if we know that a heap cell is unreachable then it can be garbage 

collected. If we know that two data structures are disjoint, then they may be processed 

in parallel by different processors and may be stored in different memories. 

c) Verification and Understanding. Knowing the properties that hold in all the sets of 

possible shape graphs that could arise at a specific point in the program could 
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definitely help us to understand the behavior of the program as well as to verify that it 

meets its specification.  

d) Reference counting is a very simple, non-compacting garbage collection 

technique in which the heap maintenance is spread throughout the program execution 

rather than suspending the program when the garbage collector runs [12]. Identifying 

that a linked data structure may be cyclic can help us to avoid using reference 

counting since one of the technique's major problems is that it cannot garbage collect 

circularly linked data structures.  

We will not discuss the structural operational semantics of shape analysis here. For 

more information please refer to [5, 7].  

 

3.4.2 Static Shape Graphs 

As mentioned earlier, the Shape Analysis technique will produce a set of shape 

graphs for each point in the program. What is a shape graph? A static shape graph is a 

finite, labeled, directed graph that approximates the actual or concrete stores that can 

arise at a specific point in execution [7].  A shape graph consists of a set of shape nodes, 

each of them representing a concrete cell (we will see later that there exists a special kind 

of shape node that may represent multiple heap cells). 

An important property of each static shape graph in a program is that they must 

have a bounded size, unlike the data structures that programs manipulate and whose size 

is in general unbounded. How is it possible to achieve a bounded size for the shape 

graphs when the data structures that the shape graphs are describing may not have a 

bounded size? A special kind of shape node called a summary node makes it possible to 
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achieve a bounded size for the shape graph by allowing the representation of multiple 

heap cells (not pointed to by any pointer variable or heap cell at that given program point) 

by the same shape node. 

Another property of the shape graphs is that their description of the heap contents 

must be conservative, i.e. every concrete store that can occur at a given program point is 

represented by one of the shape graphs in the set computed for that point. 

 

3.4.3 Shape Nodes 

 Shape graphs are abstractions of memory and they consist of one or more shape 

nodes. Each shape node consists of one or more pointers to other shape nodes depending 

on the data structure being represented. For example, if the program is manipulating a 

singly linked list, a shape graph will attempt to describe it and each shape node in the 

graph will have a single pointer to another shape node. Each shape node would have two 

pointers to shape nodes if the data structure being represented is a doubly linked list, and 

so forth. 

A shape node cannot be thought of as a representation of a fixed partition in 

memory since a shape node does not contain information about the concrete location. A 

shape node instead keeps aliasing-configuration information, i.e. the set of variables 

pointing to the node at a particular time.  This set of variables pointing to the node can be 

used as the node�s name or identifier, which will be unique since a pointer variable or 

heap cell cannot point to two different locations at the same time. A shape node pointed 

to by at least one pointer variable or heap cell represents a unique cell in any given 

concrete or actual store. 
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As mentioned earlier, in contrast to concrete stores, a shape graph must have a 

bounded size and this is achieved by having a summary node. The summary node, instead 

of representing a single concrete cell (as general shape nodes do), will represent multiple 

cells of a single concrete store that are not pointed to by any pointer variable or heap cell. 

The summary node has as name the empty set, which means that none of the cells 

represented by the node is pointed to by a pointer variable or heap cell.   

Each shape node also has a Boolean flag is-shared associated with it. The flag 

helps us to distinguish between shared and unshared shape nodes. Whenever this flag is 

true, it means that the heap cell (or heap cells in the case of the summary node) 

represented by the node may be the target of pointers emanating from two or more 

distinct cell fields.  This flag is especially useful for summary nodes.  Summary nodes 

always point to themselves, because the cells they represent may be linked to each other.  

But if the summary node is unshared, it still tells us something useful about the shape of 

the linked structure: the heap cells it represents are unshared, and therefore cannot be 

linked circularly.  

 

{x, y} IsShared = false 

Figure 3: A Shape Node representing a node in a singly linked list, pointed to by variables x and y 
and pointing to null. 
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3.4.4 Summarization of a shape node 

The name of a shape node in a shape graph consists of the set of the variables that 

point to the shape node at that time. Whenever a pointer variable or heap cell no longer 

points to a shape node, its name is removed from the name of that shape node. This 

means that whenever a shape node is not pointed to by any pointer variable or heap cell, 

its name becomes the empty set, which is the same as the name of the summary node. As 

soon as the name of a shape node becomes the empty set, that shape node is merged with 

the summary node. This process is known as summarizing the shape node. It is important 

to note that all cells pointing to the summarized node will now point to the summary 

node. Likewise, the summary node will point to all the nodes that the summarized node 

was pointing to. 

  

3.4.5 Materialization of a shape node 

When a pointer variable or cell is redirected to a concrete cell already represented 

by a shape node that is not the summary node in a shape graph, its name is just added to 

the shape node�s name. However when a shape node other than the summary node does 

not already represent that concrete cell, we need to �unsummarize� a shape node from the 

summary node and add the name of the variable or cell pointing to it to its name. This 

process is known as materializing a shape node and allows the static shape graph to cover 

all possible configurations of storage. This materialized node will point to the summary 

node.  
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3.4.6 Transfer functions 

The transfer functions to be used in the shape analysis follow. Please refer to [5] 

for a more formal description and examples of how shape graphs are transformed by each 

function. 

Transfer function for Boolean tests.  Boolean tests do not modify the heap; therefore 

they do not have any impact on the shape graph. 

Transfer function for x = nil. If x is not present in any shape node in the graph, then the 

graph is unmodified; otherwise x is removed from the node it was pointing to.  The node 

x was pointing to will be summarized if x was the only variable pointing to it because its 

name will become the empty set after removing x. 

Transfer function for x = y. If x is equal to y, then the graph remains the same. If x is 

not equal to y, then the first step is to remove x from the node it was pointing to. The 

second step is to add x to the set of the shape node to which y points to (i.e. the shape 

node containing y in its name set), if any. It is important to note that even when x and y 

will point to the same cell, the cell will not be considered as shared. The reason is that the 

sharing information only records sharing in the heap and not sharing via state [5]. In other 

words, only cells pointed to by more than one cell field will be considered to be shared. 

Transfer function for x = y.sel. This statement is equivalent to a sequence of three 

assignments: t = y.sel, x = t and t = nil, where t is a temporary variable. If there is no 

node pointed to by x in the shape graph, then the statement will not have any effect on the 

graph. If there exists a node pointed to by x, then we start by removing x from that node�s 

set name.  If y does not point to any node in the graph, we are done; otherwise one of 

three possibilities may occur: 1) y.sel is nil, 2) y.sel points to a node that is not the 
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summary node or 3) y.sel points to the summary node. If y.sel is nil, then the graph will 

not suffer any other modification. If the second possibility arises instead, we proceed to 

add x to the node to which y.sel points to. If y.sel points to the summary node, then a 

node needs to be materialized and x is added to this materialized node. 

Transfer function for x.sel = nil. First, if there is no node pointed to by x, then the 

statement does not have any effect on the graph. On the other hand, if there exists a node 

pointed to by x, then we proceed to check whether x.sel points to a node. If x.sel does not 

point to any node we are done, however if it does point to a node we need to remove the 

link between the node pointed to by x and the node pointed to by x.sel. If the node 

pointed to by x.sel was shared, then we need to check whether this condition has changed 

such as in the case where there is at most one pointer left and it does not have source the 

summary node in which situation the node will become unshared. 

Transfer function for x.sel = y.  This statement is equivalent to t = y, x.sel = t and t = 

nil where t is a temporary variable. The statement does not have any effect on the graph if 

x does not point to any node in the graph. If there exists a node pointed to by x, then we 

check whether any node is pointed to by y. If there is no node pointed to by y, then we 

have the transformer x.sel = nil discussed earlier. If there exists a node pointed to by y, 

we need to remove the link from x.sel and the node it points to, if any. Then we proceed 

to add a link from the node pointed to by x to the node pointed to by y. We need to update 

the shared information of the node pointed to by y because it might have become shared. 

Transfer function for x.sel = y.sel. This statement is equivalent to the sequence of 

assignments: t = y.sel, x.sel = t and t = nil where t is a temporary variable. As discussed 

earlier, if x is not pointing to any node in the graph, the statement does not have any 
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effect on it. If x points to a node, then we check for y. If y or y.sel are nil, then we have 

the transformer x.sel = nil; otherwise we also remove any link between the node pointed 

to by x and the node pointed to by x.sel and add a link between the node pointed to by x 

and the node pointed to by y.sel. The shared information of the node pointed to by y.sel 

needs to be updated. 

Transfer function for x = new X. The old binding for x needs to be removed and a new 

node is introduced in the graph. This new node is unshared and x is added to its set name. 

 

3.5 Related work 

3.5.1 Class invariants 

• Houdini is an annotation assistant that infers suitable ESC/Java annotations for an 

unannotated Java program [1]. This annotation assistant can derive invariants from 

unannotated Java code as well.  The main difference between Houdini and the work 

discussed in this thesis is that Houdini does not derive invariants about the shapes of 

the linked data structures manipulated by a program. 

• An analyzer of Java bytecode developed at the University of Wisconsin � Milwaukee 

[11] performs DC invariant analysis to identify class invariants in unannotated Java 

code. It has been applied to unary analyses such as null-pointer analysis and lattice-

of-signs analysis. It has also been applied to a local method analysis called relational 

constraint. This method analysis finds binary relations among the variables and 

constants of a program by constructing a table of binary relations and treating the 

program as a collection of constraints on tuples of relations in the table [10,11]. The 

class invariant shape analysis discussed in this thesis is implemented in this analyzer 
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as well, however the main difference between shape analysis and the other 

implemented analyses is that none of them reveal information related to the shapes of 

the linked data structures manipulated by a program as shape analysis do. 

 

3.5.2 Shape analysis 

• Checking Cleanness in Linked Lists [16] describes an algorithm called SG+R that 

automatically discovers memory cleanness errors in C programs statically. The 

algorithm consists on performing interprocedural shape analysis to the program. They 

use the automatic call-string approach of PAG to handle procedures and mention that 

this approach is inadequate since it is both imprecise and expensive. This algorithm 

applies shape analysis as explained in [5, 6, 7] however each statement also has a 

cleanness precondition (a requirement that every store occurring at this statement 

must satisfy). 

The main differences between the SG+R algorithm and our work is that for 

each graph that occurs before a statement they impose conditions that guarantee that 

the preconditions of that statement are met by every store represented by the graph. 

The tool checks for cleanness preconditions on the fly, displaying error messages as 

soon as cleanness violations are found. We do not associate preconditions to any 

statement and do not search for any properties in the shape graphs during analysis 

until we are done. They work with C programs whereas we are performing the 

analysis on Java programs.  Moreover, as mentioned earlier, they use the automatic 

call-string approach to do the interprocedural analysis while we use the DC invariant 

analysis technique. 
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• [17] presents an interprocedural shape analysis algorithm for programs manipulating 

linked lists. The algorithm analyzes recursive procedures more precisely than existing 

algorithms. They follow the approach of summarizing activation records the same 

way list elements are summarized. The main idea is to make the runtime stack an 

explicit data structure and abstract it as a linked list (the entire heap and run-time 

stack are represented at every program point). It handles programs manipulating 

linked lists written in a subset of C. We handle programs manipulating linked lists in 

Java and our approach using DC invariant analysis is completely different. Also, they 

have solved a problem still open for us: the handling of recursive procedures. 

• A relational approach to interprocedural shape analysis is introduced in [19]. 

Procedures are considered as transformers from the entire program heap before the 

call, to the entire program heap after the call. Every heap-allocated object is 

represented at every program point; on the other hand, only the values of the local 

variables of the current procedure are represented, which means that irrelevant parts 

of the heap are summarized to a single summary node during the analysis of an 

invoked procedure. This approach is really similar to our approach to handle method 

calls, however the difference again is that we are applying the DC invariant analysis 

technique. 

• [20] presents a non-standard semantics for Java programs in which procedures 

operate on local-heaps reachable from actual parameters. This algorithm yields an 

algorithm more efficient than those existing shape analysis algorithms, however it is 

not that precise for programs with many sharing patterns. The similarity with our 
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work is that [20] also attempts to do an interprocedural shape analysis in Java 

programs, but following a different approach. 

• The design and implementation of a framework for implementing the algorithm 

discussed in [20] for single threaded Java programs is provided in [18]. We have not 

experimented with multi-threaded Java programs, but our DC invariant analysis 

supports this in theory. So that would be a significant contribution. 

 

4. CLASS INVARIANT SHAPE ANALYSIS 

4.1 Description 

The DC invariant technique can be seen as an amplification of any local method 

analysis since class invariants are built up from the information obtained from local 

method analysis.  Therefore, the local method analysis is an interchangeable component 

of the class invariant analysis. 

 Class invariant shape analysis is an amplification of the shape analysis technique, 

used exclusively in local method analysis until now. In class invariant shape analysis, 

rather than applying shape analysis on isolated methods in order to find local invariants, 

we apply shape analysis to constructors and dirty-called methods and iterative shape 

analysis to the clean-called methods of the class until a fixed point is reached. Class 

invariants may then be built up from the information obtained as a result of the method 

analyses.   

A more detailed description of class invariant shape analysis follows. We apply 

shape analysis individually to tight constructors, leaky constructors and dirty-called 

methods. Each method has an initial assertion, which is the set of shape graphs that may 
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arise at the point when the method being analyzed is called. The initial assertion for 

constructors is the empty set of shape graphs since reference fields are initialized to null.  

The initial assertion for dirty-called methods must be the weakest possible assertion, 

representing the fact that nothing is known about the shapes in the heap to which 

reference fields of the class may point. The union of the graphs resulting from these 

shape analyses will become the initial assertion for clean-called methods.  

 Once the constructors and dirty-called methods are analyzed, we proceed to 

analyze the clean-called methods. We apply an iterative shape analysis on them until a 

fixed point is reached. Each clean-called method is analyzed considering its initial 

assertion. After each iteration, the union of the graphs resulting from each method 

analysis will become the new assertion. The fixed point will be reached whenever this 

new assertion is equal to our initial assertion. 

 

4.2 Implementation details 

4.2.1 Existing components 

The class invariant shape analysis is implemented on Webber's analyzer for Java 

bytecode previously discussed. The analyzer performs three main tasks. First, it 

decompiles class files into internal flow graphs. Second, the analyzer does a whole-

program load and analysis in order to classify the fields as disciplined or undisciplined 

fields, the constructors as tight or leaky constructors, and the methods as clean-called or 

dirty-called methods. Third, the analyzer has the capability of inlining leaf calls. This 

feature has an important impact in the class invariant shape analysis implementation. 
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 4.2.2 New components 

A general description of the work done for this thesis follows: 

ShapeNode class: creates instances of shape nodes, which make up the shape graphs that 

describe the heap contents. Each shape node has a name that is a set containing the name 

of the variables pointing to the shape node at that particular time. Shape nodes have one 

or more links to other shape nodes depending on the data structure to be represented 

(singly linked list, doubly linked list, etc). Shape nodes also have an isShared flag that 

will indicate whether the shape node is shared or not. 

ShapeGraph class: creates instances of shape graphs. The shape analysis technique has 

the goal of producing a set of shape graphs for each point in the program. Each shape 

graph consists of one or more shape nodes. 

Assertion class: an assertion is a possibly empty set of graphs that may arise at a specific 

point in the program. Assertions play an important role in the class invariant analysis. For 

example, when applying iterative shape analysis to clean-called methods, assertions will 

determine when the fixed point has been reached.  

Shape Analysis: this is a static class that implements the local method analysis as well as 

the class invariant analysis. 

Copy Elimination: does copy elimination in any given control flow graph. 

 

4.2.3 Method shape analysis 

 We traverse the method�s control flow graph in order to perform the analysis. A 

worklist is used to determine the order in which the blocks in the control flow graph will 
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be visited. Each block contains one or more bytecodes. Each bytecode knows how to 

transform the shape graphs arising that point.  

The method has an initial assertion and a final assertion. The initial assertion is 

the set of graphs that might arise at the point in which the method is called. The initial 

assertion may have zero or more shape graphs and the method must be analyzed 

considering each of them. The final assertion is the set of graphs produced during the 

analysis and that reach the general exit of the control flow graph. The general exit covers 

both normal and abrupt termination, which can also be analyzed separately. 

 

4.2.4 Class invariant analysis 

The class is loaded and each method is decompiled. After decompilation, we do 

leaf calls inlining. We implemented reaching definitions in order to do copy elimination. 

Doing copy elimination helped us to reduce the number of resulting shape graphs by 

about 65%.  

 The class invariant analysis treats constructors and dirty-called methods 

differently than clean-called methods, so it is necessary to do the classification before we 

start the analysis. The analysis starts by analyzing individually the tight constructors. We 

assume an empty initial assertion. The final assertion is the set of graphs at the normal 

termination block. The analysis then proceeds to analyze the leaky constructors whose 

initial assertion is also the empty set of shape graphs. Then we analyze the dirty-called 

methods. Their initial assertion is the weakest possible assertion. The final assertion for 

leaky constructors and dirty-called methods is the set of graphs at the general exit block 

(that includes abrupt and normal termination).  
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The union of the final assertion for each constructor and dirty-called method 

becomes the initial assertion for the first iteration of shape analysis to clean-called 

methods. It is important to note that the final assertion for each method is always 

simplified before it is union to the other final assertions. What do we mean by 

simplifying an assertion? An assertion is a set of shape graphs. Of course, there are not 

duplicate shape graphs in the set. As mentioned earlier, in the process of analyzing a 

method, temporary variables may be introduced into the graphs due to the fact that a 

statement in the program is usually internally represented by a sequence of Java opcodes 

(the operation is not done in a single step). So when we talk about simplifying an 

assertion we mean simplifying the shape graphs in the assertion by removing all 

temporary variables introduced during the method analysis as well as removing all local 

variables of the method.  

Having a simplified final assertion reduces significantly the number of shape 

graphs in the assertion, which makes the analysis of clean-called methods faster. 

Moreover, simplifying the shape graphs helps us to keep only that information we are 

interested in: the DC fields of the class. So the process of simplification throws away all 

the local information we are not interested in. 

 The second phase of the analysis involves analyzing the clean-called methods. 

Like constructors and dirty-called methods, clean-called methods also have an initial and 

final assertion. The initial assertion contains all the shape graphs that may arise at the 

point when the method is called, therefore all of them must be considered when analyzing 

the method. Likewise, all those new graphs produced during the analysis that reach the 

method�s general exit are added to the method�s final assertion.  
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The union of final assertions is performed after all clean-called methods have 

been analyzed. The result is the final assertion from this iteration. If this new assertion is 

equal to our initial assertion, that means we have reached the fixed point. Otherwise, the 

new assertion becomes the initial assertion and we iterate through the clean-called 

methods again. For efficiency, the analysis remembers the shape graphs contained in the 

previous initial assertion so that the clean-called methods are re-analyzed only on those 

newly added graphs. 

Once we have reached the fixed point, that final assertion (class assertion) is the 

class invariant.  It represents class-invariant shape information about every DC field of 

the class.  It can be a complex collection of shape graphs, but we can use it to test for a 

variety of specific, simple properties. For example, if we are interested in knowing 

whether the data structure is acyclic, we can write a method that checks whether a shape 

graph is acyclic. Then we can check whether all the shape graphs in the class assertion 

are acyclic, if so we can conclude that it is acyclic. If one or more of the shape graphs 

represent a cycle in the store, then the answer will be that it is not acyclic. 

We have implemented a couple of methods that use the class invariant to test for 

such properties. They include the previously discussed method to find out whether the 

data structure is acyclic, a method to check for null values, a method to check for 

sharedness and a method to check whether two linked lists are disjoint.   

 

4.3 Problems faced during implementation 

The main problem was how to associate each statement in the program with the 

corresponding graph transformer. The smallest unit in the analyzer is the opcode and a 
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single statement in the program usually consists of more than one. We tried three 

different approaches to solve the problem. These approaches are discussed below. 

The first approach was to identify the group of opcodes that corresponded to each 

statement in the program and whenever that group was found, apply a specific 

transformer to the shape graph. The problem arose when groups of opcodes were split 

into two or more blocks in the control flow graph. It was hard to group the opcodes in 

this situation. Difficult but not impossible, this approach was still too particular and 

seemed to fail in more complex programs.  

In the second approach, we tried to keep a list of transformers in each block. 

These transformers were those corresponding to the opcodes in that specific block. We 

found the same problem as in the first approach when attempting to group the opcodes. 

Even when the opcodes were successfully grouped, it was not clear what to do with those 

transformers belonging to more than one block. One solution was to merge or split blocks 

in the control flow graph as necessary, but that did not work either. 

The third approach was to treat each opcode as the smallest unit (as they are) and 

associate a transformer with each of them. As mentioned earlier, a statement in a program 

usually consists of several opcodes. The problem we faced was that temporary variables 

are used in the opcodes before we get the final result, so applying the transformers did 

not produce the expected shape graphs since we were not handling those temporary 

variables correctly. We then came up with the idea of giving special names to these 

temporary variables so that we could introduce them into the shape graph and later be 

able to remove them from the graph. These temporary variables allowed us to transform 
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the shape graphs correctly. Removing them from the shape graphs helped to reduce the 

number of different graphs obtained at the end of the analysis. 

Another problem we faced was related to iterating through loops. In our first 

approach, we were able to specify how many times to iterate, but of course it was 

unrealistic. Then we successfully applied the standard techniques of forward data flow 

analysis. (This aspect of shape analysis is not explicit in [7], but is clarified in [5])  Each 

block in the control flow graph has an initial set of shape graphs, which is the union of 

sets of shape graphs from the blocks we are coming from. Whenever the sets do not 

change, we stop iterating.  

The last problem arose when we attempted to analyze a method containing calls 

to other methods. The approach we follow is to map the actual parameters to the formal 

parameters and take the current set of shape graphs as the initial set for the method being 

called. Once this method is analyzed, then the final set of shape graphs is returned and the 

analysis of the caller method can continue. This approach seems to work on our 

implementation, however we would prefer to inline any method calls to have a more 

general solution that could even be a contribution to the program analyzer and be used for 

other program analysis in the future. Leaf calls inlining has already been added to the 

analyzer to support this project. For non-leaf calls we still follow the approach we just 

discussed. 
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5. EXAMPLES 

5.1 Class IntStack 

Our first example illustrates the class invariant shape analysis of a class IntStack. 

IntStack is a stack of integers implemented using a singly linked list. As this is our first 

example, the analysis description will be very detailed. At the end of the class invariant 

analysis we will conclude whether any class invariants were identified.  

5.1.1 Source code 

Below the Java source code for classes IntStack and ConsCell. 

  
public class IntStack { 
    private ConsCell top; // top of the stack or null 
     
    /** 
     * Construct a new Stack given its first ConsCell. 
     * @param s the first ConsCell in the Stack or null 
     */ 
    public IntStack() { 
 this.top = null; 
   }  
 
    /** 
     * Pushes i onto the top of the Stack 
     * @param i the integer to be added onto the Stack. 
     */ 
    public void push(int i) { 
 top = new ConsCell(i, top); 
    } 
 
    /** 
     * Returns the object at the top of the Stack and removes it. 
     */ 
    public ConsCell pop() { 
 ConsCell e = null; 
 if (top != null) { 
     e = top; 
     top = top.getTail(); 
 } 
 return e; 
    } 
 
    /** 
     * Returns the object at the top of the Stack without removing it. 
     */ 
    public ConsCell peek() { 
 return top; 
    } 
} 
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/** 
 * A ConsCell is an element in a linked list of 
 * ints. 
 */ 
public class ConsCell { 
  private int head;      // the first item in the list 
  private ConsCell tail; // rest of the list or null 
 
  /**  
   * Construct a new ConsCell given its head and tail. 
   * @param head the int contents of this cell 
   * @param tail the next ConsCell in the list or null 
   */ 
  public ConsCell(int head, ConsCell tail) { 
    this.head = head; 
    this.tail = tail; 
  } 
  /** 
   * Accessor for the head of this ConsCell. 
   * @return the int contents of this cell 
   */ 
  public int getHead() { 
    return head; 
  } 
 
  /** 
   * Accessor for the tail of this ConsCell. 
   * @return the next ConsCell in the list or null 
   */ 
  public ConsCell getTail() { 
    return tail; 
  } 
 
  /**  
   * Mutator for the head of this ConsCell. 
   * @param head the new int in this ConsCell 
   */ 
  public void setHead(int head) { 
    this.head = head; 
  } 
 
  /** 
   * Mutator for the tail of this ConsCell. 
   * @param tail the new tail for this ConsCell 
   */ 
  public void setTail(ConsCell tail) { 
    this.tail = tail; 
  } 
} 

 
5.1.2 Control flow graphs, opcodes and transformers 

 The analyzer decompiles Java class files into internal control flow graphs. Each 

control flow graph consists of a group of blocks where each block contains one or more 

Java opcodes. The control flow graph corresponding to the method push is illustrated in 
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Figure 4. A crossed out Java opcode represents an opcode that is removed after copy 

elimination.  

 
/** 
 * Pushes i onto the top of the Stack 
 * @param i the integer to be added onto the Stack. 
 */ 
 public void push(int i) { 
   top = new ConsCell(i, top); 
 } 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Entry

Aload_iOp 
NewOp 
DupOp 

Iload_iOp 
Aload_iOp 
GetFieldOp 

InvokespecialOp

ReturnOp

Normal Exit

Exit

Abrupt Exit 

PutFieldOp

(A) 

Entry

Aload_iOp 
NewOp 
DupOp 

Iload_iOp 
Aload_iOp 
GetFieldOp 

Aload iOp

ReturnOp

Normal Exit

Exit

Abrupt Exit

PutFieldOp

Aload_iOp 
Iload_iOp 

PutFieldOp 

Aload_iOp 
Iload_iOp 

PutFieldOp 

Figure 4: (A) Control flow graph for method push. (B) Control flow graph 
for method push after inlining. 

(B) 

To be inlined 



 

                                                                        

30

It is important to note that in our implementation, the name local0 refers to the 

field this. The name local1 refers to the field top. Figures 1, 2, 3, 4 and 5 contain the 

opcodes and transformers for each method in class IntStack.  

Opcode Transformer 
PutFieldOp local0.top = null 
ReturnOp None 

 

Table 1: Opcodes and Transformers for constructor IntStack. 
 

Opcode Transformer 
NewOp _t1 
GetFieldOp _t2 = local0.top 
PutFieldOp _t1.head = local1 
PutFieldOp _t1.tail = _t2 
PutFieldOp local0.top = _t1 
ReturnOp None 

 

Table 2: Opcodes and Transformers for method push. 
 

Opcode Transformer   
Astore_iOp local1 = null   
GetFieldOp None   
IfNullOp None   
GetFieldOp _t1 = local0.top   
Astore_iOp local1 = _t1   
GetFieldOp _t2 = local0.top  _t3 = _t2.tail 
InvokeVirtualOp _t2 = _t2.getTail()  _t2 = _t3 
PutFieldOp local0.top = _t2   
ReturnOp None   

                

Table 3: Opcodes and Transformers for method pop. 
 

Opcode Transformer 
GetFieldOp _t3 = _t2.tail 
ReturnOp None 

 

Table 4: Opcodes and Transformers for method getTail. 
 

Opcode Transformer 
GetFieldOp _t1 = local0.top 
ReturnOp None 

 

Table 5: Opcodes and Transformers for method peek. 
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5.1.3 Class invariant shape analysis 

We will assume the following classification of fields and methods for simplicity. 

Later we will show an example in which a dirty-called method is present 

 DC fields:   1 (top) 
 Tight constructors:  1 
 Leaky constructors:  0 
 Dirty-called methods: 0 
 Clean-called methods:3 (push, pop and peek) 
 
 
PHASE 1. Analyzing tight constructors, leaky constructors and dirty-called methods. 

We assume an empty class assertion at the entry to each constructor since it is the 

strongest assertion. An empty set of shape graphs is the strongest assertion because it 

means that no shapes in the store are pointed to by the variables of interest. This is a 

correct representation because the default initialization for reference fields in Java is null. 

This example does not contain any dirty-called methods, however it is important 

to mention that the initial assertion for them would be the weakest assertion, i.e. the set of 

shape graphs representing all possible configurations of the heap contents. This is still an 

open problem when there are multiple variables in the set and multiple references to an 

object since the set of shape graphs representing all possible configurations would be 

very large, at least exponential in the number of variables. 

Each constructor and dirty-called method is analyzed independently. A possibly 

not empty assertion results from the analysis of each them. The union of these resulting 

assertions will become the new class assertion to be used when analyzing clean-called 

methods. 

- Analyzing tight constructor: 
 
Initial assertion: empty set of shape graphs. 
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 Transformer(s): (See table 1) 
  local0.top = null    ->    the set of shape graphs remains empty. 
 
Final assertion: empty set of shape graphs. 
 
 There are no other tight constructors or any leaky constructors and dirty-called 

methods to analyze, so we proceed to union the final assertion from each analyzed 

constructor and dirty-called method (in this case we only have a final assertion fom the 

tight constructor), which results in an empty set of shape graphs. 

 
PHASE 2. Analyzing clean-called methods. 

 We do an iterative shape analysis to clean-called methods. The class assertion is 

updated at the end of each iteration by performing the union of all the final assertions 

produced by the analysis of each clean-called method and the class assertion itself. We 

keep iterating until the resulting class assertion is equal to the class assertion at the 

beginning of the iteration.  

 At this point in this example, some graphs will start being introduced to the set. 

Throughout this and other examples, we will use the following notation: 

• A rectangle node models the abstract representation of a cell in the heap. In this 

example, the rectangle is divided into two parts to denote the fact that node being 

represented consists of two fields: an integer and a reference to another node. Each 

node is identified by a name, which is the set of variables pointing to it. [5, 6, 7, 8] 

use an arrow pointing to a node per each variable pointing to it besides including their 

names in its name set. We omit these arrows for the sake of simplicity. 

• The summary node will be represented the same way �normal� shape nodes are, 

however we will identify it by Ø, which denotes the empty set. The summary node 
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represents one or more shape nodes, which are not pointed to by any variables at that 

time. The nodes represented by the summary node still have as many fields as 

�normal� shape nodes do. However it is important to note that since the summary 

node may represent several shape nodes at the same time, even when the shape nodes 

represented by it have a single link to another shape node, more than one link may 

emanate from the summary node.  

• As [5], we will use a double rectangle to represent the fact that a node�s is-shared flag 

is set to true. 

• If the reference field of a node does not point to any other node, it means it is null. 

 
ITERATION 1 
 
- Analyzing method push. 
 
 The initial assertion is the class assertion resulting from the analysis of 

constructors and dirty-called methods: an empty set of shape graphs. Table 2 has a list of 

transformers for the method push. Figure 5 shows how each of these transformers 

modifies the shape graph. Figure 6 shows the final assertion. 

 
1:   _t1 4:  _t1.tail = _t2 
 
 
 
2:  _t2 = local0.top   5:  local0.top = _t1 
 
 
 
3:  _t1.head = local1 

 
 

 
Figure 5: Shape graphs corresponding to the analysis of method push. 

 

{_t1} 

{_t1} 

{_t1} 

{_t1, top} 

{_t1} 
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Figure 6: Assertion after analyzing method push. 
 

 If we look at the control flow graph for method push, the opcodes corresponding 

to the first and second transformer are in the same block while each of the other opcodes 

corresponding to the rest of the transformers are found in different blocks. It is important 

to note that all the blocks containing these opcodes are connected to the abrupt 

termination block. This means that all the graphs except the one generated by the first 

transformer will reach the general exit block. Why does the final assertion only contain 

one graph? Shouldn�t it contain four graphs then? It should contain two graphs in any 

case because the assertion is a set of shape graphs, so there are no duplicate graphs. The 

second, third and fourth graphs are identical, so the set just contains it once and the fifth 

graph. But the final assertion does not even contain two shape graphs?  

 We are interested in finding class invariants, so the information we are interested 

in is the information related to the DC fields, the rest of the information can be dropped. 

Here is where we do some simplification in order to avoid having graphs that seem to be 

different because of temporary or local variables but that provide exactly the same 

information about the DC fields.   

 So, if we remove the temporary name _t1 from the second, third or fourth shape 

graphs (it will be once in the set), the node is not pointed to by any variable anymore and 

since this node is not pointed to by top (our DC field) or points to a node to which top is 

pointing to, we can get rid of it because it does not represent any useful information to us.  

When removing _t1 from the fifth graph, we get a node pointed to by top and we keep it. 

{top} 



 

                                                                        

35

Then we place the graphs resulting after the name removals (there is only one) in a set 

and that set becomes our final assertion.  Figure 6 shows this final assertion containing 

only one graph. 

- Analyzing method pop. 
 
 The initial assertion is an empty set of shape graphs since that is still our class 

invariant. Table 3 shows the transformers for the method pop. Figure 7 shows how no 

one of this transformers introduce anything new to the empty graph, therefore the final 

assertion is still a empty set of shape graphs. 

 

 
1:  local1 = null     5:  _t3 = _t2.tail 
 
  
2:  _t1 = local0.top  6:  _t2 = _t3 
 
 
3:  local1 = _t1  7:  local0.top = _t2 
 
 
4:  _t2 = local0.top   
 
  

Figure 7: Shape graphs corresponding to the analysis of method pop. 
 
 
- Analyzing method peek. 
 
 The initial assertion is the empty set of shape graphs. The method peek as a single 

transformer, which does not introduce anything new to an empty graph, so the final 

assertion is also an empty set of shape graphs. 

  
   _t1 = local0.top  
 

Figure 8: The transformer in method peek does not introduce 
anything to an empty shape graph. 
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- Union of final assertions and class assertion. 
 
Class assertion = class assertion ⊔ final assertion from method push ⊔ final assertion 

from method pop ⊔ final assertion from method peek  = 
 
 
 
  

 

Figure 9: The new class assertion, a set containing one shape 
graph. 

 

 The new class assertion in Figure 9 and the class assertion at the beginning of this 

iteration (which was the empty set of shape graphs) are not equal, so we iterate through 

the clean-called methods again. This new class assertion says that the stack may have one 

element and it is pointed to by top. 

 
ITERATION 2 

- Analyzing method push. 
 

The initial assertion is the class assertion in Figure 9. Figure 10 contains the graphs 

produced during the analysis of the method push when the initial assertion consists of one 

shape graph with a node pointed to by top. 

We are analyzing the method push again. As explained during the first iteration, 

all the shape graphs generated during the analysis except the one generated by the first 

transformer will reach the general exit block. The final assertion contains initially three 

graphs: one representing the graphs produced by the second and third transformers, 

which are identical and other two graphs resulting from the fourth and fifth transformers.   

 
 

{top} 
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1:   _t1 4:  _t1.tail = _t2 
 
 
 
 
 
2:  _t2 = local0.top   5:  local0.top = _t1 
 
 
 
 
 
3:  _t1.head = local1 
 
 

 
 

 
Figure 10: Shape graphs corresponding to the analysis of method push. 

 
 
 Removing the temporary _t1 and _t2 from the shape graph corresponding to the 

second transformer we get a shape graph containing a single node pointed to by top. 

From the fourth graph we get a node pointed to by nothing so it gets summarized into the 

summary node. The summary node will point to the node pointed to by top. The fifth 

graph results in a shape node pointed to by top, which points to some node (the one 

previously pointed to by top) that has just been summarized into the summary node since 

no variable points to it anymore. This graph tells us that the stack may have two elements 

where top points to the first one in the stack (the one at the top).  

 

 

  

Figure 11: Final assertion after analyzing method push during the second iteration. 

 

{_t1} {top} 

{_t1} {top, _t2} 

{_t1} {top, _t2} 

{_t1} {top, _t2} 

{_t1, top} {_t2} 

{top} Ø {top} Ø {top} 
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 As it can be seen, the final assertion adds some new information: the first and 

second graphs in Figure 11 illustrate the possible shapes of heap in the case of abrupt 

termination. The third graph shows the shape of the heap when the method has a normal 

termination. For the sake of simplicity, we will not introduce the graphs reaching the exit 

block through the abrupt termination block in this example, however it is important to 

note that we do keep them in the implementation of the analysis and we get the same 

class invariants identified at the end of the analysis. 

- Analyzing method pop. 
 
 Figure 9 shows the initial assertion, which is the set containing a single shape 

graph that consists of a shape node pointed to by top. Figure 12 contains the shape graphs 

produced during the analysis of the method pop.  

1:  local1 = null     5:  _t3 = _t2.tail 
 
 
 
 
  
2:  _t1 = local0.top  6:  _t2 = _t3 
 
 
 
 
 
3:  local1 = _t1  7:  local0.top = _t2 
 
 
 
 
 
4:  _t2 = local0.top   
 
 
 
 
  

Figure 12: Shape graphs corresponding to the analysis of method pop in the second iteration. 

{top} 

{top, _t1} 

{top, _t1, local1} 

{top, _t1, local1, _t2} 

{top, _t1, local1, _t2} 

{top, _t1, local1} 

{_t1, local1} 
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 If we only considered the very last graph produced, then after removing _t1 and 

local1 no variable would be pointing to the node and we could end up with an empty final 

assertion. This makes sense since we are popping off an element from the stack and our 

initial assertion contains a single graph that has a single shape node pointed to by top, 

which means that the stack has at most one element, so popping it off means that the 

stack does not have any element any more and the shape graph is empty. However, the 

method includes the various paths of abrupt termination (even when these paths are not 

taken in any possible execution).  Through these paths, other graphs besides the last one 

reach the general exit block. After removing temporary and local variables from those 

graphs we get as final assertion a set containing a shape graph. This graph reflects the 

fact that the stack may still contain that one element when popping it off has failed 

because of possible abrupt termination. 

 
 
 
 
 

Figure 13: Assertion after analyzing method pop during the second iteration. 
 
 
- Analyzing method peek. 
 
 The initial assertion is still the set containing a single shape graph whose only 

shape node is pointed to by top. Figure 14 shows the shape graphs produced during the 

analysis of the method peek. 

 
   _t1 = local0.top 
 
  
 

Figure 14: The shape graph produced by method peek in the 
second iteration. 

{top, _t1} 

{top} 
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Figure 15: Assertion after analyzing method peek during the second iteration. 
 
 
- Union of final assertions and class assertion. 
 
 The union of the class assertion, final assertion from method push, final assertion 

from method pop and final assertion from method peek is shown in Figure 16.  

 
 

  

Figure 16: Class assertion with graphs from abrupt termination. 

 
 As mentioned before, in this example we will only consider those graphs that 

reach the exit block from the normal termination. The first graph reaches the exit block in 

the analysis of the method peek so we keep it. The second graph reaches the exit block 

through the abrupt termination block in the analysis of the method push, so we do not 

consider it. The third graph reaches the general exit block in the analysis of the method 

push, so we keep it. Figure 17 shows the class assertion that we will use. 

 
 
 
 
 

 
Figure 17: Class assertion without graphs from abrupt termination. (A) First graph in the set. (B) 

Second graph in the set. 
 
 The class assertion in Figure 17 is different to the initial class assertion in Figure 

9, so we iterate through clean-called methods again. 

{top} 

{top} Ø {top} Ø {top} 

{top} Ø {top} 

(A) (B)
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ITERATION 3 

 The initial assertion in this iteration includes the two graphs presented in Figure 

17, labeled as (A) and (B). We need to analyze each clean-called method considering 

both graphs. As you might have noticed, we have already analyzed the clean-called 

methods with graph (A) in iteration 2, so we will not show the shape graphs produced in 

these analyses again, however the final assertion for each clean-called method in this 

iteration will be the union of the final assertion when the graph (B) is at entry and the 

final assertion we obtained in iteration 2 when the graph (A) was at entry.    

 
- Analyzing method push. 
 
 Figure 18 contains the shape graphs generated when graph (B) is at entry.   

 
 
1:   _t1 4:  _t1.tail = _t2 
 
 
 
 
 
2:  _t2 = local0.top   5:  local0.top = _t1 
 
 
 
 
 
3:  _t1.head = local1 
 
 

 
 

 
Figure 18: Shape graphs corresponding to the analysis of method push in the third iteration. 

 
 
 Here we analyze again the method push. Graph (b) tells us that the stack at 

entry to the method has two elements, the one in the front being pointed to by top. From 

{_t1} Ø {top} 

{_t1} Ø {top, _t2} 

{_t1} Ø {top, _t2} 

{_t1} Ø {top, _t2} 

{_t1, top} Ø {_t2} 
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now on we will not take into account shape graphs that reach the general exit through the 

abrupt termination block, in order to make this example easier to illustrate, but it is 

important to note that including these graphs would not change any conclusions at the 

end of the analysis.  

 The final assertion will contain the last shape graph produced during the 

analysis of the method push. Now we need to remove temporary names and local 

variables. After removing _t1 and _t2 from the graph, the first node will only be pointed 

to by top whereas the second node will no longer be pointed by any variable. This second 

node will be summarized into the summary node yielding the graph (B) in Figure y. The 

graph (A) in Figure y comes from the final assertion when graph (A) is at the entry of the 

method. 

 

 
 
 
 

Figure 19: Final assertion after analyzing method push. (A) First graph in the set. (B) Second 
graph in the set. 

 
 
- Analyzing method pop. 

Here is the analysis when the graph (B) in Figure 17 is at the entry to the method.  

Figure y contains the final assertion (the final assertion when graph (A) is on entry is the 

empty set). 

 

 

 

 

Ø {top} Ø {top} 

(A) (B)
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1:  local1 = null     5:  _t3 = _t2.tail 
 
 
 
 
  
2:  _t1 = local0.top  6:  _t2 = _t3 
 
 
 
 
 
3:  local1 = _t1  7:  local0.top = _t2 
 
 
 
 
 
4:  _t2 = local0.top   
 
 
 
 
  

Figure 20: Shape graphs corresponding to the analysis of method pop in the third iteration. 
 

 
 
 
 
 

 

Figure 21: Final assertion after analyzing method pop during the third iteration. 
 
 
- Analyzing method peek. 
 
 Figure 22 contains the shape graph produced during the analysis of method peek 

when graph (B) in Figure 17 is on entry. Figure 23 shows the final assertion, which 

includes those graphs obtained from the analysis of the method when the graph (A) in 

Figure 17 is at entry.  

 

Ø {top} 

Ø {top, _t1} 

Ø {top, _t1, local1} 

Ø {top, _t1, local1, _t2} 

_t3 {top, _t1, local1, _t2} 

_t3, _t2 {top, _t1, local1} 

_t3, _t2, top {_t1, local1} 

{top} 
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   _t1 = local0.top 

 
  
 

Figure 22: The shape graph produced by method peek in the third iteration. 
  
 
 
 
 
 

Figure 23: Final assertion after analyzing method peek during the third iteration. 
 
 
- Union of final assertions and class assertion. 
 
 The union of the class assertion, final assertion from method push, final assertion 

from method pop and final assertion from method peek is shown in Figure 24.  

 
 
 
 
 

 
Figure 24: Class assertion reaching after the third iteration. (A) First graph in the set. (B) Second 

graph in the set. (C) Third graph in the set. 
 
 
 Since this new class assertion is not equal to the class assertion at the beginning of 

this iteration (the graph C has been introduced in this iteration) we need to iterate again 

through the clean-called methods. 

 
ITERATION 4 

In this iteration, we only show the analysis of the clean-called methods when the 

graph (C ) in Figure 24 is on entry. The final assertion is the union of the final assertion 

from the analysis when the graph (C ) is on entry and the final assertions when (A) and 

Ø {top, _t1}

{top} Ø {top} 

{top} Ø {top} 

(A) (B)

Ø {top} 

(C) 
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(B) are the graphs on entry to the method (this information is taken from previous 

iterations).  

 
- Analyzing method push. 
 
 Figure 25 contains the shape graphs generated when graph (B) is at entry.   

 
 
1:   _t1 4:  _t1.tail = _t2 
 
 
 
 
 
2:  _t2 = local0.top   5:  local0.top = _t1 
 
 
 
 
 
3:  _t1.head = local1 
 
 

 
 

 
Figure 25: Shape graphs corresponding to the analysis of method push in the fourth iteration. 

 
 

 
 
 
 

Figure 26: Final assertion after analyzing method push. (A) First graph in the set. (B) Second 
graph in the set. 

 

- Analyzing method pop. 

Figure 27 shows the shape graphs produced during the analysis when the graph 

(C) in Figure 24 is at the entry to the method.  Figure 28 contains the final assertion. 

Ø {top} {_t1} 

Ø {top, _t2} {_t1} 

Ø {top, _t2} {_t1} 

Ø {_t1} {top, _t2} 

Ø {_t1, top} {_t2} 

Ø {top} Ø {top} 

(A) (B)
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1:  local1 = null     5:  _t3 = _t2.tail 
 
 
 
 
  
2:  _t1 = local0.top  6:  _t2 = _t3 
 
 
 
 
 
3:  local1 = _t1  7:  local0.top = _t2 
 
 
 
 
 
4:  _t2 = local0.top   
 
 
 
 
  

Figure 27: Shape graphs corresponding to the analysis of method pop in the fourth iteration. 
 
 
 
 

 

 
Figure 28: Final assertion after analyzing method pop. (A) First graph in the set. (B) Second 

graph in the set. 
 
- Analyzing method peek. 
 
 Figure 29 contains the shape graph produced during the analysis of method peek 

when graph (C) in Figure 24 is on entry. Figure 30 shows the final assertion, which 

includes those graphs obtained from the analysis of the method when the graphs (A) and 

(B) in Figure 24 are on entry.  

Ø {top} Ø {top, _t1, 
local1, _t2}

{_t3} 

Ø {_t1, 
local1} 

{_t3, _t2, 
top} 

Ø {top, _t1} 

{top, _t1, local1} Ø 

{top, _t1, local1, 
_t2} 

Ø 

Ø {top, _t1, 
local1} 

{_t3, _t2} 

Ø {top} {top} 
(A) (B)
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   _t1 = local0.top 

 
  
 

Figure 29: The shape graph produced by method peek in the 
fourth iteration. 

  
 
 
 
 
 
 
 

Figure 30: Final assertion after analyzing method peek during the fourth iteration. 
 

 Figure 30 shows the final assertion when the method peek is analyzed with graphs 

(A), (B) and (C) in the class assertion for this iteration in Figure 24. 

 
- Union of final assertions and class assertion. 
 
Class assertion = class assertion ⊔ final assertion from method push ⊔ final assertion 

from method pop ⊔ final assertion from method peek  = 
 
 
 
 
 
 
 

Figure 31: New class assertion after the fourth iteration. 
 

 The new class assertion and the class assertion at the beginning of this iteration 

are equal, so have reached the fixed point and we no longer need to iterate through the 

clean-called methods. 

Now we can proceed to analyze the graphs in the final class assertion to search for 

any property we are interested in. By analyzing graphs (A), (B) and (C) in the final class 

Ø {top, _t1}

{top} Ø {top} Ø {top} 

(A) (B) (C) 

{top} Ø {top} Ø {top} 

(A) (B) (C) 
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assertion we can conclude that the IntStack class has two class invariants: the singly 

linked list representing the stack internally is acyclic and its nodes are unshared. The fact 

that the nodes are unshared can be seen because there are no nodes represented by a 

double rectangle in the graphs, which would mean sharedness in our notation. A node 

becomes shared when more than one cell field points to it. As you might have noticed, 

this was not the case for any of the nodes in the shape graphs produced during the 

analysis. 

 
5.2 Class IntList1 

 The class IntList1 represents a singly linked list. In order to make this example 

clear and short, it only includes two methods: add and reverse. The method add adds a 

node to the front of the list. The method reverse reverses the list. We have borrowed the 

example of using a method reverse from [5,7] in order to illustrate that the results of our 

implementation are identical to those achieved by [7] and at the same time to show our 

contribution by applying shape analysis to the whole class in order to find class 

invariants. 

 

5.2.1 Java source code 

public class IntList1 { 
    private ConsCell start; 
     
    /** 
     * Constructs a new empty IntList1. 
     */ 
    public IntList1() { 
 this.start = null; 
    }  
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    /** 
     * Adds i onto the front of the IntList1. 
     * @param i the integer to be added onto the IntList1. 
     */ 
    public void add(int i) { 
 start = new ConsCell(i, start); 
    } 
 
    /** 
     * Reverses the IntList1. 
     */ 
    public void reverse() { 
 ConsCell y = null; 
 ConsCell t = null; 
 while (start != null) { 
     t = y; 
     y = start; 
     start = start.getTail(); 
     y.setTail(t); 
 } 
 t = null; 
 start = y; 
    } 
} 
 

Opcode Transformer 
PutFieldOp local0.start = null 
ReturnOp None 

 

                          Table 6: Opcodes and Transformers for constructor IntList1. 
 

Opcode Transformer   
Astore_iOp local1 = null   
Astore_iOp local2 = null   
GetFieldOp None   
IfNullOp None   
Astore_iOp local2 = local1   
GetFieldOp _t1 = local0.start   
Astore_iOp local1 = _t1   
GetFieldOp _t2 = local0.start  _t3 = _t2.tail 
InvokeVirtualOp _t2 = _t2.getTail()  _t2 = _t3 
PutFieldOp local0.start = _t2   
InvokeVirtualOp local1.setTail(local2)  local1.tail = local2 
GotoOp None   
Astore_iOp local2 = null   
PutFieldOp local0.start = local1   
ReturnOp None   

 

Table 7: Opcodes and Transformers for method reverse. 
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We assume that start is a DC field, the constructor is a tight constructor and add 

and reverse are both clean-called.  After the fourth iteration we reached the fixed point. 

The class assertion contains the set of shape graphs shown in Figure 32. 

 

 
 
 

Figure 32: Class assertion after the fourth iteration. 
 

After analyzing graphs (A), (B) and (C) we conclude that the singly linked list is acyclic 

and its nodes are unshared. 

 

5.3 Class IntList2 

public class IntList2 { 
    private ConsCell start; 
    /** 
     * Constructs a new empty IntList2. 
     */ 
    public IntList2() { 
 this.start = null; 
    }  
 
    /** 
     * Adds i onto the front of the IntList2. 
     * @param i the integer to be added onto the IntList2. 
     */ 
    public void add(int i) { 
 start = new ConsCell(i, start); 
    } 
 
    /** 
     * Makes the IntList2 circular. 
     */ 
    public void make_circular() { 
 if (start != null) { 
     ConsCell x = start; 
     while ((x.getTail() != null) && (x.getTail() != start)){ 
  x = x.getTail(); 
     } 
     x.setTail(start); 
 } 
    } 
} 

{start} Ø {start} Ø {start} 

(A) (B) (C) 
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The fixed point is reached at the fourth iteration with the set of shape graphs 

shown in Figure 33 being the class assertion. 

 

 

 

 
Figure 33: Class assertion after the fourth iteration in class IntList2. 

 

After analyzing graphs (A), (B), (C) and (D) we can conclude that the singly linked list is 

not acyclic and its nodes are not unshared. 

 

5.4 Example involving a dirty-called method  

If the class to be analyzed contains one or more dirty-called methods, we need to 

construct the weakest assertion: the set of all legal shape graphs for the given set of 

variables. It sounds difficult to construct in general, when we have multiple variables in 

the set and multiple references in an object. Moreover, it would be large, at least 

exponential in the number of variables. This causes a serious problem with applying DC 

analysis to classes with dirty-called methods. 

Figure 33 illustrates the graphs contained in the weakest assertion when there is a 

single variable in the set. 

 

 

 

 

Ø {start} 

(A) 

Ø {start} 

(B) 

Ø {start} 

(C) 

Ø {start} 

(D) 
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Figure 34: Weakest assertion in which there is only one variable. 

 

It seems like it would be a good idea to look for an alternative way to handle 

dirty-called methods. We could check whether the dirty-called method modifies the heap 

contents. Another possibility would be if we know the invariants ahead of time: then we 

could check whether they have been broken when the dirty-called method was invoked.  

 

 

 

 

 

 

Ø {start} 

(D) 

Ø {start} 

(F) 

Ø {start} 

(I) 

empty 

(A) 

{start} 

(C) 

{start} 

(B) 

Ø {start} 

(E) 

Ø {start} 

(G) 

Ø {start} 

(H) 
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6. FUTURE WORK 

• In order to know whether this technique is practical we need to test the analysis on 

full-scale Java applications. Assess the DC idea is one of the goals in [22], so the 

ability to test the class invariant shape analysis on full-scale Java applications could 

contribute to it. 

• Handling recursive methods. Our implementation cannot analyze applications with 

recursive methods. This is still an open problem for us. It is not an open problem in 

general as we saw in [17]. It is not clear to us whether the ideas discussed in [17] 

could be of utility when attempting to solve the problem in our implementation. 

• Testing on multi-threaded programs. The DC invariant technique has the capability of 

dealing with multi-threaded programs. The class invariant shape analysis idea has not 

been tested on multi-threaded programs yet, so this would be another area of future 

work in our research. 

• Dirty-called methods. As we showed earlier, dirty-called methods can be a serious 

problem when applying DC invariant analysis to classes that contain them. We have 

discussed some alternative solutions to the case in which we are doing shape analysis, 

however we need to formalize them and implement them to see whether they do 

contribute to resolve the problem. 

• The implementation is not capable of constructing the weakest assertion. We have 

been injecting the graphs by hand (and only in the case when exactly one DC field 

exists). We need to add this feature in order to be able to perform complete test cases 

and obtain more reliable results. 
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• Extending the current implementation to handle a bigger variety of data structures 

that can be manipulated by the program. 

• Make the analysis more efficient. 

 

 

7. CONCLUSION 

 Class invariant shape analysis produced good results when analyzing classes not 

containing dirty-called methods. Dirty-called methods introduced the problem of 

constructing the weakest set of shape graphs, which is at least exponential in the number 

of variables. We conclude that it may not be worth it to use the full DC invariant analysis 

mechanism when searching for properties describing the shapes of the linked data 

structures manipulated by the program.  

We definitely need to work on dirty-called methods. We believe that finding more 

selective ways of classifying dirty-called methods would be a significant improvement in 

the technique.  It is currently possible for a method to be classified as dirty-called even 

though no shape invariant is broken at any of its points of call.  In these cases, too many 

unnecessary graphs are introduced into the analysis, making it less precise and slower. 

Analyzing full-scale Java applications would also reveal how often dirty-called 

methods are found, and whether it is worthwhile to work on the problem of 

reducing/eliminating false dirty-called methods. We also need to be able to produce the 

weakest assertion automatically so that we are able to measure real results. 
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