1. There are many shades of pink. Give two OpenGL \texttt{color3f} commands, one to make a bright, hot, day-glo pink, and the other to make a pale, delicate rose.

2. The z values at any point in a 3D triangle are calculated in the rasterization hardware using linear interpolation. For a 3D triangle with vertices $(1, 2, 6)$, $(5, 4, 1)$, $(8, 1, 1)$, what is the z value which will be found for the point with (x, y) coordinates $(5, 3)$? In other words, for the point $(5, 3, z)$, find z.

3. Find all two-dimensional vectors which are left fixed by the following affine transformation:

$$
\begin{bmatrix}
3 & -1 & 4 \\
-2 & 2 & 6 \\
0 & 0 & 1
\end{bmatrix}
$$

4. Bezier curves can be used to control the path of an animated object. For instance, the parabolic path of a thrown basketball can be described by a quadric Bezier curve. Say we want 10 frames of animation. In frame zero the center of the ball is at $(0, 0)$, and in frame 9 its center is at $(6, 0)$. To make the ball arc up inbetween, we add a third control point at $(3, 6)$. Say we also want to put some spin on the ball, so that in each frame it rotates around its own center by $\pi/10$.

Write the matrix for the modeling transformation you would use to place the ball correctly in frame i. The coefficients in the matrix can be functions of i, and you do not need to find real values for anything (eg. writing $\cos(\pi/10)$ is just fine).