
The success of the von Neumann model of
sequential computation is attributable to the

fact that it is an efficient bridge between software and hardware: high-level languages
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
introduces the bulk-synchronous parallel (BSP) model as a candidate for this role, and
gives results quantifying its efficiency both in implementing high-level language

features and algorithms, as well as in being implemented in hardware.

Leslie 6. Valiant

CCYY”IIICITICI(CCFT”EAC.CY/August 199OPhl.33, No.8 103

I
n a conventional sequential
computer, processing is chan-
nelled through one physical
location. In a pa.rallel machine,
processing can occur simulta-
neously at many locations and

consequently many more computa-
tional operations per second should
be achievable. Due to the rapidly
decreasing cost of processing, mem-
ory, and communication, it has ap-
peared inevitable for at least two
decades that parallel machines will
eventually displace sequential ones in
computationally intensive domains.
This, however, has not yet happened.
In order to have a chance of rectify-
ing this situation it is necessary to
identify what is missing in our under-
standing of parallel co:mputation that
is present in the sequential case,
making possible a huge and diverse
industry.

We take the view that the enabling
ingredient in sequential computation
is a central unifying model, namely
the von Neumann computer. Even
with rapidly changing technology
and architectural ideas, hardware
designers can still share the common
goal of realizing efficient von Neu-
mann machines, without having to
be too concerned abont the software
that is going to be executed. Simi-
larly, the software industry in all its
diversity can aim to write programs
that can be executed efficiently on
this model, without explicit consider-
ation of the hardware. Thus, the von
Neumann model is the connecting
bridge that enables programs from
the diverse and chaotic world of soft-
ware to run efficientby on machines
from the diverse and chaotic world of
hardware.

Our claim is that wha.t is required

*The preparation of this paper was supported in
part by the National Sciena: Foundation under
grants DCR-86.00379 and CCR-89-02500. A pre-
liminary version appeared as reference [28].

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given
that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1990 ACM 0001.0782/90/0800-0103 $1.50

before general purpose parallel com-
putation can succeed is the adoption
of an analogous unifying bridging
model for parallel computation. A
major purpose of such a model is
simply to act as a standard on which
people can agree. In order to succeed
in this role, however, the model has
to satisfy some stringent quantitative
requirements, exactly as does the von
Neumann model. Despite the clear
benefits that might flow from the
adoption of a bridging model, rela-
tively little effort appears to have
been invested in discovering one.
Some very relevant issues but in a
slightly different context are dis-
cussed by Snyder in [23].

In this article we introduce the
bulk-synchronou.r parallel (BSP) model
and provide evidence that it is a
viable candidate for the role of bridg-
ing model. It is intended neither as a
hardware nor programming model,
but something in between. In justi-
fying the BSP for this role, our main
argument is that when mapping
high-level programs to actual ma-
chines in a great variety of contexts,
little efficiency is lost if we utilize this
single model. The adoption of such
a standard can be expected to insu-
late software and hardware develop-
ment from one another and make
possible both general purpose ma-
chines and transportable software.

The quantitative arguments for
the model are mainly &%iznt universal-
ity results. In three sections, efficient
implementations on the model of
high-level language features and
algorithms are discussed. In two
others, implementations of the model
in hardware are described. In all
cases, we aim to achieve optimal sim-
ulations, meaning the time taken is
optimal to within constant multipli-
cative factors which are independent
of the number of processors and usu-
ally small. We wish to avoid logarith-
mic losses in efficiency. Although we
express the results asymptotically, we
regard the model as neutral about the
number of processors, be it two or
one million. This is justified when-
ever the constants are indeed small.

Since the difficulties of program-
ming present severe potential ob-

stacles to parallel computing, it is
important to give the programmer
the option to avoid the onerous bur-
dens of managing memory, assign-
ing communication and performing
low-level synchronization. A major
feature of the BSP model is that it
provides this option with optimal
efficiency (i.e., within constant fac-
tors) provided the programmer
writes programs with sufficient paral-
lel slackness. This means programs are
written for v virtual parallel pro-
cessors to run on p physical pro-
cessors where v is rather larger than
p (e.g., v=p log p). The slack is ex-
ploited by the compiler to schedule
and pipeline computation and com-
munication efficiently. The high-level
languages that could be compiled in
this mode could allow a virtual
shared address space. The program
would have to be so expressed that v
parallel instruction streams could be
compiled from it. While a PRAM
language [6, 111 would be ideal, other
styles also may be appropriate.

We note that in a general-purpose
setting some slack may be unavoid-
able if parallel programs are to be
compiled efficiently. Certainly, the
prospects for compiling sequential
code into parallel code, which is the
extreme opposite case of v=l, look
bleak. The intermediate case ofp = v
looks unpromising also ifwe are aim-
ing for optimality. Hence the disci-
pline implied, that of using fewer
processors than the degree of paral-
lelism available in the program, ap-
pears to be an acceptable general
approach to computation-intensive
problems. The importance of slack
has been emphasized earlier in
[12, 271.

It is worth pointing out that while
these automatic memory and com-
munication management techniques
are available, the model does not
make their use obligatory. For the
purpose of reducing the amount of
slack required, improving constant
factors in runtime, or avoiding
hashing (as used by the automatic
memory management scheme), the
programmer may choose to keep
control of these tasks. We shall give
some illustrative examples of bulk-

104

synchronous algorithms that are ap-
propriate for this model.

It is striking that despite the
breadth of relevant research in recent
years, no substantial impediments to
general-purpose parallel computa-
tion as we interpret it here have been
uncovered. This contrasts with non-
computability and NP-completeness
results that explain the intractability
of numerous other computational
endeavors that had been pursued.
Many of the results that have been
obtained, and to which we shall refer
here in justification of the BSP
model, are efficient universality
results in the style of Turing’s theo-
rem about universal machines [24].
Hence, the BSP model can be viewed
as a pragmatic embodiment of these
positive results much as the von
Neumann model is a pragmatic em-
bodiment of Turing’s theorem.

The BSP Model
The BSP model of parallel computa-
tion or a bulk-synchronous parallel
computer (BSPC) is defined as the
combination of three attributes:
1. A number of components, each per-

forming processing and/or mem-
ory functions;

2. A router that delivers messages
point to point between pairs of
components; and

3. Facilities for synchronizing all or
a subset of the components at
regular intervals of L time units
where L is the periodicity parame-
ter. A computation consists of a
sequence of supersteps. In each
superstep, each component is al-
located a task consisting of some
combination of local computation
steps, message transmissions and
(implicitly) message arrivals from
other components. After each pe-
riod of L time units, a global check
is made to determine whether the
superstep has been completed by
all the components. If it has, the
machine proceeds to the next
superstep. Otherwise, the next
period of L units is allocated to the
unfinished superstep.
The definition is chosen to em-

body the simplest capabilities that
suffice for our purposes. In separat-

A major purpose of such a model is simply to
act as a standard on which people can agree.

ing the components from the router,
we emphasize that the tasks of com-
putation and communication can be
separated. The function of the router
is to deliver messages point to point.
It is specifically intended for imple-
menting storage accesses between
distinct components. It assumes no
combining, duplicating or broad-
casting facilities. Similarly, the syn-
chronization mechanism described
captures in a simple way the idea of
global synchronization at a con-
trollable level of coarseness. Realiz-
ing this in hardware provides an
efficient way of implementing tightly
synchronized parallel algorithms,
among others, without overburden-
ing the programmer. We note that
there exist alternative synchroniza-
tion mechanisms that could have
been substituted which achieve the
same purpose. For example, the
system could continuously check
whether the current superstep is
completed, and allow it to proceed to
the next superstep as soon as comple-
tion is detected. Provided a mini-
mum amount of L time units for this
check is charged, the results of the
run-time analysis will not change by
more than small constant factors.

T
he synchronization mech-
anism can be switched off
for any subset of the compo-
nents; sequential processes
that are independent of the
results of processes at other

components should not be slowed
down unnecessarily, When synchro-
nization is switched off at a processor
it can proceed without having to wait
for the completion of processes in the
router or in other components. Also,
operations local to the processor will
not automatically slow down com-
putations elsewhere. On the other
hand, even when this mechanism is
switched off, a processor can still
send and receive messages and use
this alternative method for synchro-
nization. If performance guarantees

are expected of this alternative syn-
chronization mechanism, assump-
tions have to be made about the
router; for example, it might be as-
sumed that each message is delivered
within a certain expected amount of
time of being sent. In justifying the
BSP model, we use the barrier-style
synchronization mechanism alone
and make no assumptions about the
relative delivery times of the mes-
sages within a superstep. In the sim-
ulations, local operations are carried
out only on data locally available be-
fore the start of the current superstep.

The value of the periodicity L may
be controlled by the program, even at
runtime. The choice of its value is
constrained in opposite directions by
hardware and software considera-
tions. Clearly, the hardware sets
lower bounds on how small L can be.
The software, on the other hand, sets
upper bounds on L since the larger it
is, the larger the granularity of paral-
lelism that has to be exhibited by the
program. This is because, to achieve
optimal processor utilization, in each
superstep each processor has to be
assigned a task of approximately L
steps that can proceed without wait-
ing for results from other processors.
We note that along with the tension
between these two factors, there is
also the phenomenon that a small L,
while algorithmically beneficial in
general, may not yield any further
advantages below a certain value.

In analyzing the performance of a
BSP computer, we assume that in
one time unit an operation can be
computed by a processing compo-
nent on data available in memory
local to it. The basic task of the router
is to realize arbitrary h-relation, or, in
other words, supersteps in which
each component sends and is sent at
most h messages. We have in mind a
charge ofjh + s time units for real-
izing such an h-relation. Here ,z de-
tines the basic throughput of the
router when in continuous use and s
the latency or startup cost. Since our

CCVY”NlCITlCWSCFT”EACM/August 199OWto1.33, No.8 105

interest pertains only to optimal
simulations, we will always assume
that h is large enough that gh is at
least of comparable magnitude to s.
If j/z > s, for example, and we let
g = 22, then we can simply charge
gh time units for an h-relation and
this will be an overest:imate (by a fac-
tor of at most two). In this article we
shall, therefore, define g to be such
that h-relations can be realized in
time g/z for h larger than some h,.
This g can be regarded as the ratio of
the number of local computational
operations performed per second by
all the processors, to the total number
of data words delivere,d per second by
the router. Note that if /, 1 g& then
every h-relation for rb <*h, will be
charged as an h,-rela.tion.

Even in. a futed .technology we
think of the parameter g as being
controllable, within limits, in the
router design. It can be kept low by
using more pipelining or by having
wider communication channels.
Keeping g low or fixed as the ma-
chine size p increa.ses incurs, of
course, extra costs. In particular, as
the machine scales up, the hardware
investment for communication needs
to grow faster than that for computa-
tion. Our thesis is that if these costs
are paid, machines of a new level of
efficiency and programmability can
be attained.

W
e note that the von
Neumann model as
generally understood
leaves many design
choices open. Imple-
mentations incorporat-

ing some additions, such as memory
hierarchies, do not necessarily
become inconsistent .with the model.
In a similar spirit we have left many
options in the BSP computer open.
We allow for both single and multi-
ple instruction streams. While it will
be convenient in this article to
assume that each component consists
of a sequential von Neumann pro-
cessor attached to a. block of local
memory, we do not exclude other ar-
rangements. Also, we can envisage
implementations of the BSP model
that incorporate features for com-

106

munication, computation or syn-
chronization that are clearly
additional to the ones in the detini-
tion but still do not violate its spirit.

A formalization of perhaps the
simplest instance of the BSP model is
described in [29] where it is called an
XPRAM. A fuller account of the
simulation results as well as of their
proofs can be found there.

Automatic Memory
Management
on the BSPC
High-level languages enable the pro-
grammer to refer to a memory loca-
tion used in a program by a symbolic
address rather than by the physical
address at which it is stored. For
sequential machines, conventional
compiler techniques are sufficient to
generate efficient machine code from
the high-level description. In the
parallel case, where many accesses
are made simultaneously and the
memory is distributed over many
components, new problems arise.
In particular, there is the primary
problem of allocating storage in such
a way that the computation will not
be slowed down by memory accesses
being made unevenly and overload-
ing individual units.

The most promising method
known for distributing memory ac-
cesses about equally in arbitrary pro-
grams is hashing. The motivating
idea is that if the memory words are
distributed among the memory units
randomly, independently of the pro-
gram, then the accesses to the various
units should be about equally fre-
quent. Since, however, the mapping
from the symbolic addresses to the
physical addresses has to be effi-
ciently computable, the description
of the mapping has to be small. This
necessitates that a pseudo-random
mapping or hash function be used in-
stead of a true random mapping.
Hash functions for this parallel con-
text have been proposed and ana-
lyzed by Mehlhorn and Vishkin [17]
(see also [5, lo]). These authors have
suggested an elegant class of func-
tions with some provably desirable
properties: the class of polynomials of
degree qlogp) in arithmetic modulo

m, where p is the number of pro-
cessors and m the total number of
words in the memory space.

In this section it is observed that
for hashing to succeed in parallel
algorithms running at optimal effi-
ciency some parallel slack is nec-
essary, and a moderate amount is
sufficient if g can be regarded as
a constant.

To see necessity we note that ifonly
p accesses are made in a superstep to
p components at random, there is a
high probability that one component
will get about logp/log logp accesses,
and some will get none. Hence, the
machine will have to devote R(log
p/log logp) time units to this rather
than just a constant, which would be
necessary for optimal throughput.
Logarithms to the base two are used
here, as throughout this article.

The positive side is that if slightly
more, namely p log A random ac-
cesses are made in a superstep, there
is a high probability that each com-
ponent will get not more than about
3 logp which is only three times the
expected number. Hence, these ac-
cesses could be implemented by the
router in the optimal bound of O(log
p). More generally, ifpf(p) accesses
are made randomly for any function

f(p) growing faster than log p, the
worst-case access will exceed the
average rate by even smaller factors.

This phenomenon can be ex-
ploited as follows. Suppose that each
of the p components of the BSP com-
puter consists of a memory and a
processor. We make it simulate a
parallel program with v L p log p
virtual processors by allocating v/p 1
log p of them to each physical pro-
cessor. In a superstep, the BSP
machine simulates one step of each
virtual processor. Then the v
memory requests will be spread
evenly, about v/p per processor, and
hence the machine will be able to ex-
ecute this superstep in optimal O(v/p)
time with high probability. This
analysis assumes, of course, that the
v requests are to distinct memory
locations. The more general case of
concurrent accesses will be con-
sidered in the next section. To keep
the constants low the machine has to

August 199O/Vo1.33, No.8/COYMUNIUTIONS01T”L~~,CY

be efficient both in hashing and in
context switching.

The conclusion is that if hashing is
to be exploited efficiently, the period-
icity L may as well be at least loga-
rithmic, and if it is logarithmic,
optimality can be achieved. Further-
more, for the latter, known hash
functions suffice (see [29]). In mak-
ing this claim we are charging con-
stant time for the overheads of
evaluating the hash function even at
runtime. In justifying this, we can
take the view that evaluating the hash
function can be done very locally and
hence quickly. (The O(log log p)
parallel steps needed to evaluate the
log p degree polynomials may then
be regarded as being a constant.) Al-
ternatively, we can hypothesize that
hash functions that are easier to com-
pute exist. For example, some
positive analytic results are reported
for constant degree polynomials in [l]
and [22]. Indeed, currently there is
no evidence to suggest that linear
polynomials do not suffice. Besides
ease of computation these have the
additional advantage of mapping the
memory space one-to-one. Finally,
we note that the frequency of evalu-
ating the addresses most often used
can be reduced in practice by storing
these addresses in tables.

Concurrent Memory
ACCeSSeS on the BSPC
In the previous section we considered
memory allocation in cases in which
simultaneous accesses to the same
memory location are not allowed. In
practice it is often convenient in
parallel programs to allow several
processors to read from a location or
to write to a location (if there is some
convention for resolving inconsisten-
cies), and to allow broadcasting of
information from one to all other
processors. A formal shared memory
model allowing arbitrary patterns of
simultaneous accesses is the concur-
rent read concurrent write (CRCW)
PRAM (see [ll]).

One approach to implementing
concurrent memory accesses is by
combining networks, networks that
can combine and replicate messages
in addition to delivering them point-

As the machine scales up the hardware,
investment for communication needs to grow

faster than that for computation.

to-point [8, 201. In the BSP model,
it is necessary to perform and charge
for all the replicating and combining
as processing operations at the com-
ponents. It turns out, however, that
even the most general model, the
CRCW PRAM, can be simulated
optimally on the BSP model given
sufficient slack if g is regarded as a
constant. In particular, it is shown in
[28] that if v = p”’ for any E > 0, a
v processor CRCW PRAM can be
simulated on ap-processor BSP ma-
chine with L 2 logp in time O(u/p)
(where the constant multiplier grows
as E diminishes). The simulation uses
a method for sorting integers in par-
allel due to Rajasekaran and Reif [19]
and employed in a similar context to
ours by Kruskal et al. [12]. Sorting is
one of the basic techniques known for
simulating concurrent accesses [4].
Since general sorting has non-linear
complexity we need to limit the
domain, in this case to integers, to
have some chance of an optimal
simulation.

The general simulation discussed
above introduces constants that are
better avoided where possible. Fortu-
nately, in many frequently occurring
situations much simpler solutions ex-
ist. For example, suppose that we are
simulating v virtual processors on a
p-processor BSP computer and know
that at any instant at most h accesses
are made to any one location. Then
if u = Q(hplogp), concurrent accesses
can be simulated optimally by simply
replicating any data items that are to
be sent to r locations r times at the
source processor (and charging for
their transmission as for r messages).
Similarly, if any combining occurs, it
does so at the target processor.

To show this works, we suppose
that among the destination addresses
of the v accesses made simultaneous-
ly there are t distinct ones, and the
numbers going to them are I,, It
respectively, all at most h. Suppose

these are scattered randomly and in-
dependently amongp memory units.
Then the probability that a fuced unit
receives more than x accesses is the
probability that the sum oft indepen-
dent random variables q (1 I j I t),
each taking value 4 with probability
/I-’ and value 0 otherwise, has value
more than x. But a corollary of a
result of Hoeffding [9] (see [15]) is
that if & are independent random
variables 0 I tj I 1 with expecta-
tion Cj Cj = 1, t) and p is the mean
of {cj} then for a < min@, 1 - /+).

+ a)t I em”“‘?)

If we set [i = vi/h SO that /.L =
Cb/@ht) = vl($ht), and let LY = p,
then the probability of 2pt being ex-
ceeded is at most e-0f/3 = e-“13ph I
p’ if v 1 3yhplog,p. Hence, the
probability that among the p pro-
cessors at least one receives more
than twice the expected number of
accesses is at mostp times this quan-
tity, or p”. Hence y > 1 suffices to
ensure optimality to within constant
factors.

We also observe that several other
global operations, such as broadcast-
ing or the parallel prefm, that one
might wish to have, are best imple-
mented directly in hardware rather
than through general simulations.
The simulation result does imply,
however, that for programs with suf-
ficient slack these extra features pro-
vide only constant factor improve-
ments asymptotically.

BSP Algorlthms
wlthout Washing
Although the potential for automat-
ing memory and communication
management via hashing is a major
advantage of the model, the pro-
grammer may wish to retain control
of these functions in order to improve
performance or reduce the amount of

CCMY”WICITICII~CCT”EACMIAu~~st 199O/Vo1.33, No.8 107

slack required in programming. It
appears that for many computational
problems, simple and natural as-
signments of memory and com-
munication suffice for optimal
implementations on the BSP model.
Fox and Walker (see [30]) have sug-
gested a portable programming en-
vironment based on a very similar
observation. A syste:matic study of
such bulk-synchronous algorithm re-
mains to be done. We can, however,
give some examples. We note that
several other models of computation
have been suggested--mostly on
shared memory modxels-that allow
for the extra costs of communication
explicitly in some way. Several
algorithms developed for these work
equally well on the 13SPC. Among
such related models are the phase
PRAM of Gibbons [7], which incor-
porates barrier synchronization in a
similar way to ours, but uses a shared
memory. Others include the delay
model of Papadimitriou and Yan-
nakakis [18], and the LPRAM of Ag-
garwal et al. [l].

The algorithms described below
are all tightly synchronized in the
sense that the runtime of their con-
stituent subtasks can be predicted
before runtime. There is also a con-
text for paralIelism where many tasks
are to be executed with varying time
requirements that cannot be deter-
mined in advance. In the most ex-
treme case, one has a number of
subtasks whose runtime cannot be
predicted at all. In this general
dynamic load-balancing situation
there also exist phenomena that are
compatible with barrier synchroni-
zation. In particular Karp has given
a load-balancing algorithm that is
optimal for any L for the model of
Gibbons (see [7]).

The advantages of implementing
algorithms directly on the BSP model
(rather than compiling them auto-
matically), increase as the bandwidth
parameter g increases. Hence, it is
appropriate to consider ,g explicitly in
analyzing the performance of these
algorithms. An algorithm in this
model will be broken down into
supersteps where the words read in
each superstep are all last modified in

a previous superstep. In a superstep
of periodicity L, L local operations
and a LL/g] -relation message pat-
tern can be realized. The parameters
of the machine are therefore L, g and
p the number of processors. Each
algorithm also has as a parameter n,
the size of the problem instance. The
complexity of an algorithm can be
expressed in several ways in terms of
these parameters. We will describe
parallel algorithms in which the time-
processor product exceeds the num-
ber of computational operations by
only a fixed multiplicative constant,
independent of L, p, p and n, pro-
vided that L and g are below certain
critical values. In such “optimal” al-
gorithms there may still be several di-
rections of possible improvements,
namely in the multiplicative constant
as well as in the critical values of g
and L.

A
s a simple example of a
tightly synchronized
algorithm well suited for
direct implementation, con-
sider multiplying two n x n
matrices A and B using the

standard algorithm on p I nZ pro-
cessors. Suppose we assign to each
processor the subproblem of com-
puting an nl4$ x n/G submatrix of
the product. Then each processor has
to receive data describing nl4 rows
ofA and n/G columns of B. Hence,
each processor has to perform 2n3/p
additions and multiplications and
receive 2n’lG I 2n3/p messages.
Clearly, if in addition each processor
makes 2n’IG message transmis-
sions, the runtime is affected by only
a constant factor. Fortunately, no
more than this number of transmis-
sions is required even if the elements
are simply replicated at source. This
is because if the matrices A and B are
initially distributed uniformly
among the p processors, 2n’lp ele-
ments in each, and each processor
replicates each of its elements 4
times and sends them to the X$ pro-
cessors that need these entries, the
number of transmissions per pro-
cessor will indeed be this 2n’IG.
This is an instance of the point made
in the previous section, that concur-

rent accesses, when the access mul-
tiplicity h is suitably small, may be
implemented efficiently by simply
replicating data at the source. It is
easily seen that optimal runtime
O(n3/p is achieved provided g =

$ O(nl p) and L = O(n3/p). (An
alternative algorithm given in [l]
that requires fewer messages alto-
gether can be implemented to give
optimal runtime with g as large as
O(n/p1’3) but L slightly smaller at
O(n3/($ log n)).)

A case in which it would be inefli-
cient to realize multiple accesses by
replication at the source is broad-
casting. Here, one processor needs to
send copies of a message to each of n
memory locations spread uniformly
among p components. Sending one
copy to each of thep components can
be accomplished in log& supersteps
by executing a logical d-ary tree. In
each superstep, each processor in-
volved transmits d copies to distinct
components. Time dglogdp is re-
quired for this. If n/p-l further
copies are made at each component,
optimality (i.e., runtime O(n/p)) can
be achieved if d = O((nlfgp logp)) log
(n/(‘gp log p))) and L = O(gd). The
constraint on d clearly implies that n
= Q(gp log p). Examples of these

constraints are g = 1, in which case
n = p logp and L = O(1) are suffi-
cient, andg = logp, in which case n
= p(logp)’ and L = O(logp) suffice.

An operation more powerful than
broadcasting is parallel prefer [ll, 131.
Givenx,, . . . JC,, one needs to compute
x10 xp . . . OXi for 1 I i I n for some
associative operation o. The now-
standard recursive algorithm for this,
but with d-ary rather than binary
recursion, yields exactly the same
constraints as those obtained above
for broadcasting.

There are several important al-
gorithms such as the fast Fourier
transform that can be implemented
directly on the butterfly graph. As
observed in [18], an instance of such
a graph with n inputs can be divided
into (log n)llog d successive layers,
where each layer consists of (n log d)ld
independent butterfly graphs of d/log
d inputs each. This is true for any d
2 2 if the expressions are rounded to

August 199O/Vo1.33, No.8ICOWYUWICITIOWSOFT”E~~Y

integers appropriately. We can,
therefore, evaluate such a graph onp
= (a log d)/dprocessors in (log n)/log

d supersteps, in each of which each
processor computes d local opera-
tions and sends and receives d/log d
messages. Hence, optimality can be
achieved if g = O(log d) =
O(log(n/p)), and L I d = O((n/p)
1%. WP>>.

A further problem for which bulk-
synchronous algorithms are of in-
terest is sorting. Among known
algorithms that are well suited is
Leighton’s columnsort [14]. For sort-
ing n items on p = O(f+‘“) processors
it executes eight consecutive stages.
In the odd-numbered stages each
processor sorts a set of a& elements
sequentially. In the even-numbered
stages, the data is permuted among
the processors in a certain regular
pattern. Hence, computation and
communication are separated at the
coarsest scale. For optimal runtime
on the BSP model, the communica-
tion time 0(&p) must not exceed the
computation time of (fr&) log (f@)
which is required by each stage of se-
quential comparison sorting. Hence,
fd;)~@$~~P)) and L = o((dP) 1%

su ice.
More generally, it is clear that any

actual BSP machine would impose
an upper bound onp, the number of
processors, as well as a lower bound
on the value ofg that can be achieved.
Also, for anyg to be achieved, a lower
bound on L may be implied. One
can, therefore, imagine transportable
BSP software to be written in a way
that the code compiled depends not
only on the problem size n but also on
the parameters p, g and L.

Implementation
on Packet
Swltcklng Networks
The communication medium or
router of the BSP model is defined to
be the simplest possible with the goal
that it can be implemented efficiently
in various competing technologies.
In current parallel machines, the
favored method of communication is
via networks that do some kind of
packet switching. Therefore, our
main argument will refer to this. In

COYYUWICITIONSOFT”SACMIAugust 199O/Vol.33, No.8

The advantages of implementing algorithms
directly on the BSP model (rather than

compiling them automatically), increase as the
bandwidth parameter g increases.

implementing the BSP model on a
packet switching network, the main
tool available is that of pipelining
communication. The conclusion will
be that a network such as a hyper-
cube will suffice for optimality to
within constant factors, but only if its
communication bandwidth is bal-
anced with its computational capa-
bility Thus, to simulate the BSP
model with bandwidth factor g it is
necessary that the computational
bandwidth of a node does not exceed
the communication bandwidth of the
connection between a pair of nodes
adjacent in the network by more than
a factor of g.

Packet routing on regular net-
works has received considerable at-
tention. Consider a hypercube
network and suppose that in g units
of time a packet can traverse one edge
of it. Thus, a single packet will
typically take g logp time to go to an
arbitrary destination. A paradig-
matic case of parallel packet routing
is that of routing permutations. Here
each of the p processors wishes to
send a message to a distinct destina-
tion. What is required is a distributed
routing algorithm that needs no
global knowledge of the message pat-
tern, and ensures that all the packets
arrive fast, even when fully allowing
for contention at the edges. It turns
out that a simple two-phase ran-
domized routing algorithm [26, 291
suffices to give runtime of about 2g
logp with overwhelming probability.

While this is optimal for permuta-
tion routing, it does not imply opti-
mal BSP simulations immediately
since it corresponds to the case of
l-relations and would require a fac-
tor of at least logp more in commu-
nication compared with computation
time.

In order to obtain an optimal BSP
simulation, we need to use the fact
that two-phase randomized routing

can support heavier message densi-
ties. It turns out that if there are log
p packets initially at each node with
at most log p destined to any one
target, Ok logp) time still suffices for
all the p log p packets to reach their
destinations [25, 291. In other words,
logp-relations can be realized essen-
tially as fast as l-relations. This gives
an optimal simulation of a BSP ma-
chine with L > g logp since in each
superstep we need to simulate L local
operations at each processor and
realize an L/g-relation in the router.
All this can be simulated in time O(L)
on the hypercube. We note that the
simulations give small constant fac-
tors and experiments show that small
queues suffice.

Further details of results on rout-
ing can be found in [29]. All the in-
dications are that this problem has a
variety of practical and efftcient solu-
tions. For example, instead of store-
and-forward message passing one
could consider bit-streamed or
wormhole routing which exhibit sim-
ilar phenomena [2]. We also note that
if the address space is already ran-
domized by hashing, two-phase rout-
ing can be replaced by one-phase
deterministic routing for implement-
ing memory accesses [20].

Since the BSP model separates
computation from communication,
no particular network topology is
favored beyond the requirement that
a high throughput be delivered. An
example related to the hypercube
that sufftces under similar conditions
is the butterfly, which would consist
of (logp) + 1 levels ofp nodes each.
One of the levels would be allocated
to processor/memory components
and the rest to switches.

lmplementatlon on
optlcal crossisars
Since we envisage the BSP computer
as being realizable in a variety of

109

technologies, we conclude here with
the observation that it can be im-
plemented optimally on a simple
model of computation :suggested by
the possibilities of optical technology.

In this model, in each time step
each ofp components. can transmit a
message by directing a beam of light
at a chosen component, If a compo-
nent receives just one message it
acknowledges it and transmission is
considered successful. On the other
hand, if more than one beam is di-
rected at a node, none of the mes-
sages is successfully received at that
node, and the absence of a valid
acknowledgment informs a sender of
the failure. Such a model has been
considered in [3, 161.

In light of the earlier discussion on
simulating shared memory by hash-
ing using periodicity I, 2 log p, a
crucial case for this optical model is
that of a super-step in which each pro-
cessor sends up to log p messages,
each receives up to about the same
number, and there is no other detect-
able pattern to the requested global
communication. It is observed in [29]
that a randomized algorithm of
Anderson and Mill.er [3] can be
adapted to perform this communica-
tion on this optical model in O(logp)
time steps, which is optimal. There-
fore, if such a time step corresponds
to g time units, this model can
simulate a 62@ log p) BSP computer
optimally.

Conclusion
‘e have defined the BSP
model and argued that it
is a promising candidate
as bridging model for
general-Ipurpose parallel
computation. As sup-

porting evidence, we: have described
how a variety of efficiency phenom-
ena can be exploited by this one
model. No single factor is, or can be,
decisive in confirming the adequacy
of a bridging model. It is the diver-
sity of the considerations in support
of the model and the apparent
absence of contrary indications that
are here most compelling.

The consideratio:ns we have an-
alyzed are all concerned with pro-

viding guaranteed performance at
near-optimal processor utilization.
Since the primary object of parallel
computing is to obtain high through-
put, we consider such quantitative
criteria to be critical. In the spectrum
of imaginable computations we have
addressed the end that is most com-
munication intensive, since this case
cannot be evaded in a general-pur-
pose setting. We have been careful,
however, to ensure that less-con-
strained computations, where inde-
pendent processes can proceed with
infrequent communication, are not
penalized.

The model is intended to be below
the language level and we hope that
it is compatible with a variety of
language styles. Several of our argu-
ments, however, favor programs from
which the compiler can efficiently
abstract the necessary number of
parallel streams of computation.
Highly synchronized languages writ-
ten in the PRAM style are clearly
compatible. The model is consistent,
however, with a number of other sit-
uations also. For example, in transac-
tion processing where the length of
transactions is statistically predict-
able a random allocation of pro-
cessors would suffice.

The arguments given in this arti-
cle in support of the BSP model are
of three kinds. First it is argued that
if the computational and communi-
cation bandwidth are suitably bal-
anced (i.e., g is a small constant such
as one) the model has a major advan-
tage regarding programmability, as
least for programs with sufficient
slack. In that case the memory and
communication management re-
quired to implement a virtual shared
memory can be achieved with only a
constant factor loss in processor uti-
lization. The constants needed in the
simulations are known to be small,
except in the case that concurrent ac-
cesses are made with high levels of
concurrency to each of many single
locations simultaneously. We note
that existing machines have higher
values of g than is ideal for a BSP
computer. The arguments of this ar-
ticle can be interpreted as saying that
if the relative investment in com-

munication hardware were suitably
increased, machines with a new level
of programmability would be ob-
tained. We note that for certain pro-
grams in which automatic memory
allocation is useful,the effective value
of g can be made smaller than the
physical value by exploiting locality
and viewing the computation at a
higher level of granularity. For exam-
ple, in finite element methods the vir-
tual memory can be regarded as
partitioned into segments, each of
which is to be stored in a single
memory component. The number of
computation steps per segment may
then greatly exceed the number of
nonlocal memory accesses.

The second kind of argument
given in this article is that several im-
portant algorithms can be imple-
mented directly on this model. Such
an implementation avoids the over-
heads of automatic memory man-
agement and may exploit the relative
advantage in throughput of com-
putation over communication that
may exist.

The third argument is that the
BSP model can be implemented ef-
ficiently in a number of technologies.
We illustrate this by giving an effi-
cient simulation on a hypercube net-
work as well as on a model suggested
by optical communication. We note,
however, that the BSP model is not
particularly associated with any one
technology or topology. The only re-
quirement on the router is a certain
level of communication throughput,
however achieved. Clearly, the prom-
ise of optical technologies looks at-
tractive in the BSP context. 0

Acknowledgment
The author is grateful to an anony-
mous referee for several insightful
suggestions concerning presentation.

1. Aggarwal, A., Chandra, A., and Snir, M.
Communication complexity of PRAMS. Theor:
Compur. Sci To be published.

2. Aiello, B., Leighton, ET., Maggs, B., and
Neumann, M. Fast algorithms for bit-serial
routing on a hypercube. Manuscript, 1990.

3. Anderson, R.J. and Miller, G.L. Optical com-
munication for pointer based algorithms. Tech.
Rep. CR1 88-14, Computer Science Dept.,
Univ. of Southern California, 1988.

4. Borodin, A. and Hopcroft, J.E. Routing merg-

ing and sorting on parallel models ofcomputa-
ti0n.J. Compul. Syst. Sci 30 (1985) 130-145.

5. Carter, J.L. and Wegman, M.N. Universal
classes of hash functions.J. Compul. Syst. Sci 18
(1979) 143-154.

6. Eppstein, D. and Galil, Z. Parallel algorithmic
techniques for combinatorial computation.
Annu. Reu. Comput. Sci. 3 (1988) 233-83.

7. Gibbons, P.B. A more practical PRAM model.
In Proceedings of the 1989 ACM Symposium on
Parallel Alsorilhms and Architeclurer. (1989)
pp. 158-168.

8. Gottlieb, A. et al. The NYU ultracomputer-
Designing an MIMD shared memory parallel
computer. IEEE 7ianr. Com,w. 32, 2 (1983)
175-189.

9. Ho&ding, W. Probability inequalities for sums
of bounded random variables. Am. Slat. Assoc.
J 58 (1963) 13-30.

10. Karlin, A. and Upfal, E. Parallel hashing-An
eficienc implementation of shared memory.
J ACM 35, 4 (1988) 876-892.

11. Karp, R.M. and Ramachandran, V. A survey
of parallel algorithms for shared-memory
machines. In Handbook nj Theoretical Computer
Science, J. van Leeuwen, Ed. North Holland,
Amsterdam, 1990.

12. Kruskal, C.P., Rudolph, L., and Snir, M. A
complexity theory of efficient parallel algo-
rithms. Theor: Compul. Sci To be published.

13. Ladner, R.E. and Fischer, MJ. Parallel prefix
computation.J. ACM 27 (1980) 831-838.

14. Leighton, ET. Tight bounds on the complex-
ity of sorting. IEEE ?ians. Comput. C-34, 4
(1985) 344-354.

15. Littlestone, N. From on-line to batch learning.
COLT 89, Morgan Kaufman, San Mateo,
CA., (1989) 269-284.

16. Maniloff, ES., Johnson, K.M., and Reif, J.H.
Holographic routing network for parallel pro-
cessing machines. Society of Photo Optical ln-
strumentation Engineers (SPIE), Paris, France
1989, V 1136, HolographicOptics II, Principles
and Applications, 283-289.

17. Mehlhorn, K. and Vishkin, U. Randomized
and deterministic simulations of PRAMS by
parallel machines with restricted granularity of
parallel memories. Acta If: ZI(l984) 339-374.

18. Papadimitriou, C.H. and Yannakakis, M.
Towards an architecture-independent analysis
of parallel algorithms. In Proceedings ofthe Twan-
&th ACM Sym,bosium on Theory of Computins
(1988) pp. 510-513.

19. Rajasekaran, S. and Reif, J.H. Optimal and
sublogarithmic time randomized parallel sort-
ing algorithms. SIAMJ Comfiut. 18, 3 (1989)
594-607.

20. Ranade, A.G. How to emulate shared memory.
In Pmceedings of the Twenty-eighth IEEE SymPosium
012 Foundalions of Computer Science (1987)
pp. 185-194.

21. Schwartz, J.T. Ultracomputers ACM TOPLAS
2 (1980) 484-521.

22. Siegel, A. On universal classes offast high per-
formance hash functions. In Proceedings of the
Thirtieth IEEE Symposium on Foundations of Com-

puter Science (1989).
23. Snyder, L. Type architectures, shared memory,

and the corollary of modest potential. Annu.
Rev. Comput. Sci. I, (1986) 289-317.

24. Turing, A.M. On computable numbers with an
application to the Entscheidungs problem. In
Proceedings ofthe London Marhemalical Sociely $2 2
(1936) 230-265; correction, ibidem 43 (1937)
544-546.

25. Upfal, E. Efficient schemes for parallel com-

munication.J. ACM 31, 3 (1984) 507-517.
26. Valiant, L.C. A scheme for fast parallel com-

munication. SIAM J. Comput. II (1982)
350-361.

27. Valiant, LG. Optimally universal parallel com-
puters. Phil. Trans. R. Soc. Loud. A326 (1988)
j73-376.

28. Valiant, L.G. Bulk-synchronous parallel com-
puters. In Parallel Pmcessins and Artificial In-
&ligence, M. Reeve and SE. Zenith, Eds.,
Wiley, 1989 15-22.

29. Valiant, L.G. General purpose parallel ar-
chitectures. In Handbookof Theoretical Computer
Science, J. van Leeuwen, Ed., North Holland,
Amsterdam 1990.

30. Walker, D.W. Portable programming within a
message passing model: the FFT as an exam-
ple. In Proc. 3rd Conference on Hypercube
Concurrent Computers and Applications
(1988), ACM Press.

CR Categories and Subject Descriptors:
C.l.2. [Processor Architectures]: Multiple Data
Stream Architectures (Multiprocessors)-Parallel
pr~cesson; F.l.2 [Computation by Abstract
Devices]: Modes of Computation-Parallelirm.

General Terms: Design
Additional Key Words and Phrases: Bulk-

synchronous parallel model

About the Author:
Leslie G. Valiant is currently Gordon McKay
Professor of Computer Science and Applied
Mathematics at Harvard University. His research
interests are in computational complexity,
machine learning and parallel computation.

Author’s Present Address: Aiken Computation
Laboratory, Harvard University, Cambridge,
MA 02138; email: valiant~harvard.harvard.edu.

Object-Oriented Concepts, Satisfaction Guaranteed

Databases, and Applications
Edited by WON KIM, MCC. and
FREDERICK H. LOCHOVSKY. University of Toronto
This wide-ranging introduction to the object-oriented paradigm begins by
covering basic concepts and then moves on to a variety of applications in
databases and other areas. Leading figures in the field wrote most of the
contributions specifically for this volume.
Topics include object-oriented programming languages, application systems,
operational object-oriented database systems, architectural issues, and direc-
tions in future research and development.
l ACM Press Books Frontier Series (A collaborative effort with Addison-
Wesley) l Spring 1989 l 624 pp. l ISBN O-201 -1441 O-7 hardcover l Order
Code 704892 l ACM Members $38.95 l Nonmembers $43.25 Reader Seduce X120 c

1 Yes, please send me the publication described above at the ACM Press
1 n Member price il Nonmember price. I am paying by: 11 West 42nd St.
1 i 1 VISA [1 MasterCard/lnterbank II American Express New York, NY 10036

i Account # I iEMember # I
1 A $4.00 fee for each copy will be added for shipping and handling. I

i Signature
Street Address

Exp. Date
I

City/State/Zip
I have enclosed a check for $ the total of my order. Because Phone (optional)

I I’ve paid by check, shipping is free. Book prices subject lo change without notice. Allow 4-6 weeks for delivery 1
_-----__-- _-___________-____----------

