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1. DESCRIPTION

The program described in this article is designed primarily to solve
eigenvalue problems involving large, sparse nonsymmetric matrices. The
program calculates a set of the eigenvalues of largest absolute magnitude of
the matrix in question. In addition it calculates an orthonormal basis for
the invariant subspace spanned by eigenvectors and principal vectors
corresponding to the set of eigenvalues. No explicit representation of the
matrix is required; instead the user furnishes a subroutine to calculate the
product of the matrix with vectors.

Since the programs do not produce a set of eigenvectors corresponding to
the eigenvalues computed, it is appropriate to begin with a mathematical
description of what is actually computed and how the user may obtain
eigenvectors from the output if they are required. Let A be a matrix of
order n with eigenvalues l1, l2, . . . , ln ordered so that

?l1? $ ?l2? $ . . . $ ?ln?.

An invariant subspace of A is any subspace 4 for which

x { 4 f Ax { 4,

i.e., the subspace is transformed into itself by the matrix A.
If 4 is an invariant subspace of A and the columns of

Q 5 ~q1, q2, . . . , qm! form a basis for 4, then Aqi { 4, and hence Aqi

can be expressed as a linear combination of the columns of Q, i.e., there is
an m-vector ti such that Aqi 5 Qti. Setting

T 5 ~t1, t2, . . . , tm!,

we have the relation

AQ 5 QT. (1)

In fact the matrix T is just the representation of the matrix A in the
subspace 4 with respect to the basis Q. If x is an eigenvector of T
corresponding to the eigenvalue l, then it follows from (1) and the relation
Tx 5 lx that

A~Qx! 5 l~Qx!, (2)

so that Qx is an eigenvector of A corresponding to the eigenvalue l. Thus
the eigenvalues of T are also eigenvalues of A. Conversely, any eigenvalue
of A whose eigenvector lies in 4 is also an eigenvalue of T. Consequently,
there is a one-one correspondence of eigenvectors of T and eigenvectors of A
that lie in 4.
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If ?l i? . ?l i11?, then there is a unique dominant invariant subspace 4 i

corresponding to l1, l2, . . . , l i. When 4 i and 4 i11 exist, 4 i , 4 i11.
SRRIT computes a nested sequence of orthonormal bases of
41, 42, . . . , 4m. Specifically, if all goes well, the subroutine produces a
matrix Q with orthonormal columns having the property that if ?l i?
. ?l i11?, then q1, q2, . . . , qi span 4 i.

The case where l i21 and l i are a complex conjugate pair, and hence
?l i21? 5 ?l i?, is treated as follows. The matrix Q is calculated so that the
matrix T in (1) is quasi-triangular, i.e., T is block triangular with 1 3 1
and 2 3 2 blocks on its diagonal. The 1 3 1 blocks of T contain the real
eigenvalues of A and the 2 3 2 blocks contain conjugate pairs of complex
eigenvalues. This arrangement enables us to work entirely with real
numbers, even when some of the eigenvalues of T are complex. The
existence of such a decomposition is a consequence of Schur’s theorem
[Stewart 1973].

The eigenvalues of the matrix T computed by the program appear in
descending order of magnitude along its diagonal. For fixed i, let Qi

5 ~q1, q2, . . . , qi! and let Ti be the leading principal submatrix of T of
order i. Then if the ith diagonal entry of T does not begin a 2 3 2 block, we
have

AQi 5 QiTi.

Thus the first i columns of Q span the invariant subspace corresponding to
the first i eigenvalues of T. When ?l i? . ?l i11? this is the unique dominant
invariant subspace 4 i. When ?l i? 5 ?l i11? the columns of Qi span a
dominant invariant subspace; but it is not unique, since there is no telling
which comes first, l i or l i11.

Any manipulations of A within the subspace 4 corresponding to Q can be
accomplished by manipulating the matrix T. For example,

AkQ 5 QTk,

so that if f~A! is any function defined by a power series, we have

f~A!Q 5 Qf~T!.

If the spectrum of A that is not associated with Q is negligible, consider-
able work can be saved by working with the generally much smaller matrix
T in the coordinate system defined by Q. If explicit eigenvectors are
desired, they may be obtained by evaluating the eigenvectors xi of T and
forming Qxi. The program STREVCin LAPACK [Anderson et al. 1995] will
evaluate the eigenvectors of a quasi-triangular matrix.

496 • Z. Bai and G. W. Stewart

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.



2. USAGE

SRRIT is a package in ANSI Fortran 77 to calculate the basis for 4m

described in Section 1. All subroutines in SRRIT are provided in both single
and double precision versions of real data. The single precision version of
the main subroutine of SRRIT is called SRRIT and the double precision is
DSRRIT. The calling sequence of DSRRIT matches SRRIT. Specifically, the
calling sequence for SRRIT is

CALL SRRIT (N, NV, M, MAXIT, ISTART, Q, LDQ, AQ, LDA, T,
LDT, WR, WI, RSD, ITRSD, IWORK, WORK, LWORK,
INFO, EPS, ATQ)

The complete descriptions of the arguments are documented in the
program. The user can specify the number NV of desired eigenvalues, the
number Mof vectors in the simultaneous iteration, and the tolerance value
EPS for the convergence test. SRRIT requires a minimum of 2M integer
array workspace and M2 1 5Mreal array workspace. On the return, if INFO
is set to

0: successful exit or

–k: if the kth argument had an illegal value or

1: Reorthogonalization fails (see subroutine ORTH) or

2: Schur-Rayleigh-Ritz step fails (see subroutine SRRSTP) or

3: The representation matrix T with respect to the base Q is singular
(see subroutine COND) or

4: SRRIT method fails to converge after MAXIT number of iterations.

The user is required to furnish a subroutine to calculate the product AQ.
The calling sequence for this subroutine is

CALL ATQ(N, L, M, Q, LDQ, AQ, LDA)

with

N (input) INTEGER
The order of the matrix A.

L, M (input) INTEGER
The numbers of the first and the last column of Q to multiply by the
matrix A.

Q (input) REAL array, dimension (LDQ, M)
Contains the matrix Q.

AQ (output) REAL array, dimension (LDQ, M)
On return, columns L through M of AQ contain the product of the
matrix A with columns L through Mof the matrix Q.
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A call to ATQcauses the iteration counter to be increased by one, so that
the parameter MAXIT is effectively a limit on the number of calls to ATQ.1

The convergence criterion is described in detail in Sections 3 and 4.
Essentially the matrices Q and T calculated by the program will satisfy

~A 1 E!QNV 5 QNVTNV, (3)

where NV (on return) is the number of columns that have converged and E
is of order EPS/ iAi. From this it can be seen that the well-conditioned
eigenvalues of A should have approximately –log EPS correct decimal
digits.

The rate of convergence of the ith column of Q depends on the ratio
?lM11/l i?. For this reason it may be desirable to take the number of columns
M of Q to be greater than the number of columns NV that one desires to
compute. For example, if the eigenvalues A are 1.0, 0.9, 0.5, . . . , it will
pay to take M5 2 or 3, even if only the eigenvector corresponding to 1.0 is
desired.

Since SRRIT is designed primarily to calculate the dominant eigenvalues
of a large matrix, no provisions have been made to handle zero eigenvalues.
In particular, zero eigenvalues can cause the program to stop in the
auxiliary subroutine ORTH.

SRRIT requires a number of auxiliary subroutines which are described in
Section 4. It also requires the BLAS and LAPACK subroutines. Section 6
contains a list of all auxiliary subroutines.

SRRIT can be used as a black box, in which case the first NV vectors it
returns will satisfy (3). (But note that if the algorithm fails to converge
completely, on return NV will be less than the number of vectors originally
requested.) This packaging of the algorithm has involved a number of ad
hoc decisions. Although the authors have attempted to make such decisions
in a reasonable manner, it is too much to expect that the program will
perform efficiently on all distributions of eigenvalues. Consequently the
program has been written in such a way that it can be easily modified by
someone who is familiar with its details. The purpose of the next two
sections is to provide the interested user with these details.

3. METHOD

The Schur vectors Q of A are computed by a variant of simultaneous
iteration, which is a generalization of the power method for finding the
dominant eigenvector of a matrix. The method has an extensive literature
[Bauer et al. 1957; Clint and Jennings 1970; Jennings and Stewart 1971;
Rutishauser 1970; Stewart 1969]. Rutishauser has published a program for
symmetric matrices, from which many of the features in SRRIT have been

1Our conventions differ from the “common” conventions for sparse matrix-vector products. The
subroutine ATQ gives the user the chance to calculate AQ with only one pass over the data
structure defining A, with a corresponding saving of work.
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drawn [Rutishauser 1969]. The present variant of the simultaneous itera-
tion method has been analyzed in Stewart [1976a]. An earlier version
appeared in Stewart [1978]. The other existing software implementing the
method are LOPSI (ACM Algorithm 570, fully available in the Collected
Algorithms from ACM (CALGO)) [Stewart and Jennings 1981], which is
based on the work of Clint and Jennings [1970] and Jennings and Stewart
[1971], and EB12 in the Harwell Subroutine Library [Duff and Scott 1993],
which is analyzed in Saad [1984]. LOPSI computes eigenvectors directly,
which can lead to numerical difficulties when the eigensystem is ill
conditioned. EB12, like SRRIT, is based on the Schur decomposition, and in
addition has a Chebyshev acceleration option. SRRIT has the advantages
that it was designed explicitly with customization in mind and it is
nonproprietary.

The iteration for computing Q may be described briefly as follows. Start
with an n 3 m matrix Q0 having orthonormal columns. Given Qm, form
Qm11 according to the formula

Qm11 5 ~AQm!Rm11
21 ,

where Rm11 is either an identity matrix or an upper triangular matrix
chosen to make the columns of Qm11 orthonormal (just how often such an
orthogonalization should be performed will be discussed below). If ?lm?
. ?lm11?, then under mild restrictions on Q0 the column space of Qm

approaches 4m.2

The individual columns of Qm will in general approach the corresponding
columns of the matrix Q defined in Section 1; however the error in the ith
column is proportional to max$?l i/l i21?

m, ?l i11/l i?
m%, and convergence may

be intolerably slow. The process may be accelerated by the occasional
application of a “Schur-Rayleigh-Ritz step” (from which SRRIT derives its
name), which will now be described. Start with Qm just after an orthogonal-
ization step, so that Qm

TQm 5 I. Form the matrix

Bm 5 Qm
TAQm,

and reduce it to ordered quasi-triangular form Tm by an orthogonal similar-
ity transformation Zm:

Zm
TBmZm 5 Tm (4)

Finally overwrite Qm with QmZm.
The matrices Qm formed in this way have the following property. If

?l i21? . ?l i? . ?l i11?, then under mild restrictions on Q0 the ith column

2For the details see Stewart [1976a]. In the presence of rounding error any power method can
fail if the eigensystem is sufficiently ill conditioned. This problem has been analyzed by
Wilkinson [1965, p. 573].
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qi
~m! of Qm will converge approximately linearly to the ith column qi of Q

with ratio ?lm11/l i?. Thus not only is the convergence accelerated, but the
first columns of Qm tend to converge faster than the later ones.

A number of practical questions remain to be answered.

(1) How should one determine when a column of Qm has converged?

(2) Can one take advantage of the early convergence of some of the columns
of Qm to save computations?

(3) How often should one orthogonalize the columns of the Qm?

(4) How often should one perform the SRR step described above?

Here we merely outline the answers to these questions. The details are
given in Section 4.

3.1 Convergence

If ?l i21? 5 ?l i? or ?l i? 5 ?l i11?, the ith column of Qm is not uniquely
determined; and when ?l i? is close to ?l i11? or ?l i21?, the ith column cannot
be computed accurately. Thus a convergence criterion based on the ith
column qi

~m! of Qm becoming stationary is likely to fail when A has
equimodular eigenvalues. Accordingly we have adopted a different criterion
which amounts to requiring that the relation (1) almost be satisfied.
Specifically, let ti

~m! denote the ith column of Tm in (4). Then the ith column
of the Qm produced by the SRR step is said to have converged if the
two-norm of the residual vector

ri
~m! 5 Aqi

~m! 2 Qmti
~m! (5)

is less than ?u i?* EPS, where u i is the ith eigenvalue of Tm, and EPS is a
prescribed tolerance. If this criterion is satisfied for each column of Qm,
then the residual matrix

Rm 5 AQm 2 QmTm

will be small. This in turn implies that there is a small matrix Em 5
2RmQm

T such that

~A 1 Em!Qm 5 QmTm,

so that Qm and Tm solve the desired eigenproblem for the slightly perturbed
matrix A 1 Em, provided only that some small eigenvalue of A 1 Em has
not by happenstance been included in Tm. To avoid this possibility we group
nearly equimodular eigenvalues together and require that the average of
their absolute values settle down before testing their residuals. In addition
a group of columns is tested only if the preceding columns have all
converged.
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3.2 Deflation

The theory of the iteration indicates that the initial columns of the Qm will
converge before the later ones. When this happens considerable computa-
tion can be saved by freezing these columns. This saves multiplying the
frozen columns by A, orthogonalizing them when Rm11 Þ I, and work in the
SRR step.

3.3 Orthogonalization

The orthogonalization of the columns of AQm is a moderately expensive
procedure, which is to be put off as long as possible. The danger in
postponing orthogonalization is that cancellation of significant figures can
occur when AQm is finally orthogonalized, as it must be just before an SRR
step. In Stewart [1976a] it is shown that one can expect no more than

t 5 j log10 k~T! (6)

decimal digits to cancel after j iterations without orthogonalization (here
k~T! 5 iTiiT21i is the condition number of T with respect to inversion).
The relation (6) can be used to determine the number of iterations between
orthogonalizations.

3.4 SRR Steps

The SRR step does not actually accelerate the convergence of the Qm; rather
it unscrambles approximations to the columns of 4m that are already
present in the column space of Qm and orders them properly. Therefore, the
only time an SRR step needs to be performed is when it is expected that a
column has converged. Since it is known from the theory of the iteration
that the residual in (5) tends almost linearly to zero, the iteration at which
they will satisfy the convergence criterion can be predicted from their
values at two iterations. As with convergence, this prediction is done in
groups corresponding to nearly equimodular eigenvalues.

4. DETAILS OF SRRIT

In designing SRRIT, we have tried to make it easily modifiable. This has
been done in two ways. First, we have defined a number of important
control parameters and given them values at the beginning of the program.
The knowledgeable user may alter these values to improve the efficiency of
the program in solving particular problems. Second, a number of important
tasks have been isolated in independent subroutines. This should make it
easy to modify the actual structure of SRRIT, should the user decide that
such radical measures are necessary. In this section we describe SRRIT in
some detail and specify the action of control parameters and the supporting
subroutines.

Here follows a list of the control parameters with a brief description of
their functions and their default initial values.
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INIT The number of initial iterations to be performed at the outset (5).

STPFAC A constant used to determine the maximum number of iterations
before the next SRR step (1.5).

ALPHA A parameter used in predicting when the next residual will
converge (1.0).

BETA Another parameter used in predicting when the next residual will
converge (1.1).

GRPTOL A tolerance for grouping equimodular eigenvalues (1023).

CNVTOL A convergence criterion for the average value of a cluster of
equimodular eigenvalues (1024).

ORTTOL The number of decimal digits whose loss can be tolerated in
orthogonalization steps (2).

We now give an informal description of SRRIT as it appears in the
algorithm section. The variable L points to the first column of Q that has
not converged. The variable IT is the iteration counter. The variable
NXTSRRis the iteration at which the next SRR step is to take place, and the
variable IDORT is the interval between orthogonalizations.

SRRIT:
1. initialize control parameters
2. initialize

1. IT 5 0;
2. L 5 1;
3. initialize Q as described by ISTART

3. SRR: loop
1. perform an SRR step
2. compute residuals RSD
3. check convergence, resetting L if necessary
4. if L . NV or IT $ MAXIT then leave SRR
5. calculate NXTSRR
6. calculate IDORT and NXTORT
7. Q 5 AQ; IT 5 IT 1 1
8. ORTH: loop until IT 5 NXTSRR

1. POWER: loop until IT 5 NXTORT

1. AQ5 AQ
2. Q 5 AQ
3. IT 5 IT 11

end POWER
2. orthogonalize Q
3. NXTORT5 min(NXTSRR, IT 1IDORT)
end ORTH

end SRR
4. NV 5 L – 1

end SRRIT
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The details of this outline are as follows:

—Line 2.3: If ISTART # 0, then Q is initialized using the random-number
generation function SLARND, then orthonormalized by ORTH. If ISTART
5 1, then Q is supplied by the user and is orthogonalized by calling

subroutine ORTH. If ISTART . 1, the initial orthonomalized Q is supplied
by the user.

—Line 3: This is the main loop of the program. Each time, an SRR step is
performed and convergence is tested.

—Line 3.1: The SRR step is performed by the subroutine SRRSTP, which
performs an SRR step on columns L through Mof Q. After forming AQ and
T 5 QT~AQ!, SRRSTPcalls BLAS 2 LAPACK routine SGEHD2to reduce T
to upper Hessenberg form, then the subroutine SLAQR3is called to reduce
T to ordered quasi-triangular form. The triangularizing transformation U
is postmultiplied into Q and AQ. The new Q and AQ, as well as T and its
eigenvalues are returned.

—Line 3.2: The residuals RSDare computed by the subroutine RESID. RSD
contains the two-norm of the residuals (5) for columns L through Mof Q.
For a complex pair of eigenvalues, the average of the norms of their two
residuals is returned.

—Line 3.3: The algorithm for determining convergence is the following:
starting with the Lth eigenvalue, the subroutine GROUPis called to
determine a group of nearly equimodular eigenvalues, as defined by the
parameter GRPTOL. The same is done for the old eigenvalues from the
last SRR step. If the groups have the same number of eigenvalues and
the average value of the eigenvalues has settled down (as specified by
CNVTOL), then the residuals are averaged and tested against EPS. If the
test is successful, L is increased by the number in the group. Otherwise
control is passed to statement 3.4.

—Line 3.4: Here two conditions for stopping SRRIT are tested.

—Line 3.5: The iteration at which the next SRR-step is to take place
(NXTSRR) is determined as follows. NXTSRRis tentatively set equal to
STPFAC*IT . If the number of eigenvalues in the new and old groups
corresponding to the next set of unconverged eigenvalues is the same, the
average of the norms of the residuals of each group ARSDis calculated. If
ARSD is greater than or equal to old ARSD (denoted as OARSD), then
NXTSRR5 STPFAC*IT . Otherwise

NXTSRR5 min~IT 1 ALPHA 1 BETA*IDSRR, STPFAC*IT !

where
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IDSRR 5 ~ITORSD 2 ITRSD!
log~ARSD/EPS!

log~ARSD/OARSD!

where ITRSD and ITORSD are the iteration numbers where the new RSD
and old RSDare computed. Finally NXTSRRis constrained to be less than
or equal to MAXIT.

—Line 3.6: The interval IDORT between orthogonalizations is computed
from (6):

IDORT 5 max~1, ORTTOL/ log10 k~T!!,

where the condition number k~T! is calculated by the external function
COND. The next orthogonalization occurs at

NXTORT5 min~IT 1 IDORT, NXTSRR!.

—Line 3.7: Since the SRR step computes a product AQ, the iteration count
must be increased and AQplaced back in Q.

—Line 3.8: Loop on orthogonalizations.

—Line 3.8.1: Loop overwriting Q with the product AQ.

—Line 3.8.2: The subroutine ORTHis called to orthonormalize columns L
through Mof the array Qwith respect to columns 1 through M. Columns 1
through L–1 are assumed to be orthonormalized. The method used is the
modified Gram-Schmidt method with reorthogonalization. No more than
MAXTRYreorthogonalizations are performed (currently, MAXTRYis set to
5), after which the routine executes a stop. The routine will also stop if
any column becomes zero.

—Line 4: Set NV to the number of vectors that have actually converged and
return.

5. NUMERICAL EXPERIMENTS

The program described above has been tested on a number of problems. In
this section, we give three examples that illustrate the flexibility of the
method and its ability to deal with equimodular or clustered eigenvalues.
All the experiments have been run on a SUN Sparc workstation. We used a
single-precision (mantissa of 32 bits) version of SRRIT for the presentation
of numerical results.

Example. The first example is a random walk on an ~n 1 1! 3 ~n
1 1! triangular grid, which is illustrated below for n 5 6.
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6 ●

5 ● ●

4 ● ● ●

3 ● ● ● ●

2 ● ● ● ● ●

1 ● ● ● ● ● ●

0 ● ● ● ● ● ● ●

j/i 0 1 2 3 4 5 6

The points of the grid are labeled ~j, i!, ~i 5 0, . . . , n, j 5 0, . . . , n
2 i!. From the point ~j, i!, a transition may take place to one of the four
adjacent points ~j 1 1, i!, ~j, i 1 1!, ~j 2 1, i!, ~j, i 2 1!. The probabil-
ity of jumping to either of the nodes ~j 2 1, i! or ~j, i 2 1! is

pd~j, i! 5
j 1 i

n
(7)

with the probability being split equally between the two nodes when both
nodes are on the grid. The probability of jumping to either of the nodes ~j
1 1, i! or ~j, i 1 1! is

pu~j, i! 5 1 2 pd~j, i!. (8)

with the probability again being split when both nodes are on the grid.
If the ~n 1 1!~n 1 2!/2 nodes ~j, i! are numbered 1,2, . . . , ~n

1 1! ~n 1 2!/2 in some fashion, then the random walk can be expressed as
a finite Markov chain whose transition matrix A consisting of the probabil-
ities akl of jumping from node l to node k (A is actually the transpose of the
usual transition matrix; see Feller [1961]). To calculate the ith element of
the vector Aq one need only regard the components of q as the average
number of individuals at the nodes of the grid and use the probabilities (7)
and (8) to calculate how many individuals will be at node i after the next
transition.

We are interested in the steady state probabilities of the chain, which is
ordinarily the appropriately scaled eigenvector corresponding to the eigen-
value unity. However, if we number the diagonals on the grid that are
parallel to the hypotenuse by 0,1,2, . . . , n, then an individual on an even
diagonal can only jump to an odd diagonal, and vice versa. This means that
the chain is cyclic with period two, and that A has an eigenvalue of –1 as
well as 1.

To run the problem on SRRIT, the nodes of the grid were matched with
the components of the vector q in the order ~0,0!, ~1,0!, . . . , ~n, 0!,
~0,1!, ~1,1!, . . . , ~n 2 1,1!, ~0,2!, . . . . Note that the matrix A is
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never explicitly used; all computations are done in terms of the transition
probabilities (7) and (8).

Table I. Numerical Results of the Random Walk Example

IT 5 0

WR 5 9.547E-01 8.114E-02 -4.440E-02 3.793E-02 -1.019E-02 -1.019E-02
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 6.322E-03 -6.322E-03
RSD 5 2.534E-01 5.941E-01 5.856E-01 6.041E-01 6.015E-01 6.015E-01
NGRP 5 1
CTR 5 9.547E-01 AE 5 9.547E-01 ARSD 5 2.534E-01
NXTSRR 5 5 IDORT 5 1

IT 5 5
WR 5 9.969E-01 3.230E-01 3.230E-01 -2.954E-01 -1.914E-01 2.835E-02
WI 5 0.000E100 5.205E-02 -5.205E-02 0.000E100 0.000E100 0.000E100
RSD 5 8.032E-02 8.593E-01 8.593E-01 8.675E-01 8.878E-01 9.221E-01
NGRP 5 1
CTR 5 9.969E-01 AE 5 9.969E-01 ARSD 5 8.032E-02
NXTSRR 5 7 IDORT 5 1

IT 5 7
WR 5 9.985E-01 -4.240E-01 3.563E-01 -2.810E-01 2.145E-01 6.637E-02
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 6.545E-02 8.244E-01 9.003E-01 8.937E-01 8.756E-01 8.881E-01
NGRP 5 1
CTR 5 9.985E-01 AE 5 9.985E-01 ARSD 5 6.545E-02
NXTSRR 5 10 IDORT 5 1

IT 5 10
WR 5 9.983E-01 4.873E-01 -4.041E-01 -3.772E-01 3.235E-01 1.557E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 6.004E-02 8.040E-01 8.982E-01 8.660E-01 9.193E-01 9.263E-01
NGRP 5 1
CTR 5 9.983E-01 AE 5 9.983E-01 ARSD 5 6.004E-02
NXTSRR 5 15 IDORT 5 2

IT 5 15
WR 5 9.973E-01 -6.102E-01 5.842E-01 4.607E-01 2.890E-01 -2.379E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 4.633E-02 7.755E-01 7.253E-01 8.774E-01 8.990E-01 9.637E-01
NGRP 5 1
CTR 5 9.973E-01 AE 5 9.973E-01 ARSD 5 4.633E-02
NXTSRR 5 22 IDORT 5 2

IT 5 22
WR 5 9.981E-01 -8.038E-01 7.285E-01 6.324E-01 3.781E-01 -3.540E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 4.356E-02 5.885E-01 6.990E-01 7.443E-01 9.302E-01 8.976E-01
NGRP 5 1
CTR 5 9.981E-01 AE 5 9.981E-01 ARSD 5 4.356E-02
NXTSRR 5 33 IDORT 5 2

IT 5 33
WR 5 1.000E100 -9.398E-01 9.217E-01 8.784E-01 -5.927E-01 1.048E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 2.765E-02 3.097E-01 3.701E-01 4.638E-01 7.542E-01 9.283E-01
NGRP 5 1
CTR 5 1.000E100 AE 5 1.000E100 ARSD 5 2.765E-02
NXTSRR 5 49 IDORT 5 1
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The problem was run for a 30 3 30 grid which means N 5 496. We took
M5 6, NV 5 4, and EPS 5 1025. The results for each iteration in which an
SRR step was performed are summarized in Table I. The variables WRand
WI are the real and imaginary parts of the eigenvalues. RSDis the norm of
the corresponding residual. CTR is the center of the current convergence
cluster. AE is the average value of the eigenvalues in the cluster. ARSDis

Table I. Continued

IT 5 49

WR 5 1.000E100 -9.870E-01 9.717E-01 9.000E-01 -7.130E-01 -4.267E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 6.739E-03 1.101E-01 1.273E-01 4.398E-01 5.964E-01 8.724E-01
NGRP 5 1
CTR 5 1.000E100 AE 1 5 1.000E100 ARSD 5 6.739E-03
NXTSRR 5 73 IDORT 5 2

IT 5 73
WR 5 1.000E100 -9.917E-01 9.867E-01 -9.631E-01 9.392E-01 -8.748E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 2.695E-03 2.716E-02 3.938E-02 2.733E-01 2.978E-01 4.538E-01
NGRP 5 1
CTR 5 1.000E100 AE 5 1.000E100 ARSD 5 2.695E-03
NXTSRR 5 109 IDORT 5 2

IT 5 109
WR 5 1.000E100 -9.974E-01 -9.974E-01 9.924E-01 9.712E-01 -9.691E-01
WI 5 0.000E100 8.061E-04 -8.061E-04 0.000E100 0.000E100 0.000E100
RSD 5 1.207E-03 3.388E-02 3.388E-02 1.288E-02 1.060E-01 1.298E-01
NGRP 5 1
CTR 5 1.000E100 AE 5 1.000E100 ARSD 5 1.207E-03
NXTSRR 5 163 IDORT 5 2

IT 5 163
WR 5 1.000E100 -1.000E100 -9.938E-01 9.934E-01 -9.753E-01 9.752E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 9.870E-05 3.319E-03 2.206E-03 1.268E-03 2.643E-02 2.649E-02
NGRP 5 1
CTR 5 1.000E100 AE 5 8.017E-06 ARSD 5 2.348E-03
NXTSRR 5 244 IDORT 5 2

IT 5 244
WR 5 1.000E100 -1.000E100 -9.935E-01 9.935E-01 -9.755E-01 9.755E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 1.738E-06 5.403E-05 6.572E-05 3.626E-05 3.097E-03 3.296E-03
NGRP 5 2
CTR 5 1.000E100 AE 5 5.960E-08 ARSD 5 3.823E-05
NXTSRR 5 274 IDORT 5 2

IT 5 274
WR 5 1.000E100 -1.000E100 9.935E-01 -9.935E-01 -9.755E-01 9.755E-01
WI 5 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100 0.000E100
RSD 5 2.440E-06 1.188E-05 9.631E-06 1.754E-05 1.422E-03 1.522E-03
NGRP 5 2
CTR 5 1.000E100 AE 5 1.371E-06 ARSD 5 8.576E-06
NGRP 5 2
CTR 5 9.935E-01 AE 5 3.576E-07 ARSD 5 1.415E-05
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the average of the residuals ARSD. NXTSRRis the number of iterations to the
next SRR step and IDORT is the number to the next orthogonalization.

The course of the iteration is unexceptionable. The program doubles the
interval between SRR steps until it can predict convergence of the first
cluster corresponding to the eigenvalues 61. The first prediction falls
slightly short, but the second gets it. The program terminates on the
convergence of the second group of two eigenvalues.

To compare the actual costs, runs were made with m 5 2,4,6,8. Table II
shows the number of iterations for the convergence of the first group of two
eigenvalues.

As predicted by the convergence theory, the number of iterations de-
creases as m increases. However, as m increases we must also multiply
more columns of Q by A, and for this particular problem the number of
matrix-vector multiplications m 3 it is probably a better measure of the
amount of work involved. From the table it is seen that this measure is also
decreasing, although less dramatically than the number of iterations. This
of course does not include the overhead generated by SRRIT itself, which
increases with m and may be considerable.

Example. This example shows how SRRIT can be used in conjunction
with the inverse power method to find the smallest eigenvalues of a matrix.
Consider the boundary value problem

y99 1 m2y 5 0,

y~0! 5 0, y9~0! 1 gy9~1! 5 0, 0 , g , 1. (9)

The eigenvalues of this problem are easily seen to be given by m 5
icosh21~2g21!, which are complex. Table III lists the reciprocals of the
first eight eigenvalues for g 5 0.01.

The solution of (9) can be approximated by finite-difference techniques as
follows. Let yj denote the approximate solution at the point xj 5 j/~n 1
1! ~j 5 0,1, . . . , n 1 1!. Replacing the derivatives in (9) with three
point difference operators, we obtain the following ~n 1 1!-by-~n 1 1!
generalized matrix eigenvalue problem for y 5 ~y1, y2, . . . , yn11!

T:

Ay 1 m2By 5 0,

Table II. Number of Iterations

m it m 3 it

2 1660 3320
4 600 2400
6 320 1920
8 183 1464
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where

A 5 1
22 1
1 22 1

1 22 1
·· ·

· · ·
· · ·

· · ·
· · ·

· · ·
1 22 1

1 22 1
4 21 g 24g 3g

2
and B 5 h2diag~1,1, . . . , 1,0!. We may recast this problem in the form

Cy 5 2
1

m2
y,

where C 5 A21B.
To apply SRRIT to this problem, we must be able to compute z 5 Cq for

any vector q. This can be done by solving the linear system

Az 5 Bq,

which is done by sparse Gaussian elimination.
The problem was run for n 5 301 with M5 6, NV 5 4, and EPS

5 1025. The results are shown in Table IV.
Given the extremely favorable ratios of the eigenvalues in Table IV—the

absolute value of the ratio of the seventh to the first is about 0.075—it is
not surprising that the iteration converges quickly. Indeed the only thing
preventing convergence at the fifth iteration is that the first eigenvalue
changed from real in the first iteration to complex in the fifth. Thus the
problem is hardly a fair test of the SRRIT machinery. However, it is an
excellent example of how easy it is to apply SRRIT to a problem with
complex eigenvalues. It also disposes of the notion that large eigenvalue
problems must always require a large amount of work to solve: the factor
that limits the size is the storage available, not the time required to
compute Ax. The next example from partial differential equations demon-
strates this point again.

Table III. The Reciprocals of Five Eigenvalues of Largest Absolute Magnitude

m22 ?m22?

-0.012644 60.02313i 0.02636
0.004446 60.00739i 0.00854
0.002895 60.00220i 0.00364
0.001274 60.00089i 0.00195
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Example. Let us consider the following model convection-diffusion prob-
lem:

2Du 1 2p1ux 1 2p2uy 2 p3u 5 f~x, y! in V

u 5 g~x, y! on ­V

where V is the unit square $~x, y! { R2, 0 # x,y # 1%, and p1, p2, and p3

are positive constants. f and g are given functions. After discretizing the
equation by the standard five-point centered differences on a uniform n
3 n grid, we get a nonsymmetric n2 3 n2 block tridiagonal matrix

Table IV. Numerical Results of the Boundary Value Problem

IT 5 0

WR 5 -1.528E-01 3.013E-04 3.013E-04 1.455E-04 1.004E-04 2.828E-05
WI 5 0.000E100 1.064E-04 -1.064E-04 0.000E100 0.000E100 0.000E100
RSD 5 1.434E-01 1.094E-02 1.094E-02 2.704E-03 6.453E-03 6.423E-03
NGRP 5 1
CTR 5 1.528E-01 AE 5 -1.528E-01 ARSD 5 1.434E-01
NXTSRR 5 5 IDORT 5 1

IT 5 5
WR 5 -1.264E-02 -1.264E-02 4.429E-03 4.429E-03 2.542E-03 2.542E-03
WI 5 2.312E-02 -2.312E-02 7.288E-03 -7.288E-03 2.575E-03 -2.575E-03
RSD 5 1.115E-07 1.115E-07 2.912E-05 2.912E-05 6.126E-04 6.126E-04
NGRP 5 2
CTR 5 2.636E-02 AE 5 -1.264E-02 ARSD 5 1.115E-07
NXTSRR 5 7 IDORT 5 1

IT 5 7
WR 5 -1.264E-02 -1.264E-02 4.446E-03 4.446E-03 2.904E-03 2.904E-03
WI 5 2.312E-02 -2.312E-02 7.309E-03 -7.309E-03 2.316E-03 -2.316E-03
RSD 5 2.000E-08 2.000E-08 1.994E-06 1.994E-06 2.358E-04 2.358E-04
NGRP 5 2
CTR 5 2.636E-02 AE 5 -1.264E-02 ARSD 5 2.000E-08
NGRP 5 2
CTR 5 8.555E-03 AE 5 4.446E-03 ARSD 5 1.994E-06
NXTSRR 5 8 IDORT 5 1

IT 5 8
WR 5 -1.264E-02 -1.264E-02 4.447E-03 4.447E-03 2.888E-03 2.888E-03
WI 5 2.312E-02 -2.312E-02 7.308E-03 -7.308E-03 2.254E-03 -2.254E-03
RSD 5 2.000E-08 2.000E-08 4.426E-07 4.426E-07 1.292E-04 1.292E-04
NGRP 5 2
CTR 5 8.555E-03 AE 5 4.447E-03 ARSD 5 4.426E-07
NXTSRR 5 9 IDORT 5 1

IT 5 9
WR 5 -1.264E-02 -1.264E-02 4.447E-03 4.447E-03 2.886E-03 2.886E-03
WI 5 2.312E-02 -2.312E-02 7.309E-03 -7.309E-03 2.242E-03 -2.242E-03
RSD 5 2.000E-08 2.000E-08 8.069E-08 8.069E-08 6.098E-05 6.098E-05
NGRP 5 2
CTR 5 8.555E-03 AE 5 4.447E-03 ARSD 5 8.069E-08
NGRP 5 2
CTR 5 3.654E-03 AE 5 2.886E-03 ARSD 5 6.098E-05
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A 5 1
B ~b 2 1!I

~2b 1 1! B ~b 2 1!I
· · ·

· · ·
· · ·

· · ·
· · · ~b 2 1!I

~2b 1 1!I B
2

with

B 5 1
4 2 s g 2 1
2g 2 1 4 2 s g 2 1

·· ·
· · ·

· · ·
· · ·

· · · g 2 1
2g 2 1 4 2 s

2,

where b 5 p1h, g 5 p2h, s 5 p3h2, and h 5 1/~n 1 1!. The eigenvalues
of matrix A are given by

lkl 5 4 2 s 1 2~1 2 b2!1/ 2cos
kp

n 1 1
1 2~1 2 g2!1/ 2cos

lp

n 1 1
, 1 # k,l # n.

The following lists the first 10 dominant eigenvalues (in seven decimal
digits) for p1 5 p2 5 p3 5 1:

7.977818, 7.949033, 7.949033, 7.920248, 7.901366,
7.901366, 7.872581, 7.872581, 7.835278, 7.835278.

The algorithm was run on the 961 3 961 matrix A obtained by taking a
31 3 31 mesh grid. We are interested in the first dominant eigenvalue.
The results obtained are listed in Table V for different values of m (EPS
5 1024). The eigenvalues in this problem are tightly clustered, and in-
creasing the value of m significantly decreases the number of iterations.

6. LIST OF SUBROUTINES CALLED BY SRRIT

Program SRRIT comes with the following subroutines:

SRRSTP Performs an Schur-Rayleigh-Ritz iteration step.

ORTH Orthonormalizes columns of a matrix.

Table V. Number of Iterations

m lm11/l1 it m 3 it

2 0.9964 1280 2560
4 0.9904 593 2372
6 0.9868 320 1920
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RESID Computes the column norms of residual vectors R 5 AQ 2 QT.

GROUP Finds a cluster of complex numbers.

SLAQR3 Computes the Schur factorization of a real upper Hessenberg
matrix. The blocks of quasi-triangular forms are ordered so that
the eigenvalues appear in descending order of absolute value
along the diagonal. The decomposition produced by SLAQR3dif-
fers from the one produced by EISPACK subroutine HQR[Smith et
al. 1974] or LAPACK subroutine SHSEQRin that the eigenvalues
of the final quasi-triangular matrix are ordered. It is essentially
the same as the program HQR3[Stewart 1976b]. However, instead
of using QR iteration to do the diagonal swapping in HQR3,
SLAQR3uses a direct swapping method [Bai and Demmel 1993].

COND Estimates the l`-norm condition number with respect to inversion
of an upper Hessenberg matrix.

SLARAN Generates a random real number from a uniform (0,1) distribu-
tion.

In addition, the following subroutines from standard BLAS and LAPACK
are also used in SRRIT:

—Subroutines from BLAS

Level 1: ISAMAX, SCOPY, SDOT, SROT, SAXPY, SSCAL, SSWAP,
SNRM2

Level 2: SGEMV, SGER, SSYR, STRMV, STBSV, LSAME
Level 3: SGEMM, STRMM

—Subroutines from LAPACK
SGEHRD, SGEHD2, SLAEXC, SLARFG, SLARF, SLARFX, SLASY2,
SLANV2, SLAPY2, SLARTG, SLANGE, SLANHS, SLASSQ, SLACPY,
SLAMCH, XERBLA, SLABAD, SLASET, SORGHR, SORGQR, SLARFB,
SLAHRD, SLARFT, ILAENV, SORG2R.
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