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This paper is concerned with inf trace(XHAX) subject to XHBX = J

for a Hermitian matrix pencil A− λB, where J is diagonal and J2 = I

(the identitymatrix of apt size). The same problemwas investigated

earlier by Kovač-Striko and Veselić (Linear Algebra Appl. 216 (1995)

139–158) for the case in which B is assumed nonsingular. But in this

paper, B is no longer assumed nonsingular, and in fact A − λB is

even allowed to be a singular pencil. It is proved, among others, that

the infimum is finite if and only if A − λB is a positive semi-definite

pencil (in the sense that there is a real numberλ0 such thatA−λ0B is

positive semi-definite). The infimum, when finite, can be expressed

in terms of the finite eigenvalues of A−λB. Sufficient and necessary

conditions for the attainability of the infimum are also obtained.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider Hermitianmatrix A ∈ C
n×n. Denote its eigenvalues by λi (i = 1, 2, . . . , n) in the ascend-

ing order:

λ1 � λ2 � · · · � λn. (1.1)
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One, among numerous others, well-known result for a Hermitian matrix is the following trace mini-

mization principle [1, p. 191]

min
XHX=Ik

trace(XHAX) =
k∑

i=1

λi, (1.2)

where Ik is the k × k identity matrix, and X ∈ C
n×k is implied by size compatibility in matrix mul-

tiplications. Moreover for any minimizer Xmin of (1.2), i.e., trace(XH
minAXmin) = ∑k

i=1 λi, its columns

span A’s invariant subspace4 associated with the first k eigenvalues λi, i = 1, 2, . . . , k. Eq. (1.2) can
be proved by using Cauchy’s interlacing property, for example, and is also a simple consequence of the

more general Wielandt’s theorem [2, p. 199].

Thisminimization principle (1.2) can be extended to the generalized eigenvalue problem for amatrix

pencil A − λB, where A, B ∈ C
n×n are Hermitian and B is positive definite. Abusing the notation, we

still denote the eigenvalues of A − λB by λi (i = 1, 2, . . . , n) in the ascending order as in (1.1). The

extended result reads [3]

min
XHBX=Ik

trace(XHAX) =
k∑

i=1

λi. (1.3)

Moreover for any minimizer Xmin of (1.3), there is a Hermitian A0 ∈ C
k×k whose eigenvalues are λi,

i = 1, 2, . . . , k such that AXmin = BXminA0. The result (1.3), seemingly more general than (1.2), is in

fact implied by (1.2) by noticing that the eigenvalue problem for A − λB is equivalent to the standard

eigenvalue problem for B−1/2AB−1/2, where B−1/2 = (B1/2)−1 and B1/2 is the unique positive definite

square root of B.

The next question is how far we can go in extending (1.2). In 1995, Kovač-Striko and Veselić [4]

obtained a few surprising results in this regard. To explain their results, we first give the following

definition.

Definition 1.1. A − λB is a Hermitian pencil of order n if both A, B ∈ C
n×n are Hermitian. A − λB is

a positive (semi-)definite matrix pencil of order n if it is a Hermitian pencil of order n and if there exists

λ0 ∈ R such that A − λ0B is positive (semi-)definite.

Note that this definition does not demand anything on the regularity of A − λB, i.e., a Hermitian

pencil or a positive semi-definite matrix pencil can be either regular (meaning det(A − λB) �≡ 0) or

singular (meaningdet(A−λB) ≡ 0 for allλ ∈ C). Kovač-StrikoandVeselić [4] focusedonaHermitian5

pencil A − λB with B always nonsingular but possibly indefinite. That B is invertible ensures

det(A − λB) �≡ 0

and thus the regularityofA−λB. Denotebyn+ andn− thenumbersofpositiveandnegativeeigenvalues

of B, respectively, and let k+ and k− be two nonnegative integers such that k+ � n+, k− � n−, and

k+ + k− � 1, and set

Jk =
⎡
⎣Ik+

−Ik−

⎤
⎦ ∈ C

k×k, k = k+ + k−. (1.4)

4 This invariant subspace is unique if λk < λk+1. This is also true for the deflating subspace spanned by the columns of the

minimizer for (1.3).
5 AlthoughKovač-Striko andVeselić [4]were concerned about real symmetricmatrices, but their arguments can be easilymodified

to work for Hermitian matrices.
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Jk will have this assignment for the rest of this paper. SinceB is nonsingular,n = n++n−. The following

remarkable results are obtained in [4].

Theorem 1.1 (Kovač-Striko and Veselić [4]). Let A − λB be a Hermitian pencil of order n and suppose

that B is nonsingular.

1. Suppose that A−λB is positive semi-definite, and denote byλ±
i the eigenvalues 6 of A−λB arranged

in the order:

λ−
n− � · · · � λ−

1 � λ+
1 � · · · � λ+

n+ . (1.5)

Let X ∈ C
k×k satisfying XHBX = Jk, and denote byμ±

i the eigenvalues of XHAX −λXHBX arranged

in the order:

μ−
k− � · · · � μ−

1 � μ+
1 � · · · � μ+

k+ . (1.6)

Then

λ+
i � μ+

i � λ+
i+n−k, for 1 � i � k+, (1.7)

λ−
j+n−k � μ−

i � λ−
i , for 1 � j � k−, (1.8)

where we set λ+
i = ∞ for i > n+ and λ−

j = −∞ for j > n−.

2. If A − λB is positive semi-definite, then

inf
XHBX=Jk

trace(XHAX) =
k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i . (1.9)

(a) The infimum is attainable, if there exists amatrix Xmin that satisfies X
H
minBXmin = Jk andwhose

first k+ columns consist of the eigenvectors associated with the eigenvalues λ+
j for 1 � j � k+

and whose last k− columns consist of the eigenvectors associated with the eigenvalues λ−
i for

1 � i � k−.

(b) If A − λB is positive definite or positive semi-definite but diagonalizable, 7 then the infimum is

attainable.

(c) When the infimum is attained by Xmin, there is a Hermitian A0 ∈ C
k×k whose eigenvalues are

λ±
i , i = 1, 2, . . . , k± such that

XH
minBXmin = Jk, AXmin = BXminA0.

3. A − λB is a positive semi-definite pencil if and only if

inf
XHBX=Jk

trace(XHAX) > −∞. (1.10)

4. If trace(XHAX) as a function of X subject to XHBX = Jk has a local minimum, then A − λB is a

positive semi-definite pencil and the minimum is global.

6 Positive semi-definite pencilA−λBwithnonsingularB alwayshas only real eigenvalues implied by [4, Proposition4.1, 5, Theorem

5.10.1]. See also Lemma 3.8 later.
7 Hermitian pencil A − λB of order n is diagonalizable if there exists a nonsingular n × n matrix W such that both WHAW and

WHBW are diagonal.
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Item 1 of this theorem is [4, Theorem 2.1], item 2 is [4, Theorem 3.1 and Corollary 3.4], item 3

is [4, Corollary 3.8], and item 4 is [4, Theorem 3.5]. They are proved with the prerequisite that B is

nonsingular. In [4, Footnote 1 on p. 140], Kovač-Striko and Veselić wrote

“it seems plausible that many results of this paper are extendable to pencils with B singular, but

det(A − λB) not identically zero. As yet we know of no simple way of doing it."

One of the aims of this paper is to confirm this suspicion that the nonsingularity assumption is indeed

not necessary. Moreover in an attempt of being even more general, we cover singular pencils, as well.

Wepoint out that theCourant–Fischermin–maxprinciple [2, p. 201] (for a single eigenvalue, instead

of sums of several eigenvalues like traces) has been generalized to arbitrary Hermitian pencils, include

semi-definite ones [6–10]. Eq. (1.9) for k = 1 can be considered as a special case of those.

Lancaster and Ye [8, Theorem 1.2] defined a positive definite pencil by requiring that β0A− α0B be

positive definite for some α0, β0 ∈ R. This definition is less restrictive than ours.

1. If β0 �= 0, we let λ0 = α0/β0 to see that Lancaster’s and Ye’s definition of a definite pencil

includes A − λ0B being either positive or negative definite. Definition 1.1, on the other hand,

requires A − λ0B be positive definite.

2. Ifβ0 = 0, thenα0 �= 0 and thus Lancaster and Ye [8] require that B be either positive or negative

definite. In this case, A − λB is also positive definite by Definition 1.1 because we can always

pick some λ0 ∈ R so that A − λ0B is positive definite.

Evenmore general but closely related is the concept of adefinite pencilwhich is definedby the existence

of a complex linear combination of A and B being positive definite [11–14]. But to serve our purpose in

this paper, we will stick to Definition 1.1.

The rest of this paper is organized as follows. Section 2 presents our first set of main results which

are essentially those summarized in Theorem 1.1 but without the nonsingularity assumption on B,

while another main result of ours will be given in Section 4 and it is about a sufficient and necessary

condition on the attainability for the infimum of the trace function in terms of the eigen-structure

of A − λB. All proofs related to the main results in Section 2 are grouped in Section 3 for readability.

Conclusions are given in Section 5.

Notation. Throughout this paper, Cn×m is the set of all n × m complex matrices, Cn = C
n×1, and

C = C
1. R is set of all real numbers. In (or simply I if its dimension is clear from the context) is the

n × n identity matrix, and ej is its jth column. For a matrix X , N(X) = {x : Xx = 0} denotes X ’s null
space and R(X) denotes X ’s column space, the subspace spanned by its columns. XH is the conjugate

transpose of a vector or matrix. A � 0 (A � 0) means that A is Hermitian positive (semi-)definite, and

A ≺ 0 (A 	 0) if −A � 0 (−A � 0). Re(α) is the real part of α ∈ C. For matrices or scalars Xi, both

diag(X1, . . . , Xk) and X1 ⊕ · · · ⊕ Xk denote the same matrix

⎡
⎢⎢⎢⎣
X1

. . .

Xk

⎤
⎥⎥⎥⎦ .

2. Main results

Throughout the rest of this paper, A − λB is always a Hermitian pencil of order n. It may even be

singular, i.e., possibly det(A−λB) ≡ 0 for all λ ∈ C. In particular, B is possibly indefinite and singular.

The integer triplet (n+, n0, n−) is the inertia of B, meaning B has n+ positive, n0 0, and n− negative
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eigenvalues, respectively. Necessarily

r := rank(B) = n+ + n−. (2.1)

We say μ �= ∞ is a finite eigenvalue of A − λB if

rank(A − μB) < max
λ∈C

rank(A − λB), (2.2)

and x ∈ C
n is a corresponding eigenvector if 0 �= x �∈ N(A) ∩ N(B) satisfies

Ax = μBx, (2.3)

or equivalently, 0 �= x ∈ N(A − μB)\(N(A) ∩ N(B)).
To state our main results, for the moment we will take it for granted that a positive semi-definite

pencil A − λB has only r = rank(B) finite eigenvalues all of which are real, but we will prove this claim

later in Lemma 3.8. Denote these finite eigenvalues by the same notations λ±
i as in Section 1 for the

case of a nonsingular B and arrange them in the order as (1.5):

λ−
n− � · · · � λ−

1 � λ+
1 � · · · � λ+

n+ . (1.5)

throughout the rest of this paper. What we have to keep in mind that now n+ + n− may possibly be

less than n. Also in Lemma 3.8, we will see that if λ0 ∈ R such that A − λ0B � 0 as in Definition 1.1,

then for all i, j

λ−
i � λ0 � λ+

j . (2.4)

Theorem 2.1. In Theorem 1.1, the condition that B is nonsingular can be removed.

We emphasize again that Theorem 2.1 covers not only the case when A−λB is a regular pencil and

B is singular but also A − λB is a singular pencil.

Remark 2.1. In both Theorems 1.1 and 2.1, the infimum is taken subject to XHBX = Jk . It is not difficult

to see this restriction can be relaxed to that XHBX is unitarily similar to Jk, or equivalently XHBX is

unitary and has the eigenvalue 1 with multiplicity k+ and −1 with multiplicity k−. Furthermore for

item 1, this restriction can be relaxed to that the inertia of XHBX is (k+, 0, k−).

A necessary condition for a Hermitian pencil A − λB to be definite is that it must be regular. The

next theorem extends two other results: Corollary 3.7 and Theorem 3.10 of [4] to a regular pencil.

Theorem 2.2. Let A − λB be a Hermitian matrix pencil of order n, and suppose it is regular, i.e., det(A −
λB) �≡ 0. Suppose also that n+ � 1 and n− � 1.

1. A necessary and sufficient condition for A − λB to be positive definite is that both infimums

t
+
0 = inf

xHBx=1
xHAx, t

−
0 = inf

xHBx=−1
xHAx (2.5)

are attainable and t
+
0 +t

−
0 > 0. In this case

(
−t

−
0 , t+0

)
is the positive definiteness interval of A−λB,

i.e., A − μB � 0 for any μ ∈
(
−t

−
0 , t+0

)
.

2. Suppose 1 � k+ � n+ and 1 � k− � n− and that the positive definiteness intervals of pencils

XHAX − λJk, taken for all X satisfying XHBX = Jk, have a nonvoid intersection I . Then A − λB is

positive definite, and I is the definiteness interval of A − λB.
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Another main result of ours to be given in Section 4 is a sufficient and necessary condition for the

attainability of the infimum in the terms of the eigen-structure of the pencil A − λB.

Remark 2.2. Lancaster and Ye [8, Theorem 1.2] gave a different characterization of a positive definite

pencil with nonsingular B. To state their result, we will characterize each finite real eigenvalue μ of

regular Hermitian pencil A − λB as of the positive type or the negative type according to whether

xHBx > 0 or xHBx < 0, where x is a corresponding eigenvector. For a multiple eigenvalue μ with the

same algebraic and geometric multiplicity, we can choose a basis of the associated eigenspace and

pair each copy ofμwith one basis vector and define the type of each copy accordingly. Theorem 1.2 of

[8] says that A − λB is positive definite if and only if it is diagonalizable, has all eigenvalues real, and the

smallest finite eigenvalue of the positive type is bigger than the largest finite eigenvalue of the negative type.

This result, too, can be extended to include the case when B is singular, using our proving techniques

here.

3. Proofs

All notations in Section 2 will be adopted in whole. We will also use integer triplet

(i+(H), i0(H), i−(H))

for the inertia of a HermitianmatrixH, where i+(H), i0(H), and i−(H) are the number of positive, zero,

and negative eigenvalues of H, respectively. In particular,

i+(B) = n+, i0(B) = n − r, i−(B) = n−.

The eventual proofs of Theorems 2.1 and 2.2 relay on a series of lemmas below.

Lemma 3.1. There is a unitary U ∈ C
n×n such that

UHBU =
⎡
⎣

r n−r

r B1

n−r 0

⎤
⎦, UHAU =

⎡
⎣

r n−r

r A11 A12

n−r A21 A22

⎤
⎦. (3.1)

where AH
ij = Aji, and BH1 = B1 ∈ C

r×r is nonsingular.

Lemma 3.1 can be proved by noticing that there is a unitary U ∈ C
n×n to transform B as in the

first equation in (3.1). The second equation there is simply due to partition UHAU accordingly for the

convenience of our later use.

Now if A21 = AH
12 in (3.1) can be somehow annihilated, the situation is then very much reduced to

the case studied by Kovač-Striko and Veselić [4], namely a nonsingular B. Finding a way to annihilate

A21 = AH
12 is the key to our whole proofs in this section.

Lemma 3.2. Let A − λB be a Hermitian matrix pencil of order n, and let PPPB be the orthogonal projection

onto R(B). If

R([I − PPPB]APPPB) ⊆ R([I − PPPB]A[I − PPPB]), (3.2)
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then there exists a nonsingular Y ∈ C
n×n such that

YHAY =
⎡
⎣

r n−r

r A1

n−r A2

⎤
⎦, YHBY =

⎡
⎣

r n−r

r B1

n−r 0

⎤
⎦, (3.3)

where BH1 = B1 is invertible, and AH
i = Ai. Moreover A − λB has r finite eigenvalues which are the same

as the eigenvalues of A1 − λB1.

Proof. We have (3.1) by Lemma 3.1. The condition (3.2) is equivalent to

R(A21) ⊆ R(A22).

Thus A22Z = A21 = AH
12 has solutions one of which is Z = A

†
22A21, where A

†
22 is the Moore–Penrose

inverse of A22. Define

C =
⎡
⎣ Ir 0

−Z In−r

⎤
⎦ =

⎡
⎣ Ir 0

−A
†
22A21 In−r

⎤
⎦ . (3.4)

It can be verified that

CHUHAUC =
⎡
⎣A11 − A12A

†
22A21 0

0 A22

⎤
⎦ , CHUHBUC =

⎡
⎣B1 0

0 0

⎤
⎦ . (3.5)

Take A1 = A11 − A12A
†
22A21, A2 = A22, and Y = UC to get (3.3). �

Although the condition (3.2) seems a bit of mysterious, it is always true for positive semi-definite

matrix pencils as confirmed by the next lemma.

Lemma3.3. If A−λB is a positive semi-definitematrix pencil of order n, then the condition (3.2) is satisfied

and thus the equations in (3.3) hold for some nonsingular Y ∈ C
n×n, and moreover, A2 � 0 and A1 −λB1

is a positive semi-definite matrix pencil of order n − r.

Proof. There exists λ0 ∈ R such that Â := A − λ0B � 0. We have (3.1) by Lemma 3.1, and then

UHÂU = UH(A − λ0B)U =
⎡
⎣

r n−r

r A11 − λ0B1 A12

n−r A21 A22

⎤
⎦ � 0.

Thus R(A21) ⊆ R(A22) which is (3.2), as expected. Finally, A2 � 0 and that A1 − λB1 is positive

semi-definite are due to YH(A − λ0B)Y � 0. �

The decompositions in (3.3), if exist, are certainly not unique. The next lemma says the reduced

pencils A1 − λB1 and A2 − λ · 0 are unique, up to nonsingular congruence transformation.
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Lemma 3.4. Let A− λB be a Hermitian matrix pencil of order n, and suppose it admits decompositions in

(3.3), where r = rank(B). Suppose it also admits

ỸHAỸ =
⎡
⎣

r n−r

r Ã1

n−r Ã2

⎤
⎦, ỸHBỸ =

⎡
⎣

r n−r

r B̃1

n−r 0

⎤
⎦, (3.6)

where Ỹ ∈ C
n×n is nonsingular. Then there exist nonsingular M1 ∈ C

r×r and M2 ∈ C
(n−r)×(n−r) such

that

Ã1 − λB̃1 = MH
1 (A1 − λB1)M1, Ã2 = MH

2 A2M2.

Proof. Partition Y = [Y1, Y2] and Ỹ = [Ỹ1, Ỹ2] with Y1, Ỹ1 ∈ C
n×r . Since BY2 = BỸ2 = 0, we

have R(Ỹ2) = N(B) = R(Y2) and thus Ỹ2 = Y2M2 for some nonsingular M2 ∈ C
(n−r)×(n−r). Set

M = Y−1Ỹ1 and partitionM to get

Ỹ1 = YM, M =
⎡
⎣

r

r M1

n−r Z

⎤
⎦.

Hence Ỹ = [Ỹ1, Ỹ2] = [Y1, Y2]
⎡
⎣M1 0

Z M2

⎤
⎦ which implies M1 must be nonsingular. We have by (3.3)

and (3.6)

0 = ỸH
1 AỸ2 = MHYHAY2M2 = MH

⎡
⎣ 0

A2

⎤
⎦M2 ⇒ MH

⎡
⎣ 0

A2

⎤
⎦ = 0,

Ã1 = ỸH
1 AỸ1 = MHYHAYM = MH

⎡
⎣A1 0

0 A2

⎤
⎦M = MH

⎡
⎣A1 0

0 0

⎤
⎦M = MH

1 A1M1,

B̃1 = ỸH
1 BỸ1 = MHYHBYM = MH

⎡
⎣B1 0

0 0

⎤
⎦M = MH

1 B1M1,

Ã2 = ỸH
2 AỸ2 = MH

2 Y
H
2 AY2M2 = MH

2 A2M2,

as expected. �

Lemma 3.5. Let M ∈ C
�×� be Hermitian and nonsingular, and let 0 �= y ∈ C

�. Then there exists x ∈ C
�

such that both xHMx �= 0 and xHy �= 0. In the case when M is indefinite, the chosen x can be made either

xHMx > 0 or xHMx < 0 as needed.

Proof. If M is positive or negative definite, taking x = y will do. Suppose M is indefinite. There

is a nonsingular matrix Z ∈ C
�×� such that ZHMZ = diag(I�+ , −I�−), where �± � 1. Partition
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ZHy =
⎡
⎣y1
y2

⎤
⎦, where y1 ∈ C

�+ . We may take x by

either Z−1x =
⎡
⎣y1
0

⎤
⎦ or Z−1x =

⎡
⎣ 0

y2

⎤
⎦ , (3.7)

depending on if yi = 0 or not. Because at least one of yi is nonzero, one of the choices in (3.7) will

make both xHMx �= 0 and xHy �= 0.

It can also be done to ensure xHMx > 0 regardless. In fact, if y1 �= 0, the first choice in (3.7) will

do. But if y1 = 0, then y2 �= 0. Take

Z−1x =
⎡
⎣(yH2 y2 + 1)1/2e1

y2

⎤
⎦ .

Then xHMx = 1 and xHy = yH2 y2. Similarly we can ensure xHMx < 0 if needed. �

Lemma 3.6. Let A − λB be a Hermitian matrix pencil of order n. If

inf
XHBX=Jk

trace(XHAX) > −∞,

then the condition (3.2) holds.

Proof. We have (3.1) by Lemma 3.1. Now for any X ∈ C
n×k , write

X̃ = UHX =
⎡
⎣r X̃1

n−r X̃2

⎤
⎦. (3.8)

We have

XHBX = X̃HUHBUX̃ = X̃H
1 B1X̃1, (3.9)

trace(XHAX) = trace(X̃H
1 A11X̃1) + 2Re

(
trace(X̃H

1 A12X̃2)
)+ trace(X̃H

2 A22X̃2). (3.10)

The condition (3.2) is equivalent toR(A21) ⊆ R(A22) which we will prove.

Assume to the contrary thatR(A21) �⊆ R(A22), or equivalently

N(A12) = N(AH
21) = R(A21)

⊥ �⊇ R(A22)
⊥ = N(AH

22) = N(A22),

i.e., there exists 0 �= x2 ∈ C
n−r such that A22x2 = 0 but y := A12x2 �= 0. By Lemma 3.5, there is

x1 ∈ C
r such that xH1 B1x1 �= 0 and xH1 y �= 0. For our purpose, we will make xH1 B1x1 > 0 if k+ > 0 and

xH1 B1x1 < 0 otherwise. Scale x1 so that |xH1 B1x1| = 1. B1 induces an indefinite-inner product in ∈ C
r

and since |xH1 B1x1| = 1, we can extend x1 to an orthonormal basis with respect to this B1-indefinite-

inner product [5, p. 10]: x1, x2, . . . , xr , i.e., x
H
i B1xj = 0 for i �= j and xHi B1xi = ±1. Suppose for the

moment xH1 B1x1 = 1. Pick k xi out of all: xj1 , xj2 , . . . , xjk with j1 = 1 (i.e., x1 is included in), such that

among xHij B1xij for 1 � j � k there are k+ of them +1s and k− of them −1s. Now consider those X̃ in

(3.8) with
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X̃1 = [xj1 , xj2 , . . . , xjk ]Π, X̃2 = ξ [y, 0, . . . , 0],

where ξ ∈ C, and Π is the r × r permutation matrix such that X̃H
1 B1X̃1 = Jk and x1 is in the first

column of X̃1. Then by (3.10),

trace(XHAX) = trace
(
X̃H
1 A11X̃1

)
+ 2Re

(
ξxH1 y

)

which can be made arbitrarily small towards −∞, contradicting that trace(XHAX) as a function of X

restricted toXHBX = Jk is bounded frombelow.ThereforeR(A21) ⊆ R(A22). Thecase forx
H
1 B1x1 = −1

is similar. The proof is completed. �

The standard involutary permutation matrix (SIP) of size n is the n × n identity matrix with its

columns rearranged from the last to the first:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

. . .

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.11)

The next lemma presents the well-known canonical form of a Hermitian pencil A− λBwith a nonsin-

gular B under nonsingular congruence transformations.

Lemma 3.7 [5, Theorem 5.10.1]. Let A − λB be a Hermitian matrix pencil of order n, and suppose that B

is nonsingular. Then there exists a nonsingular W ∈ C
n×n such that

WHAW = s1K1 ⊕ · · · ⊕ spKp ⊕
⎡
⎣ 0 Kp+1

KH
p+1 0

⎤
⎦ ⊕ · · · ⊕

⎡
⎣ 0 Kq

KH
q 0

⎤
⎦ , (3.12a)

WHBW = s1S1 ⊕ · · · ⊕ spSp ⊕
⎡
⎣ 0 Sp+1

SHp+1 0

⎤
⎦ ⊕ · · · ⊕

⎡
⎣ 0 Sq

SHq 0

⎤
⎦ , (3.12b)

where

Ki =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αi

αi 1

. . . 1

. . . . . .

αi 1

αi 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.13)

αi ∈ R for 1 � i � p; αi ∈ C is nonreal for p+ 1 � i � q, and si = ±1 for 1 � i � p; Si is a SIP whose

size is the same as that of Ki for all i. The representations in (3.12) are uniquely determined by the pencil

A − λB, up to a simultaneous permutation of the corresponding diagonal block pairs.

Lemma 3.8. Let A − λB be a positive semi-definite matrix pencil of order n, and suppose that λ0 ∈ R

such that A − λ0B � 0.
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1. There exists a nonsingular W ∈ C
n×n such that

WHAW =

⎡
⎢⎢⎢⎣

n1 r−n1 n−r

n1 Λ1

r−n1 Λ0

n−r Λ∞

⎤
⎥⎥⎥⎦, WHBW =

⎡
⎢⎢⎢⎣

n1 r−n1 n−r

n1 Ω1

r−n1 Ω0

n−r 0

⎤
⎥⎥⎥⎦, (3.14)

where r = rank(B) = n+ + n−, and

(a) Λ1 = diag(s1α1, . . . , s�α�), Ω1 = diag(s1, . . . , s�), si = ±1, and Λ1 − λ0Ω1 � 0,

(b) Λ0 = diag(Λ0,1, . . . , Λ0,m+m0
) and Ω0 = diag(Ω0,1, . . . ,Ω0,m+m0

) with

Λ0,i = tiλ0, Ω0,i = ti = ±1, for 1 � i � m,

Λ0,i =
⎡
⎣ 0 λ0

λ0 1

⎤
⎦ , Ω0,i =

⎡
⎣0 1

1 0

⎤
⎦ , for m + 1 � i � m + m0,

(c) Λ∞ = diag(αr+1, . . . , αn) � 0 with αi ∈ {1, 0} for r + 1 � i � n.

The representations in (3.14) are uniquely determined by A−λB, up to a simultaneous permutation

of the corresponding 1 × 1 and 2 × 2 diagonal block pairs (siαi, si) for 1 � i � �, (Λ0,i, Ω0,i) for
1 � i � m + m0, and (αi, 0) for r + 1 � i � n.

2. A − λB has n+ + n− finite eigenvalues all of which are real. Denote these finite eigenvalues by λ±
i

and arrange them in the order as in (1.5). Write m = m+ + m−, where m+ is the number of those

1 × 1 diagonal blocks in Λ0 with si = 1 and m− is that of those with si = −1. The respective

sources of these finite eigenvalues are

source 1. the 1 × 1 block pairs (Λ0,j, Ω0,j) with tj = −1 produce λ−
i = λ0 for 1 � i � m−;

source 2. the 1 × 1 block pairs (Λ0,j, Ω0,j) with tj = +1 produce λ+
i = λ0 for 1 � i � m+;

source 3. the 2 × 2 block pairs (Λ0,m+i, Ω0,m+i) for 1 � i � m0 produce λ−
m−+i = λ0 and

λ+
m++i = λ0;

source 4. the diagonalmatrix pair (Λ1, Ω1) producesλ
±
i (according to sj = ±1) form0+m± �

i � n±.

Each eigenvalue from sources other than source 3 has an eigenvector x that satisfies xHBx = +1 for

λ+
i and xHBx = −1 for λ−

j , while for source 3, each pair
(
λ−
m−+i, λ

+
m++i

)
of eigenvalues shares

one eigenvector x that satisfies xHBx = 0. To be more specific than (1.5), we can order these finite

eigenvalues as

λ−
n− � · · · � λ−

m0+m−+1 < λ0 = · · · = λ0︸ ︷︷ ︸
m0

= λ0 = · · · = λ0︸ ︷︷ ︸
m−

= λ0 = · · · = λ0︸ ︷︷ ︸
m+

= λ0 = · · · = λ0︸ ︷︷ ︸
m0

< λ+
m0+m++1

� · · · � λ+
n+ . (3.15)

In particular λ−
i = λ0 for 1 � i � m0 + m− and λ+

i = λ0 for 1 � i � m0 + m+.

3. {γ ∈ R | A−γ B � 0} = [λ−
1 , λ+

1 ]. Moreover, if A−λB is regular, then A−λB is a positive definite

pencil if and only if λ−
1 < λ+

1 , in which case {γ ∈ R | A − γ B � 0} = (λ−
1 , λ+

1 ).

4. Let μ = (λ−
1 + λ+

1 )/2. For γ > μ, let n(γ ) be the number of the eigenvalues of the matrix pencil

A − λB in [μ, γ ), where μ, if an eigenvalue, is counted i+(Ω0) times. For γ < μ, let n(γ ) be

the number of the eigenvalues of the matrix pencil A − λB in (λ, μ], where μ, if an eigenvalue, is

counted i−(Ω0) times. Then
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n(γ ) = i−(A − γ B).

Proof. In Lemma 3.3, A1 − λB1 is a positive semi-definite matrix pencil with B1 nonsingular. Such a

pencil can be transformed by congruence so that YH
1 A1Y1 and YH

1 B1Y1 are in their canonical forms as

given in the right-hand sides of (3.12a) and (3.12b), respectively, where Y1 ∈ C
r×r is nonsingular. We

now use the positive semi-definiteness to describe all possible diagonal blocks in the right-hand sides.

There are a few cases to deal with:

Case 1. No Ki (1 � i � p) is 3 × 3 or larger. For a 3 × 3 Ki with αi ∈ R, the right-bottom corner

2 × 2 submatrix of Ki − μSi

⎡
⎣αi − μ 1

1 0

⎤
⎦ �� 0 nor

⎡
⎣αi − μ 1

1 0

⎤
⎦ �	 0

for any μ ∈ R. For a k × k Ki with αi ∈ R and k � 4, the submatrix of Ki − μSi, consisting

of the intersections of its row 2 and k and its column 2 and k is always the 2 × 2 SIP which

is indefinite.

Case 2. No 2 × 2 Ki (1 � i � p) is with si = −1. This is because for si = −1

si

⎡
⎣ 0 αi

αi 1

⎤
⎦− μsi

⎡
⎣0 1

1 0

⎤
⎦ =

⎡
⎣ 0 −αi + μ

−αi + μ −1

⎤
⎦ �� 0 for any μ ∈ R.

Case 3. The αi for any 2 × 2 Ki (1 � i � p), if any, is λ0. This is because

⎡
⎣ 0 αi

αi 1

⎤
⎦− μ

⎡
⎣0 1

1 0

⎤
⎦ =

⎡
⎣ 0 αi − μ

αi − μ 1

⎤
⎦ � 0 if and only if μ = αi.

Case 4. Ki (1 � i � p) with αi �= λ0 is 1 × 1. This is a result of Case 1 and Case 3 above.

Case 5. The blocks associated with nonreal αi cannot exist. This is because the submatrix consisting

of the intersections of the first and last row and the first and last column of

⎡
⎣ 0 Ki

KH
i 0

⎤
⎦− μ

⎡
⎣ 0 Si

SHi 0

⎤
⎦

is

⎡
⎣ 0 αi − μ

ᾱi − μ 0

⎤
⎦which is never semi-definite for any μ ∈ R.

Together, they imply

YH
1 A1Y1 = diag(Λ1, Λ0), YH

1 B1Y1 = diag(Ω1, Ω0), (3.16)

where Λ1, Λ0, Ω1, Ω0 as described in the lemma. Since A2 � 0, there exists a nonsingular Y2 ∈
C

(n−r)×(n−r) such that

YH
2 A2Y2 = diag(αr+1, . . . , αn)

with αi ∈ {1, 0} for r + 1 � i � n. Now set W = Y diag(Y1, Y2) to get (3.14).
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The uniqueness of the representations in (3.14), up to simultaneous permutation, is a consequence

of the uniqueness claims in Lemma 3.7 and that in Lemma 3.4 up to congruence transformation.

For item2,wenote that thefinite eigenvalues ofA−λB are theunionof the eigenvalues ofΛ1−λΩ1

and these of Λ0 − λΩ0. The rest are a simple consequence of item 1.

For item 3, we note Λ1 − λ0Ω1 = diag(si(αi − λ0)) � 0. Obviously αi, i = 1, . . . , � are some

eigenvalues of A − λB. If si = 1, αi > λ0, and thus αi = λ+
j for some j > m+ + m0. Similarly, if

si = −1, αi = λ−
k for some k > m− + m0. Hence

Λ1 − γΩ1 = diag(si(αi − γ )) � 0 (3.17)

⇔ λ−
k � γ � λ+

j for all k > m− + m0, j > m+ + m0.

Also,

Λ0,i − γΩ0,i = ti(λ0 − γ ) � 0 for i = 1, . . . ,m (3.18)

⇔ λ−
k � γ � λ+

j for all 1 � k � m−, 1 � j � m+,

and

Λ0,i − γΩ0,i � 0 for i = m + 1, . . . ,m + m0 ⇔ γ = λ0. (3.19)

Putting all together, we have A − γ B � 0 ⇔ λ−
1 � γ � λ+

1 .

For A − λB to be regular and positive semi-definite, Λ∞ � 0. Now if A − λB is a positive definite

pencil, then there exists γ such that the inequalities in (3.17), (3.18) and (3.19) are strict. This can only

happen when m0 = 0 and λ−
1 < λ+

1 , in which case A − γ B � 0 ⇔ λ−
1 < γ < λ+

1 . On the other

hand, if λ−
1 < λ+

1 , thenm0 = 0 and only one ofm+ andm− can be bigger than 0, or equivalently only

one of λ−
1 and λ+

1 can possibly be λ0 but not both. So for λ−
1 < γ < λ+

1 , the inequalities in (3.17) and

(3.18) are strictly, and therefore A − γ B � 0.

Item4 can be proved by separately considering four cases: (1)λ−
1 < λ0 < λ+

1 ; (2)λ−
1 < λ0 = λ+

1 ;

(3) λ−
1 = λ0 < λ+

1 ; and (4) λ−
1 = λ0 = λ+

1 . Detail is omitted. �

Lemma 3.9. Suppose B is nonsingular. A − λB is a positive semi-definite matrix pencil if

inf
XHBX=Jk

trace(XHAX) > −∞.

Proof. This is part of [4, Corollary 3.8], where the proof is rather sketchywith claims that, though true,

were not obvious and substantiated. What follows is a more detailed proof.

If either B ≺ 0 or B � 0, then there isλ0 ∈ R such that A−λ0B � 0, and thus no proof is necessary.

Suppose in what follows that B is indefinite.

If the infimum is attainable, then trace(XHAX) as a function of X restricted to XHBX = Jk has a

(local) minimum. By item 2 of Theorem 1.1, A − λB is a positive semi-definite matrix pencil.

Consider the case when the infimum is not attainable. Perturb A to Aε := A+ εI, where ε > 0, and

define

fε(X) := trace(XHAεX) = trace(XHAX) + ε‖X‖2
F � trace(XHAX),

where ‖X‖F is X ’s Frobenius norm. We have for any given ε > 0

inf
XHBX=Jk

fε(X) � inf
XHBX=Jk

trace(XHAX) > −∞. (3.20)



3098 X. Liang et al. / Linear Algebra and its Applications 438 (2013) 3085–3106

We claim inf fε(X) subject to XHBX = Jk can be attained. In fact, let X(i) be a sequence such that

(X(i))HBX(i) = Jk, lim
i→∞ fε(X

(i)) = inf
XHBX=Jk

fε(X). (3.21)

{X(i)} is a bounded sequence; otherwise

lim
i→∞ fε(X

(i)) � inf
XHBX=Jk

trace(XHAX) + lim sup
i→∞

ε‖X(i)‖2
F = +∞,

contradicting (3.20) and (3.21). So for any given ε > 0, Aε − λB is a positive semi-definite pencil,

which means for every ε > 0, there is λε ∈ R such that Aε − λεB � 0. Pick a sequence {εi > 0}
that converges to 0 as i → ∞. We claim that {λεi} is a bounded sequence which then must have a

convergent subsequence converging to, say λ0. Through renaming, wemay assume the sequence itself

is the subsequence. Then let i → ∞ on Aεi − λεi B � 0 to conclude that A − λ0B � 0, i.e., A − λB is a

positive semi-definite matrix pencil. We have to show that {λεi} is bounded. To this end, it suffices to

show {λε : 0 < ε � 1} is bounded. Since Aε − λB is a positive semi-definite matrix pencil of order

n, its eigenvalues are real and can be ordered as, by Lemma 3.8,

λ−
n−(ε) � · · · � λ−

1 (ε) � λ+
1 (ε) � · · · � λ+

n+(ε),

and λ−
1 (ε) � λε � λ+

1 (ε). Therefore for 0 < ε � 1

|λε | � ‖B−1Aε‖F � ‖B−1A‖F + ‖B−1‖F,

as was to be shown. �

Proof of Theorem 2.1. To prove item 1 (which is the item 1 of Theorem 1.1 without assuming A − λB
is regular, let alone B is nonsingular), we complement8 X by Xc to a nonsingular X1 = [X, Xc] ∈ C

n×n

such that

XH
1 BX1 =

⎡
⎣

k n−k

k Jk 0

n−k 0 Bc

⎤
⎦, XH

1 AX1 =
⎡
⎣

k n−k

k A11 A12

n−k A21 A22

⎤
⎦. (3.22)

For any γ ∈ R that makes A11 − γ Jk nonsingular, let

Z =
⎡
⎣Ik −(A11 − γ Jk)

−1A12

0 In−k

⎤
⎦ ,

8 Xc can be found as follows. Since X has full column rank, we can expand it to a nonsingular Y = [X, X̂c] ∈ C
n×n . Partition

YHBY =
⎡
⎢⎣ Jk B12

B21 B22

⎤
⎥⎦ and let YH

1 =
⎡
⎢⎣ Ik 0

−B21Jk In−k

⎤
⎥⎦ to get

YH
1 YHBYY1 =

⎡
⎢⎣Jk 0

0 B22 − B21JkB12

⎤
⎥⎦ .

Notice YY1 = [X, X̂c − XJkB12]. Set Bc = B22 − B21JkB12 and Xc = X̂c − XJkB12 and thus X1 = YY1 to get the first equation in (3.22).

The second equation is simply obtained by partitioning XH
1 AX1 accordingly.
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then

ZHXH
1 (A − γ B)X1Z = diag(A11 − γ Jk, Â22),

where Â22 = −A21(A11 − γ Jk)
−1A12 + A22 − γ Bc. Thus,

i−(A11 − γ Jk) � i−(A − γ B) = i−(A11 − γ Jk) + i−(̂A22) (3.23)

� i−(A11 − γ Jk) + n − k. (3.24)

Assumeμ+
i < λ+

i for some i. Then there exists γ ∈ (μ+
i , λ+

i ) such that A11 − γ Jk is nonsingular. The

number n(γ ) forA11−λJk asdefined in item3of Lemma3.8 is at least i, and therefore i−(A11−γ Jk) � i,

and n(γ ) for A−λB is at most i− 1, and therefore i−(A− γ B) � i− 1. This contradicts the inequality

in (3.23).

Assume μ+
i > λ+

i+n−k for some i. Then there exists γ ∈
(
λ+
i+n−k, μ

+
i

)
such that A11 − γ Jk is

nonsingular. The number n(γ ) for A11 − λJk as defined in item 3 of Lemma 3.8 is at most i − 1,

and therefore i−(A11 − γ Jk) � i − 1, and n(γ ) for A − λB is at least i + n − k, and therefore

i−(A − γ B) � i + n − k. This contradicts the inequality in (3.24).

This proves (1.7), and (1.8) can be proved in a similar way.

For item 2, the condition of Lemma 3.3 is satisfied by A−λB here. So we have (3.3) in which A2 � 0

and A1 − λB1 is a positive semi-definite pencil with B1 nonsingular. Now for any X ∈ C
n×k , write

X̂ = Y−1X =
⎡
⎣r X̂1

n−r X̂2

⎤
⎦, (3.25)

which gives XHBX = X̂HYHBYX̂ = X̂H
1 B1X̂1, having nothing to do with X̂2. Since the mapping X → X̂

is one-one, we have

inf
XHBX=Jk

trace(XHAX) = inf
X̂H
1 B1X̂1=Jk

trace

⎛
⎜⎝
⎡
⎣X̂1

X̂2

⎤
⎦
H ⎡
⎣A1 0

0 A2

⎤
⎦
⎡
⎣X̂1

X̂2

⎤
⎦
⎞
⎟⎠

= inf
X̂H
1 B1X̂1=Jk

[
trace(X̂H

1 A1X̂1) + trace(X̂H
2 A2X̂2)

]

= inf
X̂H
1 B1X̂1=Jk

trace(X̂H
1 A1X̂1) + inf

X̂2

trace(X̂H
2 A2X̂2)

= inf
X̂H
1 B1X̂1=Jk

trace(X̂H
1 A1X̂1). (3.26)

The last equality is due to A2 � 0 and is attained by any X̂2 satisfying R(X̂2) ⊆ N(A2). Theorem 1.1 is

applicable to A1 − λB1 and the application gives, by (3.26),

inf
XHBX=Jk

trace(XHAX) = inf
X̂H
1 B1X̂1=Jk

trace
(
X̂H
1 A1X̂1

)

=
k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i ,

as expected. Track each equal sign in the above equations to conclude the claims in items 2(a,b,c). This

proved item 2.
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For item3, item2 implies that the condition (1.10) is necessary.We have to prove that it is sufficient,

too. Suppose (1.10) is true. By Lemma 3.6, the condition (3.2) of Lemma 3.2 is satisfied. So we have

(3.3), (3.25), and

inf
XHBX=Jk

trace(XHAX) = inf
X̂H
1 B1X̂1=Jk

trace
(
X̂H
1 A1X̂1

)
+ inf

X̂2

trace
(
X̂H
2 A2X̂2

)

which is bounded from below. Therefore

A2 � 0, inf
X̂H
1 B1X̂1=Jk

trace(X̂H
1 A1X̂1) > −∞. (3.27)

Since B1 is nonsingular, Lemma 3.9 says that A1 − λB1 is a positive semi-definite matrix pencil by the

second inequality in (3.27). Therefore YHAY − λYHBY is, too; so is A − λB.
Nowwe turn to item 4. In what follows, we first use Lagrange’s multiplier method, similar to [4] in

proving its Theorem 3.5 there, to show that A− λB is a positive semi-definite pencil. Since XHBX = Jk
provides k2 independent constraints on X (in R), we can use a k × k Hermitian matrix Λ which has

k2 degrees of freedom to express Lagrange’s function as9

L (X) = trace(XHAX) − 〈Λ, XHBX − Jk〉.
The gradient of L at X is

∇L (X) = 2(AX − BXΛ).

Therefore for any local minimal point X0, there exists a group of Lagrange’s multipliers, i.e., some

Hermitian Λ0 ∈ C
k×k such that

AX0 = BX0Λ0, XH
0 BX0 = Jk. (3.28)

Without loss of generality, we may assume that Λ0 is diagonal. Here is why. Pre-multiply the first

equation in (3.28) by XH
0 to get XH

0 AX0 = JkΛ0. Therefore JkΛ0 = (JkΛ0)
H = Λ0Jk which implies Λ0

is block diagonal, i.e., Λ0 = Λ0+ ⊕ Λ0−, where Λ0± ∈ C
k±×k± are Hermitian. Hence there exists

a block diagonal unitary V = V0+ ⊕ V0− such that VHΛ0V is diagonal, where V0± ∈ C
k±×k± are

unitary. So VHJkV = Jk, and thus we have by (3.28)

A(X0V) = B(X0V)(VHΛ0V), (VX0)
HB(X0V) = Jk.

It can also be seen that X0V is a local minimal point, too. Assume Λ0 is diagonal, and write

Λ0 = diag(ω+
1 , . . . , ω+

k+ , ω−
k− , . . . , ω−

1 ), (3.29a)

ω−
k− � · · · � ω−

1 , ω+
1 � · · · � ω+

k+ . (3.29b)

Since X0 is a local minimal point as assumed, the second derivative D2L (X) at X0, taken as a quadratic

form and restricted to the tangent space of

S = {X ∈ C
n×k | XHBX = Jk},

9 The standard inner product 〈X, Y〉 for matrices of compatible sizes is defined as 〈X, Y〉 = Re(trace(XHY)), the real part of

trace(XHY).
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must be nonnegative, i.e.,

trace(WHAW) − 〈Λ0,W
HBW〉 � 0 (3.30)

for any W ∈ C
n×k satisfying

XH
0 BW + WHBX0 = 0. (3.31)

Complement X0 by Xc to a nonsingular X1 = [X0, Xc] ∈ C
n×n such that

XH
1 BX1 =

⎡
⎣Jk 0

0 Bc

⎤
⎦ . (3.32)

Thus XH
c BX0 = 0 and XH

c AX0 = XH
c BX0Λ0 = 0 by (3.28). Therefore

XH
1 AX1 =

⎡
⎣XH

0 AX0 0

0 XH
c AXc

⎤
⎦ =

⎡
⎣JkΛ0 0

0 XH
c AXc

⎤
⎦ . (3.33)

Rewrite (3.31) as XH
0 X

−H
1 XH

1 BX1X
−1
1 W + WHX

−H
1 XH

1 BX1X
−1
1 X0 = 0 and partition

X
−1
1 W =

⎡
⎣k Ŵ1

n−k Ŵ2

⎤
⎦, X

−1
1 X0 =

⎡
⎣Ik
0

⎤
⎦ .

to get

JkŴ1 + ŴH
1 Jk = 0 (3.34)

which says S := JkŴ1 is skew-Hermitian. We have Ŵ1 = JkS which gives all possible Ŵ1 that satisfies

(3.34) as S runs through all possible k × k skew-Hermitian matrices. From (3.30), we have for any Ŵ2

and S = −SH

0 � trace(WHAW) − 〈Λ0,W
HBW〉

= trace
(
WHX

−H
1 XH

1 AX1X
−1
1 W

)
− 〈Λ0,W

HX
−H
1 XH

1 BX1X
−1
1 W〉

= trace
(
ŴH

1 (JkΛ0)Ŵ1

)
+ trace

(
ŴH

2

(
XH
c AXc

)
Ŵ2

)
− 〈Λ0, Ŵ

H
1 JkŴ1 + ŴH

2 BcŴ2〉
= − trace(SΛ0JkS) + trace

(
ŴH

2 XH
c AXcŴ2

)
− 〈Λ0, −SJkS + ŴH

2 BcŴ2〉. (3.35)

This is true for any Ŵ2 and S = −SH. Recall (3.29). For any given i � k+ and j � k−, set Ŵ2 = 0 and

S = eie
H
k+1−j − ek+1−je

H
i in (3.35) to get

0 � − trace(SΛ0JkS) + trace(Λ0SJkS) = 2
(
ω+

i − ω−
j

)
.

Therefore for any ω0 such that ω−
1 � ω0 � ω+

1 ,

XH
0 AX0 − ω0Jk = JkΛ0 − ω0Jk = Jk(Λ0 − ω0I) � 0.
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On the other hand, for any given w ∈ C
n−k and i � k, set S = 0 and Ŵ2 = weHi in (3.35) to get

0 � trace
(
eiw

HXH
c AXcweHi

)
− Re

(
trace

(
Λ0eiw

HBcweHi

))
= wH

(
XH
c AXc − ωBc

)
w,

where ω = eHi Λ0ei which is one of ω±
j . Since i and w are arbitrary, XH

c AXc − ωBc � 0 for any

ω ∈ {ω±
j , 1 � j � k±}. This 10 implies XH

c AXc − ωBc � 0 for any ω−
k− � ω � ω+

k+ . In particular,

XH
c AXc − ω0Bc � 0. By (3.32) and (3.33), we conclude that A − ω0B � 0 for ω−

1 � ω0 � ω+
1 . That

means A − λB is a positive semi-definite pencil.

It remains to show that X0 is also a global minimizer. Since A−λB is a positive semi-definite pencil,

by Lemma 3.3, we have (3.3). Define the one-one mapping between X and X̂ by (3.25). We have

trace(XHAX) = trace
(
X̂H
1 A1X̂1

)
+ trace

(
X̂H
2 A2X̂2

)
.

Notice

{X ∈ C
n×k : XHBX = Jk} = Y ·

⎧⎨
⎩
⎡
⎣X̂1

X̂2

⎤
⎦ ∈ C

n×k : X̂H
1 B1X̂1 = Jk

⎫⎬
⎭

which places no constraint on X̂2. If trace(X
HAX) as a function of X restricted to XHBX = Jk has a local

minimum, then either r = n or r < n and A2 � 0. In the case r = n, B is invertible and the theorem is

already proved in [4] (see Theorem 1.1). Suppose r < n and thus A2 � 0. At any local minimizer Xmin,

the corresponding X̂min is

X̂min = Y−1Xmin =
⎡
⎣r X̂min,1

n−r X̂min,2

⎤
⎦.

We have X̂H
min,2A2X̂min,2 = 0. Consequently X̂min,1 is a local minimizer of trace(X̂H

1 A1X̂1) as a function

of X̂1 restricted to X̂H
1 B1X̂1 = Jk . Since B1 is nonsingular, item4 of Theorem1.1 is applicable and leads to

that X̂min,1 is a globalminimizer for trace(X̂H
1 A1X̂1). This in turn implies that Xmin is a globalminimizer

for trace(XHAX) as a function of X restricted to XHBX = Jk . �

Proof of Theorem 2.2. The basic idea is to essentially reduce the current case to the case in which B

is nonsingular.

For item 1, we note that if A − λB is positive definite, then we have (3.3) with A2 � 0. For any

x ∈ C
n, write

x̂ = Y−1x =
⎡
⎣r x̂1

n−r x̂2

⎤
⎦, (3.36)

10 For two Hermitian matricesM and N of the same size and α < β , ifM − γN � 0 for γ = α and γ = β , then M − γN � 0 for

any α � γ � β . In fact, any α � γ � β can be written as γ = tα + (1 − t)β for some 0 � t � 1 and therefore

M − γN = t(M − αN) + (1 − t)(M − βN) � 0.
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which gives xHBx = x̂HYHBYx̂ = x̂H1 B1x̂1. Since the mapping x → x̂ is one-one and since A2 � 0, we

have

inf
xHBx=1

xHAx = inf
x̂H1 B1 x̂1=1

x̂H1 A1x̂1, inf
xHBx=−1

xHAx = inf
x̂H1 B1 x̂1=−1

x̂H1 A1x̂1. (3.37)

On the other hand, if the infimums in (2.5) are attainable, then A − λB is positive semi-definite by

Theorem 2.1 and thus we also have (3.3) with A2 � 0 and thus (3.37). But A − λB is assumed regular;

A2 must not be singular and so A2 � 0. Either way, the problem is reduced to the one about A1 − λB1.
Apply [4, Corollary 3.7] to conclude the proof.

For item 2, pick a λ0 ∈ I , then XHAX − λ0Jk � 0 for all X satisfying XHBX = Jk . Therefore

inf
XHBX=Jk

trace(XHAX − λJk) � 0

⇒ inf
XHBX=Jk

trace(XHAX) � λ0(k+ − k−) > −∞,

implying that A − λB is positive semi-definite by Theorem 2.1. Hence we have (3.3) with A2 � 0. But

A − λB is assumed regular; A2 must not be singular and so A2 � 0. Again the problem is reduced to

the one about A1 − λB1. Apply [4, Theorem 3.10] to conclude the proof. �

4. A sufficient and necessary condition for infimum attainability

Both Theorems 1.1 and 2.1 imply that for a positive semi-definite pencil A − λB the infimum is

attainable if and only there is an eigenvector matrix Xmin ∈ C
n×k such that

XH
minBXmin = Jk, AXmin = BXmin diag

(
λ+
k+ , . . . , λ+

1 , λ−
1 , . . . , λ−

k−
)
.

In this section, we shall use the indices in the canonical form of A−λB as given in Lemma 3.8 to derive

another sufficient and necessary condition.

Throughout this section, A − λB is a Hermitian positive semi-definite pencil of order n. Recall, in

Lemma 3.8, the finite eigenvalues of A − λB are

λ−
n− � · · · � λ−

m0+m−+1 < λ0 = · · · = λ0︸ ︷︷ ︸
m0

= λ0 = · · · = λ0︸ ︷︷ ︸
m−

=

= λ0 = · · · = λ0︸ ︷︷ ︸
m+

= λ0 = · · · = λ0︸ ︷︷ ︸
m0

< λ+
m0+m++1 � · · · � λ+

n+ .

(3.15)

In particular λ−
i = λ0 for 1 � i � m0 + m− and λ+

i = λ0 for 1 � i � m0 + m+. By Lemma 3.8, m0

andm± are uniquely determined by A − λB.

Lemma 4.1. Suppose A − λB is regular. Let Y ∈ C
n×� that satisfies YHBY = I� be an eigenvector matrix

of A − λB associated with λ0 (i.e., each column of Y is an eigenvector). Then � � m+.

Proof. By Lemma 3.8, A − λB has m+ + m− + m0 linearly independent eigenvectors associated

with λ0. One set of them can be chosen according to the three sources: x
−
1 , . . . , x−

m− from source 1,

x
+
1 , . . . , x+

m+ from source 2, and x1, . . . , xm0
from source 3 such that

XHBX = Im+ ⊕ (−Im−) ⊕ 0m0×m0
,
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where X =
[
x
+
1 , . . . , x+

m+ , x−
1 , . . . , x−

m−x1, . . . , xm0

]
. Any eigenvector matrix Y ∈ C

n×� associated

with λ0 can be expressed as Y = XZ for some Z ∈ C
(m++m−+m0)×�. Then YHBY = I� is equivalent to

ZH

⎡
⎢⎢⎢⎣
Im+ 0 0

0 −Im− 0

0 0 0

⎤
⎥⎥⎥⎦ Z = I�

which implies � � m+. �

Theorem 4.1. Let A − λB be a Hermitian positive semi-definite pencil of order n. Then

inf
XHBX=Jk

trace(XHAX) =
k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i

is attainable if and only if m0 = 0 or k± � m± in the case of m0 > 0.

Proof. We have (3.25) and (3.26). It can be seen that the infimums in

inf
XHBX=Jk

trace(XHAX), inf
X̂H
1 B1X̂1=Jk

trace
(
X̂H
1 A1X̂1

)

are either both attainable or neither is. Also m0 and m± are the same for A − λB and the reduced

A1 − λB1. So without loss of generality, we assume B is nonsingular.

Suppose m0 = 0 or k± � m± in the case of m0 > 0. The above analysis indicates that there are

k+ + k− eigenvectors associated with the eigenvalues λ−
i , λ+

j for 1 � i � k−, 1 � j � k+. Put these

eigenvectors side-by-side with those for λ+
j first and then those for λ−

i to give amatrix X that satisfies

XHBX = Jk and at the same time

trace(XHAX) =
k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i .

Suppose now the infimum is attainable. For any X ∈ C
n×k , partition X = [X+, X−], where X± ∈

C
n×k± . XHBX = Jk is equivalent to XH+BX+ = Ik+ , X

H−BX− = −Ik− , and XH+BX− = 0. We have

k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i = inf

XHBX=Jk

trace(XHAX) (4.1)

= inf
XH+BX+=Ik+ , XH−BX−=−Ik−

XH+BX−=0

[
trace

(
XH+AX+

)
+ trace

(
XH−AX−

)]

� inf
XH+BX+=Ik+ , XH−BX−=−Ik−

[
trace

(
XH+AX+

)
+ trace

(
XH−AX−

)]

= inf
XH+BX+=Ik+

trace
(
XH+AX+

)
+ inf

XH−BX−=−Ik−
trace

(
XH−AX−

)
(4.2)

=
k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i .
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Therefore for the infimum in (4.1) to be attainable, both infimums in (4.2) must be attainable. We

claim that when m0 > 0, if k+ > m+, infXH+BX+=Ik+ trace
(
XH+AX+

)
is not attainable; similarly when

m0 > 0, if k− > m−, infXH−BX−=−Ik− trace
(
XH−AX−

)
is not attainable. The claim implies the necessity

of the condition m0 = 0 or k± � m± in the case of m0 > 0.

We shall consider the “+” case only; the other one is similar. Suppose that m0 > 0 and k+ >

m+ and assume to the contrary that there existed an X+ ∈ C
k+×k+ such that XH+BX+ = Ik+ and

trace
(
XH+AX+

)
= ∑k+

i=1 λ+
i . Since X+ is a global minimizer, by Theorem 2.1 there existed a Hermitian

Λ+ ∈ C
k+×k+ such that

AX+ = BX+Λ+, XH+BX+ = Ik+ .

As a result, XH+AX+ = Λ+. Let Λ+ = UHΩU be its eigendecomposition, where U is unitary, Ω =
diag(ω1, . . . , ωk+), and ω1 � · · · � ωk+ . Write Y = X+U = (y1, . . . , yk+). We have

AY = BYΩ, YHBY = Ik+ ,

which implies ωi is an eigenvalue of A − λB and yi is a corresponding eigenvector. Since

k+∑
i=1

λ+
i = trace

(
XH+AX+

)
= trace(YHAY) = trace(Ω) =

k+∑
i=1

ωi

and λ+
i � ωi for 1 � i � k+ by [4, Theorem 2.1], we have λ+

i = ωi for 1 � i � k+. Let � =
min{k+,m+ + m0} and Y1 = Y(:,1:�), the submatrix consisting the first � columns of Y . Sincem0 > 0

and k+ > m+, � > m+. Y1 is an eigenvector matrix associated with λ0 with more thanm+ columns,

and YH
1 B1Y = I�, contradicting Lemma 4.1. Thus infXH+BX+=Ik+ trace

(
XH+AX+

)
is not attainable ifm0 >

0 and k+ > m+. �

5. Conclusions

Given a Hermitian matrix pencil A − λB of order n, we are interested in when

inf
XHBX=Jk

trace(XHAX) (5.1)

is finite, attainable, andwhat it is when it is finite. The same questions were investigated in detail with

remarkable results by Kovač-Striko and Veselić [4] for the case when B is nonsingular. They suspected

that their results would be true without the nonsingularity assumption on B but with A − λB being

regular. Our first contribution here is to confirm that indeed the nonsingularity assumption on B is

not needed, but we also have gone further to allow the singular pencil into the picture. Our second

contribution is a sufficient necessary condition for the attainability of the infimum in (5.1) in terms of

certain indices in the canonical representation of the pencil.
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