
1

CHAPTER I

Numerical Methods for Quantum Monte
Carlo Simulations of the Hubbard Model∗

Zhaojun Bai
Department of Computer Science and

Department of Mathematics
University of California
Davis, CA 95616, USA

E-mail: bai@cs.ucdavis.edu

Wenbin Chen
School of Mathematical Sciences

Fudan University
Shanghai 200433, China

E-mail: wbchen@fudan.edu.cn

Richard Scalettar
Department of Physics
University of California
Davis, CA 95616, USA

E-mail: scalettar@physics.ucdavis.edu

Ichitaro Yamazaki
Department of Computer Science

University of California
Davis, CA 95616, USA

E-mail: yamazaki@cs.ucdavis.edu

Abstract

One of the core problems in materials science is how the inter-
actions between electrons in a solid give rise to properties like

∗This work was partially supported by the National Science Foundation under
Grant 0313390, and Department of Energy, Office of Science, SciDAC grant DE-
FC02 06ER25793. Wenbin Chen was also supported in part by the China Basic
Research Program under the grant 2005CB321701.

2 Bai, Chen, Scalettar, Yamazaki

magnetism, superconductivity, and metal-insulator transitions?
Our ability to solve this central question in quantum statistical
mechanics numerically is presently limited to systems of a few
hundred electrons. While simulations at this scale have taught
us a considerable amount about certain classes of materials, they
have very significant limitations, especially for recently discovered
materials which have mesoscopic magnetic and charge order.

In this paper, we begin with an introduction to the Hub-
bard model and quantum Monte Carlo simulations. The Hubbard
model is a simple and effective model that has successfully cap-
tured many of the qualitative features of materials, such as tran-
sition metal monoxides, and high temperature superconductors.
Because of its voluminous contents, we are not be able to cover
all topics in detail; instead we focus on explaining basic ideas,
concepts and methodology of quantum Monte Carlo simulation
and leave various part for further study. Parts of this paper are
our recent work on numerical linear algebra methods for quantum
Monte Carlo simulations.

1 Hubbard model and QMC simulations

The Hubbard model is a fundamental model to study one of the core
problems in materials science: How do the interactions between electrons
in a solid give rise to properties like magnetism, superconductivity, and
metal-insulator transitions? In this lecture, we introduce the Hubbard
model and outline quantum Monte Carlo (QMC) simulations to study
many-electron systems. Subsequent lectures will describe computational
kernels of the QMC simulations.

1.1 Hubbard model

The two-dimensional Hubbard model [8, 9] we shall study is defined by
the Hamiltonian:

H = HK +Hμ +HV , (1.1)

where HK , Hμ and HV stand for kinetic energy, chemical energy and
potential energy, respectively, and are defined as

HK = −t
∑

〈i,j〉,σ
(c†iσcjσ + c†jσciσ),

Hμ = −μ
∑

i

(ni↑ + ni↓)

HV = U
∑

i

(ni↑ − 1
2
)(ni↓ − 1

2
)

and

Numerical Methods for QMC 3

• i and j label the spatial sites of the lattice. 〈i, j〉 represents a
pair of nearest-neighbor sites in the lattice and indicates that the
electrons only hopping to nearest neighboring sites,

• the operators c†iσ and ciσ are the fermion creation and annihila-
tion operators for electrons located on the ith lattice site with z
component of spin-up (σ = ↑) or spin-down (σ = ↓), respectively,

• the operators niσ = c†iσciσ are the number operators which count
the number of electrons of spin σ on site i,

• t is the hopping parameter for the kinetic energy of the electrons,
and is determined by the overlap of atomic wave functions on neigh-
boring sites,

• U is the repulsive Coulomb interaction between electrons on the
same lattice site. The term Uni↑ni↓ represents an energy cost U for
the site i has two electrons and describes a local repulsion between
electrons,

• μ is the chemical potential parameter which controls the electron
numbers (or density).

Note that we consider the case of a half-filled band. Hence the Hamil-
tonian is explicitly written in particle-hole symmetric form.

The expected value of a physical observable O of interest, such as
density-density correlation, spin-spin correlation or magnetic suscepti-
bility, is given by

〈O〉 = Tr(OP), (1.2)

where P is a distribution operator defined as

P =
1
Z e

−βH, (1.3)

and Z is the partition function defined as

Z = Tr(e−βH), (1.4)

and β is proportional to the inverse of the product of the Boltzmann’s
constant kB and the temperature T :

β =
1

kBT
.

β is referred to as an inverse temperature.
“Tr” is a trace over the Hilbert space describing all the possible oc-

cupation states of the lattice:

Tr(e−βH) =
∑

i

〈ψi|e−βH|ψi〉,

4 Bai, Chen, Scalettar, Yamazaki

where {|ψi〉} is an orthonormal basis of the Hilbert space. Note that the
trace does not depend on the choice of the basis. A convenient choice
of the basis is the so-called “occupation number basis (local basis)” as
described below.

In a classical problem where H = E is the energy, a real variable,
then exp(−βE)/Z is the probability, where Z =

∫
e−βE . In quantum

mechanics, as we shall see, we will need to recast the operator exp(−βH)
into a real number. The “path integral representation” of the problem
to do this was introduced by Feynman and Hibbs [3].

Remark 1.1. According to Pauli exclusion principle of electrons, there
are four possible states at every site:

|·〉 no particle,
|↑〉 one spin up particle,
|↓〉 one spin down particle,
|↑↓〉 two particles with different spin directions.

Therefore the dimension of the Hilbert space is 4N , where N is the
number of sites.

The actions of the spin creation operators c†σ on the four states are

|·〉 |↑〉 |↓〉 |↑↓〉
c†↑ |↑〉 0 |↑↓〉 0

c†↓ |↓〉 |↑↓〉 0 0

The actions of the spin annihilation operators cσ are

|·〉 |↑〉 |↓〉 |↑↓〉
c↑ 0 |·〉 0 |↓〉
c↓ 0 0 |·〉 |↑〉

Remark 1.2. The states |·〉 and |↑〉 are the eigen-states of the number
operator n↑ = c†↑c↑:

n↑|·〉 = 0|·〉 = 0, n↑|↑〉 = |↑〉.

When the operator n↑ takes the actions on the states | ↓〉 and | ↑↓〉, we
have

n↑|↓〉 = 0, n↑|↑↓〉 = |↑↓〉.
The states |·〉 and | ↓〉 are the eigen-states of the number operator

n↓ = c†↓c↓:
n↓|·〉 = 0|·〉 = 0, n↓|↓〉 = |↓〉.

Numerical Methods for QMC 5

When the operator n↓ on the state |↑〉 and |↑↓〉, we have

n↓|↑〉 = 0, n↓|↑↓〉 = |↑↓〉.
The operator U(n↑− 1

2)(n↓− 1
2) describes the potential energy of two

electrons with different spin directions at the same site:

U(n↑ − 1
2)(n↓ − 1

2) : |·〉 = +U
4 |·〉, |↑〉 = −U

4 |↑〉,
|↓〉 = −U

4 |↓〉, |↑↓〉 = +U
4 |↑↓〉.

These eigenenergies immediately illustrate a key aspect of the physics of
the Hubbard model: The single occupied states |↑〉 and |↓〉 are lower in
energy by U (and hence more likely to occur). These states are the ones
which have nonzero magnetic moment m2 = (n↑ − n↓)2. One therefore
says that the Hubbard interaction U favors the presence of magnetic
moments. As we shall see, a further question (when t is nonzero) is
whether these moments will order in special patterns from site to site.
Remark 1.3. The creation operators c†iσ and the annihilation operators
ciσ anticommute:

{cjσ, c
†
�σ′} = δj�δσσ′ ,

{c†jσ, c
†
�σ′} = 0,

{cjσ, c�σ′} = 0,

where the anticommutator of two operators a and b is defined by ab+ba,
i.e. {a, b} = ab+ ba, and δj� = 1 if j = �, and otherwise, δj� = 0.

If we choose � = j and σ = σ′ in the second anticommutation relation,
we conclude that (c†jσ)2 = 0. That is, one cannot create two electrons on
the same site with the same spin (Pauli exclusion principle). Thus the
anticommutation relations imply the Pauli principle. If the site or spin
indices are different, the anticommutation relations tell us that exchang-
ing the order of the creation (or destruction) of two electrons introduces
a minus sign. In this way the anticommutation relations also guarantee
that the wave function of the particles being described is antisymmetric,
another attribute of electrons (fermions). Bosonic particles (which have
symmetric wave functions) are described by creation and destruction
operators which commute.
Remark 1.4. When the spin direction σ and the site i are omitted, a
quantization to describe the states is

|0〉 : no particle,
|1〉 : one particle.

The actions of the creation and destruction operators on the states are

c : |0〉 → 0, |1〉 → |0〉,
c† : |0〉 → |1〉, |1〉 → 0, (1.5)

6 Bai, Chen, Scalettar, Yamazaki

Subsequently, the eigen-states of the number operator n = c†c are

n : |0〉 = 0, |1〉 = |1〉.

In addition, the operator c†i ci+1 describes the kinetic energy of the elec-
trons on nearest neighbor sites:

c†i ci+1 : |00〉 → 0, |01〉 → |10〉,
|10〉 → 0, |11〉 → c†i |10〉 → 0.

Therefore, if there is one particle on the i+ 1th site, and no particle on
the ith site, the operator c†ici+1 annihilates the particle on the i + 1th
site and creates one particle on the ith site. We say that the electron
hops from site i+ 1 to site i after the action of the operator c†i ci+1.

1.1.1 Hubbard model with no hopping

Let us consider a special case of the Hubbard model, namely, there is
only one site and no hopping, t = 0. Then the Hamiltonian H is

H = U(n↑ − 1
2
)(n↓ − 1

2
)− μ(n↑ + n↓).

It can be verified that the orthonormal eigen-states ψi of the operator
nσ are the eigen-states of the Hamiltonian H:

H : |·〉 = U
4 |·〉, |↑〉 = (U

4 − (μ+ U
2)
) |↑〉,

|↓〉 =
(

U
4 − (μ+ U

2)
) |↓〉, |↑↓〉 = (U

4 − 2μ
) |↑↓〉.

The Hamiltonian H is diagonalized under the basis {ψi}:

H −→ (〈ψi|H|ψj〉
)

=

⎡⎢⎢⎣
U
4

U
4 −

(
μ+ U

2

)
U
4 −

(
μ+ U

2

)
U
4 − 2μ

⎤⎥⎥⎦ .
Consequently, the operator e−βH is diagonalized:

e−βH −→ e−
Uβ
4 diag

(
1, eβ(U/2+μ), eβ(U/2+μ), e2μβ

)
.

The partition function Z becomes

Z = Tr(e−βH) =
∑

i

〈ψi|e−βH|ψi〉 −→ Z = e−
Uβ
4

(
1 + 2e(

U
2 +μ)β + e2μβ

)
.

Numerical Methods for QMC 7

The operators He−βH, n↑e−βH, n↓e−βH and n↑n↓e−βH required for cal-
culating physical observables O of interest become

He−βH −→ e−
Uβ
4 diag

(
U

4
, (−μ− U

4
)eβ(U/2+μ), (−μ− U

4
)eβ(U/2+μ),

(
U

4
− 2μ)e2μβ

)
,

n↑e−βH −→ e−
Uβ
4 diag

(
0, eβ(U/2+μ), 0, e2μβ

)
,

n↓e−βH −→ e−
Uβ
4 diag

(
0, 0, eβ(U/2+μ), e2μβ

)
,

n↑n↓e−βH −→ e−
Uβ
4 diag

(
0, 0, 0, e2μβ

)
.

The traces of these operators are

Tr(He−βH) = e−
Uβ
4

(
U

4
+ 2(−μ− U

4
)eβ(U/2+μ) + (

U

4
− 2μ)e2μβ

)
,

Tr((n↑ + n↓)e−βH) = e−
Uβ
4

(
2eβ(U/2+μ) + 2e2μβ

)
,

Tr(n↑n↓e−βH) = e−
Uβ
4 e2μβ .

By the definition (1.2), the following physical observables O can be
computed exactly:

1. The one-site density ρ = 〈n↑〉+ 〈n↓〉 to measure the average occu-
pation of each site:

ρ = 〈n↑〉+ 〈n↓〉 =
Tr
(
(n↑ + n↓)e−βH)

Tr(Z)

=
2e(

U
2 +μ)β + 2e2μβ

1 + 2e(
U
2 +μ)β + e2μβ

.

When there is no chemical potential, i.e., μ = 0, ρ = 1 for any
U and β. It is referred to as “half-filling” because the density is
one-half the maximal possible value.

2. The one-site energy E = 〈H〉:

E = 〈H〉 = Tr(He−βH)
Tr(Z)

=
U

4
− (2μ+ U)e(

U
2 +μ)β + 2μe2μβ

1 + 2e(
U
2 +μ)β + e2μβ

.

When there is no chemical potential, i.e., μ = 0,

E =
U

4
− U

2(1 + e−
Uβ
2)

.

8 Bai, Chen, Scalettar, Yamazaki

−6
−4

−2
0

2
4

6 0

1

2

3

4

−1.5

−1

−0.5

0

β∈ [0,4]

U∈ [−6,6]

P
o

te
n

ti
a

l
e

n
e

rg
y
 E

Figure 1.1: Potential energy E for t = 0, μ = 0

Figure 1.1 shows the plot of E versus U and β.

3. The double occupancy 〈n↑n↓〉 is

〈n↑n↓〉 = Tr(n↑n↓e−βH)
Tr(Z)

=
e2μβ

1 + 2e(
U
2 +μ)β + e2μβ

.

When there is no chemical potential, i.e., μ = 0,

〈n↑n↓〉 = 1
2(1 + e

U
2 β)

.

Note that as U or β increases, the double occupancy goes to zero.

1.1.2 Hubbard model without interaction

When there is no interaction, U = 0, the spin-up and spin-down spaces
are independent. H breaks into the spin-up (↑) and spin-down (↓) terms.
We can consider each spin space separately. Therefore, by omitting the
spin, the Hamiltonian H becomes

H = −t
∑
〈i,j〉

(c†i cj + c†jci)− μ
∑

i

ni.

Numerical Methods for QMC 9

It can be recast as a bilinear form:

H = �c †(−tK − μI)�c,
where

�c =

⎡⎢⎢⎢⎣
c1
c2
...
cN

⎤⎥⎥⎥⎦ and �c † = [c†1, c
†
2, · · · , c†N],

and I is the identity matrix, K = (kij) is a matrix to describe the
hopping lattice geometry 〈i, j〉:

kij =
{

1, if i and j are nearest neighbors
0, otherwise .

For instance, for an one dimensional (1D) lattice of Nx sites, K is an
Nx ×Nx matrix given by

K = Kx =

⎡⎢⎢⎢⎢⎢⎣
0 1 1
1 0 1

.
1 0 1

1 1 0

⎤⎥⎥⎥⎥⎥⎦ .

The (1, Nx) and (Nx, 1) elements ofK incorporate the so-called “periodic
boundary conditions (PBCs)” in which sites 1 and Nx are connected by
t. The use of PBC reduces finite size effects. For example, the energy on
a finite lattice of length N with open boundary conditions (OBCs) differs
from the value in the thermodynamic limit (N →∞) by a correction of
order 1/N while with PBCs, the correction is order 1/N2. 1 The use
of PBCs also makes the system translationally invariant. The density of
electrons per site, and other similar quantities, will not depend on the
site in question. With OBCs quantities will vary with the distance from
the edges of the lattice.

For a two dimensional (2D) rectangle lattice of Nx ×Ny sites, K is
an NxNy ×NxNy matrix given by

K = Kxy = Iy ⊗Kx +Ky ⊗ Ix,
where Ix and Iy are identity matrices with dimensions Nx and Ny, re-
spectively. ⊗ is the matrix Kronecker product.

1A simple analogy is this: Consider numerical integration of f(x) on an interval
a ≤ x ≤ b. The only difference between the rectangle and trapezoidal rules is in their
treatment of the boundary point contributions f(a) and f(b), yet the integration
error changes from linear in the mesh size to quadratic.

10 Bai, Chen, Scalettar, Yamazaki

The matrix K of 1D or 2D lattice has the exact eigen-decomposition

K = FT ΛF, FTF = I,

where Λ = diag(λk) is a diagonal eigenvalue matrix, see Lemma 2.1. Let

�̃c = F�c and �̃c † = (F�c)†,

then the Hamiltonian H is diagonalized:

H = �̃c †(−tΛ− μI)�̃c =
∑

k

εkñk,

where εk ≡ −tλk − μ, and ñk = c̃†k c̃k.
It can be shown that the operators c̃k obey the same anticommuta-

tion relations as the original operators ci. Hence they too appropriately
describe electrons. Indeed, the original operators create and destroy par-
ticles on particular spatial sites i while the new ones create and destroy
with particular momenta k. Either set is appropriate to use, however, the
interaction term in the Hubbard model is fairly complex when written
in momentum space.

Lemma 1.1. If the operatorH is in a quadratic form of fermion operators

H = c†Hc,

where H is an N ×N Hermitian matrix. Then

Tr(e−βH) =
N∏

i=1

(1 + e−βλki),

where λki are the eigenvalues of H .

Proof. First let us assume that H = diag(λk1 , λk2 , · · · , λkN), then the
Hamiltonian H is

H = c†Hc = c†diag(λk1 , λk2 , · · · , λkN)c =
N∑

i=1

λkinki .

The lemma can be proved by induction. When N = 1, for the two
eigenstates |0〉 and |1〉 of the number operator nk1 , we have

Tr(e−βH) = 〈0|e−βλk1nk1 |0〉+ 〈1|e−βλk1nk1 |1〉 = e0 + e−βλk1 .

Assume that for N − 1, we have

Tr(e−β
PN−1

i=1 λki
nki) =

N−1∏
i=1

(1 + e−βλki). (1.6)

Numerical Methods for QMC 11

Then, by the definition of the trace, we have

Tr(e−β
PN

i=1 λki
nki)

=
∑

k1,··· ,kN

〈ψk1
1 · · ·ψkN

N |e−β
PN

i=1 λki
nki |ψk1

1 · · ·ψkN

N 〉. (1.7)

=
∑

k1,··· ,kN−1

{
〈ψk1

1 · · ·ψkN−1
N−1 0|e−β

PN−1
i=1 λki

nki e−βλkN
nkN |ψk1

1 · · ·ψkN−1
N−1 0〉+

〈ψk1
1 · · ·ψkN−1

N−1 1|e−β
PN−1

i=1 λki
nki e−βλkN

nkN |ψk1
1 · · ·ψkN−1

N−1 1〉
}

= (1 + e−βλkN)
∑

k1,··· ,kN−1

〈ψk1
1 · · ·ψkN−1

N−1 |e−β
PN−1

i=1 λki
nki |ψk1

1 · · ·ψkN−1
N−1 〉

= (1 + e−βλkN)
N−1∏
i=1

(1 + e−βλki) =
N∏

i=1

(1 + e−βλki). (1.8)

For a general Hermitian matrix H , there exists a unitary matrix Q such
that

Q∗HQ = Λ = diag(λk1 , λk2 , · · · , λkN).

Let c̃ = Qc and ñi = c̃†i c̃i, then we have

H = c†Hc = c̃†Λc̃ =
N∑

i=1

λki ñki .

Since the trace is independent of the basis functions and by the equation
(1.8), we have

Tr(e−βH) = Tr

(
N∏

i=1

e−βλki
ñki

)
=

N∏
i=1

(1 + e−βλki).

The lemma is proved. �
By Lemma 1.1, the partition function Z is given by

Z =
∏
k

(1 + e−βεk).

Subsequently, we have the exact expressions for the following physical
observables O:

1. the density ρ, the average occupation of each site:

ρ = 〈n〉 = 〈ñ〉 =
1
N

N∑
k=1

〈ñk〉 = 1
N

∑
k

1
1 + eβεk

,

12 Bai, Chen, Scalettar, Yamazaki

0
0.5

1
1.5

2

0
0.5

1
1.5

2
−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 1.2: εk for U = 0 and μ = 0 (left). Contour plot of εk (right)

2. the energy E:

E = 〈H〉 = 1
N

∑
k

εk
eβεk + 1

. (1.9)

For the sake of completeness, let us write down the expression for
the Green’s function, which plays a key role for computing the physical
observables:

G�,j = 〈c�c†j〉 =
1
N

∑
k

eik·(j−�)(1 − fk), (1.10)

where fk = 1/[1+eβ(εk−μ)]. Notice that G is a function of the difference
j − �. This is a consequence of the fact that the Hamiltonian is trans-
lationally invariant, that is, with PBCs, there is no special site which is
singled out as the origin of the lattice. All sites are equivalent.

At T = 0 (β = ∞), the contours in the right side of Figure 1.2
separate the k values where the states are occupied fk = 1 (inside the
contour) from those where the states are empty fk = 0 (outside the
contour). The contour is often referred to as the “Fermi surface”. There
is actually a lot of interesting physics which follows from the geometry
of the contour plot of εk. For example, one notes that the vector (π, π)
connects large regions of the contour in the case when ρ = 1 and the
contour is the rotated square connecting the points (π, 0), (0, π), (−π, 0),
and (0,−π). One refers to this phenomenon as “nesting” and to (π, π)
as the “nesting wave vector”. Because the Fermi surface describes the
location where the occupation changes from 0 to 1, the electrons are most
active there. If there is a wave vector k which connects big expanses of
these active regions, special order is likely to occur with that wave vector.
Thus the contour plot of εk is one way of understanding the tendency of

Numerical Methods for QMC 13

the Hubbard model to have antiferromagnetic order (magnetic order at
k = (π, π) for half-filling.)

1.2 Determinant QMC

In this section, we first introduce a computable approximation of the
distribution operator P defined in (1.3) by using a discrete Hubbard-
Stratonovich transformation, and then a so-called determinant QMC
(DQMC) algorithm to generate samples that follow the distribution.
For simplicity, we assume that the chemical potential μ = 0 which corre-
sponds to the important half-filled-band case (and there is no the “sign
problem”). It turns out that many of the most interesting phenomena of
the Hubbard model, like magnetic ordering and insulating-metal transi-
tion, occur at half-filling.

1.2.1 Computable approximation of distribution operator P
The gist of a computable approximation of the distribution operator P
defined in (1.3) is on the approximation of the partition function Z.
Since the operators HK and HV do not commute, we apply the Trotter-
Suzuki decomposition to approximate Z. Specifically, by dividing the
imaginary-time interval [0, β] into L equal subintervals of the width Δτ =
β
L , then Z can be written as

Z = Tr
(
e−βH)

= Tr

(
L∏

�=1

e−ΔτH
)

= Tr

(
L∏

�=1

e−ΔτHKe−ΔτHV

)
+O(Δτ2). (1.11)

The kinetic energy term e−ΔτHK is quadratic in the fermion operators
and the spin-up and spin-down operators are independent. Therefore, it
can be written as

e−ΔτHK = e−ΔτHK+e−ΔτHK− ,

where the operators HK+ and HK− correspond to kinetic energy with
spin-up and spin-down respectively, and are of the forms

HKσ = −t�c †σK�cσ.

On the other hand, the potential energy term e−ΔτHV is quartic in
the fermion operators. It is necessary to recast it in a quadratic form

14 Bai, Chen, Scalettar, Yamazaki

to use something like Lemma 1.1. To do so, first, note that the number
operators niσ are independent on different sites, we have

e−ΔτHV = e−UΔτ
PN

i=1(ni+− 1
2)(ni−− 1

2)

=
N∏

i=1

e−UΔτ(ni+− 1
2)(ni−− 1

2).

To treat the term e−UΔτ(ni+− 1
2)(ni−− 1

2), we use the following discrete
Hubbard-Stratonovich transformation. It replaces the interaction quar-
tic term (ni+ − 1

2)(ni− − 1
2) by the quadratic one (ni+ − ni−).

Lemma 1.2. (Discrete Hubbard-Stratonovich transformation [2, 5]) If
U > 0, then

e−UΔτ(ni+− 1
2)(ni−− 1

2) = C1

∑
hi=±1

eνhi(ni+−ni−), (1.12)

where the constant C1 = 1
2e

−UΔτ
4 and the scalar ν is defined by cosh ν =

e
UΔτ

2 .

Proof. First, the following table lists the results of actions of the oper-
ators (ni+− 1

2)(ni−− 1
2) and (ni+−ni−) on the four possible eigenstates

|·〉, | ↑〉, | ↓〉 and | ↑↓〉:
ψ (ni+ − 1

2)(ni− − 1
2) ni+ − ni−

|·〉 1
4 |·〉 0 |·〉

|↑〉 − 1
4 |↑〉 |↑〉

|↓〉 − 1
4 |↓〉 |↓〉

|↑↓〉 1
4 |↑↓〉 0 |↑↓〉

For the operator of the left-hand side of (1.12):

e−UΔτ(ni+− 1
2)(ni−− 1

2)ψ = e−
UΔτ

4 ψ if ψ = |·〉 or | ↑↓〉,

and
e−UΔτ(ni+− 1

2)(ni−− 1
2)ψ = e

UΔτ
4 ψ if ψ = | ↑〉 or | ↓〉.

On the other hand, for the operator of the left-hand side of (1.12):

C1

∑
hi=±1

eνhi(ni+−ni−)ψ = e−
UΔτ

4 ψ if ψ = |·〉 or | ↑↓〉,

and

C1

∑
hi=±1

eνhi(ni+−ni−)ψ =
1
2
e−

UΔτ
4 (eν + e−ν)ψ if ψ = | ↑〉 or | ↓〉.

Numerical Methods for QMC 15

Since

cosh ν =
eν + e−ν

2
= e

UΔτ
2 ,

the discrete Hubbard-Stratonovich transformation (1.12) holds. �
Remark 1.5. Note that in the previous proof, U is required to be positive,
otherwise there is no real number ν such that cosh ν = e

UΔτ
2 . When

U < 0, the Hubbard model is called the attractive Hubbard model.
A similar discrete Hubbard-Stratonovich transformation exists [6, 7].
Other transformations for treating the quartic term can also be founded
in [13, 17].

Let us continue to reformulate the term e−ΔτHV . By the discrete
Hubbard-Stratonovich transformation (1.12), we have

e−ΔτHV =
N∏

i=1

(
C1

∑
hi=±1

eνhi(ni+−ni−)

)
. (1.13)

{hi} are referred to as auxiliary variables. The collection of all these
variables is called the Hubbard-Stratonovich field or configurations.

For the sake of simplicity, let us consider the case N = 2 of the
expression (1.13):

e−ΔτHV = (C1)2
(∑

hi=±1

eνhi(n1+−n1−)

)(∑
hi=±1

eνhi(n2+−n2−)

)
= (C1)2

∑
hi=±1

e
P2

i=1 νhi(ni+−ni−)

≡ (C1)2Trhe
P2

i=1 νhi(ni+−ni−),

where the new notation Trh represents the trace for hi = ±1.
In general, we have

e−ΔτHV = (C1)NTrhe
PN

i=1 νhi(ni+−ni−)

= (C1)NTrh

(
e

PN
i=1 νhini+e−

PN
i=1 νhini−

)
≡ (C1)NTrh(eHV+ eHV−), (1.14)

where HV+ and HV− correspond to spin-up and spin-down, respectively,
and are of the forms

HVσ =
N∑

i=1

νhiniσ = σν �c †σV (h)�cσ,

and V (h) is a diagonal matrix V (h) = diag(h1, h2, . . . , hN).

16 Bai, Chen, Scalettar, Yamazaki

Taking into account the partition of the inverse temperature β into
L imaginary time slices, L = β/Δτ , the Hubbard-Stratonovich variables
hi are changed to have two subindices h�,i, where i is for the spatial site
and � is for the imaginary time slice. Correspondingly, the index � is
also introduced for the diagonal matrix V and operators HVσ :

hi −→ h�,i, V −→ V�, HVσ −→ H�
Vσ
.

Subsequently, by applying the Trotter–Suzuki approximation (1.11) and
the expression (1.14) and interchanging the traces, the partition function
Z can be approximated by

Z = (C1)NLTrhTr

(
L∏

�=1

e−ΔτHK+e
H�

V+

)(
L∏

�=1

e−ΔτHK−e
H�

V−

)
, (1.15)

where for σ = ±,

HKσ = −t�c †
σK�cσ,

H�
Vσ

= σ

N∑
i=1

νh�,ini+ = σν�c †
σ V�(h�)�cσ

and V�(h�) is a diagonal matrix

V�(h�) = diag(h�,1, h�,2, . . . , h�,N).

At this point, all operatorsHK+ , HK− , H�
V + and H�

V − are quadratic
in the fermion operators. We can apply the following lemma presented
in [2, 5]2:

Lemma 1.3. If operators H� are in the quadratic forms of the fermion
operators

H� =
∑
i,j

c†i (H�)ijcj ,

where H� are matrices of real numbers. Then

Tr(e−H1e−H2 · · · e−HL) = det(I + e−HLe−HL−1 · · · e−H1). (1.16)

Note that while “Tr” is over the quantum mechanical Hilbert space
whose dimension is 4N , since by Pauli exclusion principle, there are 4
possible states in every lattice: no electron, one electron with spin-up,
one electron with spin-down and two electron with different spin. The
“det” is the determinant of a matrix.

2We are unable to provide a rigorous proof for this important identity. The special
case L = 1 is Lemma 1.1.

Numerical Methods for QMC 17

By using the identity (1.16), the partition function Z described in
(1.15) is turned into the following computable form

Zh = (C1)NLTrh det[M+(h)] det[M−(h)], (1.17)

where for σ = ± and h = (h1, h2, . . . , hL), the fermion matrices

Mσ(h) = I + BL,σ(hL)BL−1,σ(hL−1) · · ·B1,σ(h1), (1.18)

and matricesB�,σ(h�) are associated with the operators e−ΔτHKe−ΔτH�
Vσ ,

and are defined as

B�,σ(h�) = etΔτKeσνV�(h�).

By the expression (1.17), we have a computable approximation of the
distribution operator P defined in (1.3):

P (h) =
ηd

Zh
det[M+(h)] det[M−(h)], (1.19)

where ηd = (C1)NL is a normalizing constant.
Remark 1.6. When U = 0, ν = 0 and Mσ(h) is a constant matrix and
does not depend on the configuration h. The Trotter-Suzuki approxi-
mation is exact. The Hubbard Hamiltonian is computed exactly after a
single evaluation of the matrix Mσ(h).
Remark 1.7. It is a rather amazing thing that a quantum problem can
be re-written as a classical one. The price for this is that the classical
problem is in one higher dimension than the original quantum one: the
degrees of freedom in the quantum problem ci had a single spatial index
i while the Hubbard Stratonovich variables which replace them have an
additional imaginary time index �. This mapping is by no means re-
stricted to the Hubbard Hamiltonian, but is generally true for all quan-
tum mechanics problems.

1.2.2 Algorithm

Our computational task now becomes a classical Monte Carlo problem:
sample Hubbard-Stratonovich variables (configurations) h that follow
the probability distribution function P (h) defined in (1.19). Recall that
the dimension of the configuration sample space {h} is 2NL. For an
efficient Monte Carlo procedure there are two essential questions:

1. How to move to a new configuration h′ from the current h?
A simple strategy is to flip only at one selected site (�, i)

h′�,i = −h�,i,

and leave the rest components of h unchanged.

18 Bai, Chen, Scalettar, Yamazaki

2. How to ensure that the accepted sample configuration h follows
the desired distribution P (h)?
This is answered by the Metropolis-Hasting algorithm, for example,
see [10, p.111].

Combining the answers of these two questions, we have the following
so-called determinant QMC (DQMC) algorithm, first presented in [2].

DQMC

• Initialize h = (h�,i) = (±1)
• MC loop (total steps = warm up + measurement)

1. set (�, i) = (1, 1)
2. (�, i)–loop:

(a) propose a new configuration h′ by flipping at
the site (�, i): h′�,i = −h�,i

(b) compute the Metropolis ratio

r�,i =
det[M+(h′)] det[M−(h′)]
det[M+(h)] det[M−(h)]

(c) Metropolis acceptance-rejection:

h =

{
h′, if r ≤ min{1, r�,i}
h, otherwise.

where r is a random number and r ∼ Uniform[0, 1].
(d) go to the next site (�, i), where

– if i < N , then � := �, i := i+ 1,
– if i = N and � < L, then � := �+ 1, i = 1,
– if i = N and � = L, then � := 1, i = 1

3. after the warm up steps, perform physical measure-
ments, see section 1.2.3

Note that the one-site update at the inner loop leads to a simple
rank-one updating of the matrix Mσ(h). Based on this observation, one
can efficiently compute the Matropolis ratio r�,i, see Appendix A for
detail.

1.2.3 Physical measurements

How is the physics extracted from QMC simulations? Two of the most
elementary physical observables of interest are the density and kinetic

Numerical Methods for QMC 19

energy, which can be obtained from the single-particle Green’s function,

Gσ
ij = 〈ciσc†jσ〉

=
(
M−1

σ (h)
)

ij

=
(
[I +BL,σ(hL)BL−1,σ(hL−1) · · ·B1,σ(h1)]

−1
)

ij
.

The density of electrons of spin σ on site i is

ρi,σ = 〈ni,σ〉 = 〈c†i,σci,σ〉 = 1− 〈ci,σc†i,σ〉 = 1−Gσ
ii,

where the third identity arises from the use of the anticommutation re-
lations in interchanging the order of creation and destruction operators.

The Hubbard Hamiltonian is translationally invariant, so one expects
ρi,σ to be independent of spatial site i. Likewise, up and down spin
species are equivalent. Thus to reduce the statistical errors, one usually
averages all the values and have the code report back

ρ =
1

2N

∑
σ

N∑
i=1

ρi,σ.

We will not emphasize this point further, but such averaging is useful
for most observables. 3 As is true in any classical or quantum Monte
Carlo, these expectation values are also averaged over the sequence of
Hubbard-Stratonovich configurations generated in the simulation.

The kinetic energy is obtained from the Green’s function for pairs of
sites i, j which are near neighbors,

〈HK〉 = −t 〈
∑

〈i,j〉,σ
(c†iσcjσ + c†jσciσ)〉

= +t
∑

〈i,j〉,σ
(Gσ

ij +Gσ
ji).

An extra minus sign arose from interchanging the fermion operator order
so that the creation operator was at the right.

Extended physical measurements. Interesting types of magnetic,
charge, and superconducting order, and associated phase transitions, are
determined by looking at correlation functions of the form:

c(j) = 〈Oi+jO†
i 〉 − 〈Oi+j〉 〈O†

i 〉 (1.20)

where, for example,
3There are some situations where translation invariance is broken, for example if

randomness is included in the Hamiltonian.

20 Bai, Chen, Scalettar, Yamazaki

• for spin order in z direction (magnetism):

Oi = ni,↑ − ni,↓, O†
i = ni,↑ − ni,↓;

• for spin order in x/y direction (magnetism):

Oi = c†i,↓ci,↑, O†
i = c†i,↑ci,↓;

• for charge order:

Oi = ni,↑ + ni,↓, O†
i = ni,↑ + ni,↓;

• for pair order (superconductivity):

Oi = ci,↓ci,↑, O†
i = c†i,↑c

†
i,↓.

In words, what such correlation functions probe is the relationship be-
tween spin, charge, pairing on an initial site i with that on a site i+ j
separated by a distance j. It is plausible that at high temperatures where
there is a lot of random thermal vibration, the values of O†

i and Oi+j will
not ‘know about’ each other for large j. In such a case, the expectation
value 〈Oi+jO†

i 〉 factorizes to 〈Oi+j〉 〈O†
i 〉 and c(j) vanishes. The more

precise statement is that at high temperatures c(j) decays exponentially,
c(j) ∝ e−l/ξ. The quantity ξ is called the “correlation length”. On the
other hand, at low temperatures c(j) ∝ α2, a nonzero value, as j →∞.
The quantity α is called the ‘order parameter’. 4

As one can well imagine from this description, one needs to be very
careful in analyzing data on finite lattices if the j → ∞ behavior is
what is crucial to determining the physics. The techniques of ‘finite size
scaling’ provide methods for accomplishing this.

How are these correlation functions actually evaluated? As com-
mented above in describing measurements of the density and kinetic en-
ergy, expectation values of two fermion operators are simply expressed
in terms of the Green’s function. The general rule for expectation values
of more than two fermion creation and destruction operators is that they
reduce to products of expectation values of pairs of creation and destruc-
tion operators, the famous “Wick’s Theorem” of many body physics. For
example, for spin order in the x/y direction,

〈c(j)〉 = 〈c†i+j,↓ci+j,↑c
†
i,↑ci,↓〉 = G↑

i+j,i G
↓
i,i+j .

4It is interesting to note what happens right at the critical point Tc separating
the high temperature disordered phase from the low temperature ordered one. In
what are termed ‘second order’ phase transitions, the correlation length diverges ξ ∝
1/(T −Tc)ν . Right at Tc the correlation function decays as a power law, c(j) ∝ 1/jη ,
a behavior intermediate between its high temperature exponential decay and its low
temperature nonzero value.

Numerical Methods for QMC 21

Similarly, for superconducting order,

〈c(j)〉 = 〈ci+j,↓ci+j,↑c
†
i,↑c

†
i,↓〉 = G↑

i+j,i G
↓
i+j,i.

We conclude with two comments. First, it is useful to look at cor-
relation functions where the operators Oi+j and O†

i are separated in
imaginary time as well as in space. We will come to this point when we
discuss measurements in the hybrid QMC algorithm. Second, one often
considers the Fourier transform of the real space correlation function
S(q) =

∑
j e

iqj c(j). This quantity is often referred to as the ‘structure
factor’, and is important because it is in fact the quantity measured by
experimentalists. For example, the scattering rate of a neutron off the
electron spins in a crystal is proportional to S(q) where q is the change
in momentum of the neutron and the c(l) under consideration is the spin
correlation function.

1.3 Hybrid QMC

The procedure summarized in section 1.2.2 is the one used in most
DQMC codes today. Many interesting physical results have been ob-
tained with it. However, it has a crucial limitation. At the heart of the
procedure is the need to compute the ratio of determinants of matrices
which have a dimension N , the spatial size of the system. Thus the al-
gorithm scales as N3. In practice, this means simulations are limited to
a few hundred sites. In order to circumvent this bottleneck and develop
an algorithm which potentially scales linearly with N , we reformulate
our problem as the following:

1. Replace the discrete Hubbard-Stratonovich field by a continuous
one;

2. Express the determinant of the dense N × N matrices Mσ(h) as
Gaussian integrals over NL-dimensional space to lead a NL×NL
sparse matrix calculations.

We shall now describe these steps in detail.

1.3.1 Computable approximation of distribution operator P

Instead of using discrete Hubbard-Stratonovich transformation as de-
scribed in section 1.2.1, one can use a continuous Hubbard-Stratonovich
transformation to derive a computable approximation of the distribution

22 Bai, Chen, Scalettar, Yamazaki

operator P . First, recall the identity5:

e
1
2 a2

=
1√
2π

∫ ∞

−∞
e−

1
2 z2−zadz (1.21)

for any scalar a > 0.

Lemma 1.4. (Continuous Hubbard-Stratonovich transformation) For U >
0, we have

e−UΔτ(ni+− 1
2)(ni−− 1

2) = C2

∫ ∞

−∞
e−Δτ [x2+(2U)

1
2 x(ni+−ni−)]dx, (1.22)

where C2 = (Δτe−
UΔτ

2 /π)
1
2 .

Proof. It is easy to verify that

(ni+ − 1
2
)(ni− − 1

2
) = −1

2
(ni+ − ni−)2 +

1
4
.

Note that (ni+ − ni−)2 and (ni+ − ni−) can be diagonalized based on
the eigen-states of the operators niσ, then the identity (1.21) holds if we
replace the scalar α by the operator (ni+ − ni−):

e
UΔτ

2 (ni+−ni−)2 =
1√
2π

∫ ∞

−∞
e−

1
2 x2−(UΔτ)

1
2 (ni+−ni−)xdx.

Let x′ = x√
2Δτ

, we have

e
UΔτ

2 (ni+−ni−)2 =

√
Δτ√
π

∫ ∞

−∞
e−Δτ(x2+(2U)

1
2 (ni+−ni−)x)dx.

Combining the above equations, we obtain the identity (1.22). �
Returning to the approximation of the partition function Z by the

Trotter-Suzuki decomposition (1.11), by the continuous Hubbard-Stratonovich

5Note that the identity can be easily verified by using the following well-known
identity Z ∞

−∞
e−z2

dz =
√

π.

In fact, we have

1√
2π

Z ∞

−∞
e−

1
2 z2−zadz =

1√
2π

Z ∞

−∞
e−

1
2 (z2+2za+a2−a2)dz

= e
1
2 a2 1√

2π

Z ∞

−∞
e−

1
2 (z+a)2dz

= e
1
2 a2

.

Numerical Methods for QMC 23

identity (1.22), we have

e−ΔτH�
V = (C2)N

∫ +∞

−∞
e−Δτ

P
i x2

�,ieΔτ
P

i(2U)
1
2 x�,ini+e−Δτ

P
i(2U)

1
2 x�,ini−dx�,i

≡ (C2)N

∫
[δx]e−SB(x)e

ΔτH�
V+e

ΔτH�
V− ,

where

SB(x) = Δτ
∑
�,i

x2
�,i,

H�
Vσ

=
∑

i

(2U)
1
2x�,iniσ = σ(2U)

1
2�c †σV�(x�)�cσ,

and V�(x�) is a diagonal matrix,

V�(x�) = diag(x�,1, x�,2, . . . , x�,N).

By an analogous argument as in section 1.2.1, we have the following
approximation of the partition function Z:

Z = Tr

(
L∏

�=1

e−ΔτHKe−ΔτHV

)

= (C2)NL

∫
[δx]e−SB(x)Tr

(
L∏

�=1

e−ΔτHK+eΔτH�
V +

)
×

Tr

(
L∏

�=1

e−ΔτHK−eΔτH�
V −

)
.

Note that all the operators e−ΔτHK , e−ΔτH�
V + and e−ΔτH�

V − are quadratic
in the fermion operators. By the argument (1.16), we derive the following
path integral expression for the partition function Z:

Zx = (C2)NL

∫
[δx]e−SB(x) det

(
I +

L∏
�=1

etΔτKe(2U)
1
2 ΔτVl(x�)

)
×

det

(
I +

L∏
�=1

etΔτKe−(2U)
1
2 ΔτV�(x�)

)

= (C2)NL

∫
[δx]e−SB(x) det[M+(x)] det[M−(x)], (1.23)

where for σ = ±, the fermion matrices

Mσ(x) = I +BL,σ(xL)BL−1,σ(xL−1) · · ·B1,σ(x1), (1.24)

24 Bai, Chen, Scalettar, Yamazaki

and for � = 1, 2, . . . , L,

B�,σ(x�) = etΔτKeσ(2U)
1
2 ΔτV�(x�). (1.25)

By a so-called particle-hole transformation (see Appendix B), we have

det[M−(x)] = e−Δτ(2U)
1
2

P
�,i x�,i det[M+(x)]. (1.26)

Therefore, the integrand of Zx in (1.23) is positive definite.6

Consequently, a computable approximation of the distribution oper-
ator P is given by

P (x) =
η′h
Zx
e−SB(x) det[M+(x)] det[M−(x)]. (1.27)

where η′h = (C2)NL is a normalizing constant.

1.3.2 Algorithm

At this point, our computational task becomes how to generate Hubbard-
Stratonovich variables (configurations) x that follow the probability dis-
tribution function P (x) defined as (1.27). To develop an efficient Monte
Carlo method, we reformulate the the function P (x). First, let us recall
the following two facts:

1. Let Mσ(x) denote a L× L block matrix7

Mσ(x) =

⎡⎢⎢⎢⎢⎢⎣
I B1,σ(x1)

−B2,σ(x2) I
−B3,σ(x3) I

.
−BL,σ(xL) I

⎤⎥⎥⎥⎥⎥⎦ ,
(1.28)

where B�,σ(x�) are N ×N matrices as defined in (1.25). Then we
have8

det[Mσ(x)] = det[I+BL,σ(xL)BL−1,σ(xL−1) · · ·B1,σ(x1)]. (1.29)
6Note that we assume that μ = 0 (half-filling case). Otherwise, there exists “sign

problem”: P (x) may be negative and can not be used as a probability distribution
function.

7We use the same notation Mσ(x) to denote the N×N matrix as defined in (1.24),
and NL × NL matrix as defined in (1.28). It depends on the context which one we
refer to.

8The identity can be easily derived based on the following observation. If A is a
2 × 2 block matrix,

A =

»
A11 A12

A21 A22

–
,

then det(A) = det(A22) det(F11) = det(A11) det(F22), where F11 = A11 −
A12A−1

22 A21 and F22 = A22 − A21A−1
11 A12.

Numerical Methods for QMC 25

2. If F is an N ×N symmetric and positive definite matrix, then9.∫
e−vT F−1vdv = π

N
2 det[F

1
2], (1.30)

Now, by introducing two auxiliary fields Φσ, σ = ±, we have

|det[Mσ(x)]| = det
[
MT

σ (x)Mσ(x)
] 1

2 = π−NL
2

∫
e−ΦT

σ A−1
σ (x)Φσ , (1.31)

where
Aσ(x) = Mσ(x)TMσ(x).

By combining (1.23) and (1.31), the expression (1.23) of the partition
function Zx can be recast as the following10

Zx = (C2)NL

∫
[δx]e−SB(x) det[M+(x)] det[M−(x)]

=
(
C2

π

)NL ∫
[δxδΦ+δΦ−]e−(SB(x)+ΦT

+A−1
+ (x)Φ++ΦT

−A−1
− (x)Φ−)

≡
(
C2

π

)NL ∫
[δxδΦσ]e−V (x,Φσ),

where

V (x,Φσ) = SB(x) + ΦT
+A

−1
+ (x)Φ+ + ΦT

−A
−1
− (x)Φ−. (1.32)

Now let us consider how to move the configuration x satisfying the
distribution:

P (x,Φσ) ∝ 1
Zx
e−V (x,Φσ). (1.33)

Similar to the DQMC method, at each Monte Carlo step, we can try to
move x = {x�,i} with respect to each imaginary time � and spatial site
i. Alternatively, we can also move the entire configuration x by adding
a Gaussian noise

x −→ x+ Δx,

where
Δx = −∂V (x,Φσ)

∂x
Δt+

√
Δt wt,

Δt is a parameter of step size, and wt follows a Gaussian distribution
N(0, 1) with mean 0 and variance 1. It is known as Langevin-Euler move,
for example, see [10, p.192].

9The identity can be proven by using the eigen-decomposition of F . For example,
see page 97 of [R. Bellman, Introduction to Matrix Analysis, SIAM Edition, 1997].

10Here we assume that det[Mσ(x)] is positive. Otherwise, we will have the so-called
“sign problem”.

26 Bai, Chen, Scalettar, Yamazaki

Spurred by the popularity of the molecular dynamics (MD) method,
Scalettar et al [15] proposed a hybrid method to move x by combining
Monte Carlo and molecular dynamics and derived a so-called Hybrid
Quantum Monte Carlo (HMQC) method. In the HQMC, an additional
auxiliary momentum field p = {p�,i} is introduced. By the identity∫ ∞

−∞
e−z2

dz =
√
π,

we see that the partition function Zx can be rewritten as

Zx = (C2)
NL

π−NL

∫
[δxδΦσ]e−V (x,Φσ)

= (C2)NLπ− 3NL
2

∫
[δxδpδΦσ]e−[P�,i p2

�,i+V (x,Φσ)]

= (C2)NLπ− 3NL
2

∫
[δxδpδΦσ]e−H(x,p,Φσ)

≡ ZH ,

where

H(x, p,Φσ) = pT p+ V (x,Φσ)

= pT p+ SB(x) + ΦT
+A

−1
+ (x)Φ+ + ΦT

−A
−1
− (x)Φ−.(1.34)

At this point, the computational task becomes a classical Monte
Carlo problem: seek the configurations {x, p,Φσ} that obey the following
probability distribution function

P (x, p,Φσ) =
ηh

ZH
e−H(x,p,Φσ), (1.35)

where ηh = (C2)NLπ− 3NL
2 is a normalizing constant.

Recall that initially we are interested in drawing samples x from
the distribution P (x,Φσ) defined in (1.33). The motivation of intro-
ducing the auxiliary momentum variable p is as the following. If we
draw samples (x, p) from the distribution P (x, p,Φσ) defined in (1.35),
then marginally, it can be shown that x follow the desired distribution
P (x,Φσ) and entries of p follow the Gaussian distribution N(0, 1

2) with
mean 0 and variance 1

2 (the standard deviation 1√
2
).

If the configurations (x, p) are moved satisfying the Hamiltonian
equations

ṗ�,i = − ∂H

∂x�,i
= − ∂V

∂x�,i
, (1.36)

ẋ�,i =
∂H

∂p�,i
= 2p�,i, (1.37)

Numerical Methods for QMC 27

then by Liouville’s theorem11, (x, p) is moved along a trajectory in which
both H and the differential volume element in phase space are constant
and the system is preserved in equilibrium.

In our current implementation of the HQMC method, Hamiltonian
equations (1.36) and (1.37) are solved by Verlet (leap-frog) method, see
[4]. It is a simple and efficient numerical method to move the configura-
tion from (x(0), p(0)) to (x(T), p(T)). Since the MD algorithm is “time
reversible”, HQMC transition guarantees the invariance of the target
distribution. This is to say that if the starting x follows the target
distribution P (x,Φσ), then the new configuration x(T) still follows the
same distribution [10, Chap. 9].

Finally, the update of the auxiliary field Φσ is simply done by the
MC strategy:

Φσ = MT
σ Rσ,

where the entries of the vector Rσ are chosen from the distribution
N(0, 1

2). Note that the fields Φσ and p are both auxiliary. We first fix
the fields Φσ, vary the fields p, and move (x, p) together. It is possible
to use a different moving order.

The following is an outline of the Hybrid Quantum Monte Carlo
(HQMC) method.

HQMC

• Initialize
– x(0) = 0,
– Φσ = MT

σ (x(0))Rσ,= MT
σ (x(0))(Rσ

�,i), R
σ
�,i ∼ N(0, 1

2).
• MC loop (total steps = warm up + measurement)

1. MD steps (x(0), p(0)) −→ (x(T), p(T)) with step
size Δt:
(a) Initialize p(0) = (p�,i), p�,i ∼ N(0, 1

2).
(b) p is evolved in a half time step 1

2Δt:

p�,i(
1
2
Δt) = p�,i(0)−

[
∂V (x(0),Φσ)

∂x�,i

]
(
1
2
Δt).

(c) For n = 0, 1, . . . , NT − 2,

x�,i(tn + Δt)− x�,i(tn) = 2p�,i(tn +
1
2
Δt)Δt,

p�,i(tn +
3
2
Δt)− p�,i(tn +

1
2
Δt) =

−
[
∂V (x(tn + Δt),Φσ)

∂x�,i

]
Δt.

11For example, see [1, Chap.3] or [12, Chap.2]

28 Bai, Chen, Scalettar, Yamazaki

where NT = T/Δt, tn = nΔt and t0 = 0.
(d) For n = NT − 1:

x�,i(T)− x�,i(tn) = 2p�,i(tn +
1
2
Δt)Δt,

p�,i(T)− p�,i(tn +
1
2
Δt) = −

[
∂V (x(T),Φσ)

∂x�,i

]
Δt.

2. Metropolis acceptance-rejection:

x(T) =

{
x(T), if r ≤ min

{
1, e−H(x(T),p(T),Φσ)

e−H(x(0),p(0),Φσ)

}
x(0), otherwise,

where r is a random number chosen from Uniform[0, 1].
3. Perform the “heat-bath” step

Φσ = MT
σ (x(T))Rσ = MT

σ (x(T))(Rσ
�,i),

where Rσ
�,i ∼ N(0, 1

2).
4. Perform physical measurements after warm up steps.
5. Set x(0) := x(T), go to MD step 1.

Remark 1.8. The Langevin-Euler update is equivalent to a single-step
HQMC move [10]. The MD and Langevin-Euler are two alternate meth-
ods which both have the virtue of moving all the variables together.
Which is better depends basically on which allows the larger step size,
the fastest evolution of the Hubbard-Stratonovich fields to new values.

Remark 1.9. If Δt is sufficient small,

H(x(T), p(T),Φσ) = H(x(0), p(0),Φσ)

since the MD conserves H . Then at step 2 of the MC loop, all moves will
be accepted. However, in practice, for finite Δt the integrator does not
conserve H , so step 2 of the MC loop is needed to keep the algorithm
exact.

To this end, let us consider how to compute the force term ∂V (x,Φσ)
∂x�,i

.
First, we note the matrix Mσ(x) defined in (1.28) can be compactly
written as

Mσ(x) = I −K[L]D
σ
[L](x)Π, (1.38)

where

K[L] = diag
(
etΔτK , . . . , etΔτK

)
,

Dσ
[L](x) = diag

(
eσ(2U)

1
2 ΔτV1(x1), . . . , eσ(2U)

1
2 ΔτVL(xL)

)

Numerical Methods for QMC 29

and

Π =

⎡⎢⎢⎢⎣
0 −I
I 0

. . .
. . .
I 0

⎤⎥⎥⎥⎦ .
By the definition of V (x,Φσ) in (1.32), and recall that

Aσ(x) = MT
σ (x)Mσ(x)

and
Xσ = A−1

σ (x)Φσ ,

we have

∂[ΦT
σA

−1
σ (x)Φσ]
∂x�,i

= −ΦT
σA

−1
σ (x)

∂Aσ(x)
∂x�,i

A−1
σ (x)Φσ

= −XT
σ

∂Aσ(x)
∂x�,i

Xσ

= 2 [Mσ(x)Xσ]T
∂Mσ(x)
∂x�,i

Xσ.

By the expression (1.38) of Mσ(x), we have

∂Mσ(x)
∂x�,i

= −K[L]

∂Dσ
[L](x)

∂x�,i
Π.

Note that Dσ
[L](x) is a diagonal matrix, and only the (�, i)-diagonal ele-

ment
dσ

�,i = exp(σ(2U)
1
2 Δτx�,i)

depends on x�,i. Therefore,

∂Mσ(x)
∂x�,i

= −K[L]

∂Dσ
[L](x)

∂x�,i
Π.

we have

∂[ΦT
σA

−1
σ (x)Φσ]
∂x�,i

= −2
∂dσ

�,i

∂x�,i

[
KT

[L]Mσ(x)Xσ

]
�,i

(ΠXσ)�,i.

Subsequently, the force term is computed by

∂V (x,Φσ)
∂x�,i

= 2Δτx�,i − 2(2U)
1
2 Δτd+

�,i

[
KT

[L]M+(x)X+

]
�,i

[ΠX+]�,i

+ 2(2U)
1
2 Δτd−�,i

[
KT

[L]M−(x)X−
]

�,i
[ΠX−]�,i .

30 Bai, Chen, Scalettar, Yamazaki

Therefore, the main cost of the HQMC is on computing the force term,
which in turn is on solving the symmetric positive definite linear system

Aσ(x)Xσ = Φσ

where σ = ±. In sections 3 and 4, we will discuss direct and iterative
methods to such linear system of equations.

1.3.3 Physical measurements

In section 1.2.3 we described how measurements are made in a deter-
minant QMC code. The procedure in the hybrid QMC is identical in
that one expresses the desired quantities in terms of precisely the same
products of Green’s functions. The only difference is that these Green’s
functions are obtained from matrix-vector products instead of the entries
of the Green’s function. The basic identity is this:

2 〈Xσ,iRσ,j〉 ↔ (Mσ)−1
i,j = Gσ

ij .

This follows from the fact that

Xσ = A−1
σ (x)Φσ = M−1

σ (x)Rσ

and that the components Ri of Rσ are independently distributed Gaus-
sian random numbers satisfying 〈RiRj〉 = 1

2δi,j .
Hence, the expression for the spin-spin correlation function would

become

〈c(l)〉 = 〈c†i+l,↓ci+l,↑c
†
i,↑ci,↓〉

= G↑
i+l,i G

↓
i,i+l ↔ 4 〈R↑,i+lX↑,iR↓,iX↓,i+l〉.

The only point to be cautious of concerns the evaluation of expec-
tation values of four fermion operators if the operators have the same
spin index. There it is important that two different vectors of random
numbers are used: Rσ, Xσ and R′

σ, X
′
σ. Otherwise the averaging over

the Gaussian random numbers generates additional, unwanted, values:

〈RiRjRkRl〉 = 1
4
(δi,jδk,l + δi,kδj,l + δi,lδj,k),

whereas
〈R′

iR
′
jRkRl〉 = 1

4
δi,jδk,l.

It should be apparent that if the indices i and j are in the same N
dimensional block, we get the equal-time Green’s function

Gσ = M−1
σ

= [I +BL,σBL−1,σ · · ·B1,σ]−1,

Numerical Methods for QMC 31

which is the quantity used in traditional determinant QMC.
However, choosing i, j in different N dimensional blocks, we can also

access the nonequal-time Green’s function,

G�1,i;�2,j = 〈ci(�1)c†j(�2)〉
=
(
B�1B�1−1 · · ·B�2+1(I +B�2 · · ·B1BL · · ·B�2+1)−1

)
ij
.

At every measurement step in the HQMC simulation, the equal-time
Green’s function Gij can be obtained from the diagonal block of M−1

σ

and the unequal-time Green’s function G�1,i;�2,j can be computed from
the (�1, �2) block submatrix of M−1

σ .
As we already remarked in describing the measurements in determi-

nant QMC, it is often useful to generalize the definition of correlation
functions so that the pair of operators are separated in imaginary time
as well as spatially. The values of the non-equal time Green’s function
allow us to evaluate these more general correlation functions c(l,Δτ). To
motivate their importance we comment that just as the structure factor
S(q), the Fourier transform of the real space correlation function c(l),
describes the scattering of particles with change in momentum q, the
Fourier transform of c(l,Δτ) into what is often called the susceptibility
χ(q, ω), tells us about scattering events where the momentum changes
by q and the energy changes by ω.

2 Hubbard matrix analysis

For developing robust and efficient algorithmic techniques and high per-
formance software for the QMC simulations described in section 1, it is
important to understand mathematical and numerical properties of the
underlying matrix computation problems. In this section, we study the
dynamics and transitional behaviors of these properties as functions of
multi-length scale parameters.

2.1 Hubbard matrix

To simplify the notation, we write the matrix M introduced in (1.28) as

M =

⎡⎢⎢⎢⎢⎢⎣
I B1

−B2 I
−B3 I

.
−BL I

⎤⎥⎥⎥⎥⎥⎦ , (2.1)

and refer to it as the Hubbard matrix, where

32 Bai, Chen, Scalettar, Yamazaki

• I is an N ×N identity matrix,

• B� is an N ×N matrix of the form

B� = BD�, (2.2)

and
B = etΔτK and D� = eσνV�(h�),

• t is a hopping parameter,

• Δτ = β/L, β is the inverse temperature, and L is the number of
imaginary time slices,

• σ = + or −,

• ν is a parameter related to the interacting energy parameter U ,

ν = cosh−1 e
UΔτ

2 = (ΔτU)
1
2 +

1
12

(ΔτU)
3
2 + O((ΔτU)2)

in the DQMC and
ν = (2U)

1
2 Δτ

in the HQMC,

• K = (kij) is a matrix describing lattice structure:

kij =
{

1, if i and j are nearest neighbor,
0, otherwise,

• V�(h�) is an N ×N diagonal matrix,

V�(h�) = diag(h�,1, h�,2, . . . , h�,N),

• h�,i are random variables, referred to as Hubbard-Stratonovich field
or configurations, h�,i = 1 or −1 in the DQMC. In the HQMC, h�,i

are obtained from the MD move.

The Hubbard matrix M displays the property of multi-length scaling,
since the dimensions and numerical properties of M are characterized by
multiple length and energy parameters, and random variables. Specifi-
cally, we have

1. Length parameters: N and L

• N is the spatial size. If the density ρ is given, N also measures
the number of electrons being simulated.
• L is the number of blocks related to the inverse temperature
β = LΔτ .

2. Energy-scale parameters: t, U and β

Numerical Methods for QMC 33

• t determines the hopping of electrons between different atoms
in the solid and thus measures the material’s kinetic energy.
• U measures the strength of the interactions between the elec-

trons, that is the potential energy.
• β is the inverse temperature, β = 1

kBT , where kB is the Boltz-
mann’s constant and T is the temperature.

3. The parameter connecting length and energy scales: Δτ = β/L.

• Δτ is a discretization parameter, a measure of the accuracy
of the Trotter-Suzuki decomposition, see (1.11).

In more complex situations other energy scales also enter, such as the
frequency of ionic vibrations (phonons) and the strength of the coupling
of electrons to those vibrations.

Under these parameters of multi-length scaling, the Hubbard matrix
M has the following features:

• M incorporates multiple structural scales: The inverse tempera-
ture β determines the number of blocks L = β/Δτ , where Δτ is a
discretization step size. Typically L = O(102). The dimension of
the individual blocks is set by N the number of spatial sites. In a
typical 2D simulations N = Nx×Ny = O(103). Thus the order of
the Hubbard matrix M is about O(105).

• M incorporates multiple energy scales: The parameter t deter-
mines the kinetic energy of the electrons, and the interaction en-
ergy scale U determines the potential energy. We will see that
the condition number and eigenvalue distribution of the Hubbard
matrix M are strongly influenced by these energy parameters.

• M is a function ofNL random variables h�i, the so-called Hubbard-
Stratonovich field or configurations. The goal of the simulation is
to sample these configurations which make major contributions to
physical measurements. Therefore, the underlying matrix compu-
tation problems need to be solved several thousand times in a full
simulation. Figure 2.1 shows a typical MD trajectory in a HQMC
simulation, where at every step, we need to a linear system of
equations associated with the Hubbard matrix M .

The matrix computation problems arising from the quantum Monte
Carlo simulations include

1. Computation of the ratio of the determinants det[cM]

det[M]
, where M̂ is

a low-rank update of M , see the Metropolis acceptance-rejection
step in the DQMC algorithm, see section 1.2.2 and Appendix A.

34 Bai, Chen, Scalettar, Yamazaki

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P

X

h
11

h
11

→ h
11
’ :

 400*M−1

MD step:
 0.01

h
11
’

Figure 2.1: A typical MD trajectory in a HQMC simulation.

2. Solution of linear systems of the form MTMx = b, see the HQMC
algorithm for computing the force term in the molecular dynamics
step, section 1.3.2.

3. Computation of certain entries and the traces of the inverse of
the matrix M for physical observables, such as energy, density,
moments, magnetism and superconductivity, see sections 1.2.3 and
1.3.3.

One of computational challenges associated with the QMC simulation
of the Hubbard model is the wide range of values of parameters. For
example, the spatial dimension is N = Nx ×Ny. When N is increased
from O(102) to O(104), that is, to do a 10000 electron QMC simulation,
it would have a tremendous impact on our understanding of strongly
interacting materials. It would allow for the first time the simulation
of systems incorporating a reasonable number of mesoscopic structures,
such as a “checkerboard” electronic crystal [18], and stripe structure
arising from removing electrons from the filling of one electron per site
[21].

Another computational challenge is on the ill-conditioning of the un-
derlying matrix computation problems when the energy scale parameters
U and β are in certain ranges. In the rest of this section, we will illustrate
these challenges in detail.

Numerical Methods for QMC 35

2.2 Basic properties

Let us first study some basic properties of the Hubbard matrix M as
defined in (2.1).

1. The Hubbard matrix M can be compactly written as

M = INL − diag(B1, B2, . . . , BL)Π (2.3)

or
M = INL − (IN ⊗B)D[L](P ⊗ IN), (2.4)

where IN and INL are N ×N and NL×NL unit matrices, respec-
tively,

P =

⎡⎢⎢⎢⎣
0 −1
1 0

.
1 0

⎤⎥⎥⎥⎦ , Π = P ⊗ IN =

⎡⎢⎢⎢⎣
0 −IN
IN 0

.
IN 0

⎤⎥⎥⎥⎦
and

B = etΔτK ,

D[L] = diag (D1, D2, . . . , DL) .

2. A block LU factorization of M is given by

M = LU, (2.5)

where

L =

⎡⎢⎢⎢⎢⎢⎣
I
−B2 I

−B3 I
.
−BL I

⎤⎥⎥⎥⎥⎥⎦
and

U =

⎡⎢⎢⎢⎢⎢⎣
I B1

I B2B1

. . .
...

I BL−1BL−2 · · ·B1

I + BLBL−1 · · ·B1

⎤⎥⎥⎥⎥⎥⎦ .
3. The inverses of the factors L and U are given by

L−1 =

⎡⎢⎢⎢⎢⎢⎣
I
B2 I
B3B2 B3 I
...

.
BL · · ·B2 BL · · ·B3 · · · BL I

⎤⎥⎥⎥⎥⎥⎦

36 Bai, Chen, Scalettar, Yamazaki

and

U−1 =

⎡⎢⎢⎢⎢⎢⎣
I −B1F
I −B2B1F

. . .
...

I −BL−1BL−2 · · ·B1F
F

⎤⎥⎥⎥⎥⎥⎦
where F = (I +BLBL−1 · · ·B2B1)−1.

4. The inverse of M is explicitly given by

M−1 = U−1L−1 = W−1Z, (2.6)

where

W =

⎡⎢⎢⎢⎣
I +B1BL · · ·B2

I +B2B1BL · · ·B3

. . .
I +BLBL−1 · · ·B1

⎤⎥⎥⎥⎦
and

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I −B1BL · · ·B3 · · · −B1

B2 I · · · −B2B1

B3B2 B3 · · · −B3B2B1

...
...

...
...

BL−1 · · ·B2 BL−1 · · ·B3 · · · −BL−1 · · ·B2B1

BL · · ·B2 BL · · ·B3 · · · I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In other words, the (i, j) block submatrix of M−1 is given by

{M−1}i,j = (I +Bi · · ·B1BL · · ·Bi+1)−1Zij

where

Zij =

⎧⎨⎩
−BiBi−1 · · ·B1BLBL−1 · · ·Bj+1, i < j
I, i = j
BiBi−1 · · ·Bj+1, i > j

.

5. By the LU factorization (2.5), we immediately have the following
determinant identity:

det[M] = det[I +BLBL−1 · · ·B1]. (2.7)

Numerical Methods for QMC 37

2.3 Matrix exponential B = etΔτK

In this section, we discuss how to compute the matrix exponential

B = etΔτK,

where K defines a 2-D Nx ×Ny rectangle spatial lattice:

K = Iy ⊗Kx +Ky ⊗ Ix,
Ix and Iy are unit matrices of dimensions Nx and Ny, respectively, and
Kx and Ky are Nx ×Nx and Ny ×Ny matrices of the form

Kx,Ky =

⎡⎢⎢⎢⎢⎢⎣
0 1 1
1 0 1

. . .
. . .

. . .
1 0 1

1 1 0

⎤⎥⎥⎥⎥⎥⎦ ,
and ⊗ is the Kronecker product.

A survey of numerical methods for computing the matrix exponential
can be found in [19]. A simple approach is to use the eigendecomposition
of the matrix K. First, by the definition of K and the property of the
Kronecker product (see Appendix B.4), the matrix exponential etΔτK

can be written as the product of two matrix exponentials:

B = etΔτK = (Iy ⊗ etΔτKx)(etΔτKy ⊗ Ix) = etΔτKy ⊗ etΔτKx.

By straightforward calculation, we can verify the following lemma.
Lemma 2.1. The eigenvalues of K are

κij = 2(cos θi + cos θj), (2.8)

where

θi =
2iπ
Nx

, for i = 0, 1, 2, . . . , Nx − 1

θj =
2jπ
Ny

, for j = 0, 1, 2, . . . , Ny − 1.

The corresponding eigenvectors are

vij = uj ⊗ ui,

where

ui =
1√
Nx

[1, eiθi, ei2θi, . . . , ei(Nx−1)θi]T ,

uj =
1√
Ny

[1, eiθj , ei2θj , . . . , ei(Ny−1)θj]T .

38 Bai, Chen, Scalettar, Yamazaki

By Lemma 2.1, we can use the FFT to compute B. The computa-
tional complexity of formulating the matrix B explicitly is O(N2). The
cost of the matrix-vector multiplication is O(N logN).

We now consider a computational technique referred to as the “checker-
board method” in computational physics. The method is particularly
useful when the hopping parameter t depends on the location (i, j) on
the lattice, i.e. t is not a constant. The checkerboard method only costs
O(N). Let us describe this method in detail. For simplicity, assume that
Nx and Ny are even. Write Kx as

Kx = K(1)
x +K(2)

x ,

where

K(1)
x =

⎡⎢⎢⎢⎣
D
D

. . .
D

⎤⎥⎥⎥⎦ , K(2)
x =

⎡⎢⎢⎢⎢⎢⎣
0 1
D

. . .
D

1 0

⎤⎥⎥⎥⎥⎥⎦ , D =
[
0 1
1 0

]
.

Note that for any scalar α �= 0, the matrix exponential eαD is given by

eαD =
[

coshα sinhα
sinhα coshα

]
.

Therefore, we have

eαK(1)
x =

⎡⎢⎢⎢⎣
eαD

eαD

. . .
eαD

⎤⎥⎥⎥⎦ , eαK(2)
x =

⎡⎢⎢⎢⎢⎢⎣
coshα sinhα

eαD

. . .
eαD

sinhα coshα

⎤⎥⎥⎥⎥⎥⎦ .

Since K(1)
x does not commute with K

(2)
x , we use the Trotter-Suzuki ap-

proximation
eαKx = eαK(1)

x eαK(2)
x +O(α2).

By an exactly analogous calculation, we have the approximation

eαKy = eαK(1)
y eαK(2)

y +O(α2).

Subsequently, we have

B = etΔτKy ⊗ etΔτKx

= (etΔτK(1)
y etΔτK(2)

y)⊗ (etΔτK(1)
x etΔτK(2)

x) +O((tΔτ)2).

Numerical Methods for QMC 39

Therefore, when tΔτ is small, the matrix B can be approximated by

B̂ = (etΔτK(1)
y etΔτK(2)

y)⊗ (etΔτK(1)
x etΔτK(2)

x). (2.9)

There are no more than 16 nonzero elements in each row and column of
the matrix B̂. If coshα and sinhα are computed in advance, the cost of
constructing the matrix B̂ is 16N .

Note the the approximation B̂ is not symmetric. A symmetric ap-
proximation of B is given by

B̂ = (e
tΔτ
2 K(2)

y etΔτK(1)
y e

tΔτ
2 K(2)

y)⊗ (e
tΔτ
2 K(2)

x etΔτK(1)
x e

tΔτ
2 K(2)

x).

In this case, there are no more than 36 nonzero elements in each row
and column.

Sometimes, it is necessary to compute the matrix-vector multiplica-
tion B̂w. Let w be a vector of the dimension N = Nx×Ny obtained by
stacking the columns of an Nx ×Ny matrix W into one long vector:

w = vec(W).

Then it can be verified that

B̂w = vec(etΔτK(2)
x etΔτK(1)

x WetΔτK(1)
y etΔτK(2)

y). (2.10)

As a result, the cost of the matrix-vector multiplication B̂w is 12N flops.
It can be further reduced by rewriting the block eαD as

eαD = coshα
[

1 tanhα
tanhα 1

]
.

Using this trick, the cost of the matrix-vector multiplication B̂w is 9N
flops.

2.4 Eigenvalue distribution of M

The study of eigenvalues of a cyclic matrix of the form (2.1) can be traced
back to the work of Frobenius, Romanovsky and Varga, see [20]. The
following theorem characterizes the eigenvalues of the Hubbard matrix
M defined in (2.1).

Theorem 2.1. For each eigenpair (θ, z) of the matrix BL · · ·B2B1:

(BL · · ·B2B1)z = θz,

there are L corresponding eigenpairs (λ�, v�) of the matrix M :

Mv� = λ�v� for � = 0, 1, . . . , L− 1,

40 Bai, Chen, Scalettar, Yamazaki

where

λ� = 1− μ� and v� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(BL · · ·B3B2)−1μL−1
� z

(BL · · ·B3)−1μL−2
� z

...
B−1

L μ�z

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

and μ� = θ
1
L ei

(2�+1)π
L

Proof. By verifying (I −M)v� = μ�v�. �

2.4.1 The case U = 0

When the Hubbard system without Coulomb interaction, U = 0, we
have

B1 = B2 = · · · = BL = B = etΔτK .

In this case, the eigenvalues of the matrix M are known explicitly.
Theorem 2.2. When U = 0, the eigenvalues of the matrix M are

λ(M) = 1− etΔτκijei
(2�+1)π

L , (2.11)

for i = 0, 1, . . . , Nx− 1, j = 0, 1, . . . , Ny− 1 and � = 0, 1, . . .L− 1, where
κij is defined in (2.8). Furthermore,

max |1− λ(M)| = e4tΔτ and min |1− λ(M)| = e−4tΔτ .

Figure 2.2 shows the eigenvalue distribution of the matrix M with
the setting (N,L,U, β, t) = (4 × 4, 8, 0, 1, 1). In this case, the order of
the matrix M is NL = 4 × 4 × 8 = 128. Theorem 2.2 can be used
to interpret the distribution. It has a ring structure, centered at (1, 0).
On every ring there are L = 8 circles. Alternatively, we can also view
that the eigenvalues are distributed on L = 8 rays, originated from the
point (1, 0). The eigenvalues κij of the matrix K only have 5 different
values. There are total 40 circles, which indicate the multiplicity of some
eigenvalues.

Let us examine the dynamics of eigenvalue distributions of M under
the variation of the parameters N,L,U and t.

1. Lattice size N : Figure 2.3 shows the eigenvalue distributions for
N = 4 × 4 and N = 16 × 16. Other parameters are set as
(L,U, β, t) = (8, 0, 1, 1). Since L is fixed, the number of rays does
not change. When N is increased from 4 × 4 to 16 × 16, there
are more points (eigenvalues) on each ray. Note that the range of
eigenvalue distribution on each ray stays the same.

Numerical Methods for QMC 41

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.2: Eigenvalue distribution of M .

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
N=16
N=256

Figure 2.3: Eigenvalue distributions of M for different N .

42 Bai, Chen, Scalettar, Yamazaki

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
L=8
L=64

Figure 2.4: Eigenvalue distributions of M for different L.

2. Block number L: Figure 2.4 shows the eigenvalue distribution for
block numbers L = 8 and L = 64. Other parameters are set as
(N,U, β, t) = (4×4, 0, 1, 1). As we observe that as L increases, the
number of rays increases, and the range of the eigenvalue distribu-
tion on each ray shrinks and becomes more clustered.

3. Block number L and hopping parameter t: Figure 2.5 shows the
eigenvalue distributions for pairs (L, t) = (8, 1) and (64, 8). Other
parameters are set as (N,U, β) = (4×4, 0, 1). By Theorem 2.2, we
know that the points (eigenvalues) on each ring are L. When L
increases, the points on each ring increase. At the same time, since
Δτ = 1

L , the range of |1 − λ(M)| is [e−
4t
L e

4t
L], the bandwidth of

the range will shrink when L increases. Since the ratio t
L is fixed,

the bandwidth of the ring keeps the same.

2.4.2 The case U �= 0

Unfortunately, there is no explicit expression for the eigenvalues of the
matrix M when U �= 0. Figure 2.6 shows that as U increases, the
eigenvalues on each ray tend to spread out. Other parameters are set as
(N,L, β, t) = (4× 4, 8, 1, 1).

Numerical Methods for QMC 43

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
L=8,t=1
L=64,t=8

Figure 2.5: Eigenvalue distributions of M for different (L, t).

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
U=0
U=6

Figure 2.6: Eigenvalue distributions of M for different U .

44 Bai, Chen, Scalettar, Yamazaki

2.5 Condition number of M

In this section, we study the condition number of the Hubbard matrix
M defined in (2.1).

2.5.1 The case U = 0

When U = 0, M is a deterministic matrix and B1 = · · · = BL = B =
etΔτK. First, we have the following lemma about the eigenvalues of the
symmetric matrix MTM .
Lemma 2.2. When U = 0, the eigenvalues of MTM are

λ�(MTM) = 1 + 2λ(B) cos θ� + (λ(B))2, (2.12)

where

θ� =
(2�+ 1)π

L
for � = 0, 1, · · · , L− 1.
Proof. The lemma is based on the following fact. For any real number
a, the eigenvalues of the matrix

A(a) =

⎡⎢⎢⎢⎣
1 + a2 −a a
−a 1 + a2 −a

.
a −a 1 + a2

⎤⎥⎥⎥⎦
are λ(A(a)) = 1− 2a cos θ� + a2. �

We note that when a is a real number,

sin2 θ ≤ 1− 2a cos θ + a2 ≤ (1 + |a|)2.
Therefore, by the expression (2.12), we have the following inequalities to
bound the largest and smallest eigenvalues of the matrix MTM :

maxλ�(MTM) ≤ (1 + max |λ(B)|)2

and
minλ�(MTM) ≥ sin2 π

L
.

By these inequalities, the norms of M and M−1 are bounded by

‖M‖ = maxλ�(MTM)
1
2 ≤ 1 + max |λ(B)|,

and
‖M−1‖ =

1
min λ�(MTM)

1
2
≤ 1

sin π
L

. (2.13)

Note that B = etΔτK and λmax(K) = 4, we have the following upper
bound of the condition number κ(M) of M .

Numerical Methods for QMC 45

Theorem 2.3. When U = 0,

κ(M) = ‖M‖ ‖M−1‖ ≤ 1 + e4tΔτ

sin π
L

= O(L). (2.14)

By the theorem, we conclude that when U = 0, the matrix M is
well-conditioned.

2.5.2 The case U �= 0

We now consider the situation when U �= 0. By the representation of M
in (2.3), we have

‖M‖ ≤ 1 + max
�
‖B�‖ ‖Π‖ = 1 + max

�
‖B�‖ ≤ 1 + e4tΔτ+ν. (2.15)

To bound ‖M−1‖, we first consider the case where U is small. In this
case, we can treat it as a small perturbation of the case U = 0. We have
the following result.

Theorem 2.4. If U is sufficient small such that

eν < 1 + sin
π

L
, (2.16)

then

κ(M) = ‖M‖ ‖M−1‖ ≤ 1 + e4tΔτ+ν

sin π
L + 1− eν

.

Proof: First we note that M can be written as a perturbation of M at
U = 0:

M = M0 + diag(B −B�)Π,

where M0 denotes the matrix M when U = 0. Therefore, if

‖M−1
0 diag(B −B�)‖ < 1,

then we have

‖M−1‖ ≤ ‖M−1
0 ‖

1− ‖M−1
0 diag(B −B�)‖

. (2.17)

Note that ‖Π‖ = 1.
Since the block elements of the matrix M0 are B or I, and the eigen-

values of the matrix B and B−1 are the same, by following the proof of
Lemma 2.2, we have

‖M−1
0 diag(B)‖ ≤ 1

sin π
L

.

46 Bai, Chen, Scalettar, Yamazaki

Hence

‖M−1
0 diag(B −B�)‖ ≤ ‖M−1

0 diag(B)‖ · ‖diag(I −D�)‖
≤ eν − 1

sin π
L

.

If
eν − 1
sin π

L

< 1,

then by (2.17) and (2.13), we have

‖M−1‖ ≤
1

sin π
L

1− eν−1
sin π

L

=
1

sin π
L + 1− eν

. (2.18)

The theorem is proven by combining inequalities (2.15) and (2.18). �
Note that the Taylor expansion of ν gives the expression

ν =
√
UΔτ +

(UΔτ)
3
2

12
+O(U2Δτ2). (2.19)

Therefore, to the first-order approximation, the condition (2.16) is equiv-
alent to √

U ≤ π

β

√
Δτ +O(Δτ). (2.20)

Consequently, to the first order approximation, we have

κ(M) ≤ L(1 + e4tΔτ+ν)
π − β√UΔτ − Uβ/2 +O(U

3
2βΔτ

1
2).

By the inequality, we conclude that when U is sufficient small enough,
M is well-conditioned and κ(M) = O(L).

It is an open problem to find a rigorous sharp bound of κ(M) when
U �= 0. Figure 2.7 shows the averages of the condition numbers of M
for 100 Hubbard-Stratonovich configurations h�,i = ±1, where N = 16,
L = 8β with β = [1 : 10], and t = 1.

Figure 2.7 reveals several key issues concerning the transitional be-
haviors of the condition number of κ(M):

1. The condition number increases much more rapidly than the linear
rise which we know analytically at U = 0.

2. Not only does the condition number increase with U , but also so
do its fluctuations over the 100 chosen field configurations.

3. When the inverse temperature β increases, the conditioning of M
becomes worse.

Numerical Methods for QMC 47

0 2 4 6 8 10
10

1

10
2

10
3

10
4

10
5

10
6

C
o

n
d

iti
o

n
 n

u
m

b
e

r
o

f
M

β=[1 : 10], N
x
=4, N=N

x
*N

x
, L=8β

U=2
U=4
U=6

Figure 2.7: Condition numbers κ(M) for different U

These observations tell us that the energy parameters U and β, which
in turn determines L, are two critical parameters for the conditioning of
the underlying matrix problems. The matrix M becomes ill-conditioned
at low temperature (large β) or strong coupling (large U). It suggests
that widely varying conditioning of the matrix problems is encountered
in the course of a simulation, robust and efficient matrix solvers need to
adopt different solution strategies depending on the conditioning of the
underlying matrix problems.

2.6 Condition number of M (k)

For an integer k ≤ L, a structure-preserving factor-of-k reduction of the
matrix M leads a matrix M (k) of the same block form

M (k) =

⎡⎢⎢⎢⎢⎢⎢⎣
I B

(k)
1

−B(k)
2 I

−B(k)
3 I

.
−B(k)

Lk
I

⎤⎥⎥⎥⎥⎥⎥⎦ .

48 Bai, Chen, Scalettar, Yamazaki

where Lk = �L
k � is the number of blocks and

B
(k)
1 = BkBk−1 · · ·B2B1

B
(k)
2 = B2kB2k−1 · · ·Bk+2Bk+1

...
B

(k)
Lk

= BLBL−1 · · ·B(Lk−1)k+1.

First we have the following observation. The inverse of M (k) is a
“submatrix” of the inverse of M . Specifically, since M and M (k) have
the same block cyclic structure, by the expression (2.6), we immediately
have the following expression for the (i, j) block of {M (k)}−1

i,j :

{M (k)}−1
i,j = (I +B

(k)
i · · ·B(k)

1 B
(k)
L · · ·B(k)

i+1)
−1Z

(k)
i,j

where

Z
(k)
i,j =

⎧⎪⎨⎪⎩
−B(k)

i · · ·B(k)
1 B

(k)
L · · ·B(k)

j+1, i < j

I, i = j

B
(k)
i B

(k)
i−1 · · ·B(k)

j+1, i > j

,

By the definition of B(k)
i , and if i �= L(k)

{M (k)}−1
i,j = (I +Bik · · ·B1BL · · ·Bi∗k+1)−1 ×⎧⎨⎩−Bi∗k · · ·B1BL · · ·Bj∗k+1, i < j

I, i = j
Bi∗k · · ·Bj∗k+1, i > j

.

Hence if i �= L(k),
{M (k)}−1

i,j = {M−1}i∗k,j∗k.

If i = L(k), we have

{M (k)}−1
i,j = (I +BL · · ·B1)−1

{
BL · · ·Bj∗k+1, j < L
I, j = L

.

Hence if i = L(k),

{M (k)}−1
L(k),j

= {M−1}L,j∗k.

We now turn to the discussion of the condition number of the matrix
M (k). We have the following two immediate results:

1. The upper bound of the norm of the matrix M (k) is given by

‖M (k)‖ ≤ 1 + e(4tΔτ+ν)k. (2.21)

This is due to the fact that ‖B(k)
� ‖ ≤ e(4tΔτ+ν)k.

Numerical Methods for QMC 49

2. The norm of the inverse of the matrix M (k) is bounded by

‖(M (k))−1‖ ≤ ‖M−1‖. (2.22)

This is due to the fact that (M (k))−1 is a “submatrix” of M−1.

By combining (2.21) and (2.22), we have an upper bound of the
condition number of the reduced matrix M (k) in terms of the condition
number of the original matrix M :

κ(M (k)) = ‖M (k)‖ ‖(M (k))−1‖

≤ ‖M
(k)‖

‖M‖ κ(M)

≤ 1 + e(4tΔτ+ν)k

‖M‖ κ(M)

≤ c e(4tΔτ+ν)kκ(M), (2.23)

where c is some constant. The inequality (2.23) shows that comparing to
the condition number of M , the condition number of M (k) is amplified
by a factor proportional to the reduction factor k.

For further details, we consider the following three cases:

1. U = 0 and k = L. In this case, the matrix M is reduced to a single
block

M (L) = I +BL · · ·B2B1

= I +B · · ·BB
= I +BL

= I + (etΔτK)L

= I + etβK .

By the eigendecomposition of the matrix K, see Lemma 2.1, the
condition number of M (L) is given by

κ(M (L)) =
1 + e4tβ

1 + e−4tβ
.

Therefore, for large β, M (L) is extremely ill-conditioned.

2. U = 0 and k < L and Lk = L
k is an integer. In this case, we have

κ(M (k)) ≤ 1 + e4tΔτk

sin π
Lk

.

50 Bai, Chen, Scalettar, Yamazaki

0 5 10 15 20 25 30
10

1

10
2

10
3

10
4

10
5

10
6

10
7

k = [1 : 30]

co
n

d
iti

o
n

 n
u

m
b

e
r

o
f

M
(k

)

Condition number of M(k), N=64, β=10, Δτ=1/8, U=0

Theoretical condition number
Computational condition number

Figure 2.8: Condition numbers of M (k), U = 0.

The inequality can be proven similarly as the proof of Lemma 2.2.
It is anticipated that the bound is still true when L/k is not an
integer. Figure 2.8 shows condition numbers of M (k) with respect
to the reduction factor k when U = 0. The computational and
estimated condition numbers fit well.

3. For the general case of U �= 0, we have the bound (2.23). Figure 2.9
shows the condition numbers of sample matrices M (k) (solid lines)
for U = 4 and U = 6. The upper bound (2.23) are dashed line with
circles. The mean of condition numbers κ(M) of sample matrices
M are used in the bound (2.23). It is clear that the upper bound
(2.23) of the condition numbers ofM (k) is an over estimation of the
actual conditioning of M (k). This may partially due to the over-
estimation of the norm of M (k). We observe that the condition
number of M (k) is closer to e

1
2 k(4tΔτ+ν)κ(M). This is shown as the

dashed lines with diamonds in the following plots. It is a subject
of further study.

3 Self-adaptive direct linear solvers

In this section, we consider one of the computational kernels of the QMC
simulations discussed in sections 1 and 2, namely solving the linear sys-
tem of equations

Mx = b, (3.1)

Numerical Methods for QMC 51

0 2 4 6 8 10 12
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

k = [1 : 12]

co
n

d
iti

o
n

 n
u

m
b

e
r

o
f

M
(k

)

Condition number of M(k), N=64, β=10, Δτ=1/8, U=6

ek(4tτ+ν)Cond(M)

ek(4tτ+ν)/2Cond(M)
Computational condition number(1)
Computational condition number(2)
Computational condition number(3)

Figure 2.9: Condition numbers of M (k), U = 6.

where the coefficient matrix M is the Hubbard matrix as defined in
(2.1) of section 2. One of challenges in QMC simulations is to develop
algorithmic techniques that can robustly and efficiently solve numerical
linear algebra problems with underlying multi-length scale coefficient
matrices in a self-adapting fashion. In this section, we present such an
approach for solving the linear system (3.1).

The structure of Hubbard matrix M exhibits the form of so-called
block p-cyclic consistently ordered matrix [20]. p-cyclic matrices arise
in a number of contexts in applied mathematics, such as numerical so-
lution of boundary value problems for ordinary differential equations
[28], finite-difference equations for the steady-state solution of parabolic
equations with periodic boundary conditions [27], and the stationary so-
lution of Markov chains with periodic graph structure [26]. It is known
that the block Gaussian elimination with and without pivoting for solv-
ing p-cyclic linear systems could be numerically unstable, as shown in
the cases arising from the multiple shooting method for solving two-
point boundary value problems [30, 23] and Markov chain modeling [25].
Block cyclic reduction [22] is a powerful idea to solve such p-cyclic sys-
tem since the number of unknowns is reduced exponentially. However,
a full block cyclic reduction is inherently unstable and is only applica-
ble for some energy scales, namely U ≤ 1, due to ill-conditioning of the
reduced system. A stable p-cyclic linear system solver is based on the
structural orthogonal factorization [29, 23]. However, the costs of mem-
ory requirements and flops are prohibitively expensive when the length
scale parameters N and L increase.

52 Bai, Chen, Scalettar, Yamazaki

To take advantages of the block cyclic reduction and the structural
orthogonal factorization method, in this section, we present a hybrid
method to solve the linear system (3.1). The hybrid method performs
a partial cyclic reduction in a self-adaptive way depending on system pa-
rameters such that the reduced system is still sufficiently well-conditioned
to give rise a solution of the desired accuracy computed by the struc-
tural orthogonal factorization method. The hybrid method is called
self-adaptive block cyclic reduction, or SABCR in short.

3.1 Block cyclic reduction

Consider the following 16× 16 block cyclic linear system (3.1):

Mx = b,

where

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I B1

−B2 I
−B3 I

−B4 I
.
−B15 I

−B16 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Correspondingly, partitions of the vectors x and b are conformed to the
blocks of M :

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

...
x15

x16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
b3
b4
...
b15
b16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A factor-of-four block cyclic reduction (BCR) leads to the following 4×4
block cycle system:

M (4)x(4) = b(4), (3.2)

where

M (4) =

⎡⎢⎢⎢⎣
I B

(4)
1

−B(4)
2 I

−B(4)
3 I

−B(4)
4 I

⎤⎥⎥⎥⎦ , x(4) =

⎡⎢⎢⎣
x4

x8

x12

x16

⎤⎥⎥⎦ , b(4) =

⎡⎢⎢⎢⎣
b
(4)
1

b
(4)
2

b
(4)
3

b
(4)
4

⎤⎥⎥⎥⎦

Numerical Methods for QMC 53

and
B

(4)
1 = B4B3B2B1,

B
(4)
2 = B8B7B6B5,

B
(4)
3 = B12B11B10B9,

B
(4)
4 = B16B15B14B13,

and
b
(4)
1 = b4 +B4b3 +B4B3b2 +B4B3B2b1,

b
(4)
2 = b8 +B8b7 +B8B7b6 +B8B7B6b5,

b
(4)
3 = b12 +B12b11 +B12B11b10 +B12B11B10b9,

b
(4)
4 = b16 +B16b15 +B16B15b14 +B16B15B14b13.

Therefore, to solve the original linear system (3.1), one can first solve
the reduced system (3.2). Once the vector x(4) is computed, i.e, the
block components x4, x8, x12 and x16 of the solution x are computed,
the rest of block components xi of the solution x can be computed by
the following forward and back substitutions:

• Forward substitution:

x1 = b1 −B1x16,
x5 = b5 +B5x4,
x9 = b9 +B9x8,
x13 = b13 +B13x12,

x2 = b2 +B2x1,
x6 = b6 +B6x5,
x10 = b10 +B10x9,
x14 = b14 +B14x13,

• Back substitution:

x3 = B−1
4 (x4 − b4),

x11 = B−1
12 (x12 − b12),

x7 = B−1
8 (x8 − b8),

x15 = B−1
16 (x16 − b16),

The use of both forward and back substitutions is intended to minimize
the propagation of rounding errors in the computed components x4, x8,
x12 and x16.

The pattern for a general factor-of-k reduction is clear. Given an
integer k ≤ L, a-factor-of-k BCR leads to a Lk × Lk block cycle linear
system:

M (k)x(k) = b(k), (3.3)

where Lk = �L
k �,

M (k) =

⎡⎢⎢⎢⎢⎢⎢⎣
I B

(k)
1

−B(k)
2 I

−B(k)
3 I

.
−B(k)

Lk
I

⎤⎥⎥⎥⎥⎥⎥⎦ ,

54 Bai, Chen, Scalettar, Yamazaki

with

B
(k)
1 = BkBk−1 · · ·B2B1

B
(k)
2 = B2kB2k−1 · · ·Bk+2Bk+1

...
B

(k)
Lk

= BLBL−1 · · ·B(Lk−1)k+1,

and the vectors x(k) and b(k) are

x(k) =

⎡⎢⎢⎢⎢⎢⎣
xk

x2k

...
x(Lk−1)k

xL

⎤⎥⎥⎥⎥⎥⎦
and

b(k) =

⎡⎢⎢⎢⎢⎢⎢⎣
bk +

∑k−1
t=1 Bk · · ·Bt+1bt

b2k +
∑2k−1

t=k+1 B2k · · ·Bt+1bt
...
b(Lk−1)k +

∑(Lk−1)k−1
t=(Lk−2)k+1 B(Lk−1)k · · ·Bt+1bt

bL +
∑L−1

t=(Lk−1)k+1 BL · · ·Bt+1bt

⎤⎥⎥⎥⎥⎥⎥⎦ .

After the solution vector x(k) of the reduced system (3.3) is computed,
the rest of block components xi of the solution vector x are obtained by
forward and back substitutions as shown in the following:

Forward and back substitutions

1. Let � = [k, 2k, · · · , (Lk − 1)k, L]
2. For j = 1, 2, · · · , Lk

(a) x�(j) = x
(k)
j

(b) forward substitution
For i = �(j − 1) + 1, . . . , �(j − 1) + � 12 (�(j) − �(j −
1)− 1)� with �(0) = 0:

If i = 1, x1 = b1 −B1xL

else xi = bi +Bixi−1

(c) back substitution
For i = �(j)− 1, �(j)− 2, . . . , �(j)− � 12 (�(j)− �(j −
1)− 1)�,

xi = B−1
i+1(xi+1 − bi+1).

Numerical Methods for QMC 55

Remark 3.1. If the reduction factor k = L, then Lk = 1. The reduced
system is

M (L)xL = b(L),

i.e,

(I +BLBL−1 · · ·B1)xL = bL +
L−1∑
�=1

(BLBL−1 · · ·B�+1)b�.

Remark 3.2. There are a number of ways to derive the reduced system
(3.3). For example, we can use the block Gaussian elimination. Writing
the matrix M of the original system (3.1) as a Lk by Lk block matrix:

M =

⎡⎢⎢⎢⎢⎢⎢⎣
D1 B̂1

−B̂2 D2

−B̂3 D3

.
−B̂Lk

DLk

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Di are k × k black matrices defined as

Di =

⎡⎢⎢⎢⎢⎢⎣
I

−B(i−1)k+2 I
−B(i−1)k+3 I

.
−Bik I

⎤⎥⎥⎥⎥⎥⎦ ,

and B̂i are k × k block matrices defined as

B̂i =

⎡⎢⎢⎢⎣
0 0 · · · B(i−1)k+1

0 0 · · · 0
...

...
...

...
0 0 · · · 0

⎤⎥⎥⎥⎦ .

Define D̂ = diag(D1, D2, · · · , DLk
), then

D̂−1M =

⎡⎢⎢⎢⎢⎢⎢⎣
I D−1

1 B̂1

−D−1
2 B̂2 I

−D−1
3 B̂3 I

.
−D−1

Lk
B̂Lk

I

⎤⎥⎥⎥⎥⎥⎥⎦ ,

56 Bai, Chen, Scalettar, Yamazaki

where the matrix D−1
i B̂i is given by

D−1
i B̂i =

⎡⎢⎢⎢⎣
0 0 · · · B(i−1)k+2B(i−1)k+1

0 0 · · · B(i−1)k+3B(i−1)k+2B(i−1)k+1

...
...

...
...

0 0 · · · B(i−1)k+k · · ·B(i−1)k+2B(i−1)k+1

⎤⎥⎥⎥⎦ .

Therefore, we immediately see that M (k) is a submatrix of D̂−1M ,
namely, there exists a matrix P , such that

M (k) = PT D̂−1MP,

where the matrix P is NL× (NL/k) matrix, whose (i− 1)N + 1 to iN
columns are the (ik − 1)N + 1 to ikN columns of the identity matrix
INL.

3.2 Block structural orthogonal factorization

Comparing with the Gaussian elimination, the block structural orthog-
onal factorization (BSOF) method presented in this section is computa-
tionally more expensive, but numerically backward stable.

By multiplying a sequence of orthogonal transformation matrices Qi,
the block cyclic matrix M of the system (3.1) is transformed to a block
upper triangular matrix R:

QT
L−1 · · · QT

2Q
T
1 M = R, (3.4)

where

R =

⎡⎢⎢⎢⎢⎢⎣
R11 R12 R1L

R22 R23 R2L

.
...

RL−1,L−1 RL−1,L

RLL

⎤⎥⎥⎥⎥⎥⎦ ,
and diagonal blocks R�� are upper triangular,Q� are orthogonal matrices
of the form

Q� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
. . .

Q
(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

. . .
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Numerical Methods for QMC 57

The subblocks Q(�)
ij are defined by the orthogonal factor of the QR de-

composition: [
M̃��

−B�+1

]
=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

][
R��

0

]
,

where

M̃�� =
{
I, for � = 1
(Q(�−1)

22)T , for � = 2, 3, . . . , L− 2,

except for � = L− 1, it is defined by the QR decomposition:[
M̃L−1,L−1 RL−1,L

−BL I

]
=

[
Q

(L−1)
11 Q

(L−1)
12

Q
(L−1)
21 Q

(L−1)
22

][
RL−1,L−1 ŘL−1,L

0 RLL

]
.

The following is a pseudo-code for the BSOF method to solve the
block cyclic system (3.1).

BSOF method

1. Set M11 = I, R1L = B1 and c1 = b1

2. For � = 1, 2, · · · , L− 2
(a) Compute the QR decomposition[

M��

−B�+1

]
=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

][
R��

0

]

(b) Set
[
R�,�+1

M�+1,�+1

]
=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

]T [
0
I

]

(c) Update
[
R�L

R�+1,L

]
:=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

]T [
R�L

0

]

(d) Set
[
c�
c�+1

]
:=

[
Q

(�)
11 Q

(�)
12

Q
(�)
21 Q

(�)
22

]T [
c�
b�+1

]
3. Compute the QR decomposition[

ML−1,L−1 RL−1,L

−BL I

]
=

[
Q

(L−1)
11 Q

(L−1)
12

Q
(L−1)
21 Q

(L−1)
22

][
RL−1,L−1 RL−1,L

0 RLL

]
.

4. Set
[
cL−1

cL

]
:=

[
Q

(L−1)
11 Q

(L−1)
12

Q
(L−1)
21 Q

(L−1)
22

]T [
cL−1

bL

]
5. Back substitution to solve the block triangular system
Rx = c

58 Bai, Chen, Scalettar, Yamazaki

Figure 3.1: A schematic map of the hybrid method.

(a) Solve RLLxL = cL for xL.
(b) Solve RL−1,L−1xL−1 = cL−1 −RL−1,LxL for xL−1.
(c) For � = L− 2, L− 3, . . . , 1,

solve R��x� = c� −R�,�+1x�+1 −R�LxL for x�.

Floating point operations of the BSOF method is about 15N3L. The
memory requirement is 3N2L.

3.3 A hybrid method

To take advantages of block order reduction of the BCR method and
numerical stability of the BSOF method, we propose a hybrid method:

Step 1. Perform a factor-of-k BCR of the original system
(3.1) to derive a reduced block cyclic system (3.3) of
the block order L/k.

Step 2. Solve the reduced block cyclic system (3.3) by using
the BSOF method.

Step 3. Forward and back substitute to find the rest of
block components xi of the solution x:

{xi} ←− x(k) −→ {xj}.

Figure 3.1 is a schematic map of the hybrid method for a 16-block
cyclic system with a reduction factor k = 4. We use both forward
and back substitutions to minimize the propagation of rounding errors
induced at Steps 1 and 2.

By Step 1, the order of the original M is reduced by a factor of k.
Consequently, the computational cost of the BSOF method at Step 2 is
reduced to O(N3 L

k), a factor of k speedup. Therefore, the larger k is,
the better CPU performance is. However, the condition number of M (k)

Numerical Methods for QMC 59

increases as k increases, see the analysis presented in section 2.6. As a
result, the accuracy of the computed solution decreases. An interesting
question is how to find a reduction factor k, such that the computed
solution meets the required accuracy in QMC simulations. In practice,
such a reduction factor k should be determined in a self-adapting fashion
with respect to the changes of underlying multi-length and energy scales
in QMC simulations. This is discussed in the next section.

3.4 Self-adaptive reduction factor k

Let us turn to the question of determining the reduction factor k for the
BCR step of the proposed hybrid method. Since the BSOF method is
backward stable, by well-established error analysis of the linear system,
for example, see [24, p.120], we know that the relative error of the com-
puted solution x̂(k) of the reduced system (3.3) is bounded by κ(M (k))ε,
i.e.,

‖δx(k)‖
‖x(k)‖ ≡

‖x(k) − x̂(k)‖
‖x(k)‖ ≤ κ(M (k))ε, (3.5)

where ε is the machine precision. For the clarity of notation, we only use
the first-order upper bound and ignore the small constant coefficient.

To consider the propagation of the errors in the computed solution
x̂(k) in the back and forward substitutions, let us start with the computed
L-th block component x̂L of the solution vector x,

x̂L = xL + δxL,

where δxL is the computed error, with a related upper bound defined in
(3.5). By the forward substitution, the computed first block component
x̂1 of the solution x satisfies

x̂1 = b1 −B1x̂L

= b1 −B1(xL + δxL)
= b1 −B1xL +B1δxL

= x1 + δx1,

where δx1 = B1δxL is the error propagated by the error in x̂L. Note that
the computational error induced in the substitution is ignored, since it
is generally much smaller than the the error in x̂L.

By the relative error bound (3.5) of δxL, it yields that the error in
the computed x̂1 could be amplified by the factor ‖B1‖, namely,

‖δx1‖
‖x1‖ ≤ ‖B1‖κ(M (k)) ε.

60 Bai, Chen, Scalettar, Yamazaki

Subsequently, the relative error of the computed x̂2 obtained by the
forward substitution from x1 is bounded by

‖δx2‖
‖x2‖ ≤ ‖B2‖‖B1‖κ(M (k)) ε.

This process can be continued to bound the errors of δx3 and so on until
all that is left is x k

2
. The related error bound of computed x k

2
is given

by
‖δx k

2
‖

‖x k
2
‖ ≤ ‖B k

2
‖ · · · ‖B2‖ ‖B1‖κ(M (k)) ε.

By analogous calculations for the rest of substitutions, we conclude that
for any computed block component x̂� of the solution x, where � =
1, 2, . . . , L, the related error is bounded by

‖δx�‖
‖x�‖ ≤ ‖B k

2
‖ · · · ‖B2‖ ‖B1‖κ(M (k)) ε

≤ c e 1
2 k(4tΔτ+ν) · ek(4tΔτ+ν)κ(M) ε

= c e
3
2 k(4tΔτ+ν)κ(M) ε, (3.6)

where for the second inequality we have used the upper bounds (2.15)
and (2.23) for the norm of B� and the condition number of the matrix
M (k).

Assume that the desired relative accuracy of the computed solution
x is “tol”, i.e.,

‖δx‖
‖x‖ ≤ tol. (3.7)

Then by inequalities (3.6) and (3.7), a plausible choice of the reduction
factor k is

k =
⌊ 2

3 ln(tol/ε)
4tΔτ + ν

⌋
. (3.8)

To balance the number of the matrices B� in the product B(k)
� , after k

is computed, the final k is then slightly adjusted by k =
⌈

L
Lk

⌉
, where

Lk =
⌈

L
k

⌉
.

We note that the factor of lnκ(M) is dropped in deciding reduction
factor k. The reason is that as we discussed in section 2.5, κ(M) grows
slowly in the range of parameters of interest, lnκ(M) is small.

By expression (3.8), the reduction factor k is determined in a self-
adaptive fashion. When energy parameters U and β = L · Δτ change,
k is determined adaptively to achieve the desired accuracy “tol”. For
example, let t = 1 and Δτ = 1

8 , if the desired accuracy threshold is tol =
10−8, then with double precision arithmetic and machine precision ε =

Numerical Methods for QMC 61

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

β = [1 : 20]

L
(k

)

L(k) with N=256, L=8β, t=1

U=2
U=4
U=6

Figure 3.2: Reduced block size Lk

10−16, the reduction factor k with respect to different energy parameter
U is shown in the following table:

U 0 1 2 3 4 5 6
k 24 14 12 10 9 9 8

Figure 3.2 shows the reduced block sizes Lk with respect to different
values of U , where L = 8β, β = 1, 2, . . . , 20 and t = 1 The accuracy is
set to be half of the machine precision, i.e., tol =

√
ε = 10−8.

3.5 Self-adaptive block cyclic reduction method

In summary, the self-adaptive block cyclic reduction method, SABCR in
short, to solve the linear system (3.1) may be condensed as the following:

SABCR method

1. Determine the reduction factor k by (3.8)
2. Reduce (M, b) to (M (k), b(k)) by the BCR
3. Solve the reduced system M (k)x(k) = b(k) for x(k) by

the BSOF method
4. Use forward and back substitutions to compute the re-

maining block components x� of x

3.6 Numerical experiments

In this section, we present numerical results of the SABCR method.
SABCR is implemented in Fortran 90 using LAPACK and BLAS. All

62 Bai, Chen, Scalettar, Yamazaki

numerical results are performed on an HP Itanium2 workstation with
1.5GHZ CPU and 2GB core memory. The threshold of desired relative
accuracy of computed solution x̂ is set at the order of

√
ε, namely,

‖x̂− x‖
‖x‖ ≤ tol = 10−8.

Example 1. In this example, we examine numerical accuracy and per-
formance of the SABCR method when U = 0. The other parameters of
the coefficient matrixM is set asN = 16×16, L = 8β for β = 1, 2, . . . , 20,
t = 1, Δτ = 1

8 . Figure 3.3 shows the relative errors of computed solutions
x̂ by the BSOF and SABCR methods. As we see, the BSOF method
is of full machine precision O(10−15). It indicates that the underlying
linear system is well-conditioned and the BSOF method is backward sta-
ble. On the other hand, as shown in the figure, the relative errors of the
SABCR method are at O(10−8) as desired.

Table 1 shows the reduction factor k and the reduced block size
Lk with respect to the inverse temperature β, CPU elapsed time and
speedups of the SABCR method comparing to the BSOF method. Note
that for when β ≤ 3, the reduction factor k = L and the number of
reduced block Lk = 1. As β increases, the reduction factor k decreases.
For example, when β = 20, the reduction factor k = 23 and the number
of reduced blocks Lk = � 16023 �+ 1 = 7.

Example 2. In this example, we examine numerical accuracy and per-
formance of the SABCR method for U = 2, 4, 6. The other parameters
of the coefficient matrix M are N = 16 × 16 = 256, L = 8β with
β = 1, 2, . . . , 20. t = 1 and Δτ = 1

8 . Figure 3.4 shows that the rela-
tive errors of the computed solution x̂ are under tol = 10−8 as required.
Table 2 shows the the reduced block size Lk, CPU elapsed time of the
BSOF and SABCR methods with respect to U and β. The speedups of
SABCR are shown in Figure 3.5.

Example 3. In this example, we examine computational efficiency of
the SABCR solver with respect to the number of time slices L = β/Δτ
with β = 1, 2, . . . , 20 and Δτ = 1

8 ,
1
16 ,

1
32 . The dimensions of the coef-

ficient matrices M vary from NL = 2, 048 (β = 1,Δτ = 1
8) to NL =

163, 840 (β = 20,Δτ = 1
32). The other parameters are N = 16 × 16,

U = 6 and t = 1.
Table 3 shows the the reduced block size Lk with respect to β and

Δτ (L = βΔτ), CPU elapsed time in seconds of the BSOF and SABCR
methods. Speedups are plotted in Figure 3.6.

For large energy scale parameters t, β and U , small Δτ is necessary
for the accuracy of the Trotter-Suzuki decomposition. Small Δτ implies

Numerical Methods for QMC 63

0 5 10 15 20

10
−14

10
−12

10
−10

10
−8

β = [1 : 20]

re
la

tiv
e

 s
o

lu
tio

n
 e

rr
o

r

block QR method and reduced version with N=256, t=1,Δτ=1/8,U=0

block QR method
reduced block QR method

Figure 3.3: Relative errors, U = 0

Table 1: Performance data of BSOF and SABCR methods, U = 0

β L = 8β k Lk BSOF SABCR speedup
1 8 8 1 3.19 0.0293 108
2 16 16 1 7.06 0.042 168
3 24 24 1 10.8 0.0547 197
4 32 16 2 14.6 0.303 48
5 40 20 2 18.6 0.326 57
6 48 24 2 23.1 0.342 67
7 56 19 3 27.2 0.666 40
8 64 22 3 31.3 0.683 45
9 72 24 3 35.1 0.675 52
10 80 20 4 38.0 1.18 32
11 88 22 4 42.0 1.18 35
12 96 24 4 46.0 1.20 38
13 104 21 5 49.9 1.28 38
14 112 23 5 54.0 1.28 42
15 120 24 5 58.2 1.32 44
16 128 22 6 62.9 1.67 37
17 136 23 6 68.3 1.72 39
18 144 24 6 73.2 1.73 42
19 152 22 7 75.3 1.98 38
20 160 23 7 80.2 2.02 39

64 Bai, Chen, Scalettar, Yamazaki

0 5 10 15 20
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

β = [1 : 20]

re
la

tiv
e

 s
o

lu
tio

n
 e

rr
o

r

Reduced QR algorithm with N=256, L=8β, t=1

U=2
U=4
U=6

Figure 3.4: Relative errors, U = 2, 4, 6

large L = β
Δτ . For the SABCR solver, small Δτ implies a large reduction

factor k. The SABCR is more efficient for small Δτ .

Example 4. Let us examine the memory limit with respect to the
increase of the lattice size parameter N . The memory requirement of
the BSOF method is 3N2L = 3N4

xL. If Nx = Ny = 32, the memory
storage of one N × N matrix is 8MB. Therefore for a 1.5GB memory
machine, the number L of time slices is limited to L < 63. It implies that
when Δτ = 1

8 , the inverse temperature β must be smaller than 8. The
BSOF method will run out of memory when β ≥ 8. On the other hand,
the SABCR solver should continue work for L = 8β and β = 1, 2, . . . , 10.
Table 4 shows the memory limitation of the BSOF method, where t = 1
and U = 6.

Numerical Methods for QMC 65

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

β = [1 : 20]

S
p

e
e

d
−

u
p

Speed−up with N=256, L=8β, t=1

U=2
U=4
U=6

Figure 3.5: Speedups of SABCR for U = 2, 4, 6

66 Bai, Chen, Scalettar, Yamazaki
T
ab

le
2:

P
er

fo
rm

an
ce

da
ta

of
B

SO
F

an
d

SA
B

C
R

m
et

ho
ds

,
U

=
2,

4,
6

U
=

2
U

=
4

U
=

6
β

L
k

B
SO

F
SA

B
C

R
L

k
B

SO
F

SA
B

C
R

L
k

B
SO

F
SA

B
C

R
1

1
3.

08
0.

03
22

1
3.

08
0.

03
12

1
3.

08
0.

03
12

2
2

6.
83

0.
29

3
2

6.
83

0.
29

5
2

6.
83

0.
29

4
3

2
10

.7
0.

31
3

3
10

.7
0.

59
5

3
10

.7
0.

59
5

4
3

14
.6

0.
58

8
4

14
.6

1.
05

4
14

.6
1.

05
5

4
18

.3
1.

06
5

18
.3

1.
11

5
18

.3
1.

11
6

4
22

.1
1.

08
6

22
.1

1.
50

6
22

.1
1.

51
7

5
25

.9
1.

14
7

25
.9

1.
61

7
25

.9
1.

61
8

6
29

.6
1.

54
8

29
.6

3.
26

8
29

.6
3.

26
9

6
33

.4
1.

57
8

33
.4

3.
27

9
33

.4
2.

13
10

7
37

.2
1.

68
9

37
.2

2.
14

10
37

.2
2.

61
11

8
41

.2
3.

30
10

41
.2

2.
62

11
41

.2
2.

88
12

8
45

.0
3.

31
11

45
.0

2.
90

12
45

.0
4.

59
13

9
48

.8
2.

19
12

48
.8

4.
69

13
48

.9
3.

33
14

10
52

.6
2.

71
13

52
.6

3.
43

14
52

.6
3.

60
15

10
56

.4
2.

73
14

56
.4

3.
64

15
56

.4
3.

75
16

11
60

.5
2.

79
15

60
.5

3.
75

16
60

.5
7.

40
17

12
64

.2
4.

21
16

64
.2

7.
55

17
64

.2
4.

29
18

12
67

.9
4.

20
16

67
.9

7.
61

18
67

.9
4.

68
19

13
71

.8
3.

35
17

71
.8

4.
35

19
71

.9
4.

81
20

14
75

.7
3.

72
18

75
.7

4.
69

20
75

.7
7.

42

Numerical Methods for QMC 67
T
ab

le
3:

P
er

fo
rm

an
ce

da
ta

of
B

SO
F

an
d

SA
B

C
R

m
et

ho
ds

,
L

=
β
/
Δ
τ

Δ
τ

1/
8

1/
16

1/
32

β
L

k
B

SO
F

SA
B

C
R

L
k

B
SO

F
SA

B
C

R
L

k
B

SO
F

SA
B

C
R

1
1

3.
25

0.
02

93
2

7.
25

0.
30

6
2

15
.5

0.
34

2
2

7.
28

0.
30

5
3

15
.1

0.
59

6
4

32
.9

1.
15

3
3

11
.2

0.
60

5
4

23
.0

1.
11

5
47

.3
1.

36
4

4
15

.1
1.

10
5

32
.0

1.
27

7
63

.6
1.

97
5

5
19

.2
1.

23
7

39
.1

1.
85

8
80

.3
3.

58
6

6
23

.0
1.

62
8

47
.2

3.
43

10
97

.9
3.

03
7

7
27

.2
1.

87
9

55
.4

2.
47

11
11

2
3.

54
8

8
32

.1
3.

38
10

63
.4

2.
93

13
14

0
3.

95
9

9
35

.3
2.

38
12

71
.1

4.
26

14
15

0
4.

57
10

10
39

.1
2.

86
13

79
.3

3.
91

16
16

7
8.

06
11

11
43

.2
3.

08
14

87
.6

4.
39

17
18

0
5.

40
12

12
47

.2
4.

39
15

95
.7

4.
50

19
19

6
6.

00
13

13
51

.7
3.

71
16

10
3

8.
00

20
20

9
7.

99
14

14
55

.3
4.

06
18

11
2

5.
61

22
22

4
7.

03
15

15
59

.2
4.

26
19

12
0

5.
64

23
24

0
7.

05
16

16
63

.5
7.

54
20

12
8

7.
58

25
25

8
7.

83
17

17
67

.3
4.

92
21

13
6

6.
23

26
27

3
8.

42
18

18
71

.2
5.

78
23

14
4

6.
88

28
29

0
11

.2
19

19
75

.3
5.

58
24

15
2

12
.0

29
30

5
9.

03
20

20
79

.3
7.

36
15

16
0

7.
49

31
32

1
9.

60

68 Bai, Chen, Scalettar, Yamazaki

0 5 10 15 20
0

20

40

60

80

100

120
Speed−up with t=1, U=6, N=256, Δτ=[1/8 1/16 1/32]

β = [1 : 20]

Δτ=1/8
Δτ=1/16
Δτ=1/32

Figure 3.6: Speedups of SABCR for L = β/Δτ

Table 4: SABCR for large systems, N = 32× 32

β L k Lk BSOF(sec.) SABCR (sec.) Speedup (×)
1 8 8 1 148.00 2.10 70
2 16 8 2 322.00 17.8 18
3 24 8 3 509.00 40.1 12.7
4 32 8 4 689.00 64.5 10.6
5 40 8 5 875.00 88.6 9.8
6 48 8 6 1060.00 110.00 9.6
7 56 8 7 1250.00 131.00 9.5
8 64 8 8 out of memory 150.00
9 72 8 9 out of memory 172.00
10 80 8 10 out of memory 200.00

Numerical Methods for QMC 69

4 Preconditioned iterative linear solvers

As discussed in sections 1 and 2, one of the computational kernels of the
hybrid quantum Monte Carlo (HQMC) simulation is to repeatedly solve
the linear system of equations

Ax = b, (4.1)

where A is a symmetric positive definite matrix of the form

A = MTM

and M is the Hubbard matrix as defined in (2.1).
One can solve the linear system (4.1) by solving the coupled systems

MT y = b for y and Mx = y for x using the SABCR method described
in section 3. However, the computational complexity will be O(N3L/k),
which is prohibitive for large lattice size N . In this section, we consider
preconditioned iterative solvers. It is our goal to develop an efficient a
preconditioned iterative solver that exhibits an optimal linear-scaling,
namely, the computational complexity scales linearly with respect to
the lattice size N . At the end of this section, we will see that so far,
we are only able to achieve the linear-scaling for moderately interacting
systems, namely U is small.

4.1 Iterative solvers and preconditioning

We have conducted some numerical study of applying GMRES, QMR
and Bi-CGSTAB methods to solve the p-cyclic system

Mx = b.

We observed that these methods suffer from slow convergence rates or
erratic convergence behaviors. Figures 4.1 and 4.2 show the typical con-
vergence behaviors of these methods. The parameters of the matrices M
are set as (N,L,U, t, β, μ) = (8× 8, 24, 4, 1, 3, 0) and h = ±1 with equal
probability, and the entries of the right-hand-side vector b are random
numbers chosen from a uniform distribution on the interval (0, 1).

Although the convergence of conjugate gradient (CG) method to
solve the symmetric positive definite system (4.1) is slow but robust in
the sense that residual error decreases steadily as shown in Figure 4.3.

As it is well known, the convergence rate of CG could be improved
dramatically by using a proper preconditioner R, which symmetrically
preconditions the system (4.1):

R−1AR−T · RTx = R−1b. (4.2)

An ideal preconditioner R satisfies the following three conditions:

70 Bai, Chen, Scalettar, Yamazaki

0 500 1000 1500 2000 2500 3000
10

−8

10
−6

10
−4

10
−2

10
0

Convergence behavior of GMRES for the solution of Mx=y

Number of matrix−vector products

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES
GMRES(300)

Figure 4.1: Relative residual norms of GMRES and GMRES(300).

0 1000 2000 3000 4000 5000 6000
10

−1

10
0

10
1

10
2

10
3

Convergence behavior of QMR and Bi−CGSTAB for the solution of Mx=b

Number of matrix−vector products

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

QMR
Bi−CG

Figure 4.2: Relative residual norms of Bi-CGSTAB and QMR.

Numerical Methods for QMC 71

0 500 1000 1500 2000

10
−8

10
−6

10
−4

10
−2

10
0

Convergence behavior of CG for the solution of MTMx=b

Number of matrix−vector products

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

Figure 4.3: Relative residual norms of CG.

1) The cost of constructing R is cheap.

2) The application of R, i.e., solving Rz = r for z, is not expensive.

3) RRT is a good approximation of A.

However, in practice, there is a trade-off between the costs 1) and 2) and
the quality 3). In this section, we focus on the development of robust
and efficient preconditioning techniques for an optimal balance between
costs and quality.

For all numerical results presented in this section, Hubbard matrices
M are generated with the Hubbard-Stratonovich configurations h�,i such
that the average condition numbers of the resulting test matrices are
close to the ones arising in a full HQMC simulation. The right-hand-
side vector b is set so that entries of the (exact) solution vector x are
uniformly distributed on the interval (0, 1). The required accuracy of
the computed solution x̂ is set as

‖x− x̂‖2
‖x‖2 ≤ 10−3.

This is sufficient for the HQMC simulation.
All preconditioning algorithms presented in this section are imple-

mented in Fortran 90. The numerical performance data are collected

72 Bai, Chen, Scalettar, Yamazaki

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

U

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Zero energy−scale preconditioners

M
(t=0)

M
(U=0)

None

Figure 4.4: Number of PCG iterations using preconditioners R =
M(U=0) and R = M(t=0).

on an HP Itanium2 workstation with 1.5GHz CPU and 2GB of main
memory. Intel Math Kernel Library (MKL) 7.2.1 and -O3 optimization
option in ifort are used to compile the codes.

4.2 Previous work

There are a number of studies on preconditioning techniques to improve
the convergence rate of PCG solver for the QMC simulations. One at-
tempt is to precondition the system with R = M(U=0) [34, 49]. By us-
ing the Fast Fourier Transform, the computational cost of applying this
preconditioner is O(NL log(NL)). However, the quality of the precondi-
tioner is poor for moderately and strongly interacting systems (U ≥ 3),
as shown in Figure 4.4. The results are the averages of 50 solutions of
the systems (N,L, t, β, μ) = (8× 8, 40, 1, 5, 0).

It is suggested to use the preconditionerR = M(t=0) [34]. In this case,
the submatrices B� are diagonal. The cost of applying the preconditioner
R is O(NL). However, the quality is poor, particularly for strongly
interacting systems, as shown in Figure 4.4.

Jacobi preconditioner R = diag(a1/2
ii) is used in [42], where aii are

the diagonal elements of A. The PCG convergence rate is improved con-
sistently as shown in Figure 4.5. However, this is still insufficient for

Numerical Methods for QMC 73

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

U

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Jacobi preconditioners

Jacobi
None

Figure 4.5: Number of PCG iterations using Jacobi preconditioner R

the full HQMC simulation. For example, for a small and moderately-
interacting system (N,L,U, t, β) = (8× 8, 40, 4, 1, 5), Jacobi-based PCG
solver requires 3, 569 iterations and 1.78 seconds. A full HQMC simula-
tion typically requires to solve 10, 000 linear systems. By this rate, a full
HQMC simulation of 8× 8, would take 4.9 hours. When N is increased
to 32×32, the PCG takes 10, 819 iterations and 87.80 seconds for solving
one system. By this rate, a full HQMC simulation of a 32 × 32 lattice
would need more than 20 days.

It is proposed to use an incomplete Cholesky (IC) preconditioner R,
where R is lower triangular and has the same block structure of A [49].
Although the PCG convergence rate is improved considerably, it becomes
impractical due to the cost of O(N2L) in storing and applying the IC
preconditioner. Furthermore, it is not robust and suffers breakdown for
strongly interacting systems as we will see in section 4.4.

4.3 Cholesky factorization

We begin with a review of the Cholesky factorization of an n× n sym-
metric positive definite (SPD) matrix A:

A = RRT , (4.3)

74 Bai, Chen, Scalettar, Yamazaki

where R is lower-triangular with positive diagonal entries. R is referred
to as the Cholesky factor.

We follow the presentation in [38]. The Cholesky factorization (4.3)
can be computed by using the following partition and factorization:

A =
[
a11 â

T

â A1

]
=
[
r11 0
r̂ I

] [
1 0
0 A1 − r̂r̂T

] [
r11 r̂

T

0 I

]
. (4.4)

By the first columns of the both sides of the factorization, we have

a11 = r211,

â = r̂ r11.

Therefore,

r11 =
√
a11,

r̂ =
1
r11

â.

If we have the Cholesky factorization of the (n − 1) × (n − 1) matrix
A1 − r̂ r̂T :

A1 − r̂ r̂T = R1R
T
1 , (4.5)

then the Cholesky factor R is given by

R =
[
r11 0
r̂ R1

]
.

Hence the Cholesky factorization can be obtained through the repeated
applications of (4.4) on (4.5). The resulting algorithm is referred to as a
right-looking Cholesky algorithm, since after the first column r1 of R is
computed, it is used to update the matrix A1 to compute the remaining
columns of R, which are on the right side of r1.

There is a left-looking version of the Cholesky algorithm. By com-
paring the jth column of the factorization (4.3), we have

aj =
j∑

k=1

rjkrk.

This says that

rjjrj = aj −
j−1∑
k=1

rjkrk.

Hence, to compute the jth column rj of R, one first computes

v = aj −
j−1∑
k=1

rjkrk,

Numerical Methods for QMC 75

Table 5: Performance of CHOLMOD.

N 8× 8 16× 16 24× 24 32× 32 40× 40 48× 48
P-time 0.08 1.99 17.56 90.68 318.04 offmem
S-time 0.00 0.04 0.29 0.52 1.22 offmem
T-time 0.08 2.03 17.85 91.20 319.26 offmem

and then
rij =

vi√
vj
, for i = j, j + 1, . . . , n.

It is a left-looking algorithm since the jth column rj of R is computed
through referencing the computed columns r1, r2, . . . , rj−1 of R, which
are on the left of rj .

The Cholesky factorization could fail due to a pivot breakdown, namely,
at the jth step, the diagonal element ajj ≤ 0. When A is SPD, the diag-
onal element a11 must be positive. Furthermore, A1 − r̂ r̂T is SPD since
it is a principal submatrix of the SPD matrix XTAX , where

X =
[

1 −r̂T

0 I

]
.

Therefore, there is no pivot breakdown for an SPD matrix.

HQMC application. When the Cholesky factor R of A is used as a
preconditioner, the HQMC linear system (4.1) is solved exactly. Table 5
records the CPU time in seconds with respect to different lattice sizes N
by using CHOLMOD developed by Timothy A. Davis.12 CHOLMOD is
one of the state-of-art implementations of the sparse Cholesky factoriza-
tion and is used in MATLAB version 7.2.

The other parameters are set as (L,U, t, β, μ) = (80, 4, 1, 10, 0). We
note that, when N = 48× 48, it runs out of memory (“offmem”) before
completing the Cholesky factorization of A = MTM . In the table, “P-
time” stands for the CPU time for computing the preconditioner, “S-
time” for the CPU time for PCG iterations, and “T-time” for the total
CPU time. With an approximate minimum degree (AMD) recording of
the matrix A, the CPU time was reduced slightly as shown in Table 6.

The Cholesky factorization is not affected by the potential energy
parameter U . Therefore, the performance of CHOLMOD is expected to
be the same for different U . By an interpolation of the performance data
of CHOLMOD with AMD reordering, the computational complexity of
the Cholesky factorization is O(N2). By this rate, if we were able to

12http://www.cise.ufl.edu/research/sparse/cholmod/

76 Bai, Chen, Scalettar, Yamazaki

Table 6: Performance of CHOLMOD with AMD recording.

N 8× 8 16× 16 24× 24 32× 32 40× 40 48× 48
P-time 0.11 1.63 12.40 57.85 297.27 offmem
S-time 0.00 0.04 0.13 0.34 0.95 offmem
T-time 0.11 1.67 12.53 58.19 298.22 offmem

−1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re(λ)

Im
(λ

)

(N,L,U,t,β)=(8x8,8,3,1,1)

λ(M)
λ(MR−T)

Figure 4.6: Eigenvalues of M and MR−1, where R is a Cholesky factor.

solve the Hubbard system with NL = 48× 48× 80 = 184, 320, the CPU
elapsed time would take about 700 seconds.

To end this section, we note that with the Cholesky factor R, the
preconditioned matrix MR−T becomes orthogonal. The eigenvalues of
MR−T are on the unit circle, as shown in Figure 4.6. Therefore, to
assess the quality of a preconditioner R, one can examine how close the
eigenvalues of the preconditioned matrix MR−T are to the unit circle.
Of course, this can be checked only for small matrices.

4.4 Incomplete Cholesky factorizations

4.4.1 IC

To reduce the computational and storage costs of the Cholesky factoriza-
tion (4.3), a preconditioner R can be constructed based on an incomplete

Numerical Methods for QMC 77

Cholesky (IC) factorization:

A = RRT + S + ST , (4.6)

where R is lower-triangular and is referred to as an IC factor, and S is
a strictly lower-triangular matrix (therefore, the diagonal elements of A
andRRT are the same). E = S+ST is the error matrix of the incomplete
factorization. The sparsity of R is controlled by a set Z, which is a set of
ordered pairs (i, j) of integers from {1, 2, . . . , n} such that if (i, j) �∈ Z,
then rij = 0.

The IC factor R can be computed based on the following partition
and factorization:

A =
[
a11 â

T

â A1

]
=
[
r11 0
r̂ I

] [
1 0
0 A1 − r̂r̂T

] [
r11 r̂

T

0 I

]
+
[

0 ŝT

ŝ 0

]
. (4.7)

By multiplying out the first column of the both sides of the factorization,
we have

a11 = r211,

â = r̂ r11 + ŝ.

Therefore, if the pivot a11 > 0, we have

r11 =
√
a11.

The vector r̂ and ŝ are computed based on the sparsity set Z:

for i ≤ n− 1,{
r̂i = âi/r11, ŝi = 0, if (i+ 1, 1) ∈ Z
r̂i = 0, ŝi = âi, otherwise.

(4.8)

Therefore, if we have an IC factorization of the (n− 1)× (n− 1) matrix
A1 − r̂ r̂T :

A1 − r̂ r̂T = R1R
T
1 + S1 + ST

1 , (4.9)

then the IC factorization (4.6) of A is given by

R =
[
r11 0
r̂ R1

]
and S =

[
0 0
ŝ S1

]
.

Thus, the IC factorization can be computed by the repeated application
of (4.7) on (4.9) as long as A − r̂ r̂T is SPD. Note that when non-zero
element âi is discarded, i.e., r̂i = 0, in (4.8), the operations to update
A1 with respect to the element r̂i in (4.9) are skipped.

The following algorithm computes an IC factor R in the right-looking
fashion, where in the first line, R is initialized by the lower-triangular
part of A, and the update of A1 is performed directly on R.

78 Bai, Chen, Scalettar, Yamazaki

IC (right-looking version)
1. R = lower(A)
2. For j = 1, 2, . . . , n
3. r(j, j) :=

√
r(j, j) if r(j, j) > 0

4. for i = j + 1, j + 2, . . . , n
5. if (i, j) ∈ Z
6. r(i, j) := r(i, j)/r(j, j)
7. else
8. r(i, j) = 0
9. end if

10. end for
11. for k = j + 1, j + 2, . . . , n
12. r(k : n, k) := r(k : n, k)− r(k, j)r(k : n, j)
13. end for
14. end for

Note that all computational steps of the previous algorithm and the
rest of algorithms presented in this section are performed with regard to
the sparsity of matrices and vectors involved.

There is an left-looking algorithm. By comparing the jth column of
the factorization (4.6), we have

ajj =
j∑

k=1

r2jk , (4.10)

aij =
j∑

k=1

rjkrik + sij , for i = j + 1, . . . , n. (4.11)

This says that

r2jj = ajj −
j−1∑
k=1

r2jk,

rjjrij + sij = aij −
j−1∑
k=1

rjkrik, for i = j + 1, . . . , n.

Thus, to compute the jth column in the IC factorization, one first com-
putes

v = aj −
j−1∑
k=1

rjkrk. (4.12)

Then, the pivot vj > 0, the jth diagonal entry of R is then given by

rjj =
√
vj ,

Numerical Methods for QMC 79

and the rest of non-zero elements of rj and the discarded elements of sj

are computed based on the sparsity constraint Z:

for i ≥ j + 1,{
rij = vi/rjj , sij = 0, (i, j) ∈ Z,
rij = 0, sij = vi, otherwise.

A pseudo-code of the left-looking algorithm is as the following:

IC (left-looking version)
1. for j = 1, 2, . . . , n
2. v(j : n) = a(j : n, j)
3. for k = 1, 2, .., j − 1
4. v(j : n) := v(j : n)− r(j, k)r(j : n, k)
5. end for
6. r(j, j) =

√
a(j, j) if a(j, j) > 0

7. for i = j + 1, j + 2, . . . , n
8. if (i, j) ∈ Z
9. r(i, j) = v(i)/r(j, j)

10. else
11. r(i, j) = 0
12. end if
13. end for
14. end for

The following rules are often used to define the sparsity set Z:

1. Fixed sparsity pattern (FSP): the IC factorR has a prescribed spar-
sity pattern Z. A popular sparsity pattern is that of the original
matrix A, i.e., Z = {(i, j) : i ≥ j and aij �= 0}.

2. Drop small elements (DSE): the small elements of R are dropped.
It is controlled by a drop threshold σ. In this case, the sparsity
pattern Z of R and the number of fill-ins in R are unknown in
advance.

3. Fixed number of non-zero elements per column. It is similar to the
DSE rule except that the maximum number of non-zero elements
in each column of R is fixed.

The existence of IC factorization (4.6), for an arbitrary sparsity set
Z, is proven only for special classes of matrices [43, 44, 53]. For a general
SPD matrix A, the non-zero elements introduced into the error matrix
E could result in the loss of positive-definiteness of the matrix A − E,
and the IC factorization does not exist.

80 Bai, Chen, Scalettar, Yamazaki

Table 7: IC with DSE, (N,L, t, β) = (16× 16, 80, 1, 10).

U 0 2 4 6
σ = 10−6 18.97/0.07 19.17/0.14 19.09/0.30 19.07/0.48

10−5 13.20/0.11 16.92/0.20 16.41/0.80 pbd
10−4 2.95/0.17 5.72/0.58 pbd pbd
10−3 pbd pbd pbd pbd
10−2 0.01/0.16 pbd pbd pbd
10−1 pbd pbd pbd pbd

HQMC application. Table 7 shows numerical results of the IC pre-
conditioner R with sparsity Z defined by the DSE rule. The reported
data is an average of successful solutions over 10 trials with the left-
looking IC implementation. The table records the CPU time with dif-
ferent drop tolerance values σ. The first number in each cell is the time
for constructing the preconditioner R and the second number is for the
PCG iteration. In the table, “pbd” stands for the pivot breakdown to
indicate that all of 10 trials failed due to the pivot breakdowns.

We see that the IC factorization encounters the pivot breakdown fre-
quently, except with an extremely small drop tolerance σ. Small drop
tolerance leads to high memory and CPU time costs, and becomes im-
practical for large systems.

Note that the right-looking IC algorithm is mathematically equiv-
alent to its left-looking algorithm, it also encounters the same pivot
breakdown. It clearly indicates that the IC preconditioner R is neither
robust nor efficient for the HQMC simulation.

4.4.2 Modified IC

To avoid the pivot breakdown, one attempt is to first make a small per-
turbation of A, say by simple diagonal perturbation, and then compute
its IC factorization:

A+ αDA = RRT + S + ST , (4.13)

where DA = diag(A) and the scalar α is prescribed [43]. R is referred to
as an ICp preconditioner.

If the shift α is chosen such that A + αDA is diagonally dominant,
then it is provable that the IC factorization (4.13) exists [43]. Table 8
records the performance of the left-looking ICp implementation, where
the shift α is chosen such that A+ αDA is diagonally dominant. In the
table, “nnzr(R)” is the average number of nonzero elements per row of R,
“Mem(R)” is the memory in MB for storing R in the CSC (Compressed

Numerical Methods for QMC 81

Table 8: ICp/diag.dom., σ = 0.001, (N,L, t, β) = (48× 48, 80, 1, 10).

U 0 1 2 3 4 5 6
α 1.29 4.15 7.58 12.37 19.70 26.14 38.80
nnzr(R) 25.29 23.35 21.99 20.90 20.01 19.30 25.01
Mem(R) 57 52 49 47 45 43 56
Wksp. 22 20 19 18 18 17 20
Itrs. 94 357 882 2620 16645 68938 102500
P-time 1.40 1.22 1.13 1.06 1.01 0.97 0.93
S-time 5.03 18.21 43.48 125.58 782.96 3178.58 4621.06
T-time 6.44 19.43 44.60 126.64 783.96 3179.54 4621.98

Table 9: ICp, σ = 0.001, (N,L, t, β) = (48× 48, 80, 1, 10).

U 0 1 2 3 4 5 6
α (fixed) 0.005 0.005 0.005 0.005 0.005 0.005 0.005
nnzr(R) 22.31 24.43 24.74 24.89 24.96 24.99 25.01
Mem(R) 50 55 55 56 56 56 56
Wksp. 18 19 20 20 20 20 20
Itrs. 14 32 72 190 1087 3795 5400
P-time 1.23 1.29 1.30 1.31 1.31 1.31 1.32
S-time 0.65 1.57 3.47 9.17 52.49 183.15 286.15
T-time 1.87 2.86 4.77 10.48 53.49 184.76 287.47

Sparse Column) format, “Wksp.” is the required workspace in MB, and
“Itrs.” is the total number of PCG iterations.

By Table 8, we see that with the choice of the shift α such that A+
αDA is diagonally dominant, the pivot breakdown is avoided. However,
the quality of the resulting preconditioner R is poor. In practice, we
observed that good performance can often be achieved with a much
smaller shift α. Although A + αDA is not diagonally dominant, the IC
factorization still exists. Table 9 records significant improvements of the
ICp preconditioner R computed with the fixed shift α = 0.005.

There is no general strategy for an optimal choice of the shift α. It
is computed by a trial-and-error approach in PETSc [47].

4.5 Robust incomplete Cholesky preconditioners

In the IC factorizations (4.6) and (4.13), the discarded elements of R are
simply moved to the error matrix E. As we have seen, this may result in
the loss of the positive definiteness of the matrix A−E and subsequently
lead to the pivot breakdown. To avoid this, the error matrix E needs

82 Bai, Chen, Scalettar, Yamazaki

to be taken into account. It should be updated dynamically during
the construction of an IC factorization such that the matrix A − E is
preserved to be SPD. Specifically, we want to have an IC factorization
algorithm that computes a nonsingular lower triangular matrix R of an
arbitrarily prescribed sparsity pattern Z satisfying{

A = RRT + E,

s.t. A− E > 0.
(4.14)

In the rest of this section, we will discuss several approaches to construct
such an IC factor R satisfying (4.14). The resulting preconditioner R is
referred to as a robust incomplete Cholesky (RIC) preconditioner.

4.5.1 RIC1

A sufficient condition for the existence of the factorization (4.14) is to
ensure that the error matrix −E is symmetric semi-positive definite,
−E = −ET ≥ 0. For doing so, let us write

E = S −D + ST ,

where S is strictly lower-triangular and D is diagonal, then a robust IC
preconditioner should satisfy{

A = RRT + S −D + ST

s.t. −(S −D + ST) ≥ 0.
(4.15)

The factorization is referred to as version 1 of RIC, or RIC1 in short.
RIC1 was first studied in [31, 39].

Note that in the IC factorization (4.6), D = 0 and E = S + ST . In
the modified IC factorization (4.13), the diagonal matrix D is prescribed
D = −αDA and the error matrix E = S−αDA +ST . Now, in the RIC1
factorization, D will be dynamically assigned and updated during the
process to satisfy the condition −(S −D + ST) ≥ 0.

The RIC1 factorization can be computed by using the following par-
tition and factorization:[

a11 â
T

â A1

]
=
[
r11 0
r̂ I

] [
1 0
0 C1

] [
r11 r̂

T

0 I

]
+
[−d1 ŝT

ŝ −D1

]
, (4.16)

where C1 = A1 +D1 − r̂r̂T .
By the first column of the both sides of the factorization, we have

a11 = r211 − d1

â = r̂ r11 + ŝ.

Numerical Methods for QMC 83

It suggests that we first compute the vector v = r̂ r11 + ŝ based on the
sparsity set Z:

for i ≤ n− 1,{
vi = âi, ŝi = 0, if (i+ 1, 1) ∈ Z,
vi = 0, ŝi = âi, otherwise.

(4.17)

To ensure −E = −(S −D+ ST) ≥ 0, if there is a discarded element
âi assigned to ŝi, the diagonal element d1 and the ith diagonal element
d
(1)
i of D1 are updated

d1 := d1 + δ1, d
(1)
i := d

(1)
i + δi, (4.18)

where δ1 and δi are chosen such that δ1, δi > 0 and δ1δi = ŝ2i . Subse-
quently, the element r11 is determined by

r11 =
√
a11 + d1,

and the vector r̂ is set by

r̂ =
1
r11

v.

If we have an RIC1 factorization of the (n− 1)× (n− 1) matrix C1:

C1 = R1R
T
1 + S1 − D̂1 + ST

1 , (4.19)

then the RIC1 factorization (4.15) of A is given by

R =
[
r11 0
r̂ R1

]
, D =

[
d1 0
0 D1 + D̂1

]
, S =

[
0 0
ŝ S1

]
.

In other words, the RIC1 factorization can be obtained through the
repeated applications of (4.16) on (4.19).

The following algorithm computes the RIC1 factor R in the right-
looking fashion, where the sparsity Z is controlled by a prescribed drop
tolerance σ. In the algorithm, δi and δj are chosen so that they result
in a same factor of increase in the corresponding diagonal elements.

RIC1 (right-looking version)
1. R = lower(A)
2. d(1 : n) = 0
3. for j = 1, 2, . . . , n
4. for i = j + 1, j + 2, . . . , n
5. τ = |r(i, j)|/[(r(i, i) + d(i))(r(j, j) + d(j))]1/2

6. if τ ≤ σ
7. r(i, j) = 0

84 Bai, Chen, Scalettar, Yamazaki

8. d(i) := d(i) + τ(r(i, i) + d(i))
9. d(j) := d(j) + τ(r(j, j) + d(j))

10. end if
11. end for
12. r(j, j) :=

√
r(j, j) + d(j)

13. r(j + 1 : n, j) := r(j + 1 : n, j)/r(j, j)
14. for k = j + 1, j + 2, . . . , n
15. r(k : n, k) := r(k : n, k)− r(k, j)r(k : n, j)
16. end for
17. end for

The RIC1 factorization can also be computed by a left-looking al-
gorithm. By comparing the jth column of the factorization (4.15), we
have

ajj =
j∑

k=1

r2jk − dj ,

aij =
j∑

k=1

rjkrik + sij , i = j + 1, . . . , n

This says that

r2jj − dj = ajj −
j−1∑
k=1

r2jk,

rjjrij + sij = aij −
j−1∑
k=1

rjkrik, i = j + 1, . . . , n.

Thus, to compute the jth column of R, one first computes

v = aj −
j−1∑
k=1

rjk rk,

and then imposes the sparsity:

for i ≥ j + 1,{
sij = 0, if (i, j) ∈ Z,
sij = vi, vi = 0, otherwise.

(4.20)

To ensure −E = −(S − D + ST) ≥ 0, if there is a discarded ele-
ment assigned to sij , the corresponding diagonal elements di and dj are
updated

di := di + δi, dj := dj + δj , (4.21)

Numerical Methods for QMC 85

where δi and δj are chosen such that δi, δj > 0 and δiδj = s2ij . Initially,
all di are set to be zero.

Subsequently, the jth column rj of R is given by

rjj =
√
ajj + dj ,

rij = vi/rjj , i = j + 1, . . . , n

The following algorithm computes the RIC1 factor R in the left-
looking fashion, where the sparsity is controlled by a drop tolerance σ.

RIC1 (left-looking version)
1. d(1 : n) = 0
2. for j = 1, 2, . . . , n
3. v(j : n) = a(j : n, j)
4. for k = 1, 2, . . . , j − 1
5. v(j : n) := v(j : n)− r(j, k)r(j : n, k)
6. end for
7. for i = j + 1, j + 2, . . . , n
8. τ = |v(i)|/[(a(i, i) + d(i))(a(j, j) + d(j))]1/2

9. if τ ≤ σ
10. v(i) = 0
11. d(i) := d(i) + τ(a(i, i) + d(i))
12. d(j) := d(j) + τ(a(j, j) + d(j))
13. end if
14. end for
15. r(j, j) =

√
a(j, j) + d(j)

16. r(j + 1 : n, j) = v(j + 1 : n)/r(j, j)
17. end for

The computational cost of RIC1 is only slightly higher than the IC
preconditioner (4.6). To assess the quality of the RIC1 preconditioner
R, we note that the norm of the residue

R−1AR−T − I = R−1(S −D + ST)R−T = R−1ER−T (4.22)

could be amplified by a factor of ‖R−1‖2 of the error matrix E. When
a large number of diagonal updates are necessary, some elements of D
could be large. Consequently, the residue norm is large and R is a poor
preconditioner.

HQMC application. Table 10 records the performance of the RIC1
preconditioner computed by the left-looking implementation. The drop
threshold is set to be σ = 0.003. With this drop threshold, the result-
ing RIC1 preconditioners R is are about the same sparsity as the ICp

preconditioners reported in Table 9 of section 4.4.

86 Bai, Chen, Scalettar, Yamazaki

Table 10: RIC1/left-looking, σ = 0.003, (N,L, t, β) = (48×48, 80, 1, 10).

U 0 1 2 3 4 5 6
nnzr(R) 22.01 24.28 24.45 24.43 24.33 24.21 24.07
Mem(R) 49 54 55 55 55 54 54
Wksp. 18 19 20 19 19 19 19
Itrs. 20 57 127 342 1990 7530 11460
P-time 1.83 1.93 1.93 1.93 1.92 1.90 1.89
S-time 1.00 3.02 6.69 17.95 104.12 393.60 596.00
T-time 2.82 4.96 8.62 19.88 106.03 395.51 597.90

We note that the quality of the RIC1 preconditioner in terms of
the number of PCG iterations is worse than the ICp preconditioner.
This is due to the fact that it is necessary to have a large diagonal
matrix D to guarantee the semi-positive definiteness of the error matrix
−E = −(S − D + ST). On the other hand, the RIC1 factorization is
provably robust and does not breakdown. In the following sections, we
will discuss how to improve the quality of the RIC1 preconditioner.

The right-looking implementation requires the updating of the unfac-
torized block, i.e., forming the matrix C1 in (4.16). It causes significant
computational overhead. It is less efficient than the left-looking imple-
mentation. Therefore, we only present the performance data for the
left-looking implementation.

4.5.2 RIC2

One way to improve the quality of the RIC1 preconditioner is by setting
the error matrix E as E = RFT + FRT , where F is strictly lower-
triangular. This was proposed in [51]. In this scheme, we compute an
IC factorization of the form

A = RRT +RFT + FRT . (4.23)

Note that the factorization can be equivalently written as

A+ FFT = (R+ F)(R + F)T .

Hence, the existence of R is guaranteed. With the factorization (4.23),
the residue becomes

R−1AR−T − I = FR−T +R−1FT .

The residue norm could be amplified at most by the factor of ‖R−1‖ of
the error matrix F , instead of ‖R−1‖2 in the RIC1 factorization. We
refer (4.23) as version 2 of RIC factorization, or RIC2 in short.

Numerical Methods for QMC 87

The RIC2 factorization (4.23) can be constructed by using the fol-
lowing partition and factorization:

A =
[
a11 â

T

â A1

]
=
[
r11 0
r̂ I

] [
1 0
0 C1

] [
r11 r̂

T

0 I

]
+[

r11 0
r̂ 0

] [
0 f̂T

0 0

]
+
[

0 0
f̂ 0

] [
r11 r̂

T

0 0

] (4.24)

where C1 = A1 − r̂ r̂T − r̂ f̂T − f̂ r̂T .
By the first column of the both sides of the factorization, we have

a11 = r211,

â = r̂ r11 + f̂ r11.

Hence, we have
r11 =

√
a11.

The vectors r̂ and f̂ are computed based on the sparsity set Z:

for i ≤ n− 1,{
r̂i = âi/r11, f̂i = 0, if (i, 1) ∈ Z,
f̂i = 0, f̂i = âi/r11, otherwise.

If an RIC2 factorization of the (n− 1)× (n− 1) matrix C1 is given by

C1 = R1R
T
1 +R1F

T
1 + F1R

T
1 , (4.25)

then the RIC2 factorization of A is given by

R =
[
r11 0
r̂ R1

]
, F =

[
0 0
f̂ F1

]
.

Hence the RIC2 factorization can be computed by the repeated applica-
tions of (4.24) on (4.25).

The following algorithm computes the RIC2 factor R in the right-
looking implementation. The sparsity Z is controlled by dropping small
elements of R with the drop tolerance σ.

RIC2 (right-looking version)
1. R = lower(A)
2. for j = 1, 2, . . . , n
3. r(j, j) :=

√
r(j, j)

4. for i = j + 1, j + 2, . . . , n
5. if |a(i, j)|/r(j, j) > σ
6. r(i, j) := r(i, j)/r(j, j)

88 Bai, Chen, Scalettar, Yamazaki

7. f(i, j) = 0
8. else
9. r(i, j) = 0

10. f(i, j) = r(i, j)/r(j, j)
11. end if
12. end for
13. for k = j + 1, j + 2, . . . , n
14. r(k : n, k) := r(k : n, k)− r(k, j) r(k : n, j)
15. r(k : n, k) := r(k : n, k)− r(k, j) f(k : n, j)
16. r(k : n, k) := r(k : n, k)− f(k, j) r(k : n, j)
17. end for
18. end for

The RIC2 factorization can also be computed by a left-looking al-
gorithm. By comparing the jth column in the factorization (4.23), we
have

aj =
j∑

k=1

(rjkrk + rjkfk + fjkrk). (4.26)

This says that

rjj(rj + fj) = aj −
j−1∑
k=1

(rjkrk + rjkfk + fjkrk).

Thus, to compute the jth column of R, one first computes

v = aj −
j−1∑
k=1

(rjkrk + rjkfk + fjkrk). (4.27)

Then, the jth diagonal entry of R is given by

rjj =
√
vj ,

and the rest of the non-zero elements in rj and fj are computed based
on the sparsity set Z:

for i ≥ j + 1,{
rij = vi/rjj , fij = 0, if (i, j) ∈ Z,
rij = 0, fij = v(i)/rii, otherwise.

The following algorithm computes the RIC2 factor R in the left-looking
fashion, where the sparsity of R is controlled by a drop tolerance σ.

RIC2 (left-looking version)
1. for j = 1, 2, . . . , n

Numerical Methods for QMC 89

Table 11: RIC2/left, σ = 0.012, (N,L, t, β) = (16× 16, 80, 1, 10).

U 0 1 2 3 4 5 6
Mem(R) 5 5 5 5 5 5 5
Wksp. 129 129 129 129 127 127 127
Iters. 16 36 73 194 344 453 539
P-time 1.79 1.86 1.88 1.90 1.90 1.90 1.88
S-time 0.12 0.27 0.57 1.52 2.70 3.57 4.24
T-time 1.91 2.13 2.45 3.42 4.60 5.47 6.11

2. v(j : n) = a(j : n, j)
3. for k = 1, 2, . . . , j − 1
4. v(j : n) := v(j : n)− r(j, k)r(j : n, k)
5. v(j : n) := v(j : n)− r(j, k)f(j : n, k)
6. v(j : n) := v(j : n)− f(j, k)r(j : n, k)
7. end for
8. r(j, j) =

√
v(j)

9. for i = j + 1, j + 2, . . . , n
10. if |v(i)|/r(j, j) > σ
11. r(i, j) = v(i)/r(j, j)
12. f(i, j) = 0
13. else
14. r(i, j) = 0
15. f(i, j) = v(i)/r(j, j)
16. end if
17. end for
18. end for

Note that in the above algorithm, the columns f1, f2, . . . , fj−1 of the
matrix F are required to compute rj .

HQMC application. Since the left-looking implementation of RIC2
needs to store the entire error matrix F , it requires a large amount of
workspace. For example, Table 11 shows that the workspace is about
128MB. It runs out of core memory for N = 48 × 48 and L = 80. The
right-looking implementation reduces the workspace by a factor of more
than 10 but with a significant increase of the CPU time as shown in
Table 12. Note that the left-looking and right-looking implementations
of RIC2 produce the same preconditioner R. Therefore, the storage
requirement for R and the number of the PCG iterations are the same.

90 Bai, Chen, Scalettar, Yamazaki

Table 12: RIC2/right, σ = 0.012, (N,L, t, β) = (16× 16, 80, 1, 10).

U 0 1 2 3 4 5 6
Mem(R) 5 5 5 5 5 5 5
Wksp. 11 11 11 11 11 11 10
Iters. 16 36 73 194 344 453 539
P-time 19.29 19.29 19.31 19.31 19.34 19.28 19.19
S-time 0.12 0.27 0.57 1.52 2.70 3.57 4.24
T-time 19.43 19.58 19.90 20.84 22.06 22.87 23.45

4.5.3 RIC3

One way to reduce the large workspace requirement of the RIC2 factor-
ization (4.23) is to impose additional sparsity of the error matrix F with
a secondary drop threshold. This was proposed in [40]. It begins with
setting the error matrix E as

E = RFT + FRT + S −D + ST ,

where S is a strictly lower-triangular and represents the discarded ele-
ments from F , and D is diagonal. It means that we compute a precon-
ditioner R satisfying{

A = RRT +RFT + FRT + S −D + ST ,

s.t. −(S −D + ST) > 0.
(4.28)

The sparsity of R and F are controlled by the primary and secondary
drop thresholds σ1 and σ2, respectively. Similar to the RIC1 factoriza-
tion (4.15), the diagonal elements D is dynamically updated such that
−(S − D + ST) ≥ 0. As a result, the robustness of the factorization
is guaranteed. We called this as version 3 of the RIC factorization, or
RIC3 in short.

With the factorization (4.28), the residue becomes

R−1AR−T − I = FR−T +R−1FT +R−1(S −D − ST)R−T .

Therefore, we see that the residue norm is amplified by a factor of ‖R−1‖
on the primary error ‖F‖ = O(σ1), and a factor of ‖R−1‖2 on the
secondary error ‖S −D− ST ‖ = O(σ2). The RIC3 factorization will be
able to preserve at least the same quality of the RIC2 preconditioner R
as long as σ2 is small enough.

The RIC3 factorization (4.28) can be constructed by using the fol-

Numerical Methods for QMC 91

lowing partition and factorization:

A =
[
a11 â

T

â A1

]
=
[
r11 0
r̂ I

] [
1 0
0 C1

] [
r11 r̂

T

0 I

]
+[

r11 0
r̂ 0

] [
0 f̂T

0 0

]
+
[

0 0
f̂ 0

] [
r11 r̂

T

0 0

]
+
[−d1 ŝT

ŝ −D1

]
(4.29)

where C1 = A1 +D1 − r̂ r̂T − r̂ f̂ − f̂ r̂T .
By the first column of the both sides of the factorization, we have

a11 = r211 − d1,

â = r̂ r11 + f̂ r11 + ŝ.

It suggests that we first compute the vector v = (r̂ + f̂)r11 by imposing
the sparsity constraint with the secondary drop tolerance σ2, i.e.,

for i ≤ n− 1,{
vi = âi, ŝi = 0, if τ > σ2,
vi = 0, ŝi = âi, otherwise,

where

τ =

[
â2

i

(a11 + d1)(a
(1)
ii + d

(1)
i)

]1/2

,

and a(1)
ii and d(1)

i denote the ith diagonal elements of A1 and D1, respec-
tively.

To ensure −(S −D + ST) ≥ 0, if a discarded element âi is assigned
to the position ŝi, the corresponding diagonal element d1 and d

(1)
i are

updated,
d1 := d1 + δ1, d

(1)
i := d

(1)
i + δi,

where δ1 and δi are chosen such that δ1, δi > 0 and δ1δi = ŝ2i . Initially,
all di are set to be zero.

Subsequently, the entry r11 of R is given by

r11 =
√
a11 + d1.

Finally, vectors r̂ and f̂ are computed by imposing the primary spar-
sity constraint on v with the drop threshold σ1, i.e.,

for i < n− 1,{
r̂i = vi/r11, f̂i = 0, if |vi|/r11 > σ1,

r̂i = 0, f̂i = vi/r11, otherwise.

92 Bai, Chen, Scalettar, Yamazaki

Note that the vectors r̂ and f̂ are structurally “orthogonal”, i.e., r̂ifi = 0
for all i.

If we have an RIC3 factorization of the (n− 1)× (n− 1) matrix C1,

C1 = R1R
T
1 +R1F

T
1 + F1R

T
1 + S1 − D̂1 + ST

1 , (4.30)

then the RIC3 factorization is given by

R =
[
r11 0
r̂ R1

]
, F =

[
0 0
f̂ F1

]
, S =

[
0 0
ŝ S1

]
, D =

[
d1 0
0 D1 + D̂1

]
.

Thus, the RIC3 factorization can be computed by the repeated applica-
tion of (4.29) on (4.30).

The following algorithm computes the RIC3 factor R in the right-
looking fashion, where δi and δj are chosen in the same way as in the
RIC1 algorithms for the same increasing of the diagonal elements of D.

RIC3 (right-looking version)
1. R = lower(A)
2. d(1 : n) = 0
3. for j = 1, 2, . . . , n
4. for i = j + 1, j + 2, . . . , n
5. τ = |r(i, j)|/[(a(i, i) + di)(a(j, j) + d(j))]1/2

6. if τ ≤ σ2

7. r(i, j) = 0
8. d(i) := d(i) + τ(a(i, i) + d(i))
9. d(j) := d(j) + τ(a(j, j) + d(j))

10. end if
11. end for
12. r(j, j) =

√
a(j, j) + d(j)

13. for i = j + 1, j + 2, . . . , n
14. if |r(i, j)|/r(j, j) > σ1

15. r(i, j) := r(i, j)/r(j, j)
16. f(i, j) = 0
17. else
18. r(i, j) = 0
19. f(i, j) = r(i, j)/r(j, j)
20. end if
21. end for
22. for k = j + 1, j + 2, . . . , n
23. r(k : n, k) := r(k : n, k)− r(k, j)r(k : n, j)
24. r(k : n, k) := r(k : n, k)− r(k, j)f(k : n, j)
25. r(k : n, k) := r(k : n, k)− f(k, j)r(k : n, j)
26. end for
27. end for

Numerical Methods for QMC 93

We remark that in the previous right-looking algorithm, the jth col-
umn fj of F can be discarded after it is used to update the remaining
column rj+1, . . . , rn.

The RIC3 factorization can also be computed by a left-looking al-
gorithm. By comparing the jth column in the factorization (4.28), we
have

ajj =
j∑

k=1

r2jk − djj ,

aij = sij +
i∑

k=1

(rjkrik + rjkfik + fjkrik), i = j + 1, j + 2, . . . , n.

This says that

r2jj + djj = ajj −
j−1∑
k=1

r2jk,

and

rjj(rij + fik)+ sij = aij −
j−1∑
k=1

(rjk(rik + fik)+ fjkrik), i = j+1, . . . , n.

Therefore, to compute the jth column of R, one first computes the vector

v = aj −
j−1∑
k=1

(rjk(rk + fk) + fjkrk).

Then the sparsity of v is imposed with the secondary drop threshold σ2,
i.e.

for i ≥ j + 1,{
sij = 0, if τ > σ2,
sij = vi, vi = 0, otherwise,

where

τ =
[

v2
i

(aii + di)(ajj + dj)

]1/2

.

To ensure −(S −D + ST) ≥ 0, if a discarded element âi is entered into
the position ŝi, the diagonal elements di and dj are updated,

di = di + δi, dj = dj + δj ,

where δi and δj are chosen such that δi, δj > 0 and δiδj = s2ij . Initially,
all di are set to be zero.

94 Bai, Chen, Scalettar, Yamazaki

Subsequently, the jth diagonal entry of R is given by

rjj =
√
vj + dj ,

and the rest of non-zero elements in rj and fj are computed by imposing
the primary sparsity constraint on v with the primary drop threshold σ1,
i.e.

for i ≥ j + 1,{
rij = vi/rjj , fij = 0, if |vi|/rjj > σ1

rij = 0, fij = vi/rjj , otherwise.

The following algorithm computes the RIC3 factor R in the left-looking
fashion.

RIC3 (left-looking version)
1. d(1 : n) = 0
2. for j = 1, 2, . . . , n
3. v(j : n) = a(j : n, j)
4. for k = 1, 2, . . . , k − 1
5. v(j : n) := v(j : n)− r(j, k)r(j : n, k)
6. v(j : n) := v(j : n)− r(j, k)f(j : n, k)
7. v(j : n) := v(j : n)− f(j, k)r(j : n, k)
8. end for
9. for i = j + 1, j + 2, . . . , n

10. τ = |v(i)|/[(a(i, i) + d(i))(a(j, j) + d(j))]1/2

11. if τ ≤ σ2

12. v(i) = 0
13. d(i) := d(i) + τ(a(i, i) + d(i))
14. d(j) := d(j) + τ(a(j, j) + d(j))
15. end if
16. end for
17. r(j, j) =

√
v(j) + d(j)

18. for i = j + 1, j + 2, . . . , n
19. if |v(i)|/r(j, j) > σ1

20. r(i, j) = v(i)/r(j, j)
21. f(i, j) = 0
22. else
23. r(i, j) = 0
24. f(i, j) = v(i)/r(j, j)
25. end if
26. end for
27. end for

Note that in the above algorithm, the columns f1, f2, . . . , fj−1 are
needed to compute the jth column rj .

Numerical Methods for QMC 95

Table 13: RIC3/left, σ1 = 0.005, σ2 = 0.00025, (N,L, t, β) = (48 ×
48, 80, 1, 10).

U 0 1 2 3 4 5 6
nnzr(R) 25.84 27.24 26.98 26.73 26.53 26.35 26.20
nnzr(F) 42.65 51.84 49.04 46.90 45.21 43.85 42.69
Mem(R) 58 61 60 60 59 59 59
Wksp. 200 236 226 217 211 206 201
Itrs. 12 29 66 106 1026 3683 5412
P-time 5.54 6.36 6.07 5.84 5.65 5.51 5.46
S-time 0.60 1.49 3.33 9.22 51.12 182.24 296.24
T-time 6.13 7.86 9.40 15.05 56.77 188.05 301.71

HQMC application. Table 13 shows the numerical results of the
RIC3 preconditioner computed by the left-looking implementation. The
drop thresholds are set to be σ1 = 0.005 and σ2 = 0.00025. With these
drop thresholds, the RIC3 preconditioners R are of about the same spar-
sity as the ICp and RIC1 preconditioners presented Tables 9 and 10,
respectively.

The RIC3 factorization introduces smaller diagonal updates D and
results a preconditioner of better quality than the RIC1 preconditioner.
Even though the quality of the ICp preconditioner for the particular
choice of the shift reported in Table 9 is as good as the RIC3 precon-
ditioner, the robustness of the ICp factorization is not guaranteed, and
the quality strongly depends on the choice of the shift α.

The right-looking algorithm is not competitive. Similar to the RIC2
implementations, although the right-looking implementation reduces the
workspace requirement, it significantly increases the CPU time.

4.6 Performance evaluation

The numerical results presented so far in this section indicate that the
ICp and RIC3 preconditioners are the most competitive ones for solving
the HQMC linear system (4.1). In this section, we focus on these two
preconditioners and evaluate their performance for solving HQMC linear
systems (4.1) with respect to the length-scale parameter N and energy-
scale parameter U . The rest of parameters of the linear systems are
(L, t, β, μ) = (80, 1, 10, 0). The ICp preconditioners are computed with
the diagonal shift α = 10−3 and the drop tolerance σ = 10−3. On
the other hand, the RIC3 preconditioners are computed with the drop
tolerances σ1 = 10−2 and σ2 = 10−3.

96 Bai, Chen, Scalettar, Yamazaki

64256 576 1024 1600 2304 3136 4096
0

50

100

150

200

250

300

350

400

N

P
C

G
 i
tr

s
.

IC
p

U=0
U=1
U=2
U=3

Figure 4.7: Number of PCG iterations using ICp preconditioner, U =
0, 1, 2, 3.

4.6.1 Moderately interacting systems

Figures 4.7 and 4.8 show the performance of the PCG solvers using
ICp and RIC3 preconditioners for moderate interacting systems, namely
U = 0, 1, 2, 3. These plots show that as lattice size N increases, the
numbers of PCG iterations are essentially constants for U = 0, 1, 2 and
only increases slightly for U = 3.

The number of PCG iterations indicates the linear-scaling of PCG
solver with respect to the lattice size N . Figures 4.9 and 4.10 show the
CPU elapsed time. The black dashed lines indicate the linear-scaling for
U = 1 and 3. The CPU time at N = 40 × 40 is used as the reference
point.

To summarize, the quality of the ICp and RIC3 preconditioners are
comparable. The ICp preconditioner is slightly more efficient than the
RIC3 preconditioner in terms of the total CPU elapsed time. We should
note that even though the pivot breakdown did not occur with the shift
α = σ, the ICp factorization is not provable robust.

4.6.2 Strongly interacting systems

For strongly interacting systems, namely U ≥ 4, the number of PCG
iterations grows rapidly as the lattice sizes N increasing as shown in

Numerical Methods for QMC 97

64256 576 1024 1600 2304 3136 4096
0

50

100

150

200

250

300

350

400

N

P
C

G
 i
tr

s
.

RIC3

U=0
U=1
U=2
U=3

Figure 4.8: Number of PCG iterations using RIC3 preconditioner, U =
0, 1, 2, 3.

64256 576 1024 1600 2304 3136 4096
0

5

10

15

20

25

30

35

40

45

50

N

T
o

ta
l
C

P
U

IC
p

U=0
U=1
U=2
U=3

Figure 4.9: CPU time of PCG using ICp preconditioner, U = 0, 1, 2, 3.

98 Bai, Chen, Scalettar, Yamazaki

64256 576 1024 1600 2304 3136 4096
0

5

10

15

20

25

30

35

40

45

50

N

T
o

ta
l
C

P
U

RIC3

U=0
U=1
U=2
U=3

Figure 4.10: CPU time of PCG using RIC3 preconditioner, U = 0, 1, 2, 3.

Figures 4.11 and 4.12. The CPU elapsed time are shown in Figures 4.13
and 4.14. As we see that the RIC3 preconditioner slightly outperforms
the ICp preconditioner. However, for both preconditioners, the total
CPU time of the PCG solver scales at the order of N2. The dashed
line indicates the desired linear-scaling for U = 4. The CPU time at
N = 40× 40 is used as the reference point.

To summarize, for strongly-interacting systems, the linear equations
(4.1) are ill-conditioned. It remains an open problem whether there is a
preconditioning technique to achieve a linear-scaling PCG solver for the
strongly-interacting systems.

Remark 4.1. We have observed that for strongly-interacting systems, the
residual norm stagnates after initial rapid decline. Figure 4.15 shows
the relative residual norm of the PCG iteration for (N,L,U, t, β, μ) =
(32× 32, 80, 6, 1, 10, 0).

The plateau is largely due to the the slow decay of the components of
the residual vector associated with the small eigenvalues of the precon-
ditioned matrix R−1AR−T . Several techniques have been proposed to
deflate these components from the residual vector as a way to avoid the
plateau of the convergence, see [32, 36, 35, 45, 46] and references within.
It remains to be studied about the applicability of these techniques to
our HQMC applications.

Numerical Methods for QMC 99

64256 576 1024 1600 2304 3136 4096
0

2000

4000

6000

8000

10000

12000

N

P
C

G
 i
tr

s
.

IC
p

U=4
U=5
U=6

Figure 4.11: Number of PCG iterations using ICp preconditioner, U =
4, 5, 6.

64256 576 1024 1600 2304 3136 4096
0

2000

4000

6000

8000

10000

12000

N

P
C

G
 i
tr

s
.

RIC3

U=4
U=5
U=6

Figure 4.12: Number of PCG iterations using RIC3 preconditioner, U =
4, 5, 6.

100 Bai, Chen, Scalettar, Yamazaki

64256 576 1024 1600 2304 3136 4096
0

200

400

600

800

1000

N

T
o

ta
l
C

P
U

ICp

U=4
U=5
U=6

Figure 4.13: CPU time of PCG using ICp preconditioner, U = 4, 5, 6.

64256 576 1024 1600 2304 3136 4096
0

200

400

600

800

1000

N

T
o

ta
l
C

P
U

 t
im

e

RIC3

U=4
U=5
U=6

Figure 4.14: CPU time of PCG using RIC3 preconditioner, U = 4, 5, 6.

Numerical Methods for QMC 101

0 500 1000 1500 2000 2500
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of PCG iterations

N
o

rm
 o

f
re

la
ti
v
e

 r
e

s
id

u
a

l

Figure 4.15: Relative residual norms of PCG iterations using RIC3 pre-
conditioner.

Appendix A. Updating algorithm in DQMC

In this appendix, we discuss the single-state MC updating algorithm
to provide a fast means to compute the Metropolis ratio in DQMC de-
scribed in Section 1.2.2.

A.1 Rank-one updates

Consider matrices M1 and M2 of the forms

M1 = I + FV1 and M2 = I + FV2,

where F is a given matrix. V1 and V2 are diagonal and nonsingular, and
moreover, they differ only at the (1,1)-element, i.e.,

V −1
1 V2 = I + α1e1e

T
1 ,

where

α1 =
V2(1, 1)
V1(1, 1)

− 1,

and e1 is the first column of the identity matrix I.

102 Bai, Chen, Scalettar, Yamazaki

It is easy to see that M2 is a rank-one update of M1:

M2 = I + FV1 + FV1(V −1
1 V2 − I)

= M1 + α1(M1 − I)e1eT
1

= M1

[
I + α1(I −M−1

1)e1eT
1

]
.

The ratio of the determinants of the matrices M1 and M2 is immediately
given by13

r1 =
det[M2]
det[M1]

= 1 + α1(1 − eT
1M

−1
1 e1). (4.31)

Therefore, computing the ratio r1 is essentially about computing the
(1,1)-element of the inverse of the matrix M1.

By Sherman-Morrison-Woodbury formula,14 the inverse of the matrix
M2 is a rank-one update of M−1

1 :

M−1
2 =

[
I − α1

r1
(I −M−1

1)e1eT
1

]
M−1

1

= M−1
1 −

(
α1

r1

)
u1w

T
1 , (4.32)

where
u1 = (I −M−1

1)e1, w1 = M−T
1 e1.

Now, let us consider a sequence of matrices Mi+1 generated by rank-
one updates

Mi+1 = I + FVi+1

for i = 1, 2, . . . , n− 1, where

V −1
i Vi+1 = I + αieie

T
i , αi =

Vi+1(i, i)
Vi(i, i)

− 1.

Then by equation (4.31), we immediately have

ri =
det[Mi+1]
det[Mi]

= 1 + αi(1− eT
i M

−1
i ei),

and

M−1
i+1 = M−1

i −
(
αi

ri

)
uiw

T
i ,

where ui = (I −M−1
i)ei and wi = M−T

i ei.

13Here we use the fact that det[I + xyT] = 1 + yT x for any two column vectors x
and y.

14(A + UV T)−1 = A−1 − A−1(I + V T A−1U)−1UT A−1.

Numerical Methods for QMC 103

Denote

Uk = [u1, u2, · · · , uk−1] and W = [w1, w2, · · · , wk−1].

then it is easy to see that the inverse of Mk can be written as a rank-
(k − 1) update of M−1

1 :

M−1
k = M−1

1 − Uk−1DkW
T
k−1,

where Dk = diag(α1
r1
, α2

r2
, . . . , αk−1

rk−1
).

Numerical stability of the rank updating procedure have been exam-
ined in [54] and [55].

A.2 Metropolis ratio and Green’s function computations

As we discussed in section 1.2.2 of the DQMC simulation, it is necessary
to repeatedly compute the Metropolis ratio

r =
det[M+(h′)] det[M−(h′)]
det[M+(h)] det[M−(h)]

,

for configurations h = (h1, h2, . . . , hL) and h′ = (h′1, h′2, . . . , h′L), where
Mσ(h) is defined in (1.18), namely

Mσ(h) = I + BL,σ(hL)BL−1,σ(hL−1) · · ·B2,σ(h2)B1,σ(h1).

The Green’s function associated with the configuration h is defined as

Gσ(h) = M−1
σ (h).

In the DQMC simulation, the elements of configurations h′ and h are
the same except at a specific imaginary time slice � and spatial site i,

h′�,i = −h�,i.

It says that the configuration h′ is obtained by a simple flipping at the
site (�, i).

The Monte-Carlo updates run in the double-loop for � = 1, 2, . . . , L
and i = 1, 2, . . . , N . Let us start with the imaginary time slice � = 1:

• At the spatial site i = 1:

h′1,1 = −h1,1.

By the relationship betweenMσ(h′) andMσ(h) and equation (4.31),
one can derive that the Metropolis ratio r11 is given by

r11 = d+d−, (4.33)

104 Bai, Chen, Scalettar, Yamazaki

where for σ = ±,

dσ = 1 + α1,σ

(
1− eT

1M
−1
σ (h)e1

)
= 1 + α1,σ (1−Gσ

11(h)) ,

and
α1,σ = e−2σνh1,1 − 1.

Therefore, the gist of computing the Metropolis ratio r11 is to com-
pute the (1, 1)-element of the inverse of the matrix Mσ(h). If the
Green’s function Gσ(h) has been computed explicitly in advance,
then it is essentially free to compute the ratio r11.

In the DQMC simulation, if the proposed h′ is accepted, then by
the equality (4.32), the Green’s function Gσ(h) is updated by a
rank-one matrix:

Gσ(h)← Gσ(h)− α1,σ

r11
uσw

T
σ .

where

uσ = (I −Gσ(h))e1 and wσ = (Gσ(h))T e1.

• At the spatial site i = 2:

h′1,2 = −h1,2.

By a similar derivation as for the previous case, we have

r12 = d+d−, (4.34)

where for σ = ±,

dσ = 1 + α2,σ (1−Gσ
12(h)) , α2,σ = e−2σh1,2 − 1.

Correspondingly, if necessary, the Green’s function is updated by
the rank-one matrix

Gσ(h)← Gσ(h)− α2,σ

r12
uσw

T
σ .

where

uσ = (I −Gσ(h))e2 and wσ = (Gσ(h))T e2.

• In general, for i = 3, 4, . . . , N , we can immediately see that the
same procedure can be used for computing the Metropolis ratios
r1i and updating the Green’s functions.

Numerical Methods for QMC 105

Remark 4.2. For high performance computing, one may delay the update
of the Green’s functions to lead to a block high rank update instead of
rank-one update. This is called a “delayed update” technique.

Now, let us consider how to do the DQMC configuration update for
the time slice � = 2. We first notice that the matrices Mσ(h) and Mσ(h′)
can be rewritten as

Mσ(h) = B−1
1,σ(h1)M̂σ(h)B1,σ(h1)

Mσ(h′) = B−1
1,σ(h′1)M̂σ(h′)B1,σ(h′1)

where

M̂σ(h) = I +B1,σ(h1)BL,σ(hL)BL−1,σ(hL−1) · · ·B2,σ(h2)

M̂σ(h′) = I +B1,σ(h′1)BL,σ(h′L)BL−1,σ(h′L−1) · · ·B2,σ(h′2).

The Metropolis ratios r2i corresponding to the time slice � = 2 can be
written as

r2i =
det[M+(h′)] det[M−(h′)]
det[M+(h)] det[M−(h)]

=
det[M̂+(h′)] det[M̂−(h′)]

det[M̂+(h)] det[M̂−(h)]
.

and the associated Green’s functions are given by “wrapping”:

Ĝσ(h)← B−1
1,σ(h1)Gσ(h)B1,σ(h1).

As a result of the wrapping, the configurations h2 and h′2 associated
with the time slice � = 2 appear at the same location of the matrices
M̂σ(h) and M̂σ(h′) as the configurations h1 and h′1 at the time slice
� = 1. Therefore, we can use the same formulation as for the time slice
� = 1 to compute the Metropolis ratios r2i and update the associated
Green’s functions.

For � ≥ 3, it is clear that we can repeat the wrapping trick to compute
the Metropolis ratios r�i and updating the associated Green’s functions.
Remark 4.3. By the discussion, see that the main computing cost of
computing the Metropolis ratios r�i is on the Green’s function updating.
It costs 2N2 flops for each update. The total cost of one sweep through
allN×L Hubbard-Stratonovich variables h is 2N3L. An important issue
is about numerical stability and efficiency of computation, updating and
wrapping of the Green’s functions. A QR decomposition with partial
pivoting based method is currently used in the DQMC implementation
[11].

Appendix B Particle-hole transformation

In this appendix, we present an algebraic derivation for the so-called
particle-hole transformation.

106 Bai, Chen, Scalettar, Yamazaki

B.1 Algebraic identities

We first present a few algebraic identities.

Lemma 4.1. For any nonsingular matrix A,

(I +A−1)−1 = I − (I +A)−1.

Proof. By straightforward verification. �
Lemma 4.2. Let the matrices A� be symmetric and nonsingular for � =
1, 2, · · · ,m, then

(I +A−1
m A−1

m−1 · · ·A−1
1)−1 = I − (I +AmAm−1 · · ·A1)−T .

Proof. By straightforward verification. �
Theorem 4.1. For any square matrices A and B, if there exists a non-
singular matrix Π such that

ΠA+AΠ = 0 and ΠB −BΠ = 0,

namely, Π anti-commutes with A and commutes with B. Then we have

(I + eA−B)−1 = I −Π−1(I + eA+B)−1Π (4.35)

and
det
[
I + eA−B

]
= eTr(A−B) det

[
I + eA+B

]
. (4.36)

Proof. First, we prove the inverse identity (4.35),

(I + eA−B)−1 = I − (I + e−A+B)−1 = I − (I + eΠ
−1(A+B)Π)−1

= I − (I + Π−1eA+BΠ)−1 = I −Π−1(I + eA+B)−1Π.

Now, let us prove the determinant identity (4.36). Note that

I + eA−B = eA−B(I + e−(A−B)) = eA−B(I + e−A+B)

= eA−B(I + eΠ
−1AΠ+Π−1BΠ) = eA−B(I + Π−1eA+BΠ)

= eA−BΠ−1(I + eA+B)Π.

Hence, we have

det
[
I + eA−B

]
= det[eA−B] · det[Π−1] · det[I + eA+B] · det[Π]

= eTr(A−B) det[I + eA+B].

For the last equality, we used the identity det eW = eTrW for any square
matrix W . �

The following theorem gives the relations of the inverses and deter-
minants of the matrices I + eAe−B and I + eAeB.

Numerical Methods for QMC 107

Theorem 4.2. For symmetric matrices A and B, if there exists a nonsin-
gular matrix Π such that

ΠA+AΠ = 0 and ΠB −BΠ = 0.

Then we have

(I + eAe−B)−1 = I −Π−T (I + eAeB)−T ΠT (4.37)

and
det[I + eAe−B] = eTr(A−B) det[I + eAeB] (4.38)

Proof. Similar to the proof of Theorem 4.1. �
The following two theorems are the generalization of Theorem 4.2.

Theorem 4.3. Let Mσ = I + eAeσBkeAeσBk−1 · · · eAeσB1 , where A and
{B�} are symmetric, σ = +,−. If there exists a nonsingular matrix Π
that anti-commutes with A and commutes with B�, i.e.,

ΠA+AΠ = 0 and ΠB� −B�Π = 0 for � = 1, 2, . . . , k.

Then we have
M−1

− = I −Π−TM−T
+ ΠT (4.39)

and
det[M−] = ekTr(A)−Pk

�=1 Tr(B�) det[M+] (4.40)

Theorem 4.4. Let A and B be symmetric matrices and W be a non-
singular matrix. If there exists a nonsingular matrix Π such that it
anti-commutes with A and commutes with B, i.e.,

ΠA+AΠ = 0 and ΠB −BΠ = 0

and furthermore, it satisfies the identity

Π = WΠWT .

Then

(I + eAe−BW)−1 = I −Π−T (I + eAeBW)−T ΠT (4.41)

and

det[I + eAe−BW] = eTr(A−B) · det[W] · det[I + eAeBW]. (4.42)

108 Bai, Chen, Scalettar, Yamazaki

B.2 Particle-hole transformation in DQMC

For the simplest 1-D lattice of Nx sites:

Kx =

⎡⎢⎢⎢⎢⎢⎣
0 1 1
1 0 1

1 0 1
.

1 1 0

⎤⎥⎥⎥⎥⎥⎦
Nx×Nx

.

and Nx ×Nx diagonal matrices V� for � = 1, 2, . . . , L, if Nx is even, the
matrix

Πx = diag(1,−1, 1,−1, . . . , 1,−1)

anti-commutes with Kx and commutes with V�:

ΠxKx +KxΠx = 0

and
ΠxV� − V�Πx = 0 for � = 1, 2, . . . , L.

Then by Theorem 4.3, the determinants of the matrices M− and M+

satisfy the relation

det[M−] = e−
PL

�=1 Tr(V�) det[M+].

For the Green’s functions:

Gσ = M−1
σ =

(
I + eΔτtKxeσVLeΔτtKxeσVL−1 · · · eΔτtKxeσV1

)−1

where σ = + or −, we have

G− = I −Πx(G+)T Πx.

This is referred to as the particle-hole transformation in the condensed
matter physics literature because it can be viewed as a change of oper-
ators ci↓ → c†i↓.

For a 2-D rectangle lattice with Nx ×Ny sites:

K = Kx ⊗ I + I ⊗Ky.

and NxNy × NxNy diagonal matrices V� for � = 1, 2, . . . , L, if Nx and
Ny are even, the matrix

Π = Πx ⊗Πy

anti-commutes with K and commutes with V�:

ΠK +KΠ = 0

Numerical Methods for QMC 109

and
ΠV� − V�Π = 0 for � = 1, 2, . . . , L.

Then by Theorem 4.3, we have

det[M−] = e−
PL

�=1 Tr(V�) det[M+].

This is the identity used for the equation (1.26). For the Green’s func-
tions, we have

Gσ = M−1
σ =

(
I + eΔτtKeσVLeΔτtKeσVL−1 · · · eΔτtKeσV1

)−1

where σ = + (spin up) or − (spin down), we have

G− = I −Π(G+)T Π.

This is the particle-hole transformation for the 2D rectangle lattice.

B.3 Particle-hole transformation in the HQMC

In the HQMC, we consider the matrix Mσ of the form

Mσ =

⎡⎢⎢⎢⎢⎢⎣
I eΔτtKeσV1

−eΔτtKeσV2 I
−eΔτtKeσV2 I

.
−eΔτtKeσVL I

⎤⎥⎥⎥⎥⎥⎦
= I + eAeσDP,

where A = diag(ΔτtK,ΔτtK, . . . ,ΔτtK) and D = diag(V1, V2, . . . , VL)
and

P =

⎡⎢⎢⎢⎢⎢⎣
0 I
−I 0
−I 0

.
−I 0

⎤⎥⎥⎥⎥⎥⎦ .
Note that det[P] = 1. It can be verified that for the 1-D or 2-D rectangle
lattice, i.e., K = Kx or K = Kx ⊗ I + I ⊗ Ky as defined in B.2, the
matrix

Π = I ⊗Πx (1-D)

or
Π = I ×Πx ⊗ Py (2-D)

anti-commutes with A and commutes with D, i.e.,

ΠA+AΠ = 0, ΠD −DΠ = 0.

110 Bai, Chen, Scalettar, Yamazaki

Furthermore, it satisfies
Π = PΠPT .

Then by Theorem 4.4, the determinants of M+ and M− are related by

det[M−] = e−
PL

�=1 Tr(V�) · det[M+].

and the Green’s functions Gσ = M−1
σ satisfy the relation

G− = I −Π(G+)T Π.

Remark 4.4. Besides the 1-D and 2-D rectangle lattices, namely the
lattice structure matrices Kx and K as defined in B.2, are there other
types of lattices (and associated structure matrices K) such that we can
apply Theorems 4.4 to establish the relationships between the inverses
and determinants in the DQMC? It is known that for the honeycomb
lattices, it is true, but for the triangle lattices, it is false. A similar
question is also valid for the HQMC. Indeed, it works on any “bipartite”
lattice, i.e., any geometry in which sites divides into two disjoint sets A
and B and K connects sites in A and B only.

B.4 Some identities of matrix exponentials

1. In general, eA+B �= eAeB, and eAeB �= eBeA.

2. If A and B commute, namely AB = BA, then eA+B = eAeB =
eBeA.

3. (eA)−1 = e−A

4. eP−1AP = P−1eAP

5. (eA)H = eAH

for every square matrix A
eA is Hermitian if A is Hermitian
eA is unitary if A is skew-Hermitian

6. det eA = eTrA for every square matrix A

7. eA⊗I+I⊗B = eA ⊗ eB

Acknowledgments

This paper first assembled for the lecture notes used in the Shanghai
Summer School of Mathematics held in 2006. We are exceedingly grate-
ful to Professor Tatsien Li (Li Daqian) of Fudan University and Professor
Thomas Yizhou Hou of California Institute of Technology for inviting us
to present this work at this summer school and providing us an oppor-
tunity to put the materials together in the first place.

Numerical Methods for QMC 111

References

[1] V. I. Arnold. Mathematical Methods of Classical Mechanics, second
edition. Springer-Verlag, New York, 1989.

[2] R. Blankenbecler, D. J. Scalapino and R. L. Sugar. Monte Carlo
calculations of coupled Boson-fermion systems I. Phys. Rev. D,
24(1981), pp.2278-2286.

[3] R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path
Integrals. McGraw-Hill, New York, 1965

[4] E. Hairer, C. Lubich and G. Wanner. Geometric numerical inte-
gration illustrated by the Störmer-Verlet method. Acta Numerica,
12(2003), pp.399-450.

[5] J. E. Hirsch. Two-dimensional Hubbard model: numerical simula-
tion study. Phy. Rev. B, 31(1985), pp.4403-4419.

[6] J. E. Hirsch. Hubbard-Stratonovich transformation for fermion lat-
tice models. Phy. Rev. B, 28(1983), pp.4059-4061.

[7] J. E. Hirsch. Erratum: Discrete Hubbard-Stratonovich transforma-
tion for fermion lattice models. Phy. Rev. B, 29(1984), p.4159.

[8] J. Hubbard. Electron correlations in narrow energy bands. Proc.
Roy. Soc. London, A, 276(1963), pp.238-257.

[9] J. Hubbard. Electron correlations in narrow energy bands III: an
Improved solution. Proc. Roy. Soc. London, A, 281(1964), pp.401-
419.

[10] Jun S. Liu. Monte Carlo Strategies in Scientific Computing.
Springer, 2001.

[11] E. Y. Loh Jr. and J. E. Gubernatis. Stable numerical simulations
of models of interacting electrons. In Electronic Phase Transition
edited by W. Hanks and Yu. V. Kopaev. Elsevier Science Publishers
B.V., 1992, pp.177–235.

[12] R. K. Pathria. Statistical Mechanics, second edition. Elsevier, 2001.

[13] R. Schumann and E. Heiner. Transformations of the Hubbard in-
teraction to quadratic forms. Phy. Let. A, 134(1988), 202-204.

[14] D. J. Scalapino and R. L. Sugar. Monte Carlo calculations of coupled
Boson-fermion systems II. Phys. Rev. B, 24(1981), pp.4295-4308.

[15] R. T. Scalettar, D. J. Scalapino, R. L. Sugar, and D. Toussaint.
Hybrid molecular-dynamics algorithm for the numerical simulation
of many-electron systems. Phy. Rev. B, 36(1987), pp.8632-8640.

[16] R. T. Scalettar, D. J. Scalapino and R. L. Sugar. New algorithm
for the numerical simulation of fermions. Phy. Rev. B, 34(1986),
pp.7911-7917.

112 Bai, Chen, Scalettar, Yamazaki

[17] J. P. Wallington and J. F. Annett. Discrete symmetries and trans-
formations of the Hubbard model. Phy. Rev. B, 58(1998), pp.1218-
1221.

[18] T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M.
Takono, H. Takagi and J. C. Davis. A ‘checkerboard’ electronic
crystal state in lightly hole-doped Ca2−xNaxCuO2CI2. Nature,
430(2004), pp.1001-1005.

[19] C. Moler and C. Van Loan. Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later. SIAM Review,
45(2003), pp.3-49.

[20] R. S. Varga. Matrix iterative analysis. Prentice-Hall, Englewood
Cliffs, 1962. 2nd ed., Springer, Berlin/Heidelberg, 2000.

[21] S. R. White and D. J. Scalapino. Density matrix renormalization
group study of the striped phase in the 2D t-J model. Phys. Rev.
Lett. 80, pp.1272–1275, (1998).

[22] B. L. Buzbee, G. H. Golub, and C. W. Nielson. On direct methods
for solving Poisson’s equations. SIAM J.Numer. Anal., 7(1970),
pp.627–656.

[23] G. Fairweather and I. Gladwell. Algorithms for almost block diag-
onal linear systems. SIAM Review, 46(2004), pp.49–58.

[24] N. Higham, Accuracy and Stability of Numerical Algorithms (Sec-
ond Edition). SIAM, 2002

[25] B. Philippe, Y. Saad and W. J. Stewart. Numerical methods in
Markov chain modeling. Operations Research, 40(1992), pp.1156–
1179.

[26] W. J. Stewart. Introduction to the numerical solution of Markov
chains. Princeton University Press, 1994.

[27] G. J. Tee. An application of p-cyclic matrices for solving periodic
parabolic problems. Numer. Math., 6(1964), pp.142–159.

[28] U. M. Ascher, R. M. M. Mattheij and R. D. Russell. Numerical solu-
tion of boundary value problems for ordinary differential equations.
Prentice-Hall, Englewood Cliffs, 1988.

[29] S. J. Wright. Stable parallel algorithms for two-point boundary
value problems. SIAM J. Sci. Statist. Comput., 13(1):742–764,
1992.

[30] S. J. Wright. A collection of problems for which gaussian elimination
with partial pivoting is unstable. SIAM J. Sci. Statist. comput.,
14(1993), pp.231–238.

Numerical Methods for QMC 113

[31] M. Ajiz and A. Jennings. A robust incomplete choleski-conjugate
gradient algorithm. Inter. J. Numer. Meth. Engrg., 20(1984),
pp.949–966.

[32] M. Arioli and and D. Ruiz. A Chevyshev-based two-stage iterative
method as an alternative to the direct solution of linear systems.
Technical Report, RAL-TR-2002-021, Rutherford Appleton Labora-
tory. 2000

[33] O. Axelsson and L. Y. Kolotilina. Diagonally compensated reduc-
tion and related preconditioning methods. Numer. Linear Algebra
Appl., 1(1994), pp.155–177.

[34] Z. Bai and R. T. Scalettar. private communication, 2005

[35] M. Bollhoefer and V. Mehrmann. A New approach to algebraic
multilevel methods based on sparse approximate inverses. Preprint,
Numerische Simulation auf Massiv Parallelen Rechnern. (1999).

[36] B. Capentieri, I. S. Duff, and L. Giraud. A class of spectral two-level
preconditioners. SIAM J. Scient. Comp., 25(2003), pp.749–765.

[37] V. Eijkhout. On the existence problem of incomplete factorization
methods. LAPACK Working Note 144, UT-CS-99-435, Computer
Science Department, University of Tennessee. 1991

[38] G. H. Golub and C. F. van Loan. Matrix Computations, third edi-
tion. Johns Hopkins University Press, 1996.

[39] A. Jennings and G. M. Malik. Partial elimination. J. Inst. Math.
Appl., 20(1977), pp.307–316.

[40] I. E. Kaporin. High quality preconditioning of a general symmetric
positive definite matrix based on its utu+utr+ rtu-decomposition.
Numer. Lin. Alg. Appl., 5(1998), pp.483–509.

[41] D. S. Kershaw. The incomplete Cholesky conjugate gradient method
for the iterative solution of systems of linear equations. J. of Comp.
Phys., 26(1978), pp.43–65.

[42] R. Lancaze, A. Morel, B. Petersson and J. Schroper. An investiga-
tion of the 2D attractive Hubbard model. Eur. Phys. J. B., 2(1998),
pp.509–523.

[43] T. A. Manteuffel. An incomplete factorization technique for positive
definite linear systems. Math. Comp., 150(1980), pp.473–497.

[44] J. Meijerinkand and H. A. van der Vorst. An iterative solution
method for linear systems of which the coefficient matrix is a sym-
metric m-matrix. Math. Comp., 137 (1977), pp.134–155.

[45] R. A. Nicolaides. Deflation of conjugate gradients with application
to boundary value problems. SIAM J. Numer. Anal., 24 (1987),
pp.355–365.

114 Bai, Chen, Scalettar, Yamazaki

[46] A. Padiy, O. Axelsson and B. Polman. Generalized augmented ma-
trix preconditioning approach and its application to iterative so-
lution of ill-conditioned algebraic systems. SIAM J. Matrix Anal.
Appl., 22 (200), pp.793–818.

[47] PETSc: Portable, Extensible toolkit for scientific computation.
http://www-unix.mcs.anl.gov/petsc/petsc-2/.

[48] R. T. Scalettar, D. J. Scalapino and R. L. Sugar. A new algo-
rithm for numerical simulation of fermions. Phys. Rev. B, 34(1986),
pp.7911–7917.

[49] R. T. Scalettar, D. J. Scalapino, R. L. Sugar and D. Tousaint. A
hybrid-molecular dynamics algorithm for the numerical simulation
of many electron systems. Phys. Rev. B, 36(1987), pp.8632–8641.

[50] R. B. Schnabel and E. Eskow. A new modified Cholesky factoriza-
tion. SIAM J. Sci. Comput., 11(1990), pp.1136–1158.

[51] M. Tismenetsky. A new preconditioning technique for solving large
sparse linear systems. Lin. Alg. Appl., 154–156(1991), pp.331–353.

[52] H. A. van der Vorst. Iterative solution methods for certain sparse
linear systems with a non-symmetric matrix arising from PDE-
problems. J. of Comp. Phys., 44(1981), pp.1–19.

[53] R. S. Varga, E. B. Saff and V. Mehrmann. Incomplete factorizations
of matrices and connections with H-matrices. SIAM J. Numer.
Anal., 17(1980), pp.787–793.

[54] G. W. Stewart. Modifying pivot elements in Gaussian elimination.
Math. Comp., 28(1974), pp.537–542.

[55] E. L. Yip. A note on the stability of solving a rank-p modification
of a linear system by the Sherman-Morrison-Woodbury formula.
SIAM J. Sci. Stat. Comput., 7(1986), pp.507-513.

