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Abstract. We present a brute-force approach for finding k-nearest neigh-
bors on the GPU for many queries in parallel. Our program takes ad-
vantage of recent advances in fundamental GPU computing primitives.
We modify a matrix multiplication subroutine in MAGMA library [6]
to calculate the squared Euclidean distances between queries and refer-
ences. The nearest neighbors selection is accomplished by a truncated
merge sort built on top of sorting and merging functions in the Modern
GPU library [3]. Compared to state-of-the-art approaches, our program
is faster and it handles larger inputs. For instance, we can find 1000
nearest neighbors among 1 million 64-dimensional reference points at a
rate of about 435 queries per second.

1 Introduction

Many important operations in data science involve finding nearest neighbors for
each element in a query set Q from a fixed set R of high-dimensional reference
points. The k-nearest neighbors problem takes sets Q and R as input, and a
constant k, and returns the k nearest neighbors (kNNs) in R for every q ∈ Q.
In this paper we consider the high-dimensional version of this problem and we
give a state-of-the-art implementation of a brute-force GPU algorithm.

High-dimensional data may be structured data with many variables, but
it also arises as long feature vectors derived from unstructured data such as
text, images, video, time-series or shapes. Finding nearest-neighbors is the first
step in using kernel and non-parametric regression to interpolate functions over
the data [8, 26]. When learning classifiers, a nearest-neighbor algorithm [17] is
often the most accurate predictor in practice, especially in well-designed feature
spaces [13, 15]. An important topic of continuing research is using the nearest-
neighbor algorithm with a distance function chosen specifically to improve the
classification accuracy on a particular reference data set R. One successful group
of algorithms in this area [21,27,47–49] chooses the distance function locally for
each query q, based on a large set of nearest neighbors in R. Our brute-force
algorithm would be particularly good in this situation, since it easily handles
large values of k as well as large R.

High-dimensional nearest-neighbor search suffers from the “curse of dimen-
sionality” [14]. This makes it impossible to construct index data structures of
reasonable size on R that can answer a nearest-neighbor query exactly in time
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sub-linear in n = |R|, not only in the worst case but also in many reason-
able definitions of average case. Sub-linear solutions even to the approximate
version of the problem are surprisingly difficult, and only in recent years have
algorithms, most based on Locality Sensitive Hashing [19], provided provable
worst-case sub-linear query times using polynomial-sized index structures. Thus
brute-force approaches remain an important part of the solution space.

The GPU, with its massive SIMD parallelism, is well-suited to brute-force
approaches, providing exact worst-case results at the rate of a couple of ms
per query for moderately-sized problems (eg. a few million reference points).
As GPU speed and memory size continues to increase - AMD recently released
a 32GB GPU - the problem sizes appropriate for the GPU increase as well.
Large problems will always have to be handled from disk, eg. [28], but even
there, hybrid CPU-GPU implementations [32,46] rely on the GPU to solve large
subproblems by brute-force.

The efficiency of brute-force GPU implementations can themselves vary greatly,
particularly with respect to the optimization of data movement through the
memory hierarchy. Using better libraries for common operations such as sorting
and matrix multiplication can easily improve performance by an order of magni-
tude over naive implementations. Our brute-force implementation makes heavy
use of recent highly optimized CUDA libraries.

Any brute-force implementation consists of two steps. First, we compute a
matrix d2(Q,R) giving the squared distance of each q ∈ Q to each r ∈ R. To
implement this step, we modify the inner loop of a well-optimized open source
matrix multiplication kernel, the SGEMM kernel in MAGMA library [6]. In
the second step, for each query, we search its row of the matrix to find the
k smallest squared distances. There is considerable variation in how this step
can be carried out in brute-force implementations. Our implementation uses the
merge-path function from the Modern GPU library [3], which has proved to be
very useful in other contexts, to implement a truncated merge sort, in which
only the k smallest items move forward from one level of merging to the next.

Together, these two steps form a CUDA program, that, to the best of our
knowledge, is currently the fastest kNN implementation on the GPU. Our code
scales linearly in m = |Q|, n = |R|, the dimension d, and k, and unlike other
codes, it handles large values of k (up to k = 3000). We compare our imple-
mentation to the two recent published algorithms for which code is available,
cuknns [1] and kNN CUDA [2], and to an implementation with the segmented sort
function in the Modern GPU library.

2 Related work

There are many GPU approaches to brute-force kNN, applying different strate-
gies for the two major components of the algorithm.

Squared distance matrix: The two main existing approaches to computing
the squared distance matrix are to implement it directly with a custom kernel [9,
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23,24,29,30,33,35–37], or to derive the distances from an already well-optimized
matrix multiplication routine [10, 18, 24, 31, 45]. Custom direct implementations
are typically optimized by tiling, which divides the distance matrix into equal-
sized submatrices (or tiles) and then assigns a thread block to each. The tile size
is set so that a group of query and reference points can be accommodated in the
fast shared memory and reused by threads within the same block.

The matrix multiplication approach to computing the squared distance ma-
trix d2(Q,R) is based on the equation

d2(Q,R) = NQ + NR − 2QTR, (1)

where the elements of the ith row of NQ are ‖Qi‖2, and the elements of the

jth column of NR are ‖Rj‖2. These can be computed using custom CUDA
kernels [18, 24] or Thrust library [7] primitives [31]. A matrix multiplication
routine from a highly optimized library, e.g., cuBLAS [4] calculates the more
expensive third term, and the speed of the highly optimized library routine
compensates for the additional arithmetic operations.

Selecting nearest neighbors: The approaches for selecting nearest neighbors
are more diverse. Kuang and Zhao [33] simply sort all the distances to each
query using GPU radix sort; this relies on the speed of modern sorting libraries.
Dashti et al. [18] use radix sort as well, but on the entire matrix. The candidate
distances are first sorted all together and then stably sorted by query index to
separate the results for each query. Kato and Hosino [29,30] build a max-heap for
each query and parallel threads push new candidates to the heap using atomic
operations. Beliakov and Li [12] calculate the kth smallest distance to each query
directly using a GPU selection algorithm [11] based on Kelley’s cutting plane
method, a convex optimization technique.

Many approaches divide the distances to each query into blocks. Liang et
al. [35–37] find the local kNN within each block by testing each distance against
all the others in parallel; a single thread per query then merges the lists. Arefin
et al. [9] maintain an unsorted array of size k for each query and a pointer to
the largest element in the array. A single thread maintains this structure at each
level with a linear scan.

Several other approaches use a parallel reduction pattern, that is, a hierar-
chical pattern of comparisons. Barrientos et al. [10] create multiple heaps for
each query and then merge the heaps at each level. Miranda et al. [39] choose
the kNN at each level using quickselect. Komarov et al. [31] also use quickselect,
implemented with the CUDA warp vote function ballot(), bit count function
popc() and bit shift operations.

Truncated sort was introduced by Sismanis et al. [45]. Elements are discarded
from the sort when it is clear that they cannot belong to the smallest k. They
describe several algorithms, and show that their truncated bitonic sort has out-
standing performance on the GPU. Garcia et al. [23,24] use a truncated insertion
sort.
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Besides brute-force approaches, some of the asymptotically more efficient ap-
proximate kNN algorithms have been implemented on the GPU. Pan et al. [42–
44] and Lukac et al. [38] construct variants of Locality Sensitive Hashing. The
running times of these methods are competitive with existing brute-force imple-
mentations, but they return approximate results; like the brute-force approach,
the main bottleneck is the selection of the kNNs from a large set of candidates
from R, so our techniques may be useful in implementing these approaches as
well. There are also heuristic techniques that use various kinds of filtering to try
and avoid computing the entire squared distance matrix d2(Q,R) [16,20,46].

3 Implementation

Let m = |Q| be the size of the list Q of query points and let n = |R| be the num-
ber of reference points. In the input, the query and reference lists are organized
as d×m and d×n matrices, where d is the dimension. These matrices are stored
as row-major 1D arrays, so that, for each dimension i, the ith components of all
the points are contiguous; this facilitates coalesced access to global memory.

In the squared distance matrix d2(Q,R), we represent each of the distances as
a 64-bit integer, as follows. The high 32 bits contain the floating point distance
between the reference and the query, and the low 32 bits contain the integer
index of the reference point. When merging lists of kNNs for a particular query,
this composite representation allows us to swap the positions of two candidate
distances by swapping two 64-bit integers instead of swapping both the distances
and indices.

3.1 Computing the squared distance matrix

We leverage the efficiency of GPU matrix multiplication, which is a very well-
studied operation, to compute d2(Q,R). Listings 1.1 and 1.2 compare the com-
putation of the squared Euclidean distance matrix and matrix multiplication.
The only difference between them is in the innermost loop.

Listing 1.1: Squared Euclidean distances

for i = 0 to m-1
for j = 0 to n-1

distance[i,j] = 0
for k = 0 to d-1

diff = Q[k,i] - R[k,j]
distance[i,j] += diff * diff

Listing 1.2: Dot products

for i = 0 to m-1
for j = 0 to n-1

product[i,j] = 0
for k = 0 to d-1

product[i,j] += Q[k,i] * R[k,j]

Our computation of d2(Q,R) is a modification of a very efficient CUDA
matrix multiplication kernel [6, 22, 34, 40], replacing the internal loop with the
squared Euclidean distance computation, and then combining the resulting squared
distance with the index of the reference point r ∈ R to generate the 64-bit can-
didate representation described above.

This distance computation inherits a number of optimizations from the ma-
trix multiplication kernel. The most important is tiling. The squared distance
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matrix d2(Q,R) is divided into tiles of size mblk×nblk. The input for computing
a tile is a d×mblk stripe of Q and a d× nblk stripe of R. Each tile is processed
by a block of threads. These data chunks are loaded into shared memory in a
coalesced fashion and reused by threads within the same thread block. The tile
size is tuned to the Fermi architecture.

Since the introduction of the Fermi architecture, accessing data in registers is
much faster than accessing data from shared memory. To take advantage of this,
one more level of tiling is employed at the thread level. Each thread computes
a mthd × nthd matrix with stride mblk/mthd and nblk/nthd. For each dimension,
nthd values are loaded from shared memory to registers and reused to compute
all mthd × nthd partial results.

The kernel also uses loop unrolling and double buffering [34]. Loop unrolling
replaces a loop with a single block of straight-line code. Not only is the cost of
looping eliminated, but also more instruction level parallelism can be obtained
by the compiler. Double buffering takes advantage of the Fermi GPU’s dual-issue
architecture. It overlaps the arithmetic operations of the current iteration with
the memory operations of the following iteration.

Other brute-force kNN search implementations [10, 18, 24, 31, 45] take ad-
vantage of fast GPU matrix multiplication, but they use it as a subroutine as
described in Section 2. Clearly, our approach saves both memory and computa-
tion time. The only drawback is that we can only use it with open source matrix
multiplication codes. Fortunately, MAGMA [6] is competitive with proprietary
matrix multiplication kernels (see Section 4).

3.2 Selecting nearest neighbors

Overview: A naive approach to finding the k-nearest neighbors for each query
would sort the n candidates by distance and then return the first k. Following
Sismanis et al. [45], we use a truncated sorting algorithm instead, which discards
candidates as it becomes clear that they cannot belong to the top k.

The truncated merge sort is designed to use the GPU shared memory effi-
ciently. In the first stage, we divide the n candidates of a query into chunks of
size at least k that fit into shared memory, and sort each chunk in parallel with a
block of threads. In the second stage, we iteratively merge pairs of sorted chunks
and discard the larger half of each pair, so that the number of sorted chunks
in play decreases by a factor of two at each iteration (notice that this property
gives an O(n) running time, if we consider the chunk size to be constant). The
second stage stops when only one chunk is left, which contains the k-nearest
neighbors. In both the sorting and the merging stages, the operations for differ-
ent queries are executed in parallel, the sorts and merges on the different chunks
of each query are executed in parallel, and the chunk-level sorts and merges are
themselves parallel operations.

Merge Path: We use the Merge Path algorithm [3, 25, 41] for both sorting
and merging. In this section we briefly describe Merge Path and why it is so
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efficient. Let a and b be the two input arrays, sorted from smallest to largest; for
simplicity assume all elements are unique. Let s(i, j) denote the set consisting
of the first i items from a and the first j items from b: a[0] . . . a[i − 1] and
b[0] . . . b[j − 1]. Finally, define the list Sp of possible choices of s(i, j) such that
i + j = p, ordered by i. For instance, if a = [2, 5, 11, 13] and b = [3, 8, 12, 17], we
get S3 = [[3, 8, 12], [2, 3, 8], [2, 3, 5], [2, 5, 11]]. The correct first p elements of the
output has to be one of the elements of Sp, ( [2, 3, 5] in the example); call this
sp.

Now consider mapping the function f(i, j) = b[j − 1] < a[i] over Sp, where
we define f(i,−1) = True. In the example, we get [12 < 2 = False, 8 < 5 =
False, 3 < 11 = True,True]. And in fact, f(i, j) is always False to the left of sp
and True at and to the right of sp [41]. So we can find sp by binary search on
the Boolean array f(Sp), computing only the elements of f(Sp) that we need to
evaluate. Once we know sp, we can break the problem of merging a and b into
two independent parts, one merging the first p output elements and the other
merging the rest.

In fact, we break the problem into several independent parts. Assuming that
there are r processors, we evenly divide the output array c into non-overlapping

segments of size l = |a|+|b|
r . Processor x finds slx and then generates the output

between positions lx and l(x + 1) − 1. Each processor works independently of
the others, except for the synchronization after the binary search.

Merge Path works well on the GPU because it divides the work into roughly
balanced subtasks. Choosing the size of the subtasks is the key tuning parameter;
choosing r too large increases the number of subproblems and allows the binary
search to dominate, while choosing r too small allows the sequential merges to
dominate and fails to create enough work for all the processors.

Using MGPU: Modern GPU (MGPU) [3] is a library of high-performance
CUDA primitives, including Merge Path, that takes advantage of parallelism
at both the kernel and thread block levels. We demonstrate that the MGPU
primitives, particularly Merge Path, leads to a very efficient nearest-neighbors
selection algorithm.

In the first (sorting) stage of the selection algorithm, each thread block
loads a chunk of nearest neighbor candidates into shared memory and then
calls mgpu::CTAMergesort to sort them. In mgpu::CTAMergesort, each thread
first sorts a small number of candidates in registers. Next, the sorted arrays are
merged (still in shared memory) using a parallel reduction pattern. Each merge
operation is done with Merge Path. In the first step of the reduction, two threads
work on merging each pair of arrays. As the array length doubles, so does the
number of cooperating threads per array, so that each sequential merge opera-
tion ends up handling the same number of items (determined by the parameter
r, above).

At each iteration of the second (merging) stage, each thread block loads two of
the sorted chunks into shared memory and then uses the Merge Path algorithm.
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Fig. 1: Total running time, with the proportions of computing squared distance
matrix (denoted by matrix ), selecting nearest neighbors (denoted by select and
with k = 1000) and transferring data (denoted by transfer) as we vary the
number of queries, references and dimensions, respectively.

Just the smaller half of the output c will be stored back to global memory, so
we only need to assign threads to construct the first half of the output array.

The chunk sizes we use depend on the choice of k, when k is large; for k < 500,
we use the chunk size for k = 500 since making it smaller does not improve the
running time.

4 Results

Our experimental environment employs CUDA Toolkit 6.5 [5] and a GeForce
GTX 460 graphics card, which uses the Fermi architecture and has 1023 MB
global memory.

Since our implementation is brute-force, the distribution of input data does
not influence the performance of our program, so we use test data composed of
uniformly distributed random numbers between −1 and 1.

The size of input is determined by the number of queries (m), references
(n) and dimensions (d). We generated three test datasets to demonstrate the
influence of each of these factors on the running time:

– m ∈ [50, 1000], n = 100000 and d = 64.
– m = 90, n ∈ [50000, 1000000] and d = 64.
– m = 500, n = 100000 and d ∈ [50, 1000].

Evaluation and analysis: Figure 1 shows the running time of our program
and each of its three major components, computing squared distance matrix,
selecting nearest neighbors and transferring data between CPU and GPU, on
the test data. The running time is indeed linear in each of the factors (m, n,
d), although the overall running time is O(mnd). In any fixed dimension, the
running time for the nearest neighbors selection step increases more quickly as
the input size grows, and eventually dominates the time required for the matrix
multiplication. The number of dimensions is irrelevant to the performance of the
nearest neighbors selection.

Because the optimal chunk size in the nearest neighbors selection phase is
achieved at k = 500, choosing k smaller than that does not improve the running
time by much. The running time increases linearly with k for k > 500, however.
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Fig. 2: Total running time of selecting nearest neighbors with k = 1000 and
the proportions of sorting and merging candidate chunks (denoted by sort and
merge, respectively) as we vary the number of queries and references, respec-
tively.
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Fig. 3: Running time comparison of our squared distance matrix computation
kernel (denoted by Euclidean) and the SGEMM subroutine in MAGMA [6] and
cuBLAS [4] as we vary the number of queries, references and dimensions, respec-
tively.

Next, we take a closer look at selecting nearest neighbors and its two kernels,
sorting and merging candidate chunks, in Figure 2. We observe that the running
time of the sorting step increases more quickly with input size.

Comparisons: To evaluate the performance of the kernel that computes our
squared distance matrix d2(Q,R), we compare its performance to the two SGEMM
(single precision general matrix-matrix multiply) implementations in MAGMA [6]
and cuBLAS [4] (see Figure 3). Recall that both custom squared distance ker-
nels and squared distance computations that use matrix multiplication as a
subroutine are less efficient than the heavily optimized matrix multiplication
subroutines.

Our implementation is modified from the SGEMM subroutine in MAGMA,
but it is only marginally slower. The proprietary SGEMM matrix multiply im-
plementation in cuBLAS performs better than MAGMA as the number of di-
mensions increases. In principle, any efficient matrix multiplication kernel can be
modified to compute squared distances; we could not use cuBLAS only because
it is not open source.

Finally, we evaluate the running time of our Merge Path nearest neighbors
selection step with that of two recent nearest neighbor algorithms for which
code is available. These are truncated insertion sort [2,24] and truncated bitonic
sort [1,45]. We also compare against segmented sort applied to all n candidates
for each query, as implemented in the Modern GPU library [3]. These compar-
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Fig. 4: Running time comparison of our nearest neighbors selection component
for different k (denoted by k500, k1000, k2000 and k3000, respectively), trun-
cated insertion sort [2] (denoted by insertion and with k = 100), truncated
bitonic sort [1] (denoted by TBiS and with k = 500) and segmented sort in the
Modern GPU library [3] (denoted by segsort and with k = n) as we vary the
number of queries and references, respectively.

isons are shown in Figure 4. The running time of the truncated insertion sort is
shown in a separate graph because it is significantly slower, even for k = 100.

Our kernels are configured to find 500, 1000, 2000 and 3000 nearest neighbors
per query, respectively. 3000 is the maximum size of candidate chunk that our
kernels can handle (limited by the size of shared memory). In both graphs, the
truncated bitonic sort works well up to a certain point, after which it stops
producing correct results. Our program is twice as fast at k = 500, and only
when we reduce k to 16 does TBiS become faster than our program with k = 500.
Segmented sort [3] is robust at large input sizes, but it is slower and requires
much more memory.

5 Conclusions

Finding ways to use highly-optimized GPU library functions is an effective way to
achieve both speed and robustness in this important application. Our algorithm
advances the state of the art for all but the smallest values of k. It is unique in
its ability to handle large values of k, and large input datasets. The performance
of our algorithm for very small values of k is limited mainly by the performance
of the selection step. Possibly this could be improved by allowing one thread
block to perform multiple truncated merge sorts in parallel. The drawback of
this approach would be that it complicates the kernel.

Approximate kNN search approaches where nearest-neighbor candidates are
filtered so that not all squared distances need to be computed could benefit
from using our truncated merge sort to select the true nearest neighbors from
the candidates. This is true for Locality Sensitive Hashing as well as for heuristic
approaches.
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