
Design of a Parallel Nonsymmetric

Eigenroutine Toolbox, Part I

Zhaojun Bai

�

and James Demmel

y

December 10, 1992

If you build it, they will come.

The field of dreams

Abstract

The dense nonsymmetric eigenproblem is one of the hardest linear algebra problems

to solve e�ectively on massively parallel machines. Rather than trying to design a \black

box" eigenroutine in the spirit of EISPACK or LAPACK, we propose building a toolbox

for this problem. The tools are meant to be used in di�erent combinations on di�erent

problems and architectures. In this paper, we will describe these tools which include

basic block matrix computations, the matrix sign function, 2-dimensional bisection, and

spectral divide and conquer using the matrix sign function to �nd selected eigenvalues.

We also outline how we deal with ill-conditioning and potential instability. Numerical

examples are included. A future paper will discuss error analysis in detail and extensions

to the generalized eigenproblem.

Appears also as

� Research Report 92-09, Department of Mathematics, University of Kentucky.

� University of California at Berkeley, Computer Science Division Report UCB//CSD-92-

718. It is also available on anonymous ftp on toe.cs.berkeley.edu, in directory pub/tech-

reports.

�

Department of Mathematics, University of Kentucky, Lexington, KY 40506. The author was supported

in part by NSF grant ASC-9102963 and in part by DARPA grant DM28E04120 via a subcontract from

Argonne National Laboratory.

y

Computer Science Division and Mathematics Department, University of California, Berkeley, CA 94720.

The author was supported in part by NSF grant ASC-9005933, DARPA contact DAAL03-91-C-0047 via

a subcontract from the University of Tennessee, and DARPA grant DM28E04120 via a subcontract from

Argonne National Laboratory.

1

2

Contents

1 Introduction 3

2 Building Blocks 4

2.1 Primitive Matrix Computations : 4

2.2 Matrix Sign Function : 5

2.3 Computing the sign function when A

i

is ill-conditioned : : : : : : : : : : : : 7

3 Higher Level Tools 8

3.1 Counting Eigenvalues : 8

3.1.1 Complex matrices : 9

3.1.2 Real matrices : 10

3.2 Computing Invariant Subspaces : 13

3.2.1 Complex Matrices : 14

3.2.2 Real Matrices : 15

4 Problem Dependent Strategies 17

5 Numerical Experiments 19

6 Future Work 23

3

1 Introduction

It is a challenge to design a parallel algorithm for the nonsymmetric eigenproblem that uses

coarse grain parallelism e�ectively, scales for larger problems on larger machines, does not

waste time dealing with the parts of the spectrum in which the user is not interested, and

deals with highly nonnormal matrices and strongly clustered spectra. The conventional

Hessenberg QR algorithm is a �ne grain algorithm and has proven di�cult to parallelize

[5, 32, 76]. Moreover, it must �nd all the eigenvalues, essentially just one (or a few) at a time.

In applications where only some eigenvalues are desired, one still has to compute them all.

If one only wants an invariant subspace corresponding to a speci�ed set of eigenvalues, one

has to reduce the matrix completely to Schur form, and then swap the desired eigenvalues

along the diagonal to group them together in order to form the desired invariant subspace

[1, 4].

In this paper, we propose a collection of tools from which hybrid eigenvalue algorithms

may be constructed. The resulting algorithms are easy to parallelize, and need only work on

the part of the spectrum of interest to the user. The new tools use the matrix sign function

to \spectrally divide and conquer" the matrix, as well as count the number of eigenvalues in

a region of the complex plane. We describe how these tools might be combined to deal with

di�erent eigenvalue distributions and di�erent user needs. We do not attempt to design a

\black box" for this problem since we believe that such an algorithm would necessarily be

much less e�cient and reliable than one tuned for a particular application.

The algorithms we propose here are less accurate, less reliable and use more
oating

point operations than the best serial algorithm: Hessenberg QR iteration. On the other

hand, they are easy to parallelize, and use only well understood block matrix operations

like matrix multiplication, LU decomposition, and QR decomposition. In fact, all parallel

algorithms that have been proposed for the nonsymmetric eigenproblem exhibit a tradeo�

between parallelizability and accuracy/reliability, a tradeo� not uncommon in parallel com-

puting [19]. Of all these algorithms, we believe our algorithm deals with this tradeo� most

e�ectively.

Other parallel eigenalgorithms include parallel QR [5, 18, 32, 42, 69, 73, 72, 76, 77],

Hessenberg divide and conquer using either Newton's method [28], or homotopies [15, 16,

28, 57, 58, 78], Jacobi's method [33, 34, 62, 65, 66, 68, 75], and reduction to nonsymmet-

ric tridiagonal form [27, 40, 41, 43]. All these methods su�er from the use of �ne-grain

parallelism, instability, slow or misconvergence in the presence of clustered eigenvalues of

the original problem or some constructed subproblem, or some combination of these. They

must also �nd all the eigenvalues even if only some are desired. Our algorithm may also

have di�culty converging on \di�cult" parts of the spectrum, but in contrast to the above

methods, this happens only if part of the original problem is very ill-conditioned and the

user wants to compute that part of the spectrum; ill-conditioning in irrelevant parts of the

spectrum need not signi�cantly impact convergence. Furthermore, we can straightforwardly

monitor the stability and convergence rate as we proceed, and either provide feedback to the

user as to which part of the spectrum is di�cult, or automatically compute more carefully

(and slowly) to maintain stability. (See [20] for a more complete discussion of the alternate

methods).

The work most closely related to ours may be found in [2, 9, 56, 61, 60]. Auslander,

4

Bischof, Lederman and Tsao [2, 9, 56] deal with symmetric matrices, or more generally

matrices with real spectra. The set of nonsymmetric matrices with all real spectra is not

large, however

1

. The prior work with the matrix sign function in [60] particularly inspired

us to take this approach.

We have divided this work into two papers. This �rst paper is organized as follows: In

x2, we discuss the basic building blocks, such as the matrix sign function, which are required

for higher level computations. Existing iteration and scaling schemes as well as condition

estimates for the matrix sign function are also surveyed. In x3, we discuss the work of

Howland [49] and Stickel [70], and show how we can use their results to count the number

of eigenvalues in speci�ed domains, or to �nd the corresponding invariant subspaces. This

may be used as the basis either of a divide and conquer or a bisection algorithm. x4 discusses

how the choice of algorithm may depend on the application. x5 outlines what we currently

know about the error analysis of the algorithm; more remains to be done here. x6 presents

some preliminary numerical examples and performance results. x7 discusses future research

and the contents of the next paper.

2 Building Blocks

In this section, we list basic tools which serving as building blocks for solving our problem.

Beside the BLAS [25, 26] and basic matrix decompositions such as LU and QR, the key

tool is the matrix sign function. Di�erent iteration and scaling schemes are collected here;

since none appears uniformly superior, all are candidates for inclusion in our tool box.

2.1 Primitive Matrix Computations

1. The most primitive building blocks are the Basic Linear Algebra Subroutines, or BLAS

[25, 26]. In particular matrix-matrix multiplication (xGEMM) will be most heavily used.

We will also need the solution of triangular systems (xTRSV and xTRSM) and rank-1

matrix updates (xGER).

2. These BLAS are in turn used to construct routines for LU decomposition, matrix

inversion, QR decomposition, condition estimation (ideally, rank revealing QR factor-

ization [10, 13]), as well as Hessenberg reduction of a general matrix [1, 45].

It should be noted that although our mathematical focus is not on these primitive matrix

computations, the performance of our algorithms will strongly depend on them. The design

and performance evaluation of these basic matrix computations on shared memory machines

can be found in the LAPACK Users' Guide [1] and references cited therein. The discussion

of the implementation of these basic matrix computations on SIMD and MIMD machines

can be found, for example, in [20, 29, 59, 60] and the references therein.

1

Edelman [35] has recently shown that the probability that a random n by n real matrix has all real

eigenvalues is very small: 2

�n(n�1)=4

.

5

2.2 Matrix Sign Function

A higher level building block is the matrix sign function sign(A). This function was �rst

introduced by Roberts in 1971 [63], and is de�ned as

sign(A) = 2sign

+

(A)� I;

where the sign

+

function is de�ned as the contour integral

sign

+

(A) =

1

2�i

I

C

+

(�I � A)

�1

d�:

Here the simple closed curve C

+

encloses all the eigenvalues of A with positive real part

and no others. We assume that A has no eigenvalues with zero real part; otherwise there

is a generalized matrix sign function [23]. This case will arise only as an exception in our

algorithm and will be discussed later.

This expression may also be written as

sign(A) = P

+

� P

�

where

P

�

=

1

2�i

I

C

�

(�I � A)

�1

d�:

Here C

�

is a simple closed curve enclosing the eigenvalues of A with negative real part and

no others. P

�

is the spectral projector for the part of the spectrum in the right (or left)

halfplane [51].

We can also de�ne the matrix sign function in the following equivalent way, as in [22].

Let

A = X

J

+

0

0 J

�

!

X

�1

be the Jordan canonical form of A, where the eigenvalues of J

+

are in open right halfplane

and the eigenvalues of J

�

in the open left halfplane. Then the matrix sign function of A is

sign(A) = X

I 0

0 �I

!

X

�1

:

From this de�nition, it is easy to verify the following properties of sign(A):

Theorem 1 . If an n� n matrix A has no eigenvalues with zero real part, its matrix sign

function sign(A) has the following properties:

1. A � sign(A) = sign(A) �A;

2. (sign(A))

2

= I and (sign(A))

�1

= sign(A);

3. sign(TAT

�1

) = T sign(A)T

�1

for any nonsingular T ;

4. tr(sign(A)) = �� � and n = �+ �, where � and � are the numbers of eigenvalues of A

with positive and negative real parts, respectively. Equivalently, � =

1

2

(n+tr(sign(A)))

and � =

1

2

(n� tr(sign(A))).

6

5. P

�

=

1

2

(I� sign(A)) is the spectral projector onto the eigenspace corresponding to the

eigenvalues of A with positive (or negative) real parts.

There are a variety of ways to compute the matrix sign function. The simplest iteration

scheme is Newton's method applied to (sign(A))

2

= I :

A

i+1

=

1

2

(A

i

+ A

�1

i

) with A

0

= A: (2:1)

The iteration is globally and ultimately quadratically convergent [63, 49].

Newton iteration requires the matrix inversion A

�1

i

which may be expensive or di�cult

to compute accurately. Other schemes such as Newton-Schulz iteration

A

i+1

=

1

2

A

i

(3I �A

2

i

) with A

0

= A

require more
ops (twice as many per iteration in this case) but use only matrix multiplies,

which may be more e�cient. The Newton-Schulz iteration is also quadratically convergent

provided that kA

2

i

� Ik < 1. A hybrid iteration might begin with Newton iteration until

kA

2

i

� Ik < 1 and then switch to Newton-Schulz iteration.

More general iteration schemes for computing the matrix sign function are based on

Pad�e approximation [52]. In particular, the following Halley iteration:

A

i+1

= A

i

(3I + A

2

i

)(I + 3A

2

i

)

�1

is globally convergent with cubic local convergence rate. Again the tradeo� here is between

the larger number of the
ops per iteration versus the higher convergence rate.

There are many ways to accelerate the iterations via scaling. Two popular forms of

scaling Newton's iteration are

A

i+1

= �

i

A

i

+ �

i

A

�1

i

with �

i

+ �

i

= 1

and

A

i+1

=

1

2

(

i

A

i

+

1

i

A

�1

i

);

where �

i

; �

i

and

i

are appropriately chosen scalars. Some of the known scaling schemes

are

Roberts [63]: �

i

= kA

�1

i

k=(kA

i

k+ kA

�1

i

k); �

i

= kA

i

k=(kA

i

k+ kA

�1

i

k):

Balzer [6]: �

i

= (jdet(A

i

)j

1=n

+ 1)

�1

; �

i

= 1� �

i

:

Higham [47]:

i

=

h

kA

�1

i

k

1

kA

�1

i

k

1

=(kA

i

k

1

kA

i

k

1

)

i

1=4

:

Byers [12]:

i

= jdet(A

i

)j

�1=n

:

A comparison of di�erent scaling schemes for di�erent �

i

and �

i

is presented by Balzer

[6], and for di�erent

i

by Kenney and Laub [54]. Kenney and Laub shows that the optimal

scaling

i

requires complete knowledge of the eigenvalues of the original matrix. A semi-

optimal scaling is proposed, which only needs to know the dominant eigenvalues of the

matrix and its inverse. These dominant eigenvalues may be estimated by the power method.

7

Note that it is convenient to calculate the determinant det(A

i

) and estimate the norm

kA

�1

k

`

, ` = 1 or 1, from the same LU or QR factors that we use to perform the matrix

inversion [48]. We may also compute the matrix sign function of p(A), where p is a low

degree polynomial. p may be chosen so that the eigenvalue distribution of p(A) has a

favorable distribution for a fast convergence rate. One might also consider the matrix sign

function of a matrix rational function q(A), although we will not do so here.

Several stopping criteria may be used in the iterations, such as

kA

i+1

� A

i

k � �kA

i

k or kA

i

� A

�1

i

k � �kA

i

k

where � is a small, user speci�ed error bound.

As suggested by part 4 of Theorem 1 and discussed further below, we may only need to

compute the trace of the sign function rounded to the nearest integer in order to use it to

count the number of eigenvalues in a region of the complex plane [38, 49]. This may require

a less stringent stopping criterion than for computing the entire matrix sign function.

There is a large literature on using the matrix sign function to solve algebraic matrix

Riccati equations, see [55] and references therein.

2.3 Computing the sign function when A

i

is ill-conditioned

When A

i

is ill-conditioned, we may lose accuracy when computing A

i+1

= :5 � (A

i

+A

�1

i

).

This may be avoided by choosing to divide the spectrum in a di�erent place (see x3), but if

the user really wants to divide the spectrum in this location, we must deal with it. To do

so, we will show how to compute each iterate A

i

of (2.1) to relative precision "

1=2

M

, where

"

M

is the machine precision. A complete error analysis of this algorithm will be given in

the second part of this two part paper.

If A has s � 1 singular values less than "

1=2

M

kAk

2

, then there is a perturbation �A of

A of norm k�Ak

2

� "

1=2

M

kAk

2

such that A + �A has s zero eigenvalues. We can use a

(rank revealing) QR decomposition of A to construct �A and de
ate the resulting s zero

eigenvalues by �nding a basis for the range space of A (corresponding to the singular values

exceeding "

1=2

M

kAk

2

), and forming Q

T

AQ. We set the trailing s rows of Q

T

AQ to zero; this

is �A. Let

^

A denote the leading n � s by n � s submatrix of Q

T

AQ; it is the remaining

eigenproblem we must solve.

If

^

A has condition number bounded by "

�1=2

M

, then it has no more tiny singular values

less than "

1=2

M

kAk

2

[21, 74]. Then, using arithmetic of accuracy "

M

, we can compute

^

A

�1

with an absolute error bounded by

"

M

�(

^

A)k

^

A

�1

k

2

� "

M

"

�1=2

M

k

^

A

�1

k

2

= "

1=2

M

k

^

A

�1

k

2

If we using a scaling so that k

^

Ak

2

and k

^

A

�1

k

2

are not too di�erent (either Roberts' or

Higham's of the last section will do) then we can evaluate formula (2.1) with an absolute

error of O("

1=2

M

)k

^

Ak

2

[31]. Since the de
ation introduces a backward error of size "

1=2

M

(relative to A), the whole procedure has forward as well as backward error "

1=2

M

.

If

^

A still has tiny singular values below "

1=2

M

kAk

2

, then this QR de
ation process could

be repeated. This amounts to running the so-called staircase algorithm for the Jordan

8

structure of A at zero [50]. In the worst case, if A is an n by n Jordan block with eigenvalue

zero, this process will take n steps and O(n

4

)
ops. This is, however, extremely unlikely.

We discuss this complexity issue more below.

If this de
ation occurs for A

0

= A, the de
ated eigenvalues correspond to tiny eigen-

values of A as described. If it occurs for A

1

, they correspond to tiny eigenvalues of A

1

, or

eigenvalues of A

0

near �

p

�1. Similar interpretations are possible for tiny eigenvalues of A

i

for larger i. Since roundo� may make it hard to identify the corresponding eigenvalues of

A

0

, a very ill-conditioned A

i

is probably best interpreted as a signal to split the spectrum

elsewhere (see x3). For any i we can certainly construct examples where A

0

; :::;A

i�1

are

well-conditioned and A

i

is ill-conditioned (let A

0

have a nearly pure imaginary eigenvalue

� such that iterating � :5(�+ 1=�) i times nearly yields zero). Fortunately, this seems

unlikely in practice because the iteration (2.1) moves eigenvalues near the imaginary axis

away from it.

A more complete discussion of the conditioning of the matrix sign function computation

will appear in part 2 of this paper. In [53, 11], some condition number estimation procedures

for the matrix sign function, based on Fr�echet derivatives, are discussed.

3 Higher Level Tools

We can use properties of the matrix sign function to produce two higher level tools for our

toolbox:

1. counting the number of eigenvalues in a region of the complex plane, and

2. computing the invariant subspace of the eigenvalues in a region of the complex plane.

We now discuss these operations in turn, �rst for complex matrices, and then for real

matrices. Real matrices require somewhat more complicated algorithms, because we want

to avoid complex arithmetic if possible. The later numerical examples will be for real

matrices only.

3.1 Counting Eigenvalues

In 1856, C. Hermite published a paper entitled \On the number of roots of an algebraic equa-

tion contained between given limits" [46]. Hermite's theory is a generalization of Sturm's

theory of 1853 for the locating the eigenvalues of a symmetric matrix. The theory discusses

the number of eigenvalues of a nonsymmetric matrix in a speci�ed domain based on polyno-

mial and associated quadratic forms. Less attention has been paid to the theory in modern

times because of its apparently high computation costs and numerical sensitivity [37].

Although it is immediate to see how the matrix sign function can be used to count the

number of eigenvalues in a halfplane (see part 4 of Theorem 1), Howland [49] was the �rst

to use it to count the eigenvalues in a rectangle. The most recent work on this topic is due

to Stickel [70]. The following theorems are inspired from the work of Howland and Stickel.

They appear explicitly or implicitly in their work.

In the next section, we shall introduce a de
ation technique for computing an invariant

subspace corresponding to the eigenvalues in a speci�ed region. This de
ation technique,

9

y

o
x

b

y

o x

Figure 1: The half plane and convex polytope

which leads to considerable savings in practical computation, can be easily incorporated in

the theorems for counting eigenvalues, although we will not do so in the interest of brevity.

First we will discuss the complex case, and then the real case.

3.1.1 Complex matrices

Part 4 of Theorem 1 tells us how to count the number of eigenvalues of A in the left or right

halfplane by taking the trace of its sign function. By taking the trace of the sign function

of �A+ �I for appropriate scalars � and �, we can count the number of eigenvalues in any

halfplane.

First, we need to de�ne a line and its right halfplane. Let z = �e

i�

+ b, � real and

0 � � < �, be the locus of a line in the complex plane passing through b with slope tan �.

We may also express this locus as =((z � b)e

�i�

) = 0. We will de�ne the right or positive

halfplane H

+

de�ned by this line as the set of z satisfying =((z�b)e

�i�

) > 0, or equivalently

<(�i(z � b)e

�i�

) > 0. When 0 < � < �, so the line is not horizontal, this has the natural

meaning of the halfplane of points to the right of the line. When � = 0, so the line is

horizontal, this is the halfplane below the boundary line. This de�nition is convenient

because the halfplane changes continuously with � in the range 0 � � < �. The left or

negative halfplane H

�

is de�ned analogously.

Theorem 2 Let � and b de�ne a right halfplane H

+

as just described. Assume A has no

eigenvalues on the boundary of the halfplane. Then

of eigenvalues in H

+

= � =

1

2

�

tr(sign(�ie

�i�

A + ie

�i�

bI)) + n

�

;

of eigenvalues in H

�

= n� �

The theorem follows from part 4 of Theorem 1 since the eigenvalues of A in H

+

(H

�

)

correspond to eigenvalues of �ie

�i�

A+ ie

�i�

bI with positive (negative) real parts.

10

Now consider a convex polytope C in the complex plane, de�ned as the intersection of

positive halfplanes C = \

k

j=1

H

j

+

, H

j

+

being de�ned by scalars �

j

and b

j

as above. The next

theorem, which follows from the last one, shows how to count the number of eigenvalues of

A inside C, provided C does not contain the origin (Theorem 9 will remove this restriction).

Theorem 3 Let �

j

and b

j

, 1 � j � k, de�ne a sequence of positive halfplanes H

j

+

and the

convex set C \

k

j=1

H

j

+

as above. Assume C does not contain the origin in its boundary or

interior. Assume the n-by-n matrix A has no eigenvalues on the boundaries of any H

j

+

.

Let P

j

=

1

2

(I + sign(�ie

�i�

j

A + ie

�i�

j

b

j

I)) be the spectral projector onto the eigenspace of

A corresponding to the eigenvalues in H

j

+

(see Theorem 1, part 5). Let

^

A = AP

1

�P

2

� � �P

k

.

Let H

+

and H

�

, de�ned by � and b, satisfy C � H

+

and 0 2 H

�

. Then

of eigenvalues of A inside C =

1

2

(n+ tr(sign(�ie

�i�

^

A+ ibe

�i�

))):

Proof. . The eigenvalues of

^

A are the same as those of A inside C (all nonzero), and all

the others are zero. This is because each multiplication by P

j

leaves the eigenvalues inside

H

j

+

unchanged and zeros out those outside H

j

+

. Therefore, the eigenvalues of

^

A inside H

+

are identical the eigenvalues of A inside C, and the eigenvalues of

^

A outside H

+

are all zero

and equal in number to the eigenvalues of A outside C. The result now follows from part

4 of Theorem 1.

Note that all the P

j

in Theorem 3 commute with one another and with A, and so in

principle could be computed in parallel and multiplied in any order, such as in parallel

reduction.

Both these theorems require complex arithmetic in general to evaluate the sign functions,

even if A is real. Since complex arithmetic is more expensive than real arithmetic, we prefer

theorems that require only real arithmetic for their implementation. Such theorems are

presented in the next section.

3.1.2 Real matrices

The following theorem, a special case of Theorem 2, shows that one real matrix sign function

evaluation can count the number of eigenvalues of a real matrix in a halfplane with a vertical

boundary.

Theorem 4 Let b 2 IR. Assume the n-by-n matrix A has no eigenvalues with real part b.

Then

of eigenvalues with real part greater than b = � =

1

2

(tr(sign(A� bI)) + n) ;

of eigenvalues with real part less than a = n� �

With two matrix sign function evaluations, we can count the eigenvalues in a vertical

strip of all complex numbers with real part in the interval (b; c).

Theorem 5 Let b; c 2 IR, b < c. Assume A has no eigenvalues with real part b or c. Then

of eigenvalues in the strip (b; c) =

1

2

tr (sign(A� bI)� sign(A� cI)) :

11

y

o b c
x

c

A

B

B’

o

y

x
a b

A’

Figure 2: The vertical strip and trapezoid

With more matrix sign function evaluations, we can count the number of eigenvalues

in a more complicated region. For example, three sign function evaluations can be used to

count the number of eigenvalues in a trapezoid in the complex plane.

Theorem 6 Let a; b; c 2 IR, b < c, let the trapezoid ABB

0

A

0

be de�ned as in Figure 2

(where a < b < c). Assume A has no eigenvalues on the lines containing the edges of this

trapezoid. Let

P

+

b

=

1

2

(I + sign(A� bI)); P

�

c

=

1

2

(I � sign(A� cI))

and

A

p

= AP

+

b

P

�

c

:

A

p

is the matrix obtained by projecting the eigenvalues of A that lie outside the vertical strip

between by x = b and x = c onto zero while the others remain unchanged. Then

of eigenvalues in the trapezoid ABB

0

A

0

=

1

2

tr(I + sign((A

p

� aI)

2

)):

Note that the above theorem is still true if b � a < c or c � a, in which cases the region

bounded by lines x = b, y = �(x� a) and x = c may look like a triangle or butter
y.

The following theorem by Stickel [70] can be regarded as a real version of Howland's

theorem [49], which shows that with four matrix sign function evaluations, one can count

the number of eigenvalues in a parallelogram.

Theorem 7 [70] Let a; d; b; c 2 IR, and satisfy a < d � b < c or b < c � a < d. Let the

parallelogram ABCD be de�ned as in Figure 3. Assume A has no eigenvalues on the lines

containing the edges of this rectangle. Let A

p

be de�ned as in Theorem 6. Then

of eigenvalues in the parallelogram ABCD =

1

4

tr

�

sign((A

p

� aI)

2

)� sign((A

p

� dI)

2

)

�

:

12

o

y

x
a c

C

D’

D

C’

bd

A

B

A’

B’

o

y

x
b c

da

A

D

C

B

A’

D’

C’

B’

Figure 3: The parallelogram

Note that we actually know the number of eigenvalues in two parallelograms, ABCD

and A

0

B

0

C

0

D

0

, where the latter is the image of the former under re
ection in the x axis.

The results of the above theorems can be used to implement one or two-dimensional

bisection schemes, as shown in Figure 4. It only requires that the trace of the sign function

be computed to the nearest integer. The following table counts the number of sign function

(SF) evaluations for 2-D bisection if we assume that each subparallelogram in Figure 4

contains eigenvalues of A, which is a very pessimistic assumption. Column 1 in the table

indicates how many levels of bisection we have performed, column 2 contains the number of

new sign function evaluations at that level, column 3 contains the cumulative number of sign

function evaluations, and column 4 contains the total number of (smallest) parallelograms.

Note that if the de
ation techniques of the next section are incorporated, we need only

evaluate the matrix sign function of small matrices once we get to �ner grids, which is

much less expensive.

Level # of computed SF count of # of tr(SF) # of parallelograms

1 4 4 1

2 5 9 4

3 16 25 16

4 56 81 64

.

.

.

.

.

.

.

.

.

.

.

.

k 3 � 2

2(k�2)

+ 2

(k�1)

2

2(k�1)

+ 2

k

+ 1 2

2(k�1)

If A has eigenvalues along or near the forbidden lines, the sign function iteration will not

converge (or converge very slowly), and this can be detected by condition number estimation

during the Newton iteration, and the edges may be changed.

One may be able to devise schemes for counting the eigenvalues within more complicated

domains, but it is not clear these would be useful in practice.

13

a 0 d b c

B

C

D

A

y

x

Figure 4: 2-dimensional Bisection

3.2 Computing Invariant Subspaces

We may use the matrix sign function to reduce the matrix to block upper triangular form

by dividing the matrix into independent subproblems which can be solved independently

and recursively. By computing a (rank revealing) QR decomposition of sign(A)� I , we can

compute an orthonormal basis of the invariant subspace of the eigenvectors in the right (or

left) halfplane. By computing the sign function of �A+�I as in x3.1.1, we can compute an

orthonormal basis of the eigenvalues in any halfplane (although this will require complex

arithmetic in general). This idea has been discussed by Beavers and Denman in 1973 [7],

Denman and Leyva-Ramos in 1981 [23], and Lin and Zmijewski in 1991 [60] in the spirit

of computing the complete spectral decomposition of a nonsymmetric matrix. The recent

work of Auslander and Tsao in 1991 [2], and and Lederman, Tsao and Turnbull in 1992

[56] is similar, but they use a polynomial to map the eigenvalues instead of the matrix sign

function; their work is limited to matrices with real eigenvalues. Theorems in this section

are a summary of these results. These theorems can be considered as extensions of the

theorems in the last subsection.

In order to reduce the number of
oating point operations, we have developed a de
a-

tion technique for computing the invariant subspace corresponding to the eigenvalues in a

speci�ed region. This technique leads to considerable computational savings over the the-

orems in x 3.1. Throughout, we assume that no eigenvalues of A lie on the boundary lines

in the complex plane determined by the sign function evaluations; we will not repeat this

assumption in the statements of the theorems.

14

3.2.1 Complex Matrices

Theorem 8 Let the halfplane H

+

be de�ned by � and b as in Theorem 2. Let A be a matrix

with no eigenvalues on the boundary of H

+

. Let

S = sign(�ie

�i�

A+ ibe

�i�

I) + I:

Let a (rank revealing) QR decomposition of S be

Q

T

S� =

k n� k

k S

11

S

12

n� k 0 0

!

where � is a permutation matrix and k is the rank of S. Then

Q

T

AQ =

k n � k

k A

11

A

12

n� k 0 A

22

!

;

where the k eigenvalues of A

11

are precisely the eigenvalues of A inside H

+

. The leading k

columns of Q span the corresponding invariant subspace.

The above theorem reveals that with one matrix sign function evaluation, one rank

revealing QR decomposition and two matrix multiplications, we can de
ate the given matrix

into a two by two block upper triangular matrix. The same procedure can be applied

recursively and in parallel to each diagonal block until getting the desired (quasi-)triangular

form. This is the main idea discussed in [60] and [2, 56]. We illustrate this below for the

problem of �nding the eigenvalues in a given convex polytope C and the corresponding

invariant subspace.

Theorem 9 Let the halfplanes H

j

+

de�ned by �

j

and b

j

, 1 � j � k, be as in Theorem 3.

The convex polytope C = \

k

j=1

H

j

+

may be arbitrary. Then the following algorithm computes

an n

k

-by-n

k

matrix A

k

whose eigenvalues are precisely the eigenvalues of A inside C, and

an n-by-n

k

orthogonal matrix Q

k

whose columns span the corresponding invariant subspace.

A

0

= A;

Q

0

= I;

n

0

= dim(A);

for j = 1 : k

Let S

j

= sign(�ie

�i�

A

j�1

+ ie

�i�

bI)) + I;

Let Q

T

S

j

� =

n

j

n

j

S

j;1

S

j;2

0 0

!

be a rank revealing QR decomposition of S

j

,

with n

j

= rank(S

j

);

Let A

j

be de�ned by Q

T

AQ =

n

j

n

j

A

j

�

0 �

!

;

Q

j

= Q

j�1

(1 : n

0

; 1 : n

j�1

) �Q(1 : n

j�1

; 1 : n

j

);

endfor

15

3.2.2 Real Matrices

Now we restrict ourselves to transformations requiring only real arithmetic if A is a real

matrix.

Theorem 10 Let b 2 IR, and

S =

1

2

(I + sign(A� bI)):

Let a rank revealing QR decomposition of S be

Q

T

S� =

k n� k

k S

11

S

12

n� k 0 0

!

where � is a permutation matrix and k is the rank of S. Then

Q

T

AQ =

k n � k

k A

11

A

12

n� k 0 A

22

!

;

where the k eigenvalues of A

11

are precisely the eigenvalues of A with real part greater than

b.

In the absence of application dependent information, we can choose b = tr(A)=n, so

that neither halfplane is devoid of eigenvalues.

From Theorem 5, it is easy to see that with the evaluation of two matrix sign functions,

we can de
ate the invariant subspace corresponding to the eigenvalues in a vertical strip,

which can be more useful. However, by using Theorem 5 directly, we need to evaluate two

full n�n matrix sign functions. This work can be reduced if we use one de
ation step after

computing the �rst sign matrix, say sign(A � bI), because we know that the eigenvalues

have been split at x = b (see Theorem 10). Then the second matrix sign function is only

for a submatrix with the order of the number of eigenvalues in the open right halfplane of

x = b. This observation is stated in the following theorem.

Theorem 11 Let b; c 2 IR and b < c,

S

b

=

1

2

(I + sign(A� bI)):

Let a rank revealing QR decomposition of S

b

be S

b

�

b

= Q

b

R

b

, then

Q

T

b

AQ

b

=

k

b

n� k

b

k

b

A

b

11

A

b

12

n� k

b

0 A

b

22

!

;

where the eigenvalues of A

b

11

are the all eigenvalues of A in the open right halfplane of x = b.

De�ne the k

b

� k

b

matrix

S

c

=

1

2

(I � sign(A

b

11

� cI)):

16

Let a rank revealing QR decomposition of S

c

be S

c

�

c

= Q

c

R

c

, then

Q

T

c

A

b

11

Q

c

=

k

c

k

b

� k

c

k

c

A

c

11

A

c

12

k

b

� k

c

0 A

c

22

!

:

where the k

c

eigenvalues of A

c

11

are the all eigenvalues of A in the strip (b; c).

As in the case of counting the number of eigenvalues, with more (real) sign function

evaluations, we can determine an invariant subspace corresponding to a more complicated

region. For example, with three sign function evaluations, from Theorem 6, we can deter-

mine an invariant subspace corresponding to the eigenvalues in a trapezoid. Similarly, using

de
ation techniques, we can avoid computing three full n � n matrix sign functions and

avoid forming the matrix A

p

explicitly. This observation is stated in the following theorem.

Theorem 12 Let a; b; c 2 IR and b < c. Let the trapezoid ABB

0

A

0

be de�ned as in Figure

2 (where a < b < c). Let the k

c

� k

c

submatrix A

c

11

be de�ned as in Theorem 11. Let the

rank revealing QR decomposition of S

a

=

1

2

(I + sign((A

c

11

� aI)

2

))) be S

a

�

a

= Q

a

R

a

. Then

Q

T

a

A

c

11

Q

a

=

k

a

k

c

� k

a

k

a

A

a

11

A

a

12

k

c

� k

a

0 A

a

22

!

:

where the eigenvalues of the k

a

�k

a

submatrix A

a

11

are the eigenvalues of A in the trapezoid

ABB

0

A

0

.

Note that although we still need to compute three matrix sign functions as in Theorem 6,

the matrix dimensions are n, k

b

and k

c

, respectively, instead of n, n and n. In practice, k

b

and k

c

could be much smaller than n.

Theorem 7 can be used to compute an invariant subspace corresponding to the eigen-

values in the speci�ed parallelogram. In the same spirit as Theorems 11 and 12, by in-

corporating the de
ation technique, we may only need to compute one n � n matrix sign

function, and the other matrix sign functions may be much smaller.

Theorem 13 Let a; d; b; c 2 IR, and satisfy a < d � b < c or b < c � a < d. Let the k

a

by k

a

matrix A

a

11

be as de�ned in Theorem 12. Let a rank revealing QR decomposition of

S

d

=

1

2

(I � sign((A

a

11

� dI)

2

))) be S

d

�

d

= Q

d

R

d

, then

Q

T

d

A

a

11

Q

d

=

k

d

k

a

� k

d

k

d

A

d

11

A

d

12

k

a

� k

d

0 A

d

22

!

;

where the eigenvalues of the k

d

� k

d

submatrix A

d

11

are the eigenvalues of A in the parallel-

ograms ABCD and A

0

B

0

C

0

D

0

de�ned by y = �(x� a); y = �(x� d) and x = b; x = c as in

Figure 3 (The parallelogram A

0

B

0

C

0

D

0

is the re
ection of ABCD in the real axis).

17

To implement the above theorem, we need to compute sign functions of dimensions n,

k

b

, k

c

and k

a

, respectively, instead of all n's.

We end this section with a few general remarks.

(1). We can retain real arithmetic and permit more general regions than halfplanes,

strips, rectangles and parallelograms by computing the sign function of (low degree) poly-

nomials in A. For example, consider applying the sign function to A

2

� �I , as suggested in

[60]. This maps the imaginary axis to the real axis, allowing us to separate eigenvalues on

or near the imaginary axis. Indeed, the locus of eigenvalues � of A such that <(�

2

��) = 0

is the hyperbola (<�)

2

� (=�)

2

= �. It is obviously possible to use more general (but still

low degree polynomial) maps.

(2). The QR decomposition with column pivoting (such as in LAPACK subroutine

SGEQRP) can be used in the above theorems to do the rank revealing QR decomposition.

This may be replaced by any more reliable or e�cient rank revealing decomposition scheme.

(3). If the eigenvalues ofA lie or very near the forbidden lines, the sign function iterations

will converge slowly, and this can be detected.

(4). If a submatrix is small enough, we can use QR iteration, as implemented in LA-

PACK routine xGEES [1].

(5). It would be of interest to generalize the above techniques to the regular generalized

eigenvalue problem A � �B. This means that A � �B is square and det(A � �B) is not

identically zero. Gardiner and Laub [39] as well as Malyshev [61] have considered such

extensions. Another possible approach, which includes the computation of both left and

right de
ating subspaces, has been studied. We shall report such results in the second part

of this report.

4 Problem Dependent Strategies

In this section we explain why a black box based on these techniques is unlikely to be

e�cient in all cases, and how one could exploit application dependent information about

the problem.

The most obvious application dependent optimization is to compute only those eigenval-

ues in regions of interest. If the user speci�es the halfplane, strip, rectangle or parallelogram

of interest (or more general regions formed by intersecting these or combining them with

simple polynomial conformal maps), then the algorithm can begin by computing the invari-

ant subspace for the eigenvalues in this region and de
ating them. If there is di�culty in

convergence, the user can be informed that there is an eigenvalue close to the boundary of

the region of interest.

In addition, the user's knowledge of where eigenvalues are unlikely to lie can be used to

choose separators whose corresponding sign functions are easy to compute.

In the absence of such information, the algorithm would have to �gure out where to

separate the spectrum on its own. Since one sign function evaluation may require several

times as many
ops as conventional Hessenberg QR, it is important to limit the number of

sign function evaluations on the original matrix (later ones, on smaller matrices, are much

cheaper). It is possible that an automatic \black-box" might make some bad choices in

initially trying to split the spectrum and so be very expensive.

18

Now we consider when one may want to use the sign function to perform bisection in

the complex plane. If there is an isolated tight cluster of eigenvalues, it may be adequate

to know how many there are in the cluster; below we discuss why it may be expensive or

ill-conditioned to ask for more information. On the other hand, a common feature of many

applications is that (much of) the spectrum lies on curves in the complex plane [3]. In other

words, far from forming a \cloud" or collection of small clusters, the eigenvalues lie tightly

spaced on curves. In particular, there are no obvious gaps in the spectrum along which to

separate it using the sign function. It is for problems like these that merely counting the

numbers of eigenvalues in rectangles or parallelograms or other simple regions of the plane

may be useful.

For example, suppose one knew the eigenvalues lay on curves, and suppose one can

\sample" the spectrum by running inverse iteration from artfully chosen starting points.

Suppose further one has sampled the spectrum �nely enough to predict (via interpolation)

where the spectral curves might lie. These predictions can be veri�ed by circumscribing the

predicted curves by long thin rectangles, and counting the number of eigenvalues inside. By

working with the sign function of �A

2

+ �A +
 instead of A, one can use regions whose

boundaries are conic sections instead of line segments. This reduces the cost close to that

of one-dimensional instead of two-dimensions bisection, which is much cheaper.

It is clear from this discussion that the running time will be \output sensitive", where

\di�cult" spectra, or ones for which little information is available, will take longer than

easy ones. For example, consider a matrix orthogonally similar to an n by n Jordan block J

with eigenvalue 0; this has extremely ill-conditioned eigenvalues. Indeed, a perturbation of

norm x

n

is adequate to make any x < 1 an exact eigenvalue. So if n � 16, for example, then

any number less than :1 in magnitude is within 10

�16

of being an exact eigenvalue. What

should the output of the routine be in this case? The result from Hessenberg QR algorithm

to which we are accustomed is that all n computed eigenvalues are the exact eigenvalues

for a matrix di�ering from the input by little more than machine precision (10

�16

, say).

So we might anticipate getting most eigenvalues lying evenly spaced on a circle of radius

(10

�16

)

1=n

, summing to a value no larger than about 10

�16

. How does the sign function

iteration behave on this matrix? J 's condition number is at least about 10

16

, so we can

not expect much accuracy from the inverse. If we shift J by any number jxj < 1, then the

condition number is still at least about jxj

�n

. If we use QR decomposition to de
ate out the

null space, we discover the null space is one dimensional, and the remaining n� 1 by n� 1

matrix is similar to an n�1 by n�1 Jordan block and just as di�cult to handle numerically.

If we continue de
ating until the remaining submatrix is moderately well-conditioned, we

will have to de
ate o� nearly every eigenvalue serially, at a cost of O(n

4

)
ops. This is the

staircase algorithm.

2

In the language of [71], nearly the entire unit disk is the \pseudospectrum" of a large

Jordan block, since a tiny perturbation of the matrix can make any complex number in the

disk an exact eigenvalue. This assumes any perturbation of su�ciently small norm is per-

mitted. Of course the user's data may have more structure than that, and so the spectrum

may be much better de�ned. For example, a componentwise relative approach to eigenvalue

uncertainty has been considered [1, 44, 14]. Unfortunately, computing eigenvalues this accu-

2

A worst case O(n

3

) variation of the staircase algorithm exists, but it seems unsuited to coarse grain

parallelism [8].

19

Subroutine Parameters Region Cutting lines

xHALFP b halfplane x = b

xSTRIP b; c vertical strip x = b; c

xTRAPE a; b; c

y

trapezoid or y = �(x� a); x = b; c,

butter
y

xPLLGM a; d; b; c

z

if d � b or c � a parallelogram y = �(x� a);�(x� d); x = b; c

if a � b < d trapezoid y = �(x� a); x = b; c

if b < a < d � c butter
y x = b; c; y = �(x� a)

if b < a < c < d trapezoid x = b; c; y = �(x� d)

x = 'S': single precision, x = 'D': double precision

y : b < c, and z : a < d; b < c.

Table 1: Subroutines and their corresponding regions, cutting lines

rately is not easy even using sophisticated serial algorithms. Existing parallel nonsymmetric

eigenproblem algorithms [20, 28, 57] are not guaranteed to attain the conventional normwise

level of stability.

5 Numerical Experiments

In this section, we will discuss the numerical aspects of the tools described above as well as

their performance. A set of FORTRAN 77 subroutines has been written to implement the

di�erent schemes for computing eigenvalues of a real nonsymmetric matrix in a speci�ed

region. Table 1 is a list of subroutine names, parameters required to determine the desired

regions and their cutting lines. These subroutines are built on the top of the BLAS and

LAPACK subroutines for the basic matrix operations, LU decomposition, QR decomposi-

tion and so on. The algorithms of these subroutines are described in Theorems 10, 11, 12

and 13. Each subroutine computes an orthogonal matrix Q, such that

Q

T

AQ =

k n� k

k A

11

A

12

n� k E

21

A

22

!

; (5:2)

where the eigenvalues of the k by k matrixA

11

are the eigenvalues of A in the desired region,

and kE

21

k reveals the accuracy of computed invariant subspace. In exact arithmetic, E

21

is zero.

To test the numerical behavior of the tools, we let the n � n real nonsymmetric test

matrices have Schur decomposition

A = Q

T

TQ

where Q is a random orthogonal matrix and T is a upper quasi triangular matrix (block

upper triangular with 1-by-1 and 2-by-2 diagonal blocks). The 2-by-2 diagonal blocks of T

20

-60

-40

-20

0

20

40

60

-300 -250 -200 -150 -100 -50 0 50

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+

+

+

 real part

 im
ag

in
ar

y
pa

rt

 Eigenvalue Distribution

o

o

o

o

o

o

o

o

o

o

o
o
o
o

Figure 5: The eigenvalue distribution of the matrix A in Example 1

have the form

x

k

y

k

�y

k

x

k

!

so their eigenvalues are x

k

� iy

k

. The o�diagonal part of T can be chosen to control the

departure from normality of matrix A and the condition number �(A) = kAk � kA

�1

k.

The tests were carried out on a SUN workstation 1

+

using IEEE standard double pre-

cision arithmetic, with machine epsilon = "

M

= 2

�52

� 2:2� 10

�16

.

Example 1. The �rst example is a matrix suggested by Fran�coise Chatelin, which simulates

the matrices arising in aerodynamic stability analysis. The eigenvalues in this application lie

on certain curves. The most interesting eigenvalues in stability analysis are those eigenvalues

closest to the imaginary axis. We need to know whether there are eigenvalues with positive

real part, and otherwise how close they are to the imaginary axis.

In this experiment, we choose n = 100, x

k

= �k

2

=10, y

k

= �k, k = �1;�2; : : : ;�n=2,

i.e., the eigenvalues lie on the parabola x = �y

2

=10. The condition number of the test

matrix is �(A) � 1:12� 10

6

. We use the simplest Newton iteration (2.1) for computing the

matrix sign function without any scaling. The stopping criterion for Newton iteration is

kA

j+1

�A

j

k

1

kA

j

k

1

� n�

M

� 2:2� 10

�14

: (5:3)

The computational tasks are to �nd those eigenvalues closest to the pure imaginary axis

21

and their corresponding invariant subspace. Therefore, using the matrix sign function, we

only compute the eigenvalues in the open right halfplane of x = �5.

For the computed invariant subspace corresponding to the open right halfplane x < �5,

we have

�

Q

T

A

�

Q =

14 86

14 A

11

A

12

86 E

21

A

22

!

;

with kE

21

k

1

= 1:70 � 10

�11

, and the eigenvalues of A

11

are the 14 eigenvalues of A in

the open right halfplane x > �5. By comparing the computed eigenvalues and the exact

eigenvalues in this region, they agree to 11 decimal digits. The computed eigenvalues closest

to imaginary axis are

-9.999999999982578e-02 + 1.000000000000703e+00i

-9.999999999982578e-02 - 1.000000000000703e+00i

and the known exact ones are �0:1� i.

It took 14 unscaled Newton iterations to converge to the desired accuracy for the matrix

sign function. Overall, it requires about 31n

3

ops to determine these eigenvalues and the

corresponding invariant subspace. Note that it is competitive with the cost of QR algorithm.

The QR algorithm generally takes about 22n

3

ops to compute the Schur decomposition

(both eigenvalues and orthogonal transformation matrix) plus the cost of swapping the

selected eigenvalues together, which also costs O(n

3

).

Example 2. In this example, we construct the test matrix with half of the eigenvalues real,

and the other half complex conjugates lying on a parabola. This example simulates certain

bifurcation phenomena, in which the eigenvalues depend on a parameter. The eigenvalues

of the matrix could change from real to complex with the change of parameter. When

such a change happens, we say bifurcation occurs. We are interested to know whether the

bifurcation happens in a speci�ed region. Thus, we only need to �nd the eigenvalues in the

speci�ed region.

In our experiment, we let n = 80, and the eigenvalue distribution is shown in Figure

6. The condition number of the matrix is �(A) � 4:7 � 10

4

. We used the same unscaled

Newton iteration and stopping criterion as in Example 1. We computed the eigenvalues

(and their corresponding invariant subspace) in a vertical strip de�ned by the lines x = �5.

Using Theorem 8, for the computed invariant subspace corresponding to the eigenvalues

in the vertical strip (�5; 5), we have

�

Q

T

A

�

Q =

16 64

16 A

11

A

12

64 E

21

A

22

!

with kE

21

k

1

= 4:09�10

�12

. The eigenvalues of A

11

are the 16 eigenvalues of A in the strip.

It took 12 Newton iterations to determine 42 eigenvalues of A at the open right halfplane

of x = �5, then for the 42 by 42 submatrix A

0

11

, it took 14 Newton iterations to determine

16 eigenvalues of A

0

11

in the strip. There are 2 real eigenvalues, and 14 complex conjugate

eigenvalues in the strip. All computed eigenvalues are correct to 12 decimal digits.

22

-30

-20

-10

0

10

20

30

-80 -60 -40 -20 0 20 40 60

+ + + + + + + + + + + + + + + +

+

+

+ + +

+

+

+ +

+

+

+ +

+

+

+ +

+

+

+ +

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

 real part

 im
ag

in
ar

y
pa

rt

 Eigenvalue Distribution

Figure 6: The eigenvalue distribution of the matrix A in Example 2

Concerning the e�ects of di�erent scaling schemes in the Newton iteration with the

stopping criterion (5.3), we tried all scaling schemes mentioned in x2 for the above two test

matrices. The following table shows the number of iterations needed to converge, where

K & L means Kenney and Laub's semi-optimal scheme. The norm used in Roberts and

Balzer's schemes is the 1-norm. The last column in the table is for Hally iteration. Although

Hally iteration took fewer iterations, it costs signi�cantly more
ops than Newton iteration.

Kenney and Laub's semi-optimal scaling scheme took fewer iteration steps, however, it

needs to do complex arithmetic in the power method. Therefore, the actual execution time

turned out to be a little longer than some of the other scaling schemes.

matrix unscaled Byers Higham Roberts Balzer80 K & L Halley

Ex. 1 14 14 13 13 11 11 9

Ex. 2 12 13 16 15 11 11 8

Performance: We report preliminary timing results. The timing of computing the

eigenvalues in a speci�ed region using matrix sign function tool and standard QR algorithm

plus swapping was performanced on a CRAY Y-MP (one processor) with 6.0 nsec clock,

and "

M

= 1:4210� 10

�14

.

The test matrices were chosen as random matrices with normally distributed entries

(mean 0, variance 1). The matrix sign functions were computed by Newton iteration with

23

Half plane Strip Parallelogram

matrix CPU time Speedup CPU time Speedup CPU time Speedup

order Sign QR QR/Sign Sign QR QR/Sign Sign QR QR/sign

50 0.0695 0.0958 1.38 0.072 0.104 1.44 0.088 0.0858 0.98

100 0.266 0.440 1.65 0.363 0.443 1.22 0.270 0.372 1.38

200 1.71 2.39 1.40 1.56 2.27 1.46 1.69 2.11 1.25

300 4.33 6.52 1.51 4.51 6.35 1.41 4.34 5.77 1.33

400 9.07 14.5 1.60 10.2 13.6 1.33 8.98 12.4 1.38

Table 2: Timing in seconds and speedups, CRAY Y-MP, 6.0 nsec clock, 1 processor, UNI-

COS 6.1, CFT77 5.0, libsci BLAS

Byers' determinantal scaling scheme (see x2.2). The stopping criterion was

kA

j+1

� A

j

k

1

kA

j

k

1

� n�

M

:

Table 2 compares the timing of subroutines SHALFP, SSTRIP and SPLLGM for computing

the eigenvalues in open right halfplane of x = 0, in the vertical strip (�2; 2) and in the

parallelograms de�ned by the lines y = �(x + 2), y = �x and x = 0, x = 4. Besides the

timing results reported in Table 2, we also computed the number of eigenvalues in these

regions counted by the subroutines SHALFP, SSTRIP and SPLLGM and compared to the QR

algorithm with swapping (LAPACK driver routine SGEES); they all agree. The accuracy of

the computed invariant subspaces are all of order "

M

2=3

, i.e., kE

21

k

1

= O("

M

2=3

) in (5.2).

Table 2 shows that although the matrix sign function subroutines SSTRIP and SPLLGM

require about 50% to 70% more
oating point operations than the standard QR algorithm

plus swapping, they are usually about 1.3 to 1.5 times faster. This is because most
oating

point operations in the sign function are large block matrix operations like matrix-matrix

multiplication, whereas QR iteration performs only small matrix-vector operations. (About

80% of the
ops in the sign function algorithm are spent computing the LU decomposition

and matrix inverse). We expect this advantage to be magni�ed on massively parallel ma-

chines.

6 Future Work

This section presents a step-by-step outline of software that needs to be developed, test

matrices that need to be run, and comparisons that need to be made to evaluate the

proposed algorithm.

Basic building blocks: The BLAS as well as higher level building blocks like QR

and LU decompositions and condition estimators exist on high performance workstations

and shared memory machines [1], and work is underway to provide them on distributed

memory machines [30]. A rank-revealing factorization and staircase algorithm still need to

be written. In the spirit of using the fastest (if less reliable) building blocks, we could use

LU plus condition estimation for our rank detection, since this will work most of the time.

24

Our tool box should certainly contain more sophisticated QR based algorithms in case LU

fails.

Matrix sign function: The numerical computation of the sign function needs to be

further developed. It should have several options available, including di�erent iterations,

scalings, stopping criteria, and a way to detect and deal with very ill-conditioned A

i

. The

implementation of matrix sign function computation on distributed memory machines will

follow once the basic building blocks are available on these machines.

Error Analysis: We have a partial understanding of when we expect the sign function

to converge, and how accurately we can compute it. Our error bounds are for the worst

case, and often pessimistic. We need to devise better a posteriori error estimates for use as

computational diagnostics.

Extension to the generalized eigenproblem A � �B: An analog of the Newton

iteration (2.1) for A � �B is A

i+1

� �B =

1

2

(A

i

+ BA

�1

i

B) � �B; this converge to an A

1

such that A

1

B

�1

is the matrix sign function of AB

�1

. Based on this observation, we can

try to extend our techniques to the generalized eigenproblem.

Inverse iteration and iterative re�nement: Inverse iteration can be used to �nd an

eigenvalue close to a given starting value (but not necessarily the nearest one), to sample

the spectrum in selected locations and to steer a bisection based algorithm as described in

x4. It may also be used to re�ne an approximate invariant subspace computed by other

means, such as nonsymmetric Jacobi-Schur method.

User interface: A rudimentary interactive graphics based driver has been developed

[24]. It lets the user select a region of the complex plane for which to compute the sign

function, and then re�ne it. It needs to be augmented to maintain a data structure con-

taining information about the regions of the plane which have been searched, de
ated, or

perhaps completely solved using QR algorithm; how many eigenvalues are in each region;

how many iterations and how much CPU time was required for each sign function iteration;

and which diagonal subblocks of the transformed matrix correspond to each region.

Numerical tests: The test cases in [3] as well as others of practical interest should

be subjected to this toolbox. We should compare running times with competitive codes

(QR algorithm from LAPACK, and Arnoldi and Lanczos methods [64, 67, 17, 36]). We can

evaluate the usefulness of problem dependent knowledge by running examples with users

who either know nothing about the matrix except perhaps Gershgorin information, or are

given some rough information about the spectrum.

Acknowledgement

The authors would like to acknowledge R. Byers, N. Higham and A. Laub for fruitful dis-

cussion on this work and his invaluable comments on the manuscript. We would like to

acknowledge E. Anderson for help in performing numerical experiments on CRAY Y-MP

computers. This work was partially performed during a visit to the Institute for Mathe-

matics and its Applications at the University of Minnesota.

25

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users'

Guide, Release 1.0. SIAM, Philadelphia, 1992.

[2] L. Auslander and A. Tsao. On parallelizable eigensolvers. Advances in Applied Math-

ematics, 13:253{261, 1992.

[3] Z. Bai. A collection of test matrices for the large sparse nonsymmetric eigenvalue

problem. in preparation.

[4] Z. Bai and J. Demmel. On swapping diagonal block in real Schur form. to appear in

Lin. Alg. Appl.

[5] Z. Bai and J. Demmel. On a block implementation of Hessenberg multishift QR it-

eration. International Journal of High Speed Computing, 1(1):97{112, 1989. (also

LAPACK Working Note #8).

[6] L. A. Balzer. Accelerated convergence of the matrix sign function method of solving

Lyapunov, Riccati and other matrix equations. Inter. J. Control, 32:1057{1078, 1980.

[7] A. N. Beavers Jr and E. D. Denman. A computational method for eigenvalue and

eigenvectors of a matrix with real eigenvalues. Numer. Math., 21:389{396, 1973.

[8] T. Beelen and P. Van Dooren. An improved algorithm for the computation of Kro-

necker's canonical form of a singular pencil. Lin. Alg. Appl., 105:9{65, 1988.

[9] C. Bischof and X. Sun. A divide and conquer method for tridiagonalizing symmetric

matrices with repeated eigenvalues. MCS Report P286-0192, Argonne National Lab,

1992.

[10] C. Bischof and P. Tang. Robust incremental condition estimation. Computer Science

Dept. Technical Report CS-91-133, University of Tennessee, Knoxville, 1991. (LA-

PACK Working Note #33).

[11] R. Byers. Numerical stability and instability in matrix sign function based algorithms.

In C. Byrnes and A. Lindquist, editors, Computational and Combinatorial Methods in

Systems Theory, pages 185{200. North-Holland, 1986.

[12] R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Lin.

Alg. Appl., 85:267{279, 1987.

[13] T. Chan. Rank revealing QR factorizations. Lin. Alg. Appl., 88/89:67{82, 1987.

[14] F. Chatelin. Valeurs propres de matrices. Masson, Paris, 1988. English translation to

appear (Wiley).

[15] M. Chu. A note on the homotopy method for linear algebraic eigenvalue problems.

Lin. Alg. Appl, 105:225{236, 1988.

26

[16] M. Chu, T.-Y. Li, and T. Sauer. Homotopy method for general �-matrix problems.

SIAM J. Mat. Anal. Appl., 9(4):528{536, 1988.

[17] J. Cullum and R. A. Willoughby. A practical procedure for computing eigenvalues of

large sparse nonsymmetric matrices. In J. Cullum and R. A. Willoughby, editors, Large

Scale Eigenvalue Problems. North-Holland, Amsterdam, 1986.

[18] G. Davis, R. Funderlic, and G. Geist. A hypercube implementation of the implicit dou-

ble shift QR algorithm. In Hypercube Multiprocessors 1987, pages 619{626, Philadel-

phia, PA, 1987. SIAM.

[19] J. Demmel. Trading o� parallelism and numerical stability. Computer Science Division

Tech Report UCB//CSD-92-702, University of California, Berkeley, CA, 1992. to

appear in NATO-ASI Proceedings, 1992.

[20] J. Demmel, M. Heath, and H. van der Vorst. Parallel numerical linear algebra. In

A. Iserles, editor, Acta Numerica, volume 2. Cambridge University Press, 1993 (to

appear).

[21] J. Demmel and B. K�agstr�om. Stably computing the kronecker structure and reducing

subspaces of singular pencils A � �B for uncertain data. In J. Cullum and R. A.

Willoughby, editors, Large Scale Eigenvalue Problems. North-Holland, Amsterdam,

1986.

[22] E. D. Denman and A. N. Beavers Jr. The matrix sign function and computations in

systems. Appl. Math. Comput., 2:63{94, 1976.

[23] E. D. Denman and J. Leyva-Ramos. Spectral decomposition of a matrix using the

generalized sign matrix. Appl. Math. Comput., 8:237{250, 1981.

[24] J. Dongarra. personal communication, 1992.

[25] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of Level 3 Basic Linear

Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1{17, March 1990.

[26] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An extended set of

fortran basic linear algebra subroutines. ACM Trans. Math. Soft., 14(1):1{17, March

1988.

[27] J. Dongarra, G. A. Geist, and C. Romine. Computing the eigenvalues and eigenvectors

of a general matrix by reduction to tridiagonal form. Technical Report ORNL/TM-

11669, Oak Ridge National Laboratory, 1990. to appear in ACM TOMS.

[28] J. Dongarra and M. Sidani. A parallel algorithm for the non-symmetric eigenvalue prob-

lem. Computer Science Dept. Technical Report CS-91-137, University of Tennessee,

Knoxville, TN, 1991.

[29] J. Dongarra and R. van de Geijn. Reduction to condensed form for the eigenvalue

problem on distributed memory computers. Computer Science Dept. Technical Report

CS-91-130, University of Tennessee, Knoxville, 1991. (LAPACK Working Note #30),

to appear in Parallel Computing.

27

[30] J. Dongarra, R. van de Geijn, and D. Walker. Look at scalable dense linear algebra li-

braries. In Scalable High-Performance Computing Conference. IEEE Computer Society

Press, April 1992.

[31] J. Du Croz and N. J. Higham. Stability of methods for matrix inversion. IMA J. Num.

Anal., Jan 1992. (LAPACK Working Note #27).

[32] A. Dubrulle. The multishift QR algorithm: is it worth the trouble? Palo Alto Scienti�c

Center Report G320-3558x, IBM Corp., 1530 Page Mill Road, Palo Alto, CA 94304,

1991.

[33] P. Eberlein. A Jacobi method for the automatic computation of eigenvalues and eigen-

vectors of an arbitrary matrix. J. SIAM, 10:74{88, 1962.

[34] P. Eberlein. On the Schur decomposition of a matrix for parallel computation. IEEE

Trans. Comput., 36:167{174, 1987.

[35] A. Edelman. On the distribution of a scaled condition number. Math. Comp.,

58(197):185{190, 1992.

[36] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-

Hermitian linear systems. Technical Report 91-05, IPS ETH, Z�urich, 1991.

[37] F. Gantmacher. The Theory of Matrices, vol. II (transl.). Chelsea, New York, 1959.

[38] I. Garantini and P. Henrici. Circular arithmetic and the determination of polynomial

zeros. Numer. Math., 18:305{320, 1972.

[39] J.D. Gardiner and A.J. Laub. A generalization of the matrix-sign function solution for

algebraic riccati equations. Int. J. Control, 44:823{832, 1986.

[40] G. A. Geist. Parallel tridiagonalization of a general matrix using distributed memory

multiprocessors. In Proceedings of the Fourth SIAM Conference on Parallel Processing

for Scienti�c Computing, pages 29{35, Philadelphia, PA, 1990. SIAM.

[41] G. A. Geist. Reduction of a general matrix to tridiagonal form. SIAM J. Mat. Anal.

Appl., 12(2):362{373, 1991.

[42] G. A. Geist and G. J. Davis. Finding eigenvalues and eigenvectors of unsymmetric

matrices using a distributed memory multiprocessor. Parallel Computing, 13(2):199{

209, 1990.

[43] G. A. Geist, A. Lu, and E. Wachspress. Stabilized reduction of an arbitrary matrix to

tridiagonal form. Technical Report ORNL/TM-11089, Oak Ridge National Laboratory,

1989.

[44] A. J. Geurts. A contribution to the theory of condition. Num. Math., 39:85{96, 1982.

[45] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, MD, 2nd edition, 1989.

28

[46] C. Hermite. On the number of roots of an algebraic equation contained between given

limits. J. Reine Angew. Math., 52:39{51, 1856. English translation, P. C. Parks,

Internat. J. Control, 26:183{195,1977.

[47] N. J. Higham. Computing the polar decomposition - with application. SIAM J. Sci.

Stat. Comput., 7:1160{1174, 1986.

[48] N. J. Higham. A survey of condition number estimation for triangular matrices. SIAM

Review, 29:575{596, 1987.

[49] J. Howland. The sign matrix and the separation of matrix eigenvalues. Lin. Alg. Appl.,

49:221{232, 1983.

[50] B. K�agstr�om and A. Ruhe. An algorithm for the numerical computation of the Jordan

normal form of a complex matrix. ACM Trans. Math. Soft., 6(3):389{419, 1980.

[51] T. Kato. Perturbation Theory for Linear Operators. Springer Verlag, Berlin, 2 edition,

1980.

[52] C. Kenney and A. Laub. Rational iteration methods for the matrix sign function.

SIAM J. Mat. Anal. Appl., 21:487{494, 1991.

[53] C. Kenney and A. J. Laub. Polar decomposition and matrix sign function condition

estimates. SIAM J. Sci. Stat. Comput., 12:488{504, 1991.

[54] C. Kenney and A. J. Laub. On scaling Newton's method for polar decomposition and

the matrix sign function. SIAM J. Mat. Anal. Appl., 13(3):688{706, 1992.

[55] A. J. Laub. Invariant subspace method for the numerical solution of Riccati equations.

In A. J. Laub S. Bittanti and J. C. Willems, editors, Riccati Equations, Berlin, June

4-6 1990. Springer-Verlag.

[56] S. Lederman, A. Tsao, and T. Turnbull. A parallelizable eigensolver for real diago-

nalizable matrices with real eigenvalues. Report TR-01-042, Supercomputing Research

Center, Bowie, MD, 1992.

[57] T.-Y. Li and Z. Zeng. Homotopy-determinant algorithm for solving nonsymmetric

eigenvalue problems. Math. Comp., 59(200):483{502, 1992.

[58] T.-Y. Li, Z. Zeng, and L. Cong. Solving eigenvalue problems of nonsymmetric matrices

with real homotopies. SIAM J. Num. Anal., 29(1):229{248, 1992.

[59] W. Lichtenstein and S. L. Johnsson. Block cyclic dense linear algebra. Technical report,

Thinking Machines Corporation, Cambridge, MA, 1992.

[60] C-C. Lin and E. Zmijewski. A parallel algorithm for computing the eigenvalues of an

unsymmetric matrix on an SIMD mesh of processors. Department of Computer Science

TRCS 91-15, University of California, Santa Barbara, CA, July 1991.

29

[61] A. N. Malyshev. Parallel aspects of some spectral problems in linear algebra. Dept.

of Numerical Mathematics Report NM-R9113, Centre for Mathematics and Computer

Science, Amsterdam, July 1991.

[62] M.H.C. Paardekooper. A quadratically convergent parallel Jacobi process for diagonally

dominant matrices with distinct eigenvalues. J. Comput. Appl. Math., 27:3{16, 1989.

[63] J. Roberts. Linear model reduction and solution of the algebraic Riccati equation.

Inter. J. Control, 32:677{687, 1980.

[64] Y. Saad. Numerical solution of large nonsymmetric eigenvalue problems. Comput.

Phys. Comm., 53:71{90, 1989.

[65] A. Sameh. On Jacobi and Jacobi-like algorithms for a parallel computer. Math. Comp.,

25:579{590, 1971.

[66] G. Shro�. A parallel algorithm for the eigenvalues and eigenvectors of a general complex

matrix. Num. Math., 58:779{805, 1991.

[67] D. Sorensen. Implicit application of polynomial �lters in a k-step Arnoldi method.

SIAM J. Mat. Anal. Appl., 13(1):357{385, 1992.

[68] G. W. Stewart. A Jacobi-like algorithm for computing the Schur decomposition of a

non-Hermitian matrix. SIAM J. Sci. Stat. Comput., 6:853{864, 1985.

[69] G. W. Stewart. A parallel implementation of the QR algorithm. Parallel Computing,

5:187{196, 1987.

[70] E. Stickel. Separating eigenvalues using the matrix sign function. Lin. Alg. Appl.,

148:75{88, 1991.

[71] L. N. Trefethen. Non-normal matrices and pseudo-eigenvalues. book in preparation.

[72] R. van de Geijn. Implementing the QR Algorithm on an Array of Processors. PhD the-

sis, University of Maryland, College Park, August 1987. Computer Science Department

Report TR-1897.

[73] R. van de Geijn and D. Hudson. E�cient parallel implementation of the nonsym-

metric QR algorithm. In J. Gustafson, editor, Hypercube Concurrent Computers and

Applications. ACM, 1989.

[74] P. Van Dooren. The computation of Kronecker's canonical form of a singular pencil.

Lin. Alg. Appl., 27:103{141, 1979.

[75] K. Veseli�c. A quadratically convergent Jacobi-like method for real matrices with com-

plex conjugate eigenvalues. Num. Math., 33:425{435, 1979.

[76] D. Watkins. Shifting strategies for the parallel QR algorithm. Dept. of pure and applied

math. report, Washington State Univ., Pullman, WA, 1992.

30

[77] D. Watkins and L. Elsner. Convergence of algorithms of decomposition type for the

eigenvalue problem. Lin. Alg. Appl., 143:19{47, 1991.

[78] Z. Zeng. Homotopy-determinant algorithm for solving matrix eigenvalue problems and

its parallelizations. PhD thesis, Michigan State University, 1991.

