
ECS 89

5/28

Announcements

  Next assignment due Tu June 3
  Final in this room, Wds June 11, 8AM

  Agenda for today:
 Assignment
 Objects
 DOM events
 Animation loop

  Theme: functions in Javascript are objects

Assignment: A game. Any game.

  What could we do with this?

Objects

  Creator function sets attributes.
  Python “self” Javascript “this”

// creator function for object

function Paddle(halfWidth) {

 this.x = 200;

 this.halfWidth = halfWidth;

 this.hot = false;
 ….

Methods

  A method is just an object attribute that happens to
be a function.

 // a method

 this.draw = function() {

 if (this.hot) { ctx.fillStyle = "rgb(255, 255, 100)"; }

 else { ctx.fillStyle = "rgb(170, 215, 130)"; }

 ctx.fillRect(this.x-this.halfWidth, 400-20,
 this.halfWidth*2, 10);

 }

Note: function has no name

this.draw = function() {

 …..
  “this.draw” is an attribute of canvas; it contains a

function-object
  The function itself has no name
  It is certainly possible to put a function with a name

into an attribute; we’ve seen that in HTML:

<button type="button" onclick="myFunction()">Try it</button>

Two methods to change the color

 // another method - called when mouse is pressed

 this.beHot = function(e) {

 this.hot = true;
 }

 // another method - called when mouse is released

 this.beCool = function(e) {

 this.hot = false;
 }

DOM events

  We have already seen one kind of DOM event:

<button type="button" onclick="myFunction()">Try it</button>

  Interaction with mouse clicks, motion, keyboard clicks
can be associated with any DOM element.

  For the game, we associate them with the canvas.
  The DOM element is an object (eg. canvas); these

attributes of the object are functions that are called
when the event happens.

DOM events

  We can put a function into the attribute in the
Javascript code instead of in the HTML:

var canvas = document.querySelector("canvas")

function grabEvents() {

 // let paddle respond to all events

 canvas.onmousedown = function(e) {pad.beHot(e)};
 canvas.onmouseup = function(e) {pad.beCool(e)};

}

Possible mouse events

  These are called by touchpad, trackball, etc.

onclick, ondblclick
onmousedown, onmouseup
onmousemove
onmouseover, onmouseout

  There is a touch interface that does similar things for
fingers on a touchscreen.

Event object

canvas.onmousedown = function(e) {pad.beHot(e)};

  The event function is called … by what? …with a
parameter that is an event object; it has a number of
useful attributes. For a mouse event:
 clientX
 clientY
 button – which mouse button was pressed or

 released
  You’ll need to Web surf about these

onmousemove

  We’ll need this to get one of our custom objects to
follow the mouse…something like this:

canvas.onmousemove = function (e) {pad.follow(e);}

And in the Paddle object creation:

this.follow = function (e) {

 x = e.clientX;

 y = e.clientY;
 …

Animation

  Also handled by running a function
  It draws a (possibly) slightly different picture – a

frame - each time, creating the illusion of motion

Very nice animation mechanism

function frame() {

 requestAnimationFrame(frame); // request the next frame

 updateAnimation(); //draw
 }

  requestAnimationFrame says this function – frame –
should be called …by who? … the next time the
screen refreshes (typically in 1/60th of a second)

  Then we draw the picture
  So this is kind of an infinite loop

