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Abstract. The matrix sign function has several applications in system theory and matrix
computations. However, the numerical behavior of the matrix sign function, and its associated divide-
and-conquer algorithm for computing invariant subspaces, are still not completely understood. In
this paper, we present a new perturbation theory for the matrix sign function, the conditioning of its
computation, the numerical stability of the divide-and-conquer algorithm, and iterative refinement
schemes. Numerical examples are also presented. An extension of the matrix-sign-function-based
algorithm to compute left and right deflating subspaces for a regular pair of matrices is also described.
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1. Introduction. Since the matrix sign function was introduced in the early
1970s, it has been the subject of numerous studies and used in many applications.
For example, see [30, 31, 11, 26, 23] and references therein. Our main interest here is
to use the matrix sign function to build parallel algorithms for computing invariant
subspaces of nonsymmetric matrices, as well as their associated eigenvalues. It is
a challenge to design a parallel algorithm for the nonsymmetric eigenproblem that
uses coarse grain parallelism effectively, scales for larger problems on larger machines,
does not waste time dealing with the parts of the spectrum in which the user is not
interested, and deals with highly nonnormal matrices and strongly clustered spectra.
In the work of [2], after reviewing the existing approaches, we proposed a design of a
parallel nonsymmetric eigenroutine toolbox, which includes the basic building blocks
(such as LU factorization, matrix inversion, and the matrix sign function), standard
eigensolver routines (such as the QR algorithm), and new algorithms (such as spectral
divide-and-conquer using the sign function). We discussed how these tools could be
used in different combinations on different problems and architectures, for extracting
all or some of the eigenvalues of a nonsymmetric matrix, and/or their corresponding
invariant subspaces. Rather than using “black box” eigenroutines such as provided
by EISPACK [32, 21] and LAPACK [1], we expect the toolbox approach to allow
us more flexibility in developing efficient problem-oriented eigenproblem solvers on
high-performance machines, especially on parallel distributed memory machines.
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206 ZHAOJUN BAI AND JAMES DEMMEL

However, the numerical accuracy and stability of the matrix sign function and
divide-and-conquer algorithms based on it are poorly understood. In this paper, we
will address these issues. Much of this work also appears in [3].

Let us first restate some of basic definitions and ideas to establish notation. The
matrix sign function of a matrix A is defined as follows [30]: let

A = Xdiag(J+, J−)X−1

be the Jordan canonical form of a matrix A ∈ Cn×n, where the eigenvalues of J+ lie
in the open right half-plane (C+) and those of J− lie in the open left half-plane (C−).
Then the matrix sign function of A is

sign(A) = Xdiag(I,−I)X−1.

We assume that no eigenvalue of A lies on the imaginary axis; otherwise, sign(A)
is not defined. It is easy to show that the spectral projection corresponding to the
eigenvalues of A in the open right and left half-planes are P± = 1

2 (I ± sign(A)),
respectively. Let the leading columns of an orthogonal matrix Q span the range space
of P+ (for example, Q may be computed by the rank-revealing QR decomposition of
P+). Then Q yields the spectral decomposition

QTAQ =

(
A11 A12

0 A22

)
,(1)

where λ(A11) are the eigenvalues of A in C+, and λ(A22) are the eigenvalues of A
in C−. The algorithm proceeds in a divide-and-conquer fashion by computing the
eigenvalues of A11 and A22.

Rather than using the Jordan canonical form to compute sign(A), it can be shown
that sign(A) is the limit of the following Newton iteration:

Ak+1 =
1

2
(Ak +A−1

k ) for k = 0, 1, 2, . . . , with A0 = A.(2)

The iteration is globally and ultimately quadratic convergent. There exist different
scaling schemes to speed up the convergence of the iteration, and make it more suit-
able for parallel computation. By computing the matrix sign function of a Möbius
transformation of A, the spectrum can be divided along arbitrary lines and circles,
rather than just along the imaginary axis. See report [2] and references therein for
more details.

Unfortunately, in finite precision arithmetic, the ill conditioning of a matrix Ak

with respect to inversion and rounding errors may destroy the convergence of the
Newton iteration (2) or cause convergence to the wrong answer. Consequently, the
left bottom corner block of the matrix QTAQ in (1) may be much larger than u‖A‖,
where u denotes machine precision. This means that it is not numerically stable to
approximate the eigenvalues of A by the eigenvalues of A11 and A22, as we would like.

In this paper, we will first study the perturbation theory of the matrix sign func-
tion, its conditioning, and the numerical stability of the overall divide-and-conquer
algorithm based on the matrix sign function. We realize that it is very difficult to give
a complete and clear analysis. We only have a partial understanding of when we can
expect the Newton iteration to converge and how accurate it is. In a coarse analysis,
we can also bound the condition numbers of intermediate matrices in the Newton iter-
ation. Artificial and possibly very pathological test matrices are constructed to verify
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MATRIX SIGN FUNCTION FOR COMPUTING INVARIANT SUBSPACES 207

our theoretical analysis. Besides these artificial tests, we also test a large number of
eigenvalue problems of random matrices, and a few eigenvalue problems from appli-
cations, such as electrical power system analysis, numerical simulation of chemical
reactions, and aerodynamics stability analysis. Through these examples, we conclude
that the most bounds for numerical sensitivity and stability of matrix sign function
computation and its based algorithms are reachable for some very pathological cases,
but they are often very pessimistic. The worst cases happen rarely.

In addition, we discuss iterative refinement of an approximate invariant subspace
and outline an extension of the matrix-sign-function-based algorithms to compute
both left and right deflating subspaces for a regular matrix pencil A− λB.

The rest of this paper is organized as follows. Section 2 presents a new perturba-
tion bound for the matrix sign function. Section 3 discusses the numerical condition-
ing of the matrix sign function. The backward error analysis of computed invariant
subspace and remarks on the matrix-sign-function-based algorithm versus the QR
algorithm are presented in section 4. Section 5 presents some numerical examples
for the analysis of sections 2, 3, and 4. Section 6 describes the iteration refinement
scheme to improve an approximate invariant subspace. Section 7 outlines an extension
of the matrix-sign-function-based algorithms for the generalized eigenvalue problem.
Concluding remarks are presented in section 8.

2. A perturbation bound for the matrix sign function. When a matrix
A has eigenvalues on the pure-imaginary axis, its matrix sign function is not defined.
In other words, the set of ill-posed problems for the matrix sign function is the set
of matrices with at least one pure-imaginary eigenvalue. Computationally, we have
observed that when there are the eigenvalues of A close to the pure-imaginary axis,
the Newton iteration and its variations are very slowly convergent and may be mis-
convergent. Moreover, even when the iteration converges, the error in the computed
matrix sign function could be too large to use. It is desirable to have a perturbation
analysis of the matrix sign function related to the distance from A to the nearest
ill-posed problem.

Perturbation theory and condition number estimation of the matrix sign function
are discussed in [25, 23, 29]. However, none of the existing error bounds explicitly
reveals the relationship between the sensitivity of the matrix sign function and the
distance to the nearest ill-posed problem. In this section, we will derive a new pertur-
bation bound which explicitly reveals such relationship. We will denote all the eigen-
values of A with positive real part by λ+(A), i.e., λ+(A) = {λ|λ ∈ λ(A),<(λ) > 0}.
σmin(A) denotes the smallest singular value of A. In addition, we recall the well-known
inequality

‖(I −X)−1‖ ≤ 1

1− ‖X‖ if ‖X‖ < 1,(3)

where ‖ · ‖ is the matrix 2-norm.
Theorem 2.1. Suppose A has no pure-imaginary and zero eigenvalues, A + δA

is a perturbation of A, and ε ≡ ‖δA‖. Let

ω = max
τ∈R

‖(iτI −A)−1‖ =
1

min
τ∈R

σmin(iτI −A)
≡ 1

dA
.(4)

Then

‖sign(A)‖ ≤ 4

π
ω‖A‖+ 3.(5)
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208 ZHAOJUN BAI AND JAMES DEMMEL

Furthermore, if

ωε < 1,(6)

then

‖sign(A+ δA)− sign(A)‖ ≤ 4

π

ω2ε

1− ωε
(‖A‖+ ε) + 2

ε

‖A‖ .(7)

O
Re

Im

r

-r

r

Fig. 1. The semicircle Γ.

Proof. We only prove the bound (7). The bound (5) can be proved by using a
similar technique. Following Roberts [30] (or Kato [24]), the matrix sign function can
also be defined using Cauchy integral representation:

sign(A) = 2 sign+(A)− I,(8)

where

sign+(A) =
1

2πi

∫
Γ

(ζI −A)−1dζ,

Γ is any simple closed curve with positive direction enclosing λ+(A). sign+(A) is
the spectral projector for λ+(A). Here, without loss of generality, we take Γ to be a
semicircle with radius r = 2 max{‖A‖, ‖A+ δA‖} (see Figure 1). From the definition
(8) of sign(A), it is seen that to study the stability of the matrix sign function of A
to the perturbation δA, it is sufficient to just study the sensitivity of the projection
sign+(A).

Let sign+(A + δA) be the projection corresponding to λ+(A + δA), from the
condition (6), no eigenvalues of A are perturbed across or on the pure imaginary axis,
and the semicircle Γ also encloses λ+(A+ δA). Therefore, we have

sign+(A+ δA)− sign+(A) =
1

2πi

∫
Γ

[(ζI −A− δA)−1 − (ζI −A)−1]dζ

=
1

2πi

∫ r

−r
[(iτI −A− δA)−1 − (iτI −A)−1]idτ

+
1

2πi

∫ π/2

−π/2
[(reiθI −A− δA)−1 − (reiθI −A)−1]ireiθdθ

≡ I1 + I2,
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MATRIX SIGN FUNCTION FOR COMPUTING INVARIANT SUBSPACES 209

where the first integral, denoted I1, is the integral over the straight line of the semi-
circle Γ, the second integral, denoted I2, is the integral over the curved part of the
semicircle Γ. Now, by taking the spectral norm of the first integral term, and noting
the definition of ω, the condition (6), and the inequality (3), we have

‖I1‖ ≤ 1

2π

∫ r

−r
‖[(iτI −A− δA)−1 − (iτI −A)−1]‖ |dτ |

=
1

2π

∫ r

−r
‖[(iτI −A− δA)−1δA(iτI −A)−1]‖ |dτ |

=
1

2π

∫ r

−r
‖(I − (iτI −A)−1δA)−1(iτI −A)−1δA(iτI −A)−1‖ |dτ |

≤ 1

2π

∫ r

−r

‖(iτI −A)−1‖2‖δA‖
1− ‖(iτI −A)−1δA‖ |dτ |

≤ 1

2π

ω2‖δA‖
1− ω‖δA‖ 2r.

By taking the spectral norm of the second integral term I2, we have

‖I2‖ ≤ 1

2π

∫ π/2

−π/2
‖(reiθI −A− δA)−1δA(reiθI −A)−1‖ r |dθ|

≤ 1

2π

∫ π/2

−π/2

∥∥∥∥∥
(
I − A+ δA

reiθ

)−1
∥∥∥∥∥ ‖δA‖

∥∥∥∥∥
(
I − A

reiθ

)−1
∥∥∥∥∥ 1

r
|dθ|

≤ 1

2π

(
1

1− ‖A+ δA‖/r
)
‖δA‖

(
1

1− ‖A‖/r
)

1

r
π

≤ 2‖δA‖
r

≤ ‖δA‖
‖A‖ ,

where the third inequality follows from (3) and the fourth follows from the choice of
the radius r of the semicircle Γ. The desired bound (7) follows from the bounds on
‖I1‖ and ‖I2‖ and the identity

sign(A+ δA)− sign(A) = 2(sign+(A+ δA)− sign+(A)).

A few remarks are in order:
1. In the language of pseudospectra [35], the condition (6) means that the ‖δA‖-

pseudospectra of A do not cross the pure-imaginary axis.
2. From the perturbation bound (7), we see that the stability of the matrix sign

function to the perturbation requires not only the ‖δA‖-pseudospectra of the
A to be bounded away from the pure-imaginary axis but also ω2 = 1/d2

A to
be small (recall that dA is the distance from A to the nearest matrix with a
pure-imaginary eigenvalue).

3. It is natural to take ω2 = 1/d2
A as the condition number of the matrix sign

function. Algorithms for computing dA and related problems can be found
in [14, 9, 8, 12].

4. The bound (7) is similar to the bound of the norm of the Fréchet derivative
of the matrix sign function of A at X given by Roberts [30]:

‖F(sign(A), X)‖ ≤ lΓ
2π

(
max
ζ on Γ

‖(ζI −A)−1‖2
)
‖X‖,
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210 ZHAOJUN BAI AND JAMES DEMMEL

where lΓ is the length of the closed contour Γ.
Recently, an asymptotic perturbation bound of sign(A) was given by Byers, He,

and Mehrmann [13]. They show that to first order in δA

‖sign(A+ δA)− sign(A)‖ ≤ 4

δ

(
1 +

‖A12‖
δ

)2

‖δA‖,(9)

where A is assumed to have the form of (1), ‖δA‖ is sufficiently small, and

δ = sep(A11, A22) = σmin(I ⊗A11 −AT
22 ⊗ I),(10)

the separation of the matrices A11 and A22 [33]. ⊗ is the Kronecker product. Com-
paring the bounds (7) and (9), we note that first the bound (7) is a global bound and
(9) is an asymptotic bound. Second, the assumption (6) for the bound (7) has a sim-
ple geometric interpretation (see remark 2 above). It is unspecified how to interpret
the assumption on sufficiently small ‖δA‖ for the bound (9).

3. Conditioning of matrix sign function computation. In [2], we point out
that it may be much more efficient to compute S = sign(A) to half-machine preci-
sion only, i.e., to compute S with an absolute error bounded by u1/2‖S‖. To avoid
ill conditioning in the Newton iteration and achieve the half-machine precision, we
believe that the matrix A must have condition number less than u−1/2. If A is ill
conditioned, say having singular values less than u1/2‖A‖, we need to use a prepro-
cessing step to deflate small singular values by a unitary similarity transformation,
and obtain a submatrix having condition number less than u−1/2, and then compute
the matrix sign function of this submatrix. Such a deflation procedure may be also
needed for the intermediate matrices in the Newton iteration in the worst case.

We now look more closely at the situation of near convergence of the Newton
iteration and relate the error to the distance to the nearest ill-posed problem [18].
As before, the ill-posed problems are those matrices with pure-imaginary eigenvalues.
Without loss of generality, let us assume A is of the form

A =

(
A11 A12

0 A22

)
,(11)

where λ(A11) ∈ C+ and λ(A22) ∈ C−. Otherwise, for any matrix B, by the Schur
decomposition, we can write B = QHAQ, where A has the above form, and then
sign(B) = QHsign(A)Q. Let R be the solution of the Sylvester equation

A11R−RA22 = −A12,(12)

which must exist and be unique since A11 and A22 have no common eigenvalues. Then
it is known that the spectral projector P corresponding to the eigenvalues of A11 is

P =

(
I R
0 0

)
,

and ‖P‖ =
√

1 + ‖R‖2. The following lemma relates R and the norm of the projection
P to sign(A) and its condition number.

Lemma 3.1. Let A and R be as above. Let ρ = ‖R‖+
√

1 + ‖R‖2. Then

1. S ≡ sign(A) =
(

I −2R
0 −I

)
.
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MATRIX SIGN FUNCTION FOR COMPUTING INVARIANT SUBSPACES 211

2. ‖S‖ = ‖S−1‖ = ρ, and, therefore, κ(S) = ρ2.
Proof.

1. Let X =
(

I R
0 I

)
. It is easy to verify that if R satisfies (12), then X−1AX =

diag(A11, A22). Therefore,

sign(A) = sign(Xdiag(A11, A22)X
−1) = Xsign(diag(A11, A22))X

−1

= Xdiag(I,−I)X−1 =

(
I −2R
0 −I

)
.

2. Using the singular value decomposition (SVD) of R URV H = Σ = diag(σi),
one can reduce computing the SVD of S to computing the SVD of(

U 0
0 V

)
S

(
UH 0
0 V H

)
=

(
I −2Σ
0 −I

)
which, by permutations, is equivalent to computing the SVDs of the 2 × 2

matrices
(

1 −2σj
0 −1

)
. This is, in turn, a simple calculation.

We note that for the solution R of the Sylvester equation (12) we have

‖R‖ ≤ ‖A12‖
sep(A11, A22)

,

where the equality is attainable [33]. From Lemma 3.1, we see that the conditioning of
the matrix sign function computation is closely related to the norm of the projection P ,
therefore the norm of R, which in turn is closely related to the quantity sep(A11, A22).
Specifically, when ‖R‖ is large,

‖S‖ = ‖sign(A)‖ ≤ 2‖A12‖
sep(A11, A22)

(13)

and

κ(S) ≤ 4‖A12‖2
sep2(A11, A22)

.

If ‖A12‖ is moderate, an ill-conditioned matrix sign function means large ‖R‖, which
in turn means small sep(A11, A22). Following Stewart [33], it means that it is harder
to separate the invariant subspaces corresponding to the matrices A11 and A22.

The following theorem discusses the conditioning of the eigenvalues of sign(A)
and the distance from sign(A) to the nearest ill-posed problem.

Theorem 3.2. Let A and R be as in Lemma 3.1. Then we have the following:
1. Let δS have the property that S + δS has a pure-imaginary eigenvalue. Then

δS may be chosen with ‖δS‖ = 1/‖S‖ but no smaller. In the language of [35],
the ε-pseudospectrum of S excludes the imaginary axis for ε < 1/‖S‖, and
intersects it for ε ≥ 1/‖S‖.

2. The condition number of the eigenvalues of S is ‖P‖. In other words, perturb-
ing S by a small δS perturbs the eigenvalues by at most ‖P‖ ‖δS‖+O(‖δS‖2).

3. If A is close to S and κ(S) < u−1/2, then Newton iteration (2) in floating
point arithmetic will compute S with an absolute error bounded by u1/2‖S‖.D
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212 ZHAOJUN BAI AND JAMES DEMMEL

Proof.
1. The problem is to minimize σmin(S − iζI) over all real ζ, where σmin is

the smallest singular value of S − iζI. Using the same unitary similarity
transformation and permutation as in the part 1 of Lemma 3.1, we see that
this is equivalent to minimizing

σmin

((
1− iζ −2σj

0 −1− iζ

))
over all σj and real ζ. This is a straightforward calculation, with the minimum
being obtained for ζ = 0 and σj = ‖R‖.

2. The condition number of a semisimple eigenvalue is equal to the secant of the
acute angle between its left and right eigenvectors [24, 17]. Using the above
reduction to 2 × 2 subproblems (this unitary transformation of coordinates
does not changes angles between vectors), this is again a straightforward
calculation.

3. Since ‖S‖ = ‖S−1‖, the absolute error δS in computing 1
2 (S+S−1) is bounded

essentially by the error in computing S−1:

‖δS‖ <∼ u(‖S‖ · ‖S−1‖)‖S−1‖ = u‖S‖3 < u1/2‖S‖.
For the Newton iteration to converge, δS cannot be so large that S + δS
has pure-imaginary eigenvalues; from the result 1, this means ‖δS‖ < ‖S‖−1.
Therefore, if u1/2‖S‖ < ‖S‖−1, i.e., κ(S) < u−1/2, then Newton iteration (2)
will compute S with an absolute error bounded by u1/2‖S‖.

It is naturally desired to have an analysis from which we know the conditioning of
the intermediate matrices Ak in the Newton iteration. It will help us in addressing the
question of how to detect the possible appearance of pure-imaginary eigenvalues and
to modify or terminate the iteration early if necessary. Unfortunately, it is difficult to
make a clean analysis far from convergence because we are unable to relate the error
in each step of the iteration to the conditioning of the problem. We can do a coarse
analysis, however, in the case that the matrix is diagonalizable.

Theorem 3.3. Let A have eigenvalues λj (none pure imaginary or zero), right
eigenvectors xj, and left eigenvectors yj normalized so ‖xj‖ = ‖yj‖ = 1. Let sj =
sign(<(λj)), and

σ = min
j

|yHj xj |
n

· |λj + sj | − |λj − sj |
|λj + sj |+ |λj − sj | .(14)

Let Ak be the matrix obtained at the kth Newton iteration (2). Then for all k,
σmax(Ak) ≤ 1/σ and σmin(Ak) ≥ σ, i.e.,

κ(Ak) =
σmax(Ak)

σmin(Ak)
≤ 1

σ2
.(15)

Proof. We may express the eigendecomposition of A as A =
∑n

j=1 λjxjy
H
j /y

H
j xj .

Then Ak =
∑n

j=1 λj,kxjy
H
j /y

H
j xj , where λj,k = 1

2 (λ−1
j,k−1 + λj,k−1) with λj,0 = λj .

We wish to bound |λj,k| from above and below for all k. This is easily done by noting
that

λj,k+1 − sj
λj,k+1 + sj

=

(
λj,k − sj
λj,k + sj

)2
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MATRIX SIGN FUNCTION FOR COMPUTING INVARIANT SUBSPACES 213

so that all λj,k lie inside a disk defined by∣∣∣∣λj,k − sj
λj,k + sj

∣∣∣∣ ≤ ∣∣∣∣λj − sj
λj + sj

∣∣∣∣ ≡ cj < 1.

This disk is symmetric about the real axis, so its points of minimum and maximum
absolute value are both real. Solving for these extreme points yields

1− cj
1 + cj

≤ |λj,k| ≤ 1 + cj
1− cj

.

This means

σmax(Ak) = ‖Ak‖ =

∥∥∥∥∥∥
n∑

j=1

λj,k
xjy

H
j

yHj xj

∥∥∥∥∥∥ ≤
n∑

j=1

|λj,k|
|yHj xj |

≤ max
j

n

|yHj xj |
· 1 + cj
1− cj

.

Similarly

σ−1
min(Ak) = ‖A−1

k ‖ =

∥∥∥∥∥∥
n∑

j=1

λ−1
j,k

xjy
H
j

yHj xj

∥∥∥∥∥∥ ≤
n∑

j=1

|λ−1
j,k|

|yHj xj |
≤ max

j

n

|yHj xj |
· 1 + cj
1− cj

,

which proves the bound (15).
As we know, the error introduced at each step of the iteration is mainly caused

by the computation of matrix inverse, which is approximately bounded in norm by

u(κ(Ak)‖A−1
k ‖+ ‖Ak‖) ≤ u(σ−3 + σ−1) ≈ uσ−3

when σ � 1. If uσ−3 < σmin(Ak), then this error cannot make an intermediate Ak

become singular and cause the iteration to fail. Our analysis shows that if uσ−3 < σ,
or σ > u1/4, then the iteration will not fail. This very coarse bound generalizes result
3 of Theorem 2.

We note that if A is symmetric, by the orthonormal eigendecomposition of A =∑n
j=1 λjqjq

T
j , where qTj qj = 1, qTj qk = 0 if j 6= k, then from Theorem 3 we have

σ = min
j

{ 1
|λj | if |λj | ≥ 1,

|λj | if |λj | < 1.

Therefore,

κ(Ak) ≤ max
j

{
λ2
j if |λj | ≥ 1,
1
λ2
j

if |λj | < 1.
(16)

It shows that when A is symmetric, the condition number of the intermediate ma-
trices Ak, which affects the numerical stability of the Newton iteration, is essentially
determined by the square of the distance of the eigenvalues to the imaginary axis.1

When A is nonsymmetric and diagonalizable, from Theorem 3.3, we also see
that the condition number of the intermediate matrices Ak is related to the norms

1 A referee predicted that in the symmetric case, the condition number of Ak might be determined
only by the distance, not the square of the distance. We were not able to prove such prediction.
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214 ZHAOJUN BAI AND JAMES DEMMEL

of the spectral projectors Pj = xjy
H
j /(y

H
j xj) corresponding to the eigenvalues λj

(‖Pj‖ = 1/|yHj xj |) and the quantities of the form

σ̃j =
|λj + sj | − |λj − sj |
|λj + sj |+ |λj − sj | ,

where sj = sign(<(λj)). If we write λj = αj+iβj , by a simple algebraic manipulation,
we have

σ̃j =
1

2|αj |
[
1 + α2

j + β2
j −

√
(α2

j − 1)2 + 2(1 + α2
j )β

2
j + β4

j

]
.

From this expression, we see that if there is an eigenvalue λj of A very near to the
pure imaginary axis, i.e., αj is small, then by the first-order Taylor expansion of σ̃j
in terms of αj , we have

σ̃j =
|αj |

1 + β2
j

+O(α2
j ).(17)

Therefore, to first order in αj , the condition numbers of the intermediate matrices Ak

satisfy

κ(Ak) ≤ 1

σ2
= max

j

(
|αj |

n‖Pj‖(1 + β2
j )

+O
(

α2
j

‖Pj‖

))−2

.(18)

This implies that even if the eigenvalues of A are well conditioned (i.e., the ‖Pj‖ are
not too large), if there are also eigenvalues of A closer to the imaginary axis than u1/2,
then the condition number of Ak could be large, κ(Ak) ≥ u−1, and so the Newton
iteration could fail to converge.

4. Backward stability of computed invariant subspace. As discussed in
the previous section, because of possible ill conditioning of a matrix with respect to
inversion and rounding errors during the Newton iteration, we generally only expect
to be able to compute the matrix sign function to the square root of the machine
precision, provided that the initial matrix A has condition number smaller than u−1/2.
This means that when Newton iteration converges, the computed matrix sign function
Ŝ satisfies

Ŝ = S + F with ‖F‖ ≤ O(
√

u)‖S‖.(19)

Under this assumption, P̂ = 1
2 (Ŝ + I) is an approximate spectral projection corre-

sponding to λ+(A). Therefore, if ` = rank(P̂ ), the first ` columns Q̂1 of Q̂ ≡ Q+δQ =

(Q̂1, Q̂2) in the rank revealing QR decomposition of P̂ span an approximate invariant

subspace. Q̂HAQ̂ has the form

Q̂HAQ̂ = (Q+ δQ)HA(Q+ δQ) =

(
Â11 Â12

E21 Â22

)

with λ(Â11) being the approximate eigenvalues of A in C+, and λ(Â22) being the
approximate eigenvalues of A in C−. Since we expect the computed matrix sign
function to be of half-machine precision, it is reasonable to expect computing the
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MATRIX SIGN FUNCTION FOR COMPUTING INVARIANT SUBSPACES 215

invariant subspace to half-precision too. This in turn means that the backward error
‖E21‖ in the computed decomposition Q̂HAQ̂ is bounded by O(

√
u)‖A‖, provided

that the problem is not very ill conditioned. In this section, we will try to justify such
expectation.

To this end, we first need to bound the error in the space spanned by the leading
` = rank(P ) columns of the transformation matrix Q, i.e., we need to know how much
a right singular subspace of the exact projection matrix P = 1

2 (S + I) is perturbed
when P is perturbed by a matrix of norm η. Since P is a projector, the subspace is
spanned by the right singular vectors corresponding to all nonzero singular values of
P (call the set of these singular values S). In practice, of course, this is a question of
rank determination. From the well-known perturbation theory of the singular value
decomposition [34, page 260], the space spanned by the corresponding singular vectors
is perturbed by at most O(η)/gapS , where gapS is defined by

gapS ≡ min
σ ∈ S
σ̄ 6∈ S

|σ − σ̄| .

To compute gapS , we note that there is always a unitary change of basis in which

a projector is of the form
(

I Σ
0 0

)
, where Σ = diag(σ1, . . . , σl) is diagonal with

σ1 ≥ · · · ≥ σl ≥ 0. By straightforward calculation, we find that the singular val-
ues of the projector are {

√
1 + σ2

1 , . . . ,
√

1 + σ2
` , 1, . . . , 1, 0, . . . , 0}, where the num-

ber of ones in the set of singular values is equal to max{2` − n, 0}. Since S =
{
√

1 + σ2
1 , . . . ,

√
1 + σ2

` , 1, . . . , 1}, we have

gapS =

{ √
1 + σ2

` if 2` ≤ n,
1 if 2` > n.

Thus, the error δQ in Q is bounded by

‖δQ‖ ≤ O(‖F‖)
gapS

≤ O(
√

u)‖S‖
gapS

.(20)

Hence, the backward error in the computed spectral decomposition is bounded by

‖E21‖ ≤ ‖(Q+ δQ)HA(Q+ δQ)−QHAQ‖
= ‖δQHAQ+QHAδQ+ δQHAδQ‖
≤ 2‖δQ‖ ‖A‖+O(ε2),

where O(ε2) is the second-order perturbation term of ‖δQ‖. Therefore, if 2` ≤ n, we
have the following first-order bound on the backward stability of computed invariant
subspace:

‖E21‖
‖A‖ ≤ O(

√
u)‖S‖

gapS
=
O(
√

u)‖S‖√
1 + σ2

`

.(21)

If we use the bound (5) of the matrix sign function S, then from (21) we have

‖E21‖
‖A‖ ≤ O(

√
u)‖A‖

dA
√

1 + σ2
`

,(22)
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216 ZHAOJUN BAI AND JAMES DEMMEL

where dA, defined in (4), is the distance to the ill-posed problem. On the other hand,
if we use the bound (13) for the matrix sign function S, then from (21) again we have

‖E21‖
‖A‖ ≤ O(

√
u)‖A‖

δ
√

1 + σ2
`

,(23)

where δ = sep(A11, A22) is the separation of the matrices A11 and A22, if A is assumed
to have the form (11). We note that the error bound (23) is essentially the same as
the error bound given by Byers, He, and Mehrmann [13], although we use a different
approach. In [13], it is assumed that ‖F21‖ <∼ O(u)‖S‖ in (19), where F21 is the (2,1)
block of the matrix F . Therefore, the O(

√
u) term in (23) is replaced by O(u).

The bounds (22) and (23) reveal two important features of the matrix-sign-
function-based algorithm for computing the invariant subspace. First, they indicate
that the backward error in the computed approximate invariant subspace appears no
larger than the absolute error in the computed matrix sign function, provided that
the spectral decomposition problem is not very ill conditioned (i.e., dA or δ is not
tiny). Second, if 2` ≤ n, the backward error is a decreasing function of σl. If σ` is
large, this means σ1 and so ‖P‖ =

√
1 + σ2

1 are large, and this in turn means the
eigenvalues close to the imaginary axis are ill conditioned. It is harder to divide these
eigenvalues. Of course as they become ill conditioned, dA decreases at the same time,
which must counterbalance the increase in σ` in a certain range.

It is interesting to ask which error bound (22) and (23) is sharper, i.e., which
one of the quantities dA and δ = sep(A11, A22) is larger. In [13], an example of a
2 × 2 matrix is given to show that the quantity δ is larger than the quantity dA.
However, we can also devise simple examples to show that dA can be larger than
δ = sep(A11, A22). For example, let A = diag(A11, A22) with

A11 =

 η 2 3
0 η 2
0 0 η

 , A22 =

 −η 2 3
0 −η 2
0 0 −η

 .

When η = 10−3, we have dA ≈ 2.50 × 10−10, and δ = sep(A11, A22) ≈ 2.81 × 10−16.
More generally, by choosing A11 to be a large Jordan block with a tiny eigenvalue,
and A22 = −A11, dA is close to the square root of δ. dA is computed using “numerical
brute force” to plot the function dA(τ) on a wide range of τ ∈ R, and search for the
minimal value.

Note that by modifying A to be A − σI, where σ is a (sufficiently small) real
number, dA will change but δ will not. Thus, dA and δ are not completely comparable
quantities. We believe dA to be a more natural quantity to use than δ, since δ does not
always depend on the distance to the nearest ill-posed problem. This is reminiscent
of the difference between the quantities δ = sep(A11, A22) and sepλ(A11, A22) [18].

In practice, we will use the a posteriori bound ‖E21‖/‖A‖ anyway, since if we

block upper triangularize Q̂HAQ̂ by setting the (2, 1) block to zero, ‖E21‖/‖A‖ is
precisely the backward error we introduce.

Before ending this section, let us comment on the stability of the matrix-sign-
function-based algorithm versus the QR algorithm. The QR algorithm is a numerical
backward stable method for computing the Schur decomposition of a general non-
symmetric matrix A. The computed Schur form T̂ and Schur vectors Q̂ by the QR
algorithm satisfy

Q̂H(A+ E)Q̂ = T̂ ,

D
ow

nl
oa

de
d 

07
/2

1/
18

 to
 1

69
.2

37
.6

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



MATRIX SIGN FUNCTION FOR COMPUTING INVARIANT SUBSPACES 217

where E is of the order of u‖A‖. Numerical software for the QR algorithm is available
in EISPACK [32] and LAPACK [1]. Although nonconvergent examples have been
found, they are quite rare in practice [6, 16]. We note that the eigenvalues on the

(block) diagonal of T̂ may appear in any order. Therefore, if an application requires
an invariant subspace corresponding to the eigenvalues in a specific region in complex
plane, a second step of reordering eigenvalues on the diagonal of T̂ is necessary. A
guaranteed stable implementation of this reordering is described in [7].

The matrix-sign-function-based algorithm can be regarded as an algorithm to
combine these two steps into one. If the matrix sign function can be computed
within the order of u‖S‖, then the analysis in this section shows that the matrix-sign-
function-based algorithm could be as stable as the QR algorithm plus reordering.
Unfortunately, if the matrix is ill conditioned with respect to matrix inversion (which
does not affect the QR algorithm), numerical instability is anticipated in the computed
matrix sign function. Therefore, in general, the matrix sign function is less stable than
the QR algorithm plus reordering.

5. Numerical experiments. In this section, we will present numerical exam-
ples to verify the above analysis. We will see the numerical stability of the Newton
iteration (2) and the backward accuracy of computed spectral decomposition (1) un-
der the influence of the conditioning of the matrix A with respect to inversion, the
condition number κ(S) of S = sign(A), and the distance ∆(A) of the eigenvalues
of A to the pure-imaginary axis, where ∆(A) = mini |<(λi(A))|. We use the easily
computed quantity ∆(A) as a surrogate of the quantity dA in (4).

Let us recall that the analysis of sections 3 and 4 essentially claims the following:
(1) If ∆(A) < u1/2, then the Newton iteration may fail to converge or fail to

compute the matrix sign function within the absolute error u1/2‖S‖, even
when the matrix sign function is well conditioned. See (18).

(2) If κ(S) > u−1/2, then even the distance ∆(A) is not small, and the Newton
iteration may still fail to compute the matrix sign function in the absolute
error of O(u1/2‖S‖). See part 3 of Theorem 3.2.

(3) In general, the backward error in the computed spectral decomposition will
be smaller than the absolute error in the computed matrix sign function. See
(21).

The following numerical examples will illustrate these claims. Our numerical ex-
periments were performed on a SUN workstation 10 with machine precision εM =
2.2204×10−16 ≈ u. All the algorithms are implemented in Matlab 4.0a. We use the
simple Newtion iteration (2) to compute the matrix sign function with the stopping
criterion

‖Ak+1 −Ak‖ ≤ 10nεM‖Ak‖.

The maximal number of iterations is set to be 70. At the convergence, we have
limk→∞Ak = Ŝ, the computed matrix sign function. We use the QR decomposition
with column pivoting as the rank revealing scheme. 1

2 (Ŝ + I) = Q̂R̂Π, and finally
compute

Q̂HAQ̂ =

(
Â11 Â12

E21 Â22

)
,

where the first ` = rank(R̂) columns of Q̂ spans the invariant subspaces corresponding
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218 ZHAOJUN BAI AND JAMES DEMMEL

Table 1
Numerical results for Example 1.

c ∆(A) = s κ(A) κ(S) iter ‖S−S̄‖
‖S‖

‖E21‖
‖A‖

10 1.0e + 00 1.9e + 03 2.7e + 03 7 2.9e− 14 3.9e− 17
1.0e− 02 8.6e + 02 1.5e + 02 13 8.4e− 14 8.4e− 16
1.0e− 04 3.8e + 01 8.1e + 01 20 1.3e− 11 1.3e− 13
1.0e− 06 4.7e + 02 9.0e + 02 30 4.1e− 09 4.1e− 12

1.0e− 08 4.3e + 02 1.0e + 03 33 2.8e− 07 2.8e− 10
1.0e− 09 2.8e + 02 1.8e + 03 36 8.0e− 06 8.0e− 09
1.0e− 10 3.6e + 01 3.7e + 02 40 2.2e− 05 2.2e− 07
1.0e− 12 5.5e + 01 1.0e + 03 46 4.0e− 03 4.0e− 06

103 1.0e− 06 7.8e + 06 1.7e + 07 26(10−11) 2.1e− 06 5.4e− 12
1.0e− 08 1.7e + 06 1.0e + 07 33(10−11) 5.1e− 04 1.8e− 09

to λ(Â11), which are the approximate eigenvalues of A in C+. ‖E21‖/‖A‖ is the
backward error committed by the algorithm.

All our test matrices are constructed of the form

A = UT

(
A11 A12

0 A22

)
U,(24)

where U is an orthogonal matrix generated from the QR decomposition of a random
matrix with normal distribution having mean 0.0 and variance 1.0. We will choose dif-
ferent submatrices A11, A22, and A12 so that the generated matrices A have different
specific features in order to observe our theoretical results in practice.

The exact matrix sign function S = sign(A) of A and the condition number of S
are computed as described in Lemma 3.1. The condition number of A is computed
by Matlab function cond.

In the following tables, iter is the number of iterations of the Newton iteration.
A number 10α in parenthesis next to an iteration number iter indicates that the
convergence of the Newton iteration was stationary about O(10α) from the iterth

iteration forward, and failed to satisfy the stopping criterion even after the allowed
maximal number of iterations.

We have experimented with numerous matrices with different pathological ill con-
ditioning in terms of the distance to the pure-imaginary axis, the condition numbers
of κ(A) and κ(S), and the different values of sep(A11, A22) and so on. Two selected
examples presented here are typical of behaviors we observed.

Example 1. In this example, the matrices A are of the form (24) with

A11 =

(
s 1

−1 s

)
, A22 =

( −s 1
−1 −s

)
,

and A12 = −(A11R − RA22), where R is a random 2 × 2 matrix with normal distri-
bution (0, 1) multiplying by a parameter c. The generated matrix A has two complex
conjugate eigenpairs s± i and −s± i. As s→ 0, the distance ∆(A) = s→ 0 too. The
size of the parameter c will adjust the conditioning of the resulted matrix A and its
matrix sign function.

Table 1 reports the computed results for different values of ∆(A) = s. From
the table, we see that when the matrices are well conditioned and the corresponding
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MATRIX SIGN FUNCTION FOR COMPUTING INVARIANT SUBSPACES 219

Table 2
Numerical results of Example 2.

d ∆(A) κ(A) κ(S) iter ‖S−S̄‖
‖S‖

‖E21‖
‖A‖

1.0 1.2e− 01 5.8e + 02 6.4e + 01 9 1.4e− 14 1.7e− 15
0.7 6.5e− 02 1.3e + 04 1.3e + 04 10 2.0e− 13 1.6e− 14
0.5 8.5e− 02 3.4e + 04 2.2e + 05 10(10−13) 9.5e− 12 1.7e− 13
0.3 2.0e− 02 3.9e + 06 5.9e + 08 10(10−09) 3.5e− 09 4.6e− 11
0.25 6.2e− 03 2.9e + 07 1.2e + 09 13(10−10) 2.8e− 08 1.5e− 10
0.09 1.1e− 02 4.9e + 09 5.5e + 13 12(10−06) 3.0e− 03 1.0e− 07

matrix sign function is also well conditioned, as stated in the claim (1), the conver-
gence rate and accuracy of the Newton iteration is clearly determined by the distance
∆(A). When the distance becomes smaller, there is a steady increase in the number
of Newton iterations required to convergence and the loss of the accuracy in the com-
puted matrix sign function and, therefore, the desired invariant subspace. From the
table, we also see that when both ∆(A) and κ(S) are moderate, the Newton iteration
fails to compute the matrix sign function in half-machine precision. Nevertheless, the
computed invariant subspace seems to still have half-machine precision; see the claim
(3).

Example 2. In this example, the test matrices A are of the form (24). A12 are 5×5
(1, 0) normally distributed random matrices. The submatrices A11 and A22 are first
set by 5× 5 (1, 0) normally distributed random upper tridiagonal matrices, and then
the diagonal elements of A11 and A22 are replaced by d|aii| and −d|aii|, respectively,
where aii(1 ≤ i ≤ n) are random numbers with normal distribution (0, 1), d is a
positive parameter. A12 are 5× 5 (1, 0) normally distributed random matrices.

The numerical results are reported in Table 2. For the given parameter d, the
eigenvalues are well separated away from the pure-imaginary axis (∆(A) is not small),
however, as stated in the claim (2), we see the influence of the condition numbers
κ(S) to the convergence of the Newton iteration and, therefore, the accuracy of the
computed matrix sign function and the invariant subspace.

6. Refining estimates of approximate invariant subspaces. When we use
the matrix-sign-function-based algorithm to deflate an invariant subspace of matrix
A, we end up with the form

Q̂HAQ̂ = (Q̂1, Q̂2)
HA(Q̂1, Q̂2) =

(
Â11 Â12

E21 Â22

)
,(25)

where the size of ‖E21‖/‖A‖ reveals the accuracy and backward stability of computed

invariant subspace spanning by Q̂1 of A. If higher accuracy is desired, we may use
iterative refinement techniques to improve the accuracy of computed invariant sub-
space. The methods are due to Stewart [33], Dongarra, Moler, and Wilkinson [20],
and Chatelin [15]. Even though these methods all apparently solve different equations,
as shown by Demmel [19], after changing variables, they all solve the same Riccati
equation in the inner loop.

Let us follow Stewart’s approach to present the first class of methods. From (25),

we know that Q̂1 spans an approximate invariant subspace and Q̂2 spans an orthogonal
complementary subspace. If we let the true invariant subspace be represented by
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Q̂1 + Q̂2Y and, therefore, its orthogonal complementary subspace as Q̂2 − Q̂1Y
H ,

then Y is derived as follows: Q̂1 + Q̂2Y will be an invariant subspace if and only if
the lower left block of

(Q̂1 + Q̂2Y, Q̂2 − Q̂1Y
H)−1A(Q̂1 + Q̂2Y, Q̂2 − Q̂1Y

H)

is zero, i.e., if the lower left corner of

(
I −Y H

Y I

)(
Â11 Â12

E21 Â22

)(
I Y H

−Y I

)

is zero. Thus, Y must satisfy the equation

Â22Y − Y Â11 = E21 − Y Â12Y,

which is the well-known algebraic Riccati equation. We may use the following two
iterative methods to solve it:

1. the simple Newton iteration

Â22Yk − YkÂ11 = E21 − Yk−1Â12Yk−1(26)

with Y0 = 0, k = 1, 2, . . . ;
2. the modified Newton iteration

(Â22 − Yk−1Â12)Yk − Yk(Â11 + Â12Yk−1) = −E21 − Yk−1Â12Yk−1(27)

with Y0 = 0, k = 1, 2, . . . .

Therefore, we only need to solve a Sylvester equation in the inner loop of the iterative
refinement.

In the following numerical example, we only use the simple Newton iteration (26)
to refine the approximate invariant subspace computed by the matrix-sign-function-
based algorithm, with the following stopping criterion:

‖Yk − Yk−1‖1 ≤ 10nεM‖Yk−1‖1.

Example 3. We continue Example 2. Table 3 lists the sep(A11, A22), the number of
iterative refinement steps, and the backward accuracy of improved invariant subspace.

As shown in the convergence analysis for the iterative solvers (26) and (27) of the
Riccati equation by Stewart [33] and Demmel [18], if we let

κ = (‖Â12‖F ‖E21‖F )/sep2(Â11, Â22),

then under the assumptions k < 1/4 and k < 1/12, the iterations (26) and (27)

converge, respectively. Therefore, sep(Â11, Â22) is a key factor to the convergence of
the iterative refinement schemes. The above examples verify such analysis. From the
analysis of section 3, we recall that sep(Â11, Â22) also affects the backward stability
of the computed invariant subspace by the matrix-sign-function-based algorithm in
the first place (before iterative refinement).
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Table 3
Iterative refinement results of Example 2.

d sep(A11, A22) iter
‖E′

21‖
‖A‖

1.0 2.4e− 2 2 6.6e− 31
0.7 2.4e− 3 3 6.3e− 30
0.5 2.3e− 3 3 1.1e− 28
0.3 2.0e− 5 4 2.0e− 25
0.25 3.8e− 5 4 2.5e− 25
0.09 5.1e− 7 5(10−12) 1.1e− 21

7. Extension to the generalized eigenproblem. In this section, we outline
a scheme to extend the matrix-sign-function-based algorithm to solve the generalized
eigenvalue problem of a regular matrix pencil A − λB. A matrix pencil A − λB is
regular ifA−λB is square and det(A−λB) is not identically zero. In [22], Gardiner and
Laub have considered an extension of the Newton iteration for computing the matrix
sign function to a matrix pencil for solving generalized algebraic Riccati equations.
Here we discuss another possible approach, which includes the computation of both
left and right deflating subspaces.

For the given matrix pencil A − λB, the problem of the spectral decomposition
is to seek a pair of left and right deflating subspaces L and R corresponding to the
eigenvalues of the pencil in a specified region D in complex plane. In other words,
we want to find a pair of unitary matrices QL and QR so that if QL = (QL1, QL2),
span(QL1) = L and QR = (QR1, QR2), span(QR1) = R, then

QH
LAQR =

(
A11 A12

0 A22

)
, QH

LBQR =

(
B11 B12

0 B22

)
,(28)

where the eigenvalues of A11−λB11 are the eigenvalues of A−λB in a selected region
D in complex plane. Here, we will only discuss the region D to be the open right half-
complex plane. As the same treatment in the standard eigenproblem, by employing
Möbius transformations (αA + βB)(γA + δB)−1 and divide-and-conquer, D can be
the union of intersections of arbitrary half-planes and (complemented) disks, and so
a rather general region.

To this end, by directly applying the Newton iteration to AB−1, we have

Yk+1 =
1

2
(Yk + Y −1

k ), k = 0, 1, 2, . . . , Y0 = AB−1.

At convergence, Y∞ = sign(AB−1). In practice, we do not want to invert B if it is ill
conditioned. Hence, by letting Zk = YkB, then the above iteration becomes

Zk+1B
−1 =

1

2
(ZkB

−1 +BZ−1
k ) =

1

2
(Zk +BZ−1

k B)B−1.

This leads to the following iteration:

Zk+1 =
1

2
(Zk +BZ−1

k B)

for k = 0, 1, 2, . . . with Z0 = A. Zj converges quadratically to a matrix Z∞. Then
Z∞B−1 = Y∞ = sign(AB−1). Next, to find the desired deflating subspace, we use

D
ow

nl
oa

de
d 

07
/2

1/
18

 to
 1

69
.2

37
.6

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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the rank revealing QR decomposition to calculate the range space of the projection
P = 1

2 (I +Z∞B−1) corresponding to the spectral in the open right half-plane, which
has the same range space as 2PB = Z∞+B. Thus, by computing the rank revealing
QR decomposition of Z∞+B = QLRLΠL, we obtain the invariant subspace of AB−1

without inverting B, i.e.,

QH
LAB

−1QL =

(
CR C12

0 CL

)
,(29)

where λ(CR) are the eigenvalues of the pencil A − λB in the open right half-plane,
λ(CL) are the ones of A−λB in the open left half-plane. Therefore, we have obtained
the left deflating subspace of A− λB.

To compute the right deflating subspace of A− λB, we can apply the above idea
to AH − λBH , since transposing swaps right and left spaces. The Newton iteration
implicitly applying to AHB−H turns out to be

Z̃k+1 =
1

2
(Z̃k +BH Z̃−1

k BH)

for k = 0, 1, 2, . . . with Z0 = AH . Z̃j converges quadratically to a matrix Z̃∞. Using
the same arguments as above, after computing the rank revealing QR decomposition
of Z̃∞ −B = Q̃RRRΠR, we have

Q̃H
RA

HB−HQ̃R =

(
DL D12

0 DR

)
,

where λ(DL) are the eigenvalues of the pencil A−λB in the open left half-plane, λ(DR)
are the ones of A−λB in the open right half-plane. Note that for the desired spectral
decomposition, after transposing, we need to first compute the deflating subspace
corresponding to the eigenvalues in the open left half-plane. Let QR = Q̃RΠ̃, where
Π̃ is an antidiagonal identity matrix2; then we have

QH
RA

HB−HQR =

(
DR 0
D12 DL

)
.(30)

From (29) and (30), we immediately have

QH
LAQR =

(
CR C12

0 CL

)
QH
LBQR,(31)

QH
LAQR = QH

LBQR

(
DH
R DH

12

0 DH
L

)
.(32)

Let QH
LAQR and QH

LBQR have the partitions

QH
LAQR =

(
A11 A12

A21 A22

)
, QH

LBQR =

(
B11 B12

B21 B22

)
;

we have (
CR C12

0 CL

)(
B11 B12

B21 B22

)
=

(
B11 B12

B21 B22

)(
DH
R DH

12

0 DH
L

)
.

2 The permutation Π̃ can be avoided if we use the rank revealing QL decomposition.
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Then B21 satisfies

CLB21 −B21D
H
R = 0.

Note that λ(CL) are the eigenvalues of the pencil A− λB in the open left half-plane,
λ(DR) are the eigenvalues of the pencil A−λB in the open right half-plane. Therefore,
the above homogeneous Sylvester equation has only the solution B21 = 0. From (31)
or (32), we have A21 = 0. The computed unitary orthogonal matrices QL and QR

give the desired spectral decomposition (28).

8. Closing remarks. In this paper, we have presented a number of new results
and approaches to further analyze the numerical behavior of the matrix sign function
and algorithms using it to compute spectral decompositions of nonsymmetric matri-
ces. From this analysis and numerical experiments, we conclude that if the spectral
decomposition problem is not ill conditioned, the algorithm is a practical approach to
solve the nonsymmetric eigenvalue problem. Performance evaluation of the matrix-
sign-function-based algorithm on parallel distributed memory machines, such as the
Intel Delta and CM-5, is reported in [4].

During the course of this work, we have discovered a new approach which es-
sentially computes the same spectral projection matrix as the matrix sign function
approach does, and also uses basic matrix operations, namely, matrix multiplication
and the QR decomposition. However, it avoids the matrix inverse. From the point
of view of accuracy, this is a more promising approach. The new approach is based
on the work of Bulgakov and Godunov [10] and Malyshev [27, 28]. In [5], we have
improved their results in several important ways, and made it a truly practical and
inverse-free highly parallel algorithm for both the standard and generalized spectral
decomposition problems. In brief, the difference between the matrix sign function and
inverse-free methods is as follows. The matrix sign function method is significantly
faster than the inverse-free method when it converges, but there are some very diffi-
cult problems where the inverse-free algorithm gives a more accurate answer than the
matrix sign function algorithm. The interested reader may see paper [5] for details.
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