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Determinant quantum Monte Carlo is a method for studying magnetic, transport
and thermodynamic properties of interacting fermions on a lattice. It is widely
used to explore the physics of strongly correlated quantum systems, from cuprate
superconductors to ultracold atoms trapped on optical lattices. This paper contains
a description of recent algorithmic advances in the determinant quantum Monte
Carlo technique. Focus will be on algorithms developed for hybrid multicore
processor and GPU platforms. The resulting speed-up of the simulations will
be quantified. Simulations’ results will also be presented, with an emphasis on
physical quantities that can now be computed for large numbers of sites.

Keywords: Hubbard model; Mott insulators; Monte-Carlo; multilayers

1. Introduction

One of the most prominent areas of theoretical condensed matter physics is the study
of ‘model Hamiltonians’ which, without incorporating the detailed chemical realism of a
specific material, nevertheless attempt to describe fundamental properties like magnetism
and metal-insulator transitions of a collection of quantum particles moving on a lattice
of sites. Such models, because of their greater simplicity compared to the solution of the
many-body Schroedinger equation in the presence of a collection of nuclei, allow for more
accurate treatments of the effects of the interactions between the particles, which otherwise
might need to be handled in a more approximate (e.g. mean field) fashion.

Determinant quantum Monte Carlo (DQMC) [1] is one of the methods which can be
applied to such models. DQMC has a number of advantages relative to other approaches:
it solves the interacting many body problem exactly and can compute a broad range of
response functions, such as magnetic susceptibility and compressibility. It also has several
weaknesses. One of the most significant is that the method scales as the cube of the number
of lattice sites, and hence at fixed density as the cube of the number of fermions. Although
much algorithmic progress has been made, simulations of several hundred to a thousand sites
remain at the upper end of feasibility. This is an important limitation in a variety of situations.
First, if one wants to explore the occurrence of spontaneous symmetry breaking to an ordered
low temperature (e.g. magnetic or superconducting) phase, it is necessary to extrapolate in

∗Corresponding author. Email: scalettar@physics.ucdavis.edu

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
9:

40
 2

7 
A

pr
il 

20
16

 



Philosophical Magazine 1261

system size. In 2D, lattice sizes like 8 × 8, 16 × 16, 24 × 24 and 32 × 32 allow one to get a
pretty good sense of finite size effects; but in 3D, 4×4×4, 6×6×6, 8×8×8 and 10×10×10
lattices have much smaller linear extent. Second, to look at inhomogeneous systems, large
lattices are required to capture the variation of behaviour across the lattice. There are many
interesting systems for which the examination of inhomogeneities is crucial, including, for
example, stripe phases of cuprate superconductors [2–4] and confined, ultracold gases on
optical lattices [5].

DQMC is of course not the only approach to these problems. Methods like dynamical
mean-field theory (DMFT) [6–8] and its cluster extensions [9] complement DQMC. They
work in the thermodynamic limit, and hence can capture divergences which occur at phase
transitions. However, they (especially DMFT) make other sorts of approximations.
Diagrammatic QMC [10] is a method which currently looks at lattices of roughly the same
sizes as DQMC. Like the advances we will describe here, rapid progress is being made in
these approaches.

The purpose of this paper is to describe our recent efforts on pushing DQMC to simulate
larger lattice sizes (i.e. speeding up the algorithm) by means of taking advantage of modern
multicore CPU and GPU hardware. These developments do not alter the basic formalism
of DQMC, which we summarize in Section II. Rather, focus will be on making the linear
algebra kernels, which are at the heart of DQMC, more efficient.An important consideration
will be on ensuring that numerical stability is maintained in the course of these modifications
[11–14].

Like many Monte Carlo-based simulation methods for fermions, DQMC suffers from
the so-called ‘sign problem’,[15–17] which occurs when the probability distribution used
to sample configurations becomes negative. We do not address the sign problem in this
paper. Solving the sign problem remains the central issue in the field of QMC simulation
for fermions.

2. Formalism of DQMC

In this section, we present the essential ingredients of the determinant quantum Monte Carlo
technique. We refer the readers to references [1,13,18] for more detailed discussions of the
method.

2.1. The Hubbard model

DQMC is typically formulated for lattice models. One of the simplest (and most important)
is the Hubbard Hamiltonian for electrons,

Ĥ = −t
∑
〈i j〉σ

( ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ ) −
∑

i

μi (n̂i↑ + n̂i↓)

︸ ︷︷ ︸
T̂

+ U
∑

i

n̂i↑n̂i↓︸ ︷︷ ︸
V̂

. (1)

The operator ĉ†
iσ (ĉiσ ) creates (annihilates) an electron of spin σ (σ = ↑,↓) on site i .

n̂iσ = ĉ†
iσ ĉiσ is the number operator for spin-σ particles. 〈. . .〉 denotes that the summation
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1262 C.-C. Chang et al.

is over nearest-neighbour sites. T̂ represents collectively the terms that are quadratic in
creation/annihilation operators and V̂ denotes the interaction term. The parameters t and U
control the kinetic and interaction energies, respectively, and the chemical potential μi is
used to adjust the density. The Hubbard Hamiltonian assumes that, due to screening effect,
the interaction between electrons is local, i.e. only electrons of opposite spins on the same
lattice site can feel the interaction. In most cases, t is used as the scale of energy and one
sets t = 1. The interaction strength U typically lies in the range 2 ≤ |U | ≤ 16.

Although one normally describes i, j in Equation (1) as site indices, they can be more
generally regarded as site and/or orbital labels. Thus, the parameter t can be extended
to describe both inter-site and inter-orbital hoppings. Likewise, the chemical potential μi

might then reflect different orbital energies.
The electron creation and annihilation operators act on a Hilbert space spanned by a

set of occupation number basis. A given basis specifies the number of spin-↑ and spin-↓
electrons (ni↑, ni↓) for each lattice site or orbital. Because of the Pauli exclusion principle,
each site/orbital is allowed to have 4 number configurations: (ni↑, ni↓) = (0, 0), (1, 0),
(0, 1) and (1, 1). Therefore, the dimension of the Hilbert space is 4N , where N is the
number of sites/orbitals. Thermodynamic properties of the Hubbard Hamiltonian can be
obtained through computing the expectation value of an operator Ô:

〈Ô 〉 = 1

Z
Tr

(
e−β Ĥ Ô

)
, Z = Tr e−β Ĥ . (2)

Tr denotes the trace over the 4N -dimensional Hilbert space. β = 1/T is the inverse of
temperature T . Z is the so-called partition function. Temperatures of interest depend strongly
on the physics being examined. Local observables like the energy and near neighbour
correlation functions typically require T ∼ t/3 (i.e. βt ∼ 3), while the observation of long
range order across a large lattice might only develop at T ∼ t/20 (i.e. β ∼ 20). As we shall
discuss below, larger β simulations are more difficult and costly.

One straightforward way of computing 〈Ô〉 is to first obtain the exact eigenstates of Ĥ
and then carry out the trace explicitly. This amounts to diagonalizing a 4N × 4N matrix.
Clearly, this is feasible only for small lattices and current state-of-the-art exact
diagonalization study of the Hubbard model is able to reach system size of the order
N ∼ 20. As we shall see in the following, the DQMC method reduces this exponential
scaling to a power law, allowing one to treat systems as large as N = 400 ∼ 1000.

2.2. The DQMC method

We begin the discussion with the partition function Z defined in Equation (2). A key element
of the DQMC method is the recognition of the fact that for an operator in bilinear form of
ĉiσ and ĉ†

iσ :

Âσ =
∑
i j,σ

ĉ†
iσ Aσ

i j ĉ jσ ≡ c†
σ Aσ cσ , (3)

the trace of e− Âσ can be evaluated explicitly. In the above equation,
c†
σ = (ĉ†

1σ , ĉ†
2σ , . . . , ĉ†

Nσ ). Specifically, we have

Tr e− Âσ = det
(

I + e−Aσ

)
, (4)
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Philosophical Magazine 1263

where Aσ is the N × N matrix defined in Equation (3) and I is an identity matrix. Equation
(4) can be readily generalized to multiple bilinear operators

Tr
(

e− Â1σ e− Â2σ . . . e− Âmσ

)
= det

(
I + e−A1σ e−A2σ . . . e−Amσ

)
. (5)

In the Hamiltonian Equation (1), the terms represented by T̂ are in bilinear form, while the
interaction term V̂ is quartic in the electron operators n̂i↑n̂i↓ = ĉ†

i↑ĉi↓ĉ†
i↑ĉi↓. In order to

take advantage of Equation (5), the interaction term V̂ will need to be casted into quadratic
form. To proceed, we discretize β into many intervals β = Lε, where L is an integer and
ε is a real number. The exponential of −β Ĥ becomes

e−β Ĥ = e−ε Ĥ e−ε Ĥ · · · e−ε Ĥ︸ ︷︷ ︸
L terms

. (6)

For each e−ε Ĥ , if ε is sufficiently small, one can invoke the Trotter-Suzuki decomposition
[19–22] and write

e−ε Ĥ ≈ e−εV̂ e−εT̂ . (7)

Because T̂ and V̂ do not commute, the decomposition is not exact and bears an error of
order O(ε2). Nonetheless, the error can be systematically reduced by using higher order
decompositions. Additionally, one can eliminate the error by carrying out simulations on a
grid of different ε’s and extrapolating the result to the ε → 0 limit.

The next step is to convert the exponent of e−εV̂ into bilinear form. This is achieved by
implementing the discrete Hubbard-Stratonovich (HS) transformation [23]:

e−εU
∑

i ni↑ni↓ = 1

2N
eU

∑
i (ni↑+ni↓)/2

×
∑

s1�,...,sN�=±1

eλ
∑

i si�(ni↑−ni↓)

= 1

2N

∑
�s�

∏
σ

ec†
σ Vσ�cσ . (8)

Here, the parameter λ obeys cosh λ = eUε/2. We have attached site and time slice indices
i and � to the HS field si� because this transformation is done for all sites/orbitals i and for
each imaginary time slice � = 1, 2, · · · L . �s� = (s1�, s2�, . . . , sN�) denotes collectively N
Hubbard-Stratonovich fields at time slice �. With the help from Equation (8), the
Hamiltonian operator Equation (7) can be expressed as

e−ε Ĥ =
∑
�s�

∏
σ

ec†
σ Vσ�cσ e−ε c†

σ Tσ cσ , (9)

where, following the notation in Equation (3), Tσ is the matrix representation of spin-σ part
of the T̂ operator1.

At this point, the exponents of the righthand side of Equation (9) are all quadratic in
electron operators. The trace can now be evaluated explicitly. To simplify the notation, let
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1264 C.-C. Chang et al.

us define B̂σ
� = ec†

σ Vσ�cσ e−ε c†
σ Tσ cσ . From Equation (5), the partition function Z can be

expressed as2

Z =
∑

�s1,�s2,...,�sL

∏
σ

Tr
(

B̂σ
L B̂σ

L−1 . . . B̂σ
1

)
=

∑
{�s}

det M↑
�s det M↓

�s . (10)

Mσ
�s = I + Bσ

L Bσ
L−1 . . . Bσ

1 . (11)

In the above equations, Bσ
� = eVσ� e−εTσ is an N × N matrix representing the operator B̂σ

� .
The subscript �s emphasizes that Mσ

�s (and Bσ
� ) are functions of HS fields.

Using Equation (10), we can rewrite the expectation value of observable Ô as the
following

〈Ô〉 = 1

Z
Tr

(
e−β Ĥ Ô

)
=

∑
{�s}

P�s 〈Ô〉�s, (12)

where the probability density P�s is defined as

P�s = 1

Z
det M↑

�s det M↓
�s , (13)

and 〈Ô〉�s is a local estimator of the observable Ô at a given field configuration {�s}:

〈Ô〉�s =
Tr

(
e−β Ĥ Ô

)
det M↑

�s det M↓
�s

. (14)

Equations (12)–(14) are the central result of the DQMC method. The 4N -dimensional
trace has been converted into a summation over N L auxiliary fields. The sum is then
carried out by the Metropolis Monte Carlo sampling algorithm, using P�s as the probability
distribution function. The precise sampling procedure is described in Refs. [1,13,18].
Here, we want to point out that the naive computational complexity of the Monte Carlo
sampling is O(N 3) to update each variable sil . However, this can be reduced to O(N 2)

after implementing a technique which takes advantage of the special structure of the
change to the matrices involved in the update.

A few qualitative comments are in order. First, the ‘sign problem’ originates in the fact
that P�s can become negative, so that its interpretation as a probability is compromised.
There are several special situations when P�s is positive, because the signs of the
determinants of the two spin species are identical. This occurs, for example, in the
attractive Hubbard model (U < 0) for all temperatures, hoppings and chemical potentials,
and also for the repulsive Hubbard model at half filling on a bipartite lattice. Fortunately,
there is much interesting physics in these cases. When the sign problem is present, the
accessible temperatures depend on density ρ, interaction strength U and spatial lattice
size N . Almost all knowledge of the value of the sign is empirical. Indeed, one of
the complicated features of the sign problem is that it does not depend solely on the
physical parameters of the model, but can vary according to the algorithmic details, such
as the choice of Hubbard-Stratonovich transformation [24–26]. Some general patterns
are that the sign becomes smaller as U is increased. This is not surprising since there is no
sign problem in the non-interacting limit U = 0. The sign behaves better at densities ρ
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Philosophical Magazine 1265

which correspond to ‘filled shells’ for a given lattice size, that is when the chemical
potential is such that a collection of non-interacting energy levels ε(k) (are eigenvalues of
the kinetic energy term in the Hamiltonian) has just been filled. The sign rapidly decreases
to zero with increasing β once some negative configurations have begun to appear. If the
average sign begins to deviate from unity at β0, typically simulations are feasible only to a
maximal β ∼ β0 + 2/t . Interestingly, the behaviour of the average sign with spatial lattice
size N is much more benign. This is a bit surprising since initial understanding of the sign
problem indicated that the average sign should scale to zero with the same exponential
dependence on both N and β. Refs. [13,15,27] contain data for different lattice sizes,
temperatures, fillings and interaction strengths for the 2D and 3D Hubbard models,
respectively.

Asecond comment is that severe round-off errors can accumulate in the multiplication of
the Bσ

� matrices, especially for large U and low temperatures. This problem has essentially
been solved by ‘stabilization methods’ which separate and prevent mixing of the different
numerical scales in the linear algebra operations. (Again, for details, see Refs. [1,13,18].)
However, when formulating any new linear algebra algorithm to take advantage of new
hardwares, care must be taken so that stability is preserved. Indeed, this is a key consideration
in our assessment of new pivoting strategies, as will be discussed below.

In principle, one can write down a HS identity similar to Equation (8) for inter-site
Ui j and even Hund’s rule Ji j terms which flip spins on different orbitals [24]. In practice,
however, the sign problem is very bad when these terms are present, and simulations can
typically not reach low enough temperatures to see much of the interesting strong correlation
physics.

2.3. Green’s function definition

In the study of interacting systems, the Green’s function is perhaps one of the most important
observables to be calculated. Using Equation (14), one can show that the equal-time Green’s
function is expressed in a particularly simple fashion:

Gσ
�s,i j ≡ 〈ĉiσ ĉ†

jσ 〉�s =
[(

Mσ
�s
)−1

]
i j

(15)

From DQMC’s point of view, the importance of the Green’s function is twofold. Firstly,
since the Green’s function is the inverse of Mσ

�s , it is directly tied to the Monte Carlo
sampling procedure. Secondly, for a given HS field configuration, one can invoke the Wick’s
theorem and express any observable in terms of the Green’s function. Equation (15) can be
generalized to include imaginary time dependence. The resulting observable is called the
time-dependent Green’s function:

Gσ
�s,i j (�1, �2) ≡

⎧⎪⎨
⎪⎩

〈ĉiσ (�1)ĉ
†
jσ (�2)〉�s if �1 > �2

−〈ĉ†
jσ (�2)ĉiσ (�1)〉�s if �2 > �1

(16)

where 1 ≤ �1, �2 ≤ L are imaginary time slice indices.
Crucial to the algorithmic discussions in the next section is the observation that the

determinant of the dense N×N matrix in Equation (11) can also be written as the determinant
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1266 C.-C. Chang et al.

of a sparse, but larger matrix of dimension (N L) × (N L):

Mσ
�s =

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 · · · 0 Bσ
1−Bσ

2 I 0 · · · 0 0
0 −Bσ

3 I · · · 0 0
...

...
...

...
...

0 0 0 · · · −Bσ
L I

⎞
⎟⎟⎟⎟⎟⎠

�s

. (17)

That is det Mσ
�s = det Mσ

�s . Moreover, the inverse of Equation (17) generates all necessary
Green’s functions: the diagonal elements of (Mσ

�s )−1 are equal-time Green’s functions and
the off-diagonal ones correspond to time-dependent Green’s functions.

3. Green’s function calculation

The purpose of this section is to highlight recent algorithmic advances in the calculation
of the equal-time and time-dependent Green’s functions. The algorithm’s performance
benchmark on multicore platforms and multicores accelerated with GPUs will also be
discussed. In the following discussions, for the sake of simplicity, the spin index σ and HS
field �s will be ignored.

3.1. Equal-time Green’s function

The calculation of the equal-time Green’s function involves a long chain of matrix
multiplications, see Equation (11). These products tend to be extremely ill-conditioned for
simulations with large repulsive interactions U and low temperatures T . Round-off errors
in computing BL BL−1 . . . B1, can be significantly reduced by using matrix chain
multiplication approaches which stratify the magnitude of elements. The stratification
process is aimed to protect small numbers from being rounded off by mixing them with
large ones in matrix products.

The standard numerical tool for magnitude stratification is a QR decomposition with
column pivoting (QRCP). The majority of traditional algorithms for computing G are based
on graded decompositions generated by the QRCP. One of those algorithms was proposed
by Loh et al. in Ref. [28]. The multiplication phase of Loh’s approach consists of computing
the chained product of B� in the factorized form QL DL TL using QRCP. All matrix-matrix
multiplications in this phase involve matrices that have elements of similar magnitude except
for multiplications on diagonal matrices Di which are equivalent to numerically stable
column scaling operations. In order to improve accuracy in computing the inverse (I +
QL DL TL)−1, the method splits DL = Db Ds into high magnitude Db and low magnitude
Ds terms in its inversion phase, where

Db(i) =
{

1/|DL(i)|, if |DL(i)| > 1

1, otherwise
,

Ds(i) =
{

DL(i), if |DL(i)| ≤ 1

sgn(DL(i)), otherwise
.
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Philosophical Magazine 1267

Figure 1. Loh’s stratification method with pre-pivoting. Here parentheses reflect the order of
operations, A−T corresponds to (AT )−1, the function diag(A) returns diagonal matrix D with
elements (Di j )

n
i, j=1 = (δi j Ai j )

n
i, j=1, and δi j denotes Kronecker delta.

The intensive use of QRCP is a performance bottleneck of Loh’s stratification
algorithm. The blocked QRCP algorithm implemented in LAPACK requires matrix-vector
multiplications for preparing blocked matrix update, and thus have a low data reuse ratio.
This imposes a limit to the performance on modern multicore architectures with deep
memory hierarchies. A fast computable alternative to the QRCP was recently proposed in
Ref. [29]. This novel approach is based on the observation that as Loh’s algorithm iterates,
it produces almost column graded matrices Ci , for which permutation matrices Pi specify
only a few column interchanges from the initial ordering. As a result, the QRCP in the
iterative steps of Loh’s algorithm can be safely replaced by the QR with pre-pivoting,
where a pre-pivoting permutation Pi is computed and applied, and then a regular QR is
utilized. The permutation Pi for the pre-pivoting is based on sorting matrix columns by
2-norms in a descending order. The resulting algorithm for computing equal-time Green’s
function is illustrated in Figure 1. It differs from the original method in lines 6 and 7,
where pre-pivoting and regular QR decomposition replace QRCP to ensure that for the
permuted matrix C̃ , we have ‖C̃1:n,k‖2 ≥ ‖C̃1:n,l‖2 for all 1 ≤ k < l ≤ n.

Matrix clustering is often used to reduce additional computational costs associated
with involving pivoted versions of QR decomposition in the stratification algorithms.
Using traditional matrix multiplication methods, the set of input matrices B̃i is obtained
by multiplying p consecutive matrices for each i :

B̃i = Bip Bip−1 . . . B(i−1)p+1, 1 ≤ i ≤ L

p
= L̃ (18)

These products are then used in the calculation of G, reducing the number of QR
factorizations in the algorithm Figure 1 by a factor p. Typically, p ∼ 10 is able to produce
a significant performance boost while maintaining acceptable numerical properties.

3.2. Time-dependent Green’s function

While in principle one can calculate the time-dependent Green’s function by inverting
M in Equation (17), the process is computationally extremely expensive if done naively.
Moreover, in large-scale DQMC simulations, the number of time slices is typically L ∼ 102
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1268 C.-C. Chang et al.

Figure 2. The computation of time-dependent Green’s function G = M−1 can be divided into three
steps: clustering, inversion, and wrapping.

and the number of sites is N ∼ 103. Thus, matrices M have the dimension of order ∼ 105,
and require ∼ 75 GB of memory for double precision real numbers. In order to maintain
high performance for inversion of these relatively big matrices repeated hundreds of times
in the simulation loop, the Hubbard matrices M are structure-preserving reduced before
inversion into the matrices

M̃ =

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 · · · 0 B̃1

−B̃2 I 0 · · · 0 0
0 −B̃3 I · · · 0 0
...

...
...

...
...

0 0 0 · · · −B̃L̃ I

⎞
⎟⎟⎟⎟⎟⎠ .

where B̃i are defined as in Equation (18). This reduction is called clustering and the resulting
matrix has dimension (N L/p) × (N L/p). Then, the matrix M̃ is inverted, generating a
subset of time-dependent Green’s functions. The missing Green’s function can be accessed
via a process called wrapping. Such ‘clustering-inversion-wrapping’ work flow is depicted
in Figure 2.

It should be pointed out that, even for the reduced matrix M̃, direct inversion is still
computationally expensive. In the conventional inversion methods, M̃ is typically treated
as a dense matrix and inverted via pivoted LU decomposition. Although this method
guarantees a stable solution, it does not exploit the sparsity of M̃, and thus requires
redundant computational work. On the other hand, fast structure-exploiting inversion
algorithms based on Gaussian elimination without or with partial pivoting, like cyclic
reduction, are known to be unstable [30]. A blocked structured orthogonal factorization
(BSOF) offers a stable and computationally efficient alternative to Gaussian elimination
based inversion approaches [31]. BSOF-based inversion includes three successive phases
– blocked structured orthogonal factorization, inversion of the block upper triangular
factor R and the application of orthogonal factors to the inverse of R. We refer to this
novel inversion method as blocked structured orthogonal inversion (BSOI).

In the factorization phase, we use the ‘serial’ version of the structured orthogonal
factorization algorithm introduced in [30], which is proved to be stable and has an
identical serial complexity to the best known blocked structure-exploiting factorization
algorithms based on Gaussian elimination. The essence of this algorithm is in
transformation of the matrix M̃ through L̃ − 1 block row updates (see algorithm
Figure 3). It results in a block structured orthogonal factorization of the original matrix

M̃ = Q R, (19)
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Figure 3. Blocked structured orthogonal inversion of clustered Hubbard matrix M̃.

where Q is a product of the orthogonal matrices Q(k) extended by identity blocks

Q =
L̃−1∏
k=1

Qk =
L̃−1∏
k=1

IN (k−1) ⊕ Q(k) ⊕ IN (L̃−k−1)
, (20)

and R has a block upper bidiagonal form with a dense final block column

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

R11 R12 0 · · · R1,L̃
0 R22 R23 · · · R2,L̃

0 0 R33
. . .

...
...

...
...

. . . RL̃−1,L̃
0 0 0 · · · RL̃,L̃

⎞
⎟⎟⎟⎟⎟⎟⎠ . (21)

Thus, the Green’s function can be obtained by

G̃ = M̃−1 = R−1
1∏

k=L̃−1

QT
k . (22)
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R−1 is computed via blocked back substitution (BBS) algorithms [32] using the block
structure pattern Equation (21) of matrix R. The column version of inversion via BBS
requires ∼ 2L̃2 N 3 flops, whereas the computational cost of the row version is roughly a
factor of two less, ∼ L̃2 N 3 flops. On the other hand, the column-wise inversion algorithm
requires only block rows from 1 to k − 1 in order to compute the kth block column, thus
providing us with an opportunity to perform factorization of M and inversion of R in
parallel. In contrast, merging factorization and inversion phases is impossible if the row-
wise algorithm is used. Due to the specific structure of orthogonal matrices Qk , computing
the product in Equation (22) is equivalent to successive applying Householder reflectors to
the block column pairs of R−1 from the right in a backward order.

Before presenting benchmark results, we want to comment that the optimal choice of p
when forming M is a balance between a number of conflicting issues. For example, using
large p values (corresponding to small and dense matrices) can reduce the cost of computing
the determinant, which scales as the cube of the matrix size. However, to take advantage
of modern hybrid multicore CPU and GPU platform, it is more desirable to spread out the
computation of large matrices over different computational cores. From this point of view,
a small p seems to be a preferable choice.

3.3. Performance on multicore processors and GPUs

In this subsection, we present benchmark results of the algorithms described in Secs. III-A
and B for the calculation of equal-time and time-dependent Green’s functions on
multicore processors and GPUs. Computations reported in this paper are carried out on
two sockets of Intel Xeon X5670 with Westmare-EP micro-architecture coupled with
Nvidia GeForce GTX 480 graphic card. Intel MKL, Magma and Nvidia CuBLAS

libraries are used for BLAS and LAPACK routines in our implementations. All
computations are in double precision. The peak performance of BLAS matrix-matrix
multiplication (MMM) routine DGEMM observed on the target platform is 142 GFlops for
MKL and 167 GFlops for CuBLAS.

To verify the advantages of the stratification method with pre-pivoting for computing
the equal-time Green’s function G, we compare its performance with the performance of the
classic Loh algorithm based on QRCP (Figure 4). The blue curve in Figure 4 represents peak
performance of MKL BLAS routine DGEMM for the multiplication of two square nD × nD

matrices. It indicates the practical upper bound of performance of any algorithm used to
calculate equal-time Green’s function on the given architecture.

This comparison demonstrates that using pre-pivoting dramatically improves
performance of the stratification algorithms on multicore platforms, allowing up to 70%
increase in the DGEMM performance rate. Moreover, experimental studies show that
stratification methods with pre-pivoting and with column pivoting produce results with
similar accuracy [29]. Performance results reported in Ref. [29] indicate the great
potential of the pre-pivoted stratification algorithms for execution on hybrid CPU+GPU
platforms. Since most of the computational work in equal-time DQMC simulations is
related to computing Green’s function, use of pre-pivoting significantly reduces total
simulation time. Figure 5 illustrates decrease of total simulation time if QR with
pre-pivoting replaces QRCP in Loh’s algorithm.

In order to examine the BSOI algorithm for computing the time-dependent Green’s
functions, we developed implementations for multicore CPU, GPU and hybrid CPU+GPU
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Figure 4. (Colour online) Performance of equal-time Green’s function computation.

Figure 5. (Colour online) Time for a complete equal-time DQMC simulation. Dashed portions of
the bars correspond to the time spent on computing Green’s function.

processing, respectively. The BSOI solvers receive the matrix M̃ in an unpacked form as
input and perform in-place inversion. All three implementations are based on the use of
subroutines from BLAS and LAPACK interfaces. Our CPU and GPU codes implement the
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1272 C.-C. Chang et al.

phases of BSOI separately in three subroutines called successively. In both cases, the row
version of the BBS algorithm is used for inversion of the factor R. In contrast, in our hybrid
CPU+GPU implementation, we merge the phase of orthogonal factorization with blocked
back substitution into a single subroutine and use the combination of row and column
versions in BBS phase. This allows us to exploit the GPU for matrix-matrix multiplications
during BBS in parallel with the CPU employed in factorization, as is done in Ref. [31].

In Figures 6 and 7, we compare the BSOI approach to inversion algorithms based on
LU factorization with complete pivoting (LUPI) and conventional QR (QRI) factorization
without pivoting where the reduced Hubbard matrixM̃ is treated as dense. These figures also
present the timing breakdown between the different inversion phases. The bottom portions
of the bars correspond to the factorization phase, whereas the hatched upper parts represent
the time fractions for the further inversion steps. Both figures demonstrate significant speed-
up of BSOI with respect to methods based on dense M̃, if the value L/p increases. The
speed-up grows with the number of sites N = nD . The major contribution in improvement
of BSOI with respect to QR-based inversion is related to the calculation of R−1.

Figure 8 illustrates the performance of BSOI codes on different platforms. Hybrid
CPU+GPU implementation is up to 1.7× faster over the best of CPU and GPU codes.
Its peak performance is higher than the practical peak performance of DGEMM on CPU
and is only 1.1× lower than the peak of DGEMM on GPU. Moreover, the difference in
performance in the interval 64 ≤ N ≤ 1024 does not exceed 1.5× for our hybrid
CPU+GPU implementation. We conclude that this code works equally efficiently for
Hubbard matrices M̃ with a diverse range of the number of sites N .

Figure 9 shows that the accuracy of BSOI is comparable with LU-based inversion, and
lies on the double precision resolution boundary.

We conclude this section by summarizing the overall status of our QMC software.
As shown in Figure 5, pre-pivoting provides a substantial speed-up on a complete DQMC
simulation which is restricted to the evaluation of equal-time correlation functions. What our
latest work employing the BSOI technique shows (Figures 6 and 7) is that the inversion step
of M̃ can similarly be made much more efficient. However, experiments demonstrate that
in DQMC simulations with time-dependent measurements, the majority of computational
time is spent on the wrapping step (see Figure 2). Figure 10 shows the total simulation
time for different number of sites (L = 160, p = 10) if BSOI and conventional LUPI are
used to calculate clustered time-dependent Green’s functions. Therefore, in order to boost
overall performance of the DQMC simulation involving the time-dependent measurements,
the wrapping algorithm will need to be improved. This will be an important topic for future
developments.

4. Selected applications

We conclude this paper by exhibiting a few of the applications of DQMC simulations of
the Hubbard Hamiltonian. We focus on inhomogeneous systems for which the
Hamiltonian creates spatial regions with differing magnetic, superconducting and charge
fluctuation properties. For such situations the challenge of achieving large enough lattice
sizes is especially acute, as opposed to homogeneous ones where translation invariance is
present. As noted at the end of the preceding section, improving the efficiency of DQMC
involves both speeding up those parts of the approach which involve equal time
correlations only and, separately, those that require unequal-time measurements (such as

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
9:

40
 2

7 
A

pr
il 

20
16

 



Philosophical Magazine 1273

Figure 6. (Colour online) Inversion time of M̃ for 2D and 3D lattices with fixed L/p. Notation:
QRI – inversion based on QR factorization without pivoting, LUPI – inversion based on LU
factorization with complete pivoting, BSOI – block structured orthogonal inversion. The bottom
portions of the bars correspond to the factorization phase, the hatched upper parts correspond to the
further inversion steps.

spectral functions and susceptibilities). The results presented here include our
improvements to the equal-time algorithm, but not to the unequal-time one.
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1274 C.-C. Chang et al.

Figure 7. (Colour online) Inversion time of M̃ for 8 × 8 × 8 lattice with different L/p.

Figure 8. (Colour online) Performance of BSOI implementations on different platforms (nD×L/p =
10240).

In condensed matter systems, insulating behaviour can arise in a variety of ways. The
most simple mechanism is a ‘band insulator’ (BI) in which there is a gap in the allowed
energy levels and the particle number is such that the energy levels below the gap are filled
and those above the gap are empty. When, instead, the Fermi level is in the middle of a
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Figure 9. (Colour online) Relative error of inversion for an 8 × 8 lattice. The error is estimated via
Frobenius norm.

Figure 10. (Colour online) Time for a complete time-dependent DQMC simulation if L = 160,
p = 10. Dashed portions of the bars correspond to the time spent on computing clustered Green’s
function G̃.

band, one can still get an insulating phase if the interactions are strong enough that they
restrict particle motion, a ‘Mott Insulator’ (MI), or if randomness localizes the particles, an
‘Anderson insulator’ (AI). Often the MI is accompanied by other types of order, e.g. long
range magnetic correlations.

We have recently studied a model which has the possibility of both BI and MI behaviour.
It consists of two layers whose individual energy bands are inverted relative to one another,
so that the momenta at which one layer has a band maximum is at a band minimum for
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Figure 11. (Colour online) Inset: Phase diagram of a correlated band insulator. V is the interlayer
hopping and U is the on site interaction. Cross-overs from the MI and BI are shown as dashed and
dotted lines. The open circles mark the places where the derivative of the density with respect to
on-site repulsion dn/dU is maximal. Main Figure: finite size scaling results for magnetic correlations
at different U and fixed V .

the other and vice-versa. When electrons are allowed to hop between these layers, via a
hybridization V , the result is a band insulator. The corresponding Hamiltonian would look
much like Equation (1), except the hopping t is not the same between all near neighbour
sites 〈i j〉. Rather it has values t in one layer, −t in the other and V between the layers.

The resulting phase diagram [33] is shown in the inset to Figure 11. In the region marked
as AF Mott Insulator, the system is insulating and also has long range antiferromagnetic
(AF) correlations, as determined by the extrapolation to the thermodynamic limit 1/

√
N →

0 in the main figure. At fixed V = 0.5 there are long range AF correlations for U > 4.
Studies of the spectral function reveal the presence of a gap throughout the phase diagram.
The competition between BI and MI does not produce metallic behaviour anywhere, unlike
other models [34]. Notice that achieving large lattice sizes is crucial to obtaining reliable
extrapolation of the physical properties in the thermodynamic limit.

A second application of our new DQMC implementation is to ultracold fermionic atoms
confined in a trap. In these systems, interfering laser beams generate an ‘optical lattice’
analogous to that provided by the crystalline arrangement of atomic nuclei in a conventional
solid. To prevent the atoms from escaping, however, a quadratic potential μi = μ0 −Vtrap i2

is applied, which makes it energetically unfavourable to move away from the centre of the
lattice. As a consequence, the density, and charge and pair correlations, vary smoothly
through the lattice. The conventional way to study such situations is through the ‘local
density approximation’ (LDA) in which the properties of the system at a particular spatial
location are assumed to be those of a homogeneous system of the same (uniform) density.

Pairing correlations are shown in Figure 12. The vertical line at |i | ≈ 9 shows the
spatial location where the density is one fermion per site. For uniform systems, and hence
within the LDA (lines), superconductivity is suppressed at this density, owing to the strong
competition of charge order. Our lattices are now large enough that we can directly simulate
the inhomogeneous system (symbols), which show no such suppression. This is one of the
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Figure 12. (Colour online) Pairing correlations in a confined fermionic system of 564 particles
interacting with an attractive U = −6 with μ0 = −0.8, Vtrap = 0.0097 and β = 9. The symbols
are the result of simulations of the full inhomogeneous system, while the lines are the result of a
calculation within the local density approximation. The latter approach is seen to fail to describe the
inhomogeneity accurately in the region around i = 9 where the density ρ = 1.

Figure 13. (Colour online) Same parameters as for Figure 12. Here the charge correlations are shown.
Again, the LDA is seen to fail, vastly overestimating the degree of charge order in the region where
ρ = 1.

first, and most dramatic, demonstrations of the failure of the LDAin modelling such systems.
Figure 13 provides a counterpart to Figure 12, exhibiting the charge correlations. The sharp
LDA peaks (lines) are absent in the full simulation (symbols).
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(a)

(b)

Figure 14. (Colour online) Top panel: Antiferromagnetic structure factor Saf
l for two layers l =

−2, −1 with U = 0 in contact via a hopping V with six layers l = 1, 2, · · · , 6 with U = 4. As
V increases, Saf

l is reduced for all positive l, but it then recovers except for l = 1, the layer most
immediately adjacent to the U = 0 metal. The bottom panel provides data for different lattice sizes
at V = 2.

In Figure 11, we considered a model with two layers (or, alternately viewed, bands). Our
final application concerns a many layer system. Here, the interest is in studying the interface
between different materials, e.g. one magnetic and one non-magnetic, or one metallic and the
other insulating. Such interfaces were impossible to study when lattices were limited in size
to N ∼ 102. Now, however, we are able to study eight 10×10 layers and interfaces between
them. Figure 14 shows a specific example. Two layers l = −2,−1 have weak interactions
(U = 0) between the electrons. As a consequence, their magnetic structure factors Saf

l are
small. Above these non-magnetic layers we place six more strongly interacting (U = 4)
layers l = 1, 2, · · ·, 6. We then vary the ability of electrons to tunnel between layers l = −1
and l = 1 which connect the materials, i.e. we vary the hybridization V which is the ti j

for adjacent sites of these two layers. Figure 14 illustrates what happens as V increases.
Contact with the non-magnetic metallic layers l = −2,−1 at first decreases magnetism in
layers l = 1, 2, · · ·, 6. Eventually, however, only layer l = 1 completes the transition to
paramagnetism. Magnetism in the other interacting layers l = 2, 3, · · ·, 6 recovers.

The physical interpretation of this non-monotonicity is that large hopping V ultimately
results in the formation of singlets across the l = −1, 1 interface. These singlets then screen
layers l = 2, 3, . . . , 6 from the metal, leading to a recovery of the magnetism. A finite size
scaling analysis (bottom panel) indicates that when the recovery commences at V ≈ 2 there
is long range order in layers l = 2, 3, · · · , 6, but not layers l = −2,−1, 1.

These three examples illustrate the power of the new DQMC algorithms being
developed. The key shared feature is that they involve lattices with different spatial
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regions in contact: two bands of opposite curvature, spatially varying density, or weakly
and strongly correlated materials. Large N is essential to modeling such situations.

5. Conclusions

In this paper, we have described recent algorithmic advances in Determinant Quantum
Monte Carlo whose goal is to formulate efficient and robust linear algebra kernels which
can take advantage of multicore and GPU architectures. We have demonstrated an order of
magnitude speed-up of our codes, without compromising the numerical stability, and have
benchmarked the performance for different spatial lattice sizes and inverse temperatures.
The end result is, roughly speaking, an order of magnitude increase in performance on a
typical 12 core + Nvidia Fermi GPU machine.

An important development over the past several years, which has also been used in
DQMC and related algorithms, is the construction of ‘delayed’ [35] and ‘submatrix’ [36,37]
update methods. Roughly speaking, these approaches take advantage of the fact that only
a partial knowledge of the new M−1 which arises from the updating of a given Hubbard-
Stratonovich variable is needed in updating the next one. Thus, cpu time can be saved by
delaying the calculation of unneeded elements of the new M−1 until enough of them have
accumulated to make doing so more efficient. A future step in the development of our codes
will be to coordinate the use of delayed and submatrix updating with the methods described
in this manuscript.

We have also provided some recent results of DQMC simulations. Most of these, in fact,
have been obtained with the previous version of our code, which made use of a variety of
novel algorithmic upgrades, did not yet incorporate the changes which have been described
here, and were run on simple single core architectures without GPUs. We estimate an
additional order of magnitude or more speed-up is now possible, and will enable lattice
sizes with at least twice as many sites to be studied.
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Notes

1. Since the chemical potential term is diagonal, it is often combined with the last term of Equation
(8). Therefore Tσ contains the hopping matrix elements only.

2. When the spin degree of freedom is included in the formulation, the occupation number basis
consists of direct product of basis state at different spin sectors. Consequently, the trace becomes
a product of traces of each spin component.
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