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Abstract. Substructuring methods have been studied since 1960s. The modes
of subsystems associated with the lowest frequencies are typically retained. This
mode selection rule is largely heuristic. In this paper, we use a moment-matching
analysis tool to derive a new mode selection criterion, which is compatible to the
one recently derived by Givoli et al using Dirichlet-to-Neumann (DtN) map as an
analysis tool. The improvements of the new mode selection criterion are demon-
strated by numerical examples from structural dynamics and MEMS simulation.

1 Introduction

Model-order reduction techniques play an indispensable role to meet the continual and
compelling need for accurately and efficiently simulating dynamical behavior of large
and complex physical systems. One popular method is the substructuring or the com-
ponent mode synthesis (CMS), which was developed back to early 1960s [7,8,4]. CMS
explicitly exploits underlying structures of a system and effectively avoids the expenses
of processing the entire system at once. The model-order reduction of subsystems can
be conducted in parallel. The subsystem structure is preserved.

Specifically, in this paper, we consider a lumped MIMO dynamical system of the
form

ΣN :

{
Mẍ(t) + Kx(t) = Bu(t),

y(t) = LT x(t),
(1.1)

with the initial conditions x(0) = x0 and ẋ(0) = v0. Here t is the time variable,
x(t) ∈ RN is a state vector, N is the degree of freedoms (DOFs), u(t) ∈ Rp the input
excitation force vector, and y(t) ∈ Rm the output measurement vector. B ∈ RN×p and
L ∈ RN×m are input and output distribution arrays, respectively. M and K are system
matrices, such as mass and stiffness. Assume that M is symmetric positive definite and
K is symmetric semidefinite. Furthermore, the state vector x(t) and the system matrices
M and K are posed of subsystem structure, namely, they are partitioned into the three
blocks, representing subsystems I, II and interface:
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x(t) =

⎡
⎢⎣

x1(t)
x2(t)
x3(t)

⎤
⎥⎦ , M =

⎡
⎢⎣

M11 M13

M22 M23

MT
13 MT

23 M33

⎤
⎥⎦ , K =

⎡
⎢⎣

K11 K13

K22 K23

KT
13 KT

23 K33

⎤
⎥⎦ . (1.2)

We denote the number of DOFs of subsystems I, II and the interface by N1, N2 and N3,
respectively. Thus the total number of DOFs of ΣN is N = N1 + N2 + N3.

By Laplace transform, the input-output behavior of ΣN in the frequency domain is
characterized by the transfer function

H(ω) = LT (−ω2M + K)−1B,

where ω is referred to as the frequency. For the simplicity of exposition, we have assumed
that x(0) = ẋ(0) = 0.

A substructuring method replaces the system ΣN with a system of the same form
but (much) smaller dimension of the state-vector z(t):

Σn :

{
Mnz̈(t) + Knz(t) = Bn u(t),

ŷ(t) = LT
n z(t),

(1.3)

such that the input-output behavior of Σn is an acceptable approximation of ΣN . The
number of DOFs of the new state-vector z(t) is n = n1 + n2 + N3 with n1 < N1 and
n2 < N2. The DOFs of the interface block is unchanged. Furthermore, Mn and Kn

preserve the block structures of M and K .
A key step in substructuring methods is to compute and retain the modes of sub-

systems. A standard mode selection practice is to retain the modes associated with few
lowest frequencies. This is largely heuristic and does not guarantee to produce an optimal
reduced system Σn as shown by the following simple example. Let

M =

⎡
⎢⎢⎢⎢⎣

1 0.7

1 10−3

1 0.3

0.7 10−3 0.3 1

⎤
⎥⎥⎥⎥⎦ , K =

⎡
⎢⎢⎢⎢⎣

0.9

1
2

1

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

1

0
0

0

⎤
⎥⎥⎥⎥⎦ , L =

⎡
⎢⎢⎢⎢⎣

1

1
1

1

⎤
⎥⎥⎥⎥⎦ . (1.4)

Suppose the subsystem II is reduced. Then by the standard lowest frequency mode
selection criterion, the reduced system Σn is given by

Mn =

⎡
⎢⎣

1 0.7

1 10−3

0.7 10−3 1

⎤
⎥⎦ , Kn =

⎡
⎢⎣

0.9

1

1

⎤
⎥⎦ , Bn =

⎡
⎢⎣

1

0

0

⎤
⎥⎦ , Ln =

⎡
⎢⎣

1

1

1

⎤
⎥⎦ . (1.5)

However, if we retain the other mode in the system II, then the reduced system Σ̂n is
given by

M̂n =

⎡
⎢⎣

1 0.7

1 0.3

0.7 0.3 1

⎤
⎥⎦ , K̂n =

⎡
⎢⎣

0.9

2

1

⎤
⎥⎦ , B̂n =

⎡
⎢⎣

1

0

0

⎤
⎥⎦ , L̂n =

⎡
⎢⎣

1

1

1

⎤
⎥⎦ . (1.6)
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Figure 1 shows the magnitudes (in log of base 10) of the transfer function H(ω)
of the original system ΣN and the reduced ones Hn(ω) (called CMS line) and Ĥn(ω)
(called CMSχ line). It is clear that the low-frequency dominant mode selection criterion
is not optimal.
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Fig. 1. The frequency response analysis (top) and relative error (bottom) for the miniature example

A question that arises naturally is “which are the important modes of subsystems?”
In the recent work of Givoli et al [1,6], an optimal modal reduction (OMR) algorithm is
proposed. In contrast to the low-frequency dominant mode selection rule, they introduce
the concept of coupling matrix-based mode selection criterion. The concept is derived via
the DtN map analysis tool, originally developed for solving partial differential equations
with non-reflecting boundary conditions [9]. They show that the OMR method is better
than the standard modal reduction (SMR) method. However, there are a number of
limitations in the OMR method, such as the assumption of external force Bu(t) only
applied to one of the subsystems.

In this paper, we present an alternative mode selection criterion to the CMS method.
The resulting method is called CMSχ. The new mode selection criterion in CMSχ is
derived in an algebraic setting based on the concept of moment-matching in frequency
domain. It coincides with the coupling matrix-based mode selection criterion used in
the OMR method. However, mathematical derivation of moment-matching based mode
selection criterion is much simpler than the DtN mapping based derivation used in OMR.
Moreover, it does not need the assumption of the special form of external force Bu(t)
as used in OMR.

2 Substructuring Methods

In this section, we first discuss a generic CMS method, which is based on the origi-
nal CMS developed by Hurty [7,8] and Craig and Bampton [4]. Then we specify the
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difference between the standard CMS method and the new one we propose. We give a
justification for the new method in the next section.

In a generic and compact form, the key step of the CMS method is on the construction
of the transformation matrix Vn of the form

Vn =

⎛
⎝

n1 n2 N3

N1 Φ1 Ψ13

N2 Φ2 Ψ23

N3 IN3

⎞
⎠, (2.7)

where Ψi3 = −K−1
ii Ki3 for i = 1, 2, and Φi is an Ni × ni matrix whose columns are

the selected ni eigenvectors φ
(i)
j of the matrix pair (Mii, Kii):

Kiiφ
(i)
j = λ

(i)
j Mii φ

(i)
j and (φ(i)

j )T Miiφ
(i)
k = δjk, (2.8)

where δjk is the Kronecker delta. In structural dynamics, Φi is the interior partition of
the fixed-interface modal matrix and Ψi3 is the interior partition of the constraint-mode
matrix.

An orthogonal projection technique for model-order reduction seeks an approxima-
tion of x(t) constrained to stay in the subspace spanned by the columns of Vn, namely

x(t) ≈ Vnz(t) .

Then by imposing the so-called Galerkin orthogonal condition:

MVnz̈(t) + KQnz(t) − Bu(t) ⊥ span{Vn}.

it yields a reduced-order system:

Σn :

{
Mnz̈(t) + Knz(t) = Bnu(t)

ŷ(t) = LT
nz(t)

, (2.9)

where Mn = V T
n MVn, Kn = V T

n KVn, Bn = V T
n B and Ln = V T

n L. By the definition
of Vn, the matrices Mn and Kn of the reduced system Σn are of the following forms

Mn =

⎡
⎢⎣

I M
(n)
13

I M
(n)
23

(M (n)
13 )T (M (n)

13 )T M̂33

⎤
⎥⎦ and Kn =

⎡
⎢⎣

Λ
(n)
1

Λ
(n)
2

K̂33

⎤
⎥⎦ ,

where

M
(n)
i3 = ΦT

i M̂i3 and M̂i3 = Mi3 − MiiK
−1
ii Ki3 for i = 1, 2,

M̂33 = M33 −
2∑

i=1

(
KT

i3K
−1
ii Mi3 + MT

i3K
−1
ii Ki3 − KT

i3K
−1
ii MiiK

−1
ii Ki3

)
,

and K̂33 is the Schur complement of diag(K11, K22) in K of the form

K̂33 = K33 − KT
13K

−1
11 K13 − KT

23K
−1
22 K23,
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and Λ
(n)
i = diag(λ(i)

1 , λ
(i)
2 , . . . , λ

(i)
ni ).

A high-level description of a generic CMS method is as followings.

Generic CMS Method

1. Compute the selected eigenpairs (λ(i)
j , φ

(i)
j ) of the generalized eigenproblems

Kiiφ
(i)
j = λ

(i)
j Miiφ

(i)
j for i = 1, 2,

2. Retain some eigenpairs (λ(i)
j , φ

(i)
j ) to define transformation matrix Vn,

3. Form Mn, Kn, Bn, Ln to define the reduced system Σn as in (2.9).

In the standard CMS method, the ni modes φ
(i)
j associated with smallest eigenvalues

λ
(i)
j are retained to define the projection matrix Vn. Vn is called the Craig-Bampton

transformation matrix in structure dynamics [3].
In an alternative method, which we call the CMSχ, the ni modes φ

(i)
j in Vn are

selected according to the highest norm of the rank-one coupling matrices S
(i)
j :

S
(i)
j =

1

λ
(i)
j

M̂T
i3φ

(i)
j (φ(i)

j )T M̂i3. (2.10)

Therefore, the selected modes φ
(i)
j in CMSχ may not be in the natural order as in CMS.

As a result, to find such ni modes, we may have to find more than ni smallest eigenpairs
of the matrix pairs (Mii, Kii). This will be shown by numerical examples in section 4.
But first we give a justification for the CMSχ method in the next section.

3 Derivation of CMSχ

Let us assume that Φi contains all Ni modes of the submatrix pairs (Mii, Kii) for
i = 1, 2. Then the system ΣN in its modal coordinate in frequency domain is of the
form�
��−ω2

�
��

I M
(N)
13

I M
(N)
23

(M
(N)
13 )T (M

(N)
23 )T �M33

�
�	+

�
��

Λ
(N)
1

Λ
(N)
2 
K33

�
�	
�
�
�
��

X1(ω)

X2(ω)

X3(ω)

�
�	 =

�
��

B
(N)
1

B
(N)
2
B3

�
�	U(ω).

(3.11)
For the sake of notation, we will drop the superscript ·(N) in the rest of section. By solving
X1(ω) and X2(ω) from the first and second equations of (3.11) and then substituting
into the third interface equation of the (3.11), it yields(

ω4
2∑

i=1

[
−MT

i3(−ωI + Λi)−1Mi3

]
− ω2M̂33 + K̂33

)
X3(ω)

=

(
ω2

2∑
i=1

[
MT

i3(−ωI + Λi)−1Bi

]
+ B̂3

)
U(ω). (3.12)
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In the context of structural dynamics, the equation (3.12) presents the force applied to
the interface and applied to it by the subsystems.

Instead of solving equation (3.12) for X3(ω) directly, we simplify the equation first,
since we are only interested in looking for “important modes”. An approximation of
(3.12) is taking the first three terms of the power expansion in ω2 of the coefficient
matrix on the left hand side, and taking the constant term on the right hand side. This
yields an approximate equation of (3.12):[

−ω4
(
MT

13Λ
−1
1 M13 + MT

23Λ
−1
2 M23

)
− ω2M̂33 + K̂33

]
X̃3(ω) = B̂3U(ω), (3.13)

Let the power series expansion of X̃3(ω) be formally denoted by

X̃3(ω) =

( ∞∑
�=0

r�ω
2�

)
U(ω),

where r� are called the �-th moment (vector) of X̃3(ω). Then by comparing the two sides
of equation (3.13) in the power of ω2, the moments r� are given by

r0 = K̂−1
33 B̂3,

r1 = K̂−1
33 M̂33r0,

r� = K̂−1
33 (M̂33r�−1 + (

2∑
i=1

MT
i3Λ

−1
i Mi3)r�−2) for � ≥ 2.

By an exactly analogous calculation, for the reduced-order system Σn in its modal
coordinates form, namely

Mn =

⎡
⎢⎣

I M
(n)
13

I M
(n)
23

(M (n)
13 )T (M (n)

13 )T M
(n)
33

⎤
⎥⎦ , Kn =

⎡
⎢⎣

Λ
(n)
1

Λ
(n)
2

K
(n)
33

⎤
⎥⎦

and

Bn =

⎡
⎢⎣

B
(n)
1

B
(n)
2

B
(n)
33

⎤
⎥⎦ , Ln =

⎡
⎢⎣

L
(n)
1

L
(n)
2

L
(n)
33

⎤
⎥⎦ .

The moment vectors r
(n)
� for the solution X̃

(n)
3 (ω) of the approximate interface equation

are given by

r
(n)
0 = (K(n)

33 )−1B
(n)
3 ,

r
(n)
1 = (K(n)

33 )−1M
(n)
33 r

(n)
0 ,

r
(n)
� = (K(n)

33 )−1(M (n)
33 r

(n)
�−1 + (

2∑
i=1

(M (n)
i3 )T (Λ(n)

i )−1M
(n)
i3 )r(n)

�−2) for � ≥ 2.
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Note that the dimensions of the moment vectors {r�} and {r(n)
� } are the same since we

assume that the DOFs of the interface block is unchanged.
A natural optimal strategy to define a reduced-order system Σn is to match or approx-

imate as many moments as possible. To match the first moment r0 = r
(n)
0 , it suggests

that

K
(n)
33 = K̂33 and B

(n)
3 = B̂3.

To match the second moment r1 = r
(n)
1 , it derives that

M
(n)
33 = M̂33.

Unfortunately, there is no easy way to match the third moment r2 exactly. Instead, we
try to minimize the difference between r2 and r

(n)
2 :

‖r2 − r
(n)
2 ‖2 = ‖K̂−1

33

(
2∑

i=1

MT
i3Λ

−1
i Mi3 − (M (n)

i3 )T (Λ(n)
i )−1M

(n)
i3

)
K̂−1

33 B̂3‖2

≤ c‖
N1∑
j=1

S
(1)
j −

n1∑
j=1

(S(1)
j )(n)

︸ ︷︷ ︸
1

+
N2∑
j=1

S
(2)
j −

n2∑
j=1

(S(2)
j )(n)

︸ ︷︷ ︸
2

‖2, (3.14)

where c = ‖K̂−1
33 ‖2‖K̂−1

33 B̂3‖2, a constant independent of the modes φ
(i)
j . S

(i)
j and

(S(i)
j )(n) are the coupling matrices for the j-th mode of the subsystem i as defined in

(2.10). Assume that S
(i)
j and (S(i)

j )(n) are in descending order according to their norms,
respectively,

‖S(i)
1 ‖ ≥ ‖S(i)

2 ‖ ≥ · · · ≥ ‖S(i)
Ni
‖, ‖(S(i)

1 )(n)‖ ≥ ‖(S(i)
2 )(n)‖ ≥ · · · ≥ ‖(S(i)

ni
)(n)‖.

The best we can do is to set

(S(i)
j )(n) = S

(i)
j for j = 1, 2, . . . , ni.

This cancels out the first ni terms of the differences labled as 1 and 2 of the upper bound
in (3.14), and leaves the sums of the remaining terms smallest possible. This yields the
CMSχ-mode selection rule as we described in section 2: retain the first ni modes of the

subsystem i according to the largest norms of the coupling matrices S
(i)
j .

Note that the matrices M̂i3 which couples subsystems and the interface are included
in the coupling matrices S

(i)
j . Therefore, they are reflected for the retention of modes of

importance. These coupling effects are essentially ignored by the CMS mode selection.
To this end, we also note that CMSχ-mode selection criterion is essentially the same
as the one in the OMR method derived by the DtN mapping [1,6], but without the
assumption of the special form of the external force term Bu(t) in the original system
ΣN (1.1).
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4 Numerical Experiments

In this section, we present two numerical examples to compare the two mode selection
criteria discussed in this paper. All numerical experiments were run in MATLAB on a
Linux Server with Dual 1.2Ghz CPUs and 2GB of memory.
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Fig. 2. Left: magnitudes (in log of base 10) of the transfer functions (top) and relative errors
(bottom). Right: retained modes of subsystems by CMS and CMSχ

Example 1. In this example, the mass and stiffness matrices M and K are from Harwell-
Boeing BCS sparse matrix collection [5]. The number of DOFs of ΣN is N = 420, and
that of two subsystems are N1 = 190 and N2 = 194, respectively. The top left plot
of Fig. 2 shows the magnitude (in log of base 10) of the transfer function H(ω) of the
SISO system ΣN with B = L = [ 1 0 . . . 0 ]T . The transfer functions HCMS

n (ω)
and H

CMSχ
n (ω) of the reduced systems Σn, computed by CMS and CMSχ, are shown

in the same plot. The number of DOFs of reduced-order systems Σn is n = 153 with
n1 = 52 and n2 = 65, respectively. The relative errors |H(ω) − HCMS

n (ω)|/|H(ω)|
and |H(ω) − H

CMSχ
n (ω)|/|H(ω)| shown in the lower left plot of Fig. 2 indicate that

H
CMSχ
n (ω) is a much accurate approximation of H(ω) than HCMS

n (ω), under the same
order of reduced DOFs.

Two right plots of Fig. 2 show the eigenvalues of original systems and the ones
retained by CMS and CMSχ. Note again that the numbers of eigenvalues of subsystems
retained by the two methods are the same. CMSχ skips some of lower frequency eigen-
values, and uses some higher frequency eigenvalues to take into the account of coupling
effects between the subsystems and the interface. On the other, CMS simply takes the
lowest frequency eigenvalues in order.

Example 2. This is a SISO system ΣN arised from simulation of a prototype radio-
frequency MEMS filter [2]. The DOFs of ΣN is N = 490 and that of two subsystems
are N1 = N2 = 238. The DOFs of interface is N3 = 14. Fig. 3 shows the transfer
functions H(ω), HCMS

n (ω) and H
CMSχ
n (ω). The DOFs of reduced subsystems by the
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both methods are n1 = n2 = 85. The relative errors |H(ω) − HCMS
n (ω)|/|H(ω)| and

|H(ω) − H
CMSχ
n (ω)|/|H(ω)| in the lower left plot of Fig. 3 show the improvement

made by the new CMSχ method. Two right plots of Fig. 3 show the differences in the
retention of the same number of modes of subsystems.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
5

−22

−20

−18

−16

−14

−12

−10
Resonator 490: N=490 −> n=184, (238,238,14)−>(85,85,14)

Frequency (Hz)

lo
g1

0(
M

ag
ni

tu
de

)

Exact
CMSχ
CMS

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
5

10
−6

10
−4

10
−2

10
0

10
2

10
4

R
el

at
iv

e 
E

rr
or

Frequency (Hz)

ErrCMSχ
ErrCMS

10
11

10
12

10
13

10
14

10
15

85 modes selected out of 238 of (K
11

,M
11

)

Frequency

10
11

10
12

10
13

10
14

10
15

85 modes selected out of 238 of (K
22

,M
22

)

Frequency

CMSχ  

CMSχ 

CMS 

Exact 

CMS 

Exact

Fig. 3. Left: magnitudes (in log of base 10) of the transfer functions (top) and relative errors
(bottom). Right: retained modes of subsystems by CMS and CMSχ

5 Conclusion Remarks

A new coupling matrix-based mode selection criterion for the popular CMS method
is presented in this paper. It is derived based on moment-matching property for the
interface solution. Our work is motivated by the recent work of Givoli et al [1,6], in
which the term “coupling matrix” is coined. Our mode selection criterion is compatible
to the one proposed by Givoli et al, which uses Dirichlet-to-Neumann (DtN) mapping
as an analysis tool. The performance improvement of the new mode selection criterion
is demonstrated by numerical examples.

The coupling matrix-based mode selection costs more than the standard one, since
some extra eigenpairs of the subsystems are typically required. If the sizes of subsystems
are moderate, the extra cost may not be significant measured by the CPU time. Multilevel
substructuring with an optimal mode selection is a subject of future study. It is worth to
note that modal reduction methods as discussed in this paper are generally less accurate
and efficient than Krylov subspace-based reduction methods. A Krylov subspace-based
substructuring method is in progress.
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